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Abstract
In this article we deal with a special class of planar quadratic differential forms with

polynomial coefficients. The main results concern global and local structural stability as
well as the finite determinacy in this class.
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1 Introduction

The geometric-qualitative study of flows and general dynamical systems on surfaces has been
during many decades the object of a growing interest in many branches of pure and applied
mathematics. After the works of Poincaré, Lyapunov and Bendixson this has become a well-
established subject in mathematics and the focus of considerable attention. Moreover, nowadays
it is fairly accessible for a broad scientific audience. From various sides, attention has been paid
to the concept of structural stability and specially to the results of Peixoto (mainly [16] and
[17]), and to the higher dimensional extensions (due mainly to Anosov [1] and Smale [21]).

On the other hand, quadratic differential forms appear naturally in several mathematical
contexts. For example, they play a crucial role in Differential Geometry (see for example [2],
[22]) in the classification of umbilic points of a surface and in the study of steady-state solutions
of some partial differential equations (see for example [7], [13]).

Our approach, as in Davydov [6], Kuz'min [13] and Guinez [8]-[11], links those two major
areas by presenting a qualitative analysis of planar quadratic differential forms via the simulta-
neous behavior of two planar direction fields. More specifically:
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A quadratic differential form (QDF) w on R? is an element of the form
w = a(z,y)dz® + b(z, y)dzdy + c(z, y)dy?,

where a, b, c are real valued functions in an open domain D C R2?. If (b* — 4ac)(z,y) > 0 for
each (7,y) € D, we can associate to it a configuration C(w) = {f1, f2, Sing(w), Sy, 1,)}, where
f1, f2 is a pair of one-dimensional foliations in D — Sing(w). Sing(w) is the singular set of
quadratic differential form w and Sy, r,) is the tangency set between f; and f in D. Note that
Sing(w) C Sy, 1)-

We also observe that if (b*> — 4ac)(p) > 0 the set w(p)~1(0) is the union of two transversal
lines l1,lo. The case I; = Il occurs when (b?> — 4ac)(p) = 0. Those lines are tangent to the
foliations fi, fo at p, respectively. Moreover, the foliations f; and fs are tangent to the vector

fields
& =2a(z,y)
{ g ==bz,y) + (=1 (0? — dac)(z,y)
for 5 = 1,2 respectively, except possibly when a = 0.

On the other hand, if o = A;dz + B;dy is a 1-form (or vector field) in the plane, i = 1,2
then w = ajas is a quadratic differential form in the plane with A > 0. Moreover, the pair
f1, f2 associated to w = aja satisfies f; = N\, @ = 1,2, where )\; : R2 — R is null if only if
Ai(w,y) =0, i = 1,2. Then if we suppose that, A?(z,y) + A3(z,y) = 0 < (z,y) = 0 we have a
identification between the set of all quadratic differential forms with A > 0 and the set X x 3,
where X is the set of all 1-forms in the plane.

A form w is a planar homogeneous polynomial QDF of degree m provided that a,b,c are
homogeneous polynomials in the variables z and y of degree m. Given a homogeneous polynomial
form w of degree m such that A = v/b? — 4ac is a homogeneous polynomial, the one dimensional
foliations associated to it, f1, fo belong to the set H,, of all homogeneous polynomial vector fields
(or 1-forms) of degree m. We denote by A,, the set of all homogeneous polynomial quadratic
differential forms with A satisfying the above conditions. Then A,, can be identified with a
subset of H,, X H,,.

On the other hand, if o and £ are planar homogeneous polynomial 1-forms of degrees m and
n, respectively, then w = «.f is a homogeneous polynomial QDF of degree & = m + n. This
shows that H,, x H, can be identified with a subset of A;. Moreover, in both cases, we have a
similar associated configuration C(w).

In this paper we deal with a special class of planar polynomial QDF of degree k. We consider
a subspace of Ay, given by the set A¥ = H,, x H,,, with m +n = k.

We get the concept of structural stability in our class of QDF from the following definition:
Two forms w and wy in Ay, are equivalent if there exists a homeomorphism h such that h(C(w)) =
C(wp). That means that h is a simultaneous equivalence between the pair of foliations fi, f2
associated to w and the pair f9, f9 associated to wp, respectively. It takes the singular set of w
to the singular set of wy and the tangent set of (f1, f2) to the tangent set of (£, f3).

Guinez, in [11], introduced the set F,, of the planar polynomial positive QDF with degree
less than or equal to a positive integer m. He characterized the structurally stable elements in
Fn. We emphasize that in [11] the case where f;, 4 = 1 and/or 2 has no characteristic directions
is not considered.

(1)

Here we give a complete characterization of the structural stability in A*. It is worthwhile
to mention that the case where o and 8 are global foci is extensively studied. Problems related
with finite determinacy of QDF are also studied here.



This paper is organized as follows. In the remainder of this section we present basic definitions
and results necessary throughout this paper and we state our main results. In Section 2 we study
pairs of planar polynomial foci. We exhibit a topological invariant for the structural stability of
such pairs and give necessary and sufficient conditions for these pairs to be structurally stable.
Local and global situations are considered. We do the same for those pairs where o and/or /3
are not foci, in Section 3. Those sections pave the way for the proofs of the main results, which
are given in Section 4.

1.1 Historical notes

Recently many authors have worked in planar homogeneous polynomial vector fields; for exam-
ple, Sibirsky [20], Cima and Llibre [14], Collins [5], Llibre, Del Rio and Rodrigues [4], among
others. All of them treat the problem of the classification of homogeneous polynomial vector
fields.

Concerning QDF, the works of Guinez and Bruce-Tari on stability and normal forms of
families of QDF are worth mentioning. In [8]-[11] Guinez restricted the analysis to homogeneous
systems of order m and some problems. In a recent paper, Gutierrez, Oliveira and Teixeira [12]
classified the singularities of a special class of QDF via Newton diagrams. In this work, cases
without characteristic orbits were avoided again.

On pairs of vector fields in the plane, Bruce-Fidal [3], Michel [15], Davydov [7], Teixeira [23],
Oliveira and Tari [18]-[19] among others, obtained results.

1.2 Setting the problem

A vector field X = (P, Q) € H,, in differential systems terminology is written as

& = Pzy),
. 2
gy = Q=z,y). @)
In polar coordinates x = rcos ), y = rsinf, the expressions above go over to
o= o),
0 = ™ lg(0),
where
f(@) = cosf.P(cosf,sind) + sinf.Q(cosb,sinb), 3)
g(0) = cos6.Q(cosb,sinf) — sinf.P(cos 0, sinh).
If s satisfies § = 7™ 1, then the system can be written as
r' = rf(0),
0 = g(0), @)

where 7’ and 6’ denote the derivative of r and 6, respectively, with respect to s.

Throughout the paper we are assuming that g(€) has only zeros with multiplicity & = 1. We
also assume that f(6y) # 0 provided that g(fp) = 0. This means that we always get a linear
system with hyperbolic critical points.



Finally, considering the change of variable p = 1 r

n we are able to study the system in a
r

neighborhood of the infinity and we have:

g: - QE;)TP)JC(H)’ (5)

when (p, 0) is taken in the open disk D = {(p,0) : 0 < p < 1}. Observe that this system is also
defined for p > 1. We also observe that the boundary of D is an invariant circle under the flow
of the system. This circle corresponds to the infinity of the first system. So the induced vector
field E(X) defined in a neighborhood U of D is an analytic extension of the vector field X at
infinity.

The concept of structural stability in A¥ = H,, x H, is the following

(X,Y) € A¥ is structurally stable with respect to perturbations in H,, x H, if there exists a
neighborhood U x V of (X,Y) in A¥ such that for all (X', Y') € U xV, (X,Y) and (X', Y’) are
topologically equivalent.

We shall say that two pairs of vector fields (X,Y) and (X',Y’) are locally topologically
equivalent at the origin (resp. at infinity) if there exist two neighborhoods U and V' of the origin
(resp. infinity) and a homeomorphism h : U — V that carries orbits of the pair of flows induced
by (X,Y) onto orbits of the pair of flow induced by (X', Y’). As usual, we derive the concept
of local equivalence between two pairs of vector fields at a point p.

Denote by AF = X' x X, where 3" is the set of all planar structurally stable homogeneous
polynomial vector field of degree m with respect to perturbations in H,, and m +n = k.

1.3 Basic results

The structurally stable homogeneous polynomial vector fields in the plane have been studied in
[4] and [14]. Next, we recall some basic results.

Proposition 1.1 Let X € Hy,. Assume that E(X) has no critical points on 0D and Ix =

027T %dﬁ # 0, where f and g are given as in system (3). Then the phase portrait of E(X) in

D is a global focus.

Proposition 1.2 Let X € H,,. Assume that (0,0) is an isolated critical point of X and E(X)
has hyperbolic critical points on OD. Then E(X) has no limit circles in D. If 0y is a zero of

g(0) then the straight line with slope tan 0y which passes through the origin is invariant under
the flow induced by E(X).

The following proposition shows that there exists a duality between the flow of the induced
vector field E(X) in a neighborhood of the origin and in a neighborhood of the infinity.

Proposition 1.3 Let X € Hy, and suppose that (0,0) is an isolated critical point of X.

(i) Assume E(X) has no critical point in p =1. Then p =0 is an isolated periodic orbit for
the flow induced by the system if and only if Ix # 0.

(ii) Assume E(X) has critical points in p = 1. Then (1,0y) is a hyperbolic critical point if
and only if the critical point (0,6q) is also hyperbolic. Moreover, the critical points (0,60y) and
(1,60) are topologically different.



Theorem 1.4 The vector field X € H,, is structurally stable with respect to perturbations in
H,, if and only if, it satisfies one of the following conditions:

(i) If E(X) has no critical points on 0D and Ix # 0.

(ii) If E(X) has critical point on 0D and all these points are hyperbolic.

Propositions 1.1 and 1.2 are proved in [4]. Proposition 1.3 and Theorem 1.4 are proved in [14].

Suppose that X € Hy, and Y € H,,, with m > n. Then the induced pair (E(X), E(Y)) is

expressed as
B r! rf1(0)
BX) = {9' = q1(0)

(6)

B o= My (0)
E(Y) - {9/ — ,r,mfnlegQ(e) )

respectively, where f; and g; are defined as in the system (5), to 1 = 1,2.
The system above is simultaneously equivalent to the following system since that the multi-
plication of a vector field by a non-zero function leaves its phase portrait unchanged.

"= rh(6)
E(X) - {0, = 9130)7

_ [ = rh()
BY) = {9' = 92?9) ’

Then, by means of the change coordinates p = r/r + 1 we get

{p’ = p(1—-p)f1(6),
0 = 91(0)

{p’ = p(1—p)f2(0),
0 = g2(0),

where f; and g¢; are defined as in (3), i = 1,2.

Note that the induced vector field £(X) has no critical points on 0D provided that g;(6) # 0
for all # in S'. As g; is a homogeneous polynomial function of degree m + 1, we conclude that
E(X) has no critical points on 0D, provide that m is odd.

Given vector fields X = (P;,Q1) and Y = (P, Q2) in Hy, and H,, respectively, we define
the tangent set S(x y) as the set of all points p in the plane where X (p) and Y (p) are tangent.
Then

Sxy) = {(z,y) : (P1Q2 — P2Q1)(z,y) = 0}

The tangent set of the induced pair (E(X), E(Y')) will be denoted by E(S). Let us check
what happens with this set in coordinates (p,#). We have

E(S) ={(p.0) : p.(p = 1)-(fr92 — f291)(cos 0, sinf) = 0}
={p=0tU{p=11U{A: (P1Q2 — Q2P1)(1,\) = 0},

where A = tan6@. As {p =0} and {p = 1} are invariant sets of both vector fields, they belong to
the tangent set (common orbits). If (X,Y’) has no tangency outside the origin and the infinity



then E(S) = {p =0} U {p = 1}. Otherwise the tangent set is given by {p = 0} U {p = 1} plus
the points where X and Y are tangent.

We denote by S(x,y) the set of the zeros of the homogeneous polynomial function of degree
m +n,

d(z,y) = (P1Q2 — P2Q1)(z,y).

If § has zeros with multiplicity £ > 1, then for small perturbation of (X,Y’) in H,, x H,, the
perturbed tangent set does not have the same number of zeros. This shows that the pair is not
stable. Then, if we want to study pairs (X,Y) that are structurally stable, we must impose that
d either has no zeros or has only simple zeros, i.e., d'(A\g) # 0 provided that §(Ag) = 0. In this
case we will say that § is simple.

We consider the following subclasses in the space of polynomial quadratic differential forms
in the plane:

1. Non-simple set: A’}f = {(a, B) € AF : both E(a) and E(B) have no critical points in D}

i ANk — Ak /AE
2. Simple set: A” = A¥/A%,

1.4 Statement of main results

We denote by A’g the set of all structurally stable QDF in AF.

Theorem A: The form w = (a, 8) € AF belongs to Ak if and only if it satisfies the following
conditions:

i) (o, B) belongs to A¥;

it) The critical points of E(«) and E(B) at 0D are distinct.

ii) 6 is simple.

About the finite determinacy of an analytical QDF we have the following conclusion:

Theorem B: Let w = )., w; be a germ of an analytical QDF in {R2,0}, where w; is a
homogeneous polynomial QDF of degree i. The QDF w is m-determined, provided that one of
the following conditions is satisfied:

(i) wy, satisfies the conditions of Theorem A;

(it) wm € ATy where & has no zeros.

2 The non-simple set

First we consider (X,Y) € A’} - Assuming that ¢ is simple, two situations must be considered:
(i) 0 has no zeros; (ii) ¢ has zeros.

2.1 Global approach

Consider the case where (X,Y") is a pair of global foci where ¢ has only simple zeros. Then there
exist transversal sections T; associated to E(X) and E(Y') contained in S x y). Fix a transversal
section T;. Let (¢x, ¢y) be the respective associated returning maps.



Let (X,Y) be a homogeneous polynomial perturbations of (X,Y). Any equivalence h be-
tween them induces an simultaneous equivalence h between the returning maps. As a conse-
quence of the construction, h is a simultaneous conjugacy between the returning maps.

We also note that departing from a point p € T; we have several itineraries walking alternately
on pieces of orbits of X and Y. This means that there exist many ways to return to 7; through
the orbits of X and Y. This fact give us a suspicious that the equivalence h can not exist. This
is proved in the next result.

Proposition 2.1 Let (X,Y) € AF. Assume that E(X) and E(Y) has no critical points at 0D
and 0 has at least a zero. Then the pair (X,Y) is not structurally stable under perturbations in
H, x H,.

To prove this Theorem a topological invariant associated to pairs of returning maps is ex-
hibited. Let us construct this invariant.

Suppose that X and Y are global foci and 0 has at least one zero at 6 = 63. Let p;
(resp. p2) be a returning map of the vector field X (resp. Y) defined in a transversal section

To = {(r,0) : 0 = 6p}. So pi(t) = \it, where \; = 027T gzgz; df,i = 1,2 (thanks to homogeneous

condition).

We can suppose, without lost of generality that \; € (0,1), i = 1,2.

Given an arbitrary point pg € Tj in a neighborhood of 7 = 1 (infinity), take the fundamental
domain [p1(po),po] C To, so associated to each point ¢ in (0, p1(po)) there exists an integer !
such that ¢ = p! (p), where p € (p1(po),po)- So if ¢ = p&(po) we have

g X5
p=p1 °p3(po) = i Po-
1

This implies that

AS AS
Mpo< Fpo<pyo & M <7<1 (9)
Al Al
to l > k.
50 k_loghy _ K
St o T (10)
I —logh\y —1+1
When £ goes to infinity, [ > k goes to infinity and % — Hil goes to zero. From this we can

__ loghs
— log\

conclude that a(x y) is a number associated to the pair (X,Y).

Lemma 2.2 Let (X,Y) € AF be a pair of vector fields such that both E(X) and E(Y) have
no critical points on OD and § has at least one zero. Then the number a(x yy is a topological
invariant for (X,Y) in H,, x Hy,.

Proof If there exists an equivalence h : (X,Y) ~ (X,Y) then the same h must send Sx,y)
to S( %.5) Therefore if Ty denote a branch of A( %9 then h(Tp) is also a branch of A(x y.

_ Observe that Ty (resp. T1 = h(Tp)) is a transversal section to X and Y (resp. X and
Y), hence in Tj (resp. T1) we obtain returning maps associated to (X,Y) (resp. to (X,Y)).

Moreover h induces a simultaneous equivalence between (p1, p2) and (p1, p2). This implies that
a(X,Y) =a(X,Y). O



Proof of Proposition 2.1

We can suppose that an arbitrary perturbation of (X,Y’) has the form (X, }7), where Y is an
arbitrary perturbation of Y in H,,. This observation plus Lemma 2.2 shows that if two pairs are
equivalent then \; = )Ti, i =1,2. So (X,Y), under our assumptions, it can not be structurally
stable under perturbations in H,,, x H,. O

2.2 Local approach

Theorem 2.3 Let (X,Y) € A*. Assume that E(X) and E(Y) has no critical points on OD.
Then the pair (X,Y) is C° locally structurally stable at origin under perturbations in H,, x Hy,
if and only if § has no zeros.

Proof Suppose that § has at least one zero. We follow the ideas of Theorem 2.1 to show the
non-local structurally stability of the pair (X,Y).

We need to show that there exists a local equivalence between the pair (X,Y’) and any small
perturbation (X, }7) of it provided that ¢ has no zeros.

First, consider the lift of the pair (X,Y) to the cylinder S! x [0,1] and denote by ¢% (p) and
¢l (p) the orbits of X and Y through p in the cylinder, respectively. We need to consider the
cases:

A) sign(Ix) = sign(Iy). In this case there exists a unique intersection point between ¢ (p)
and ¢! (p) to each p fixed. Fix a circle r = r¢ in the cylinder and a point p in the disc Dy
centered at the origin and radius 7 = ry. The orbit ¢ (p) and % (p) through the point p will
intercept r = r( in points px and py, respectively. Denote the orbit of Y through py by ¥ (py).
This orbit will intercept ¢’ (p) at a unique point ¢g. Finally we define a map H : Dy — Dy such
that H(p) = q.

B) sign(Ix) = —sign(Iy). In this case, the orbit of X and Y through a point p in Dy will
intercept each other infinitively many times. Then, given a point py = (r¢, ), take ¢% (po) and
gog/ (po), orbit of X and Y through py. Denote by p; the first point where (j)tX (po) intercept
¢! (po). The region limited by ¢4 (po) and % (py) between py and p; is diffeomorph to a disk
D, with center at origin. To define the local equivalence H, between (X,Y) and (X ,}7), in a
point g in Dy, we proceed as in the above case. We shall find two points ¢x and gy in the
boundary 0D; of D; and a number k that represents the number of intersections that occur
between the orbits until they meet 0D;. Through gy we will consider the orbit of Y. Then we
define H(q) = ¢, where § is the k' intersection of the orbit of X through ¢x and the orbit of Y

through qy. B
In both cases, the map H defines an equivalence between (X,Y’) and (X,Y’) in a neighbor-
hood of the origin. See Figure 1. O

Remark 2.4 The map H is not a local equivalence in a neighborhood of the infinity (H is not
necessarily continuous in a neighborhood of the infinity).

It follows from the proof of the above Theorem some conclusion about the local structural
stability of pairs (satisfying the above assumption) at origin, with respect to polynomial pertur-
bations:



Figure 1: Lifting of the pair (X,Y) into the cylinder

Proposition 2.5 Let (X,Y) be a pair of germs of analytical vector fields at origin in the plane.
Suppose that (X,Y) = (D pop Xks Dop>n Yk), where Xy and Yy, are homogeneous polynomial
vector fields of degree k. Assume (X,,Y,) satisfies the assumptions of Theorem 2.3. Then the
phase portrait of (X,Y) at origin is locally equivalent to the phase portrait of (X, Yy) at origin.

In the later Proposition we also guarantee that these pairs are finitely determined. Finite
determinacy is also a natural question for pairs satisfying the conditions of Theorem 2.1. The
next example is related to this situation.

Example 2.6 Suppose that (¢1(t), p2(t)) = (%t, %t) is a pair of returning maps associated to

the pair of vector fields (Xo,Yo) in the conditions of Theorem 2.1. Then
1 (to) > ¢h(to), Yty and Vn € N*. (11)

Suppose that a small perturbation of (Xo,Yy) by higher terms gives the following pair of
returning maps

(D) = 5t —at’, holt) = polt) = 3t

We know that if there exists an equivalence h between (Xo,Yy) and X = (Xo, Yo) + h(z,y),
the non-homogeneous polynomial perturbation of it, then h induces an equivalence h between the

pair of returning maps. But we shall show that such equivalence can not exist. In fact, from
(11), we have

(1 (to)) = ¥1'(h(to)) > b3 (h(to)) = h(py (o)), Vto and ¥n € N'.
It is straightforward to derive that

" (h(ty)) = %ﬁ(to) - %(% tot %).ﬁ(to)Q +o

Take a positive integer ng > %. This implies that 1™ (h(to)) — 2™ (k(to)) < O.

Proposition 2.7 Let (X,Y) € A*. Assume that both E(X) and E(Y) have no critical points
on OD. Then the pair (X,Y) is not finite determined provided that 6 has a simple zero.



Proof Let (p1,p2) be the pair of returning maps associated to (X,Y), with p;(t) = \;t, where
A; is given as in Proposition 2.1, ¢ = 1,2. Assume without lost of generality that 0 < Ay < Ay < 1
and write A\; = é and Ay = %, where o and 3 are greater than 1. Then A} > AJ for all positive
integer n.

Note that

@1 (po) — @5 (po) = AP0 — Aypo > 0

and goes to the origin when n goes to infinity.

Consider a small perturbation of (X,Y) with respect to non-homogeneous terms of higher
degree and suppose that there exists an equivalence h between (X,Y) and its perturbation.
Then A (47 (po)) — h(¢5 (po)) = ¥1(h(po)) — 2(h(po)) > 0.

It is clear that any such perturbation can be chosen as (X,Y’). Moreover, the returning map
associated to the perturbation X can be written as 1 (t) = A\t — Ry (t), where Ry(t) = atF + ...,
with @ > 0 and £ is the first non-zero jet of R;.

Then

1 a 1 1 1
n _ k

As in the above example, we can find a positive integer ny such that the iteration order
changes after some ng, showing that such equivalence can not exist. O

As consequence of Theorem 2.3 we get some conclusions about the behavior of positive
quadratic differential forms. Let w be a positive quadratic differential form given by the product
of two 1-forms in the plane and satisfying the assumptions of Proposition 2.5. Since w is a
homogeneous polynomial form, the Newton Diagram associated to w has a unique face and by
Proposition 2.5 we have that w is locally equivalent to wa (See [12] for details). We observe that
here both differential 1-forms have no characteristic directions. Re-writing;:

Corollary 2.8 Let w = a.f be a positive quadratic differential form in the plane, where o and
B are planar polynomial differential 1-forms satisfying the assumptions of Proposition 2.5. Then
w s locally equivalent to wa at origin.

Now we shall consider a non usual global equivalence between pairs of vector fields, intro-
duced in [23].

Definition 2.9 Two pairs (X,Y) and (Xo,Yy) in A are mild-equivalent if there exists a home-
omorphism h : D — D such that (Xo,Yp) at p is germ equivalent to (X,Y) at h(p).

Let (X,Y) € A’} ! NA*, where § has only simple zeros. The above equivalence sends transver-
sal section of X and Y belongs to S(x,y) to transversal section of X and Yp in S(x,,y,). More-
over, the number of open regions in D — A(x yy is the same that in h(D) — A(x,,y,). Then,
given an arbitrary point p € D we can describe the local phase portrait of the pair (X,Y) in a
neighborhood of p. Lets consider each situation:

1. If p € D— A(x,y). Then X and Y are regular and transversal. Then (X,Y) is locally

topologically equivalent to (8%, 3%).

10



2. If p € Acxy) and A(xy) has only non degenerated singularities (for all 6 such that
A(By) = 0 we have A’'(6y) # 0). Then (X,Y) is locally topologically equivalent to (8%, 8%—#—
2z:4) (See [18]).

3. If pe 0D — A(x,y). In this case we have two regular vector fields without contact except
at y = 0 (common leaf). Then, the pair is locally topologically equivalent to (8%, (14
)2 —I—ya%), to y > 0 (See [2]).

4. If p€ OD N A(xy). The X and Y are regular vector fields with discriminant set given by
y = 0 (common leaf) plus a regular curve. Then the pair (X,Y) is locally topologically
equivalent to (8%, (1+ :v2)8% - 2$y3%), to y > 0 (See [18].

3 The simple set

Here we consider (X,Y) € A*, where either E(X) or E(Y) has critical points at 0D, say E(Y).

We know that if £(X) has no critical points at 0D then m is odd and to each critical point
6o € 0D of E(Y), we have associated a curve (See Proposition 1.2). As in [12], we called it of
separating curve (it is called a separatrix if 0y is a saddle point and a pseudo-separatrix, if 0y is
a node point). This curve is an invariant manifold of 6y. Then we call sector of E(Y) in D to
each region between two consecutive separating curves of E(Y') (See [12] for details).

Moreover, if E(Y') is a vector field with critical points at D and n is also odd then we get
some immediate conclusions.

Lemma 3.1 Let Y € H,, be a vector field with n odd. Suppose that Y has critical points on
oD, then:

1. If k is the number of zeros of g2(0), then k = 45, where j is a non zero positive integer.

2. The phase portrait of E(X) has an even number of singular sectors (elliptic, parabolic and
hyperbolic).

Proof 1. From (3) we observe that g2(6) is a homogeneous polynomial of degree n+ 1 (even).
As E(Y') has only hyperbolic critical points on 9D, g2(0) has only simple zeros. Then ¢; has
an even number of zeros A = tan #. Moreover, if 8 is a root of g9, i.e., Ao = tanf is a zero, then
Omod(km) is also a zero. As the zeros are simple, we get a number 4; of zeros of g9, where j is
a positive integer greater than 1. This fact implies that we get a even number of sectors in D,
where each separating curve is associated to a hyperbolic singular point of E(Y).

Moreover, as the topological type of a critical point p on 0D is characterized by the sign of
g5(0).f2(6) and the sign is the same for 6§ and 6 + 7 (tan6 = tan(é + 7)), we conclude that all
symmetric critical points have the same topological type. O

Consequences of the later Lemma:

1. There exists a symmetry in D, with respect to the involution o(z,y) = (—x, —y).

2. To know the phase portrait of X is enough to know the sequence of the 24 critical points
on 0D. The others 2j critical points will have the same behavior.

Example: If m =1 (linear vector field), we get 4 critical points. From remark before we can
conclude that we can find 3 distinct classes the equivalence to Y if n = 1: all critical points are
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of the node type, all critical points are of the saddle type, the sequence is node, saddle, node,
saddle (or saddle,node,saddle,node).

3. Two vector fields X and Y in Ay with different sequence of critical points on 9D are
non-equivalents (See Proposition 4.10 in [12]).

3.1 Global approach

First, consider (X,Y) € AF, where F(X) has no critical points on D. Assume that 6, and
01 are two consecutive critical points of E(Y) on dD with the same topological type. The
correspondent sector S of E(Y) will be an elliptic sector (if both critical points are of the nodal
type) or hyperbolic type (if both critical points are of the saddle type). Recall that E(X)|g is
equivalent to the vector field 3%. Then near 0D in S, each integral curve of E(Y") will intercept
a integral curve of F(X) in two distinct points (See Figure 2). This shows that there is a curve
of tangency between the integral curves of E(Y) and E(X) in hyperbolic and elliptic sectors.
Assuming now that 6y and ; are two consecutive critical points of E(Y") with distinct topological
type (node and saddle). The associated sector of E(Y') is parabolic and there is no curve of
contact in S (See Figure 2), provided that ¢ has only simple zeros.

Figure 2: Contact in a hyperbolic (or in an elliptic) sector and in a parabolic sector

Theorem 3.2 Let (X,Y) be in AF. Assume that E(X) has no critical points on 0D. If E(Y)
has critical points on D, then (X,Y) is C° structurally stable under perturbations in H,, x H,
if only if § has only simple zeros.

Proof As observed later, if 6 has one zero with multiplicity > 2, (X,Y’) is not structurally
stable. To show the required stability, under conditions, is enough to exhibit an equivalence that
maintain the integral curves of X and takes the integral curves of Y onto the integral curves of
Y, where Y is an arbitrary perturbation of Y in H,,.

In D we have finite many number of hyperbolic, elliptic and parabolic sectors of E(Y'). Let
T be an arbitrary separating curve of a sector of E(Y). Then T is also a transversal section for
E(X) and in T we have defined a returning map p associated to E(X). The same holds for a
small perturbation of E(Y') in H,. Since an equivalence takes a separating curve of E(Y) in a
separating curve of E(Y'), we have an induced returning map in h(7T') satisfying the following
relation po h = h o p/, where p is the returning map associated to E(X) in h(T).

For any Tj, another separating curve of E(Y), we have a homeomorphism I; : T — T;
obtained by sliding along the integral curve of E(X) from T to T;.

12



Let g (resp. ') be a sector of E(Y) (resp. E(Y)) with separating curves 71 and T5 (resp.
T{ and T3). Denote by Ag (resp. Aly) the curve of tangency between E(X) and E(Y) in p
(resp. E(X) and E(Y) in '), if there exist and by R; (resp. R)) the open region between T;
and Ag (resp. T] and AY), i = 1,2.

As before, there exist induced mappings Iy : T — T3, Iy : T — T and Iay : T — Ag. For
each i = 1,2, we derive homeomorphisms k; : T; — TV, defined by k; = (I}) Lo hol; i =1,2
and ka : Ag — Al given by ka = l;l o hola. These homemorphism there exist since we must
have a homeomorphism h : T' — T" satisfying h o p = p’ o h.

Let us see how to extend h to each sector S of E(X) onto the corresponding sector S’ of
E(X).

e In one elliptic sector. Comnsider pg € R;. Denote by ox and oy the integral curves of
E(X) and E(Y) passing through py. These integral curves intercept Ag in px and py,
respectively. Consider the points ka(px) and ka(py) in Al and the integral curves of
E(X) and E(Y) through these points, respectively. These curves meet each other in
qo € R.. Then define h(pg) = gop. The map h is a homeomorphism from R; to R}. Now in
Ry proceed in the same way and the extension to S is well done because H agree with ka
in A.

Now it is possible to extend h to D in a natural way.

,,,,,,,,,, 1&,,,,, S b e T L
e N N e e 2
,,,,,,,,,, FE a ./ .~ 4

2T 2N\ R VA

2N /A
T1 AS Tz T1 Tz

Figure 3: Phase portrait in some sectors of X

e In one hyperbolic sector we proceed in the same way as above.

e In one parabolic sector. Fix one leaf C; of E(X) and notice that Cy connects two points
p1 € Th with py € Ty. Let Cy be the leaf of E(X) connecting k;1(p1) and ko(p2). Define
one homeomorphism A between C; and Cy. Given a point gy € S. There is a unique point
gy € C1 and gx € T, where the orbits of E(X) and E(Y) through ¢y intercept C; and
11, respectively.

Applying k; : Ty — T] and h : C; — Cy we obtain h(qy) € Cy and ki(¢x) € T7,
respectively. Through these points there exists a unique integral curve of E (17') and E(X),
respectively, and they meet each other in a unique point ¢ € S’. Then extent h to S onto
S" defining h(qo) = q.

Now we extend this homeomorphism to 0D in a natural way. Given a point gy € 9D,
consider a sequence (g,) in S converging to go. Define h(gp) = nl;ngo h(gn) . Observe that

the limit does not depend on the sequence.
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The next step is to extend the homeomorphism constructed on each sector to all space. We
need guarantee that the gluing process is well defined. But this is ensured due the fact that the
homeomorphism h restricted to the separating curves agrees with the induced returning maps.
O

Now, consider (X,Y) € A*, where E(X) and E(Y) have distinct critical points on 0D. As
in the case studied later, we have finite many sectors of each vector field in D.

Theorem 3.3 Let (X,Y) be in A*. Assume that E(X) and E(Y) have distinct critical points
on OD. Then (X,Y) is C° structurally stable under perturbations in H,, x Hy if only if § either
has only simple zeros or no zeros.

The proof here follows the same ideas used in the proof of Theorem 3.2. As before we just
need to distinguish each sector and separating curves and the branches of the tangent set. See
more details of the proof (to the local case) when § has no zeros (Proposition 4.10 in [12]).

3.2 Local approach

As in the case where X and Y has no critical points in 0D, we can get some conclusions about
pairs of vector fields which can be written as a sum of homogeneous vector fields in the plane:

Proposition 3.4 Let (X,Y) be a pair of analytical vector fields in the plane. Suppose that
(X,Y) = (O iom Xk Dop>n Yi), where X; and Y; are homogeneous polynomial vector fields of
degree i. Either (X,,,Yy) satisfies the assumptions of Theorem 3.2 or of Theorem 8.5. Then
the phase portrait of (X,Y) at origin is locally equivalent to the phase portrait of (X, Ys) at
origin.

This Proposition can be proved in the same way as Theorem C in [4] using the technics of
Theorems 3.2 and Theorem 3.3. Note that as a consequence, we have finite determinacy of the
pairs (X,Y) satisfying the above conditions.

We have a dual result about local equivalence in a neighborhood of the infinity. Here we say
“phase portrait of (X,Y’) at infinity” instead of “phase portrait of (X,Y’) in a neighborhood of
the infinity”.

Proposition 3.5 Let (X,Y) be a pair of analytical vector fields in the plane. Suppose that

m n
(X,Y) = (ZXk, ZYk), where Xy, and Y} are homogeneous polynomial vector fields of degree
k=1 k=1
k. Assume that (Xp,,Y,) satisfies the assumptions either of Theorem 3.2 or of Theorem 3.3.
Then the phase portrait of (X,Y) at infinity is locally equivalent to the phase portrait of (X, Yy)
at infinity.

Applying the conclusions of this section to quadratic differential forms we have

Corollary 3.6 Let w = «.f3 be a positive quadratic differential form in the plane, where o and
B are planar polynomial differential 1-forms satisfying the assumptions of Proposition 3.4. Then
w s locally equivalent to wa at origin.
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4 Proof of the main results
Now we can joint the conclusions presented here to conclude the proof of the main results:
Proof of Theorem A: It follows from Theorems 2.1, 3.2 and 3.3.

Proof of Theorem B: If follows from Theorems 2.5 and 3.4.

Remark 4.1 Observe that A’}f is a open in g X X then A’g is never dense in AF.

Remark 4.2 Under some conditions, the results obtained in this paper can be applied to study
curvature lines in a smooth manifold M ; for example, if the curvature lines in M are given by
homogeneous QDF and they can decompose as a product of two homogeneous direction fields (in
the conditions mentioned in the introduction of this article).
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