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Abstra
t

In this arti
le we deal with a spe
ial 
lass of planar quadrati
 di�erential forms with

polynomial 
oeÆ
ients. The main results 
on
ern global and lo
al stru
tural stability as

well as the �nite determina
y in this 
lass.
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1 Introdu
tion

The geometri
-qualitative study of 
ows and general dynami
al systems on surfa
es has been

during many de
ades the obje
t of a growing interest in many bran
hes of pure and applied

mathemati
s. After the works of Poin
ar�e, Lyapunov and Bendixson this has be
ome a well-

established subje
t in mathemati
s and the fo
us of 
onsiderable attention. Moreover, nowadays

it is fairly a

essible for a broad s
ienti�
 audien
e. From various sides, attention has been paid

to the 
on
ept of stru
tural stability and spe
ially to the results of Peixoto (mainly [16℄ and

[17℄), and to the higher dimensional extensions (due mainly to Anosov [1℄ and Smale [21℄).

On the other hand, quadrati
 di�erential forms appear naturally in several mathemati
al


ontexts. For example, they play a 
ru
ial role in Di�erential Geometry (see for example [2℄,

[22℄) in the 
lassi�
ation of umbili
 points of a surfa
e and in the study of steady-state solutions

of some partial di�erential equations (see for example [7℄, [13℄).

Our approa
h, as in Davydov [6℄, Kuz'min [13℄ and Guinez [8℄-[11℄, links those two major

areas by presenting a qualitative analysis of planar quadrati
 di�erential forms via the simulta-

neous behavior of two planar dire
tion �elds. More spe
i�
ally:
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A quadrati
 di�erential form (QDF) ! on R

2

is an element of the form

! = a(x; y)dx

2

+ b(x; y)dxdy + 
(x; y)dy

2

;

where a; b; 
 are real valued fun
tions in an open domain D � R

2

. If (b

2

� 4a
)(x; y) � 0 for

ea
h (x; y) 2 D, we 
an asso
iate to it a 
on�guration C(!) = ff

1

; f

2

; Sing(!); S

(f

1

;f

2

)

g, where

f

1

; f

2

is a pair of one-dimensional foliations in D � Sing(!). Sing(!) is the singular set of

quadrati
 di�erential form ! and S

(f

1

;f

2

)

is the tangen
y set between f

1

and f

2

in D. Note that

Sing(!) � S

(f

1

;f

2

)

.

We also observe that if (b

2

� 4a
)(p) > 0 the set !(p)

�1

(0) is the union of two transversal

lines l

1

; l

2

. The 
ase l

1

= l

2

o

urs when (b

2

� 4a
)(p) = 0. Those lines are tangent to the

foliations f

1

; f

2

at p, respe
tively. Moreover, the foliations f

1

and f

2

are tangent to the ve
tor

�elds

�

_x = 2a(x; y)

_y = �b(x; y) + (�1)

j

p

(b

2

� 4a
)(x; y)

(1)

for j = 1; 2 respe
tively, ex
ept possibly when a � 0.

On the other hand, if �

i

= A

i

dx + B

i

dy is a 1-form (or ve
tor �eld) in the plane, i = 1; 2

then ! = �

1

�

2

is a quadrati
 di�erential form in the plane with � � 0. Moreover, the pair

f

1

; f

2

asso
iated to ! = �

1

�

2

satis�es f

i

= �

i

�

i

, i = 1; 2, where �

i

: R

2

! R is null if only if

A

i

(x; y) = 0, i = 1; 2. Then if we suppose that, A

2

1

(x; y) + A

2

2

(x; y) = 0, (x; y) = 0 we have a

identi�
ation between the set of all quadrati
 di�erential forms with � � 0 and the set �� �,

where � is the set of all 1-forms in the plane.

A form ! is a planar homogeneous polynomial QDF of degree m provided that a; b; 
 are

homogeneous polynomials in the variables x and y of degreem. Given a homogeneous polynomial

form ! of degree m su
h that � =

p

b

2

� 4a
 is a homogeneous polynomial, the one dimensional

foliations asso
iated to it, f

1

; f

2

belong to the set H

m

of all homogeneous polynomial ve
tor �elds

(or 1-forms) of degree m. We denote by A

m

the set of all homogeneous polynomial quadrati


di�erential forms with � satisfying the above 
onditions. Then A

m


an be identi�ed with a

subset of H

m

�H

n

.

On the other hand, if � and � are planar homogeneous polynomial 1-forms of degrees m and

n, respe
tively, then ! = �:� is a homogeneous polynomial QDF of degree k = m + n. This

shows that H

m

�H

n


an be identi�ed with a subset of A

k

. Moreover, in both 
ases, we have a

similar asso
iated 
on�guration C(!).

In this paper we deal with a spe
ial 
lass of planar polynomial QDF of degree k. We 
onsider

a subspa
e of A

k

given by the set �

k

= H

m

�H

n

, with m+ n = k.

We get the 
on
ept of stru
tural stability in our 
lass of QDF from the following de�nition:

Two forms ! and !

0

in A

k

are equivalent if there exists a homeomorphism h su
h that h(C(!)) =

C(!

0

). That means that h is a simultaneous equivalen
e between the pair of foliations f

1

; f

2

asso
iated to ! and the pair f

0

1

; f

0

2

asso
iated to !

0

, respe
tively. It takes the singular set of !

to the singular set of !

0

and the tangent set of (f

1

; f

2

) to the tangent set of (f

0

1

; f

0

2

).

Guinez, in [11℄, introdu
ed the set F

n

of the planar polynomial positive QDF with degree

less than or equal to a positive integer m. He 
hara
terized the stru
turally stable elements in

F

n

. We emphasize that in [11℄ the 
ase where f

i

, i = 1 and/or 2 has no 
hara
teristi
 dire
tions

is not 
onsidered.

Here we give a 
omplete 
hara
terization of the stru
tural stability in �

k

. It is worthwhile

to mention that the 
ase where � and � are global fo
i is extensively studied. Problems related

with �nite determina
y of QDF are also studied here.
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This paper is organized as follows. In the remainder of this se
tion we present basi
 de�nitions

and results ne
essary throughout this paper and we state our main results. In Se
tion 2 we study

pairs of planar polynomial fo
i. We exhibit a topologi
al invariant for the stru
tural stability of

su
h pairs and give ne
essary and suÆ
ient 
onditions for these pairs to be stru
turally stable.

Lo
al and global situations are 
onsidered. We do the same for those pairs where � and/or �

are not fo
i, in Se
tion 3. Those se
tions pave the way for the proofs of the main results, whi
h

are given in Se
tion 4.

1.1 Histori
al notes

Re
ently many authors have worked in planar homogeneous polynomial ve
tor �elds; for exam-

ple, Sibirsky [20℄, Cima and Llibre [14℄, Collins [5℄, Llibre, Del Rio and Rodrigues [4℄, among

others. All of them treat the problem of the 
lassi�
ation of homogeneous polynomial ve
tor

�elds.

Con
erning QDF, the works of Guinez and Bru
e-Tari on stability and normal forms of

families of QDF are worth mentioning. In [8℄-[11℄ Guinez restri
ted the analysis to homogeneous

systems of order m and some problems. In a re
ent paper, Gutierrez, Oliveira and Teixeira [12℄


lassi�ed the singularities of a spe
ial 
lass of QDF via Newton diagrams. In this work, 
ases

without 
hara
teristi
 orbits were avoided again.

On pairs of ve
tor �elds in the plane, Bru
e-Fidal [3℄, Mi
hel [15℄, Davydov [7℄, Teixeira [23℄,

Oliveira and Tari [18℄-[19℄ among others, obtained results.

1.2 Setting the problem

A ve
tor �eld X = (P;Q) 2 H

m

in di�erential systems terminology is written as

_x = P (x; y);

_y = Q(x; y):

(2)

In polar 
oordinates x = r 
os �, y = r sin �, the expressions above go over to

_r = r

m

f(�);

_

� = r

m�1

g(�);

where

f(�) = 
os �:P (
os �; sin �) + sin �:Q(
os �; sin �);

g(�) = 
os �:Q(
os �; sin �)� sin �:P (
os �; sin �):

(3)

If s satis�es _s = r

m�1

, then the system 
an be written as

r

0

= rf(�);

�

0

= g(�);

(4)

where r

0

and �

0

denote the derivative of r and �, respe
tively, with respe
t to s.

Throughout the paper we are assuming that g(�) has only zeros with multipli
ity k = 1. We

also assume that f(�

0

) 6= 0 provided that g(�

0

) = 0. This means that we always get a linear

system with hyperboli
 
riti
al points.
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Finally, 
onsidering the 
hange of variable � =

r

1 + r

we are able to study the system in a

neighborhood of the in�nity and we have:

�

0

= �(1� �)f(�);

�

0

= g(�);

(5)

when (�; �) is taken in the open disk D = f(�; �) : 0 � � < 1g. Observe that this system is also

de�ned for � � 1. We also observe that the boundary of D is an invariant 
ir
le under the 
ow

of the system. This 
ir
le 
orresponds to the in�nity of the �rst system. So the indu
ed ve
tor

�eld E(X) de�ned in a neighborhood U of D is an analyti
 extension of the ve
tor �eld X at

in�nity.

The 
on
ept of stru
tural stability in �

k

= H

m

�H

n

is the following

(X;Y ) 2 �

k

is stru
turally stable with respe
t to perturbations in H

m

�H

n

if there exists a

neighborhood U �V of (X;Y ) in �

k

su
h that for all (X

0

; Y

0

) 2 U �V , (X;Y ) and (X

0

; Y

0

) are

topologi
ally equivalent.

We shall say that two pairs of ve
tor �elds (X;Y ) and (X

0

; Y

0

) are lo
ally topologi
ally

equivalent at the origin (resp. at in�nity) if there exist two neighborhoods U and V of the origin

(resp. in�nity) and a homeomorphism h : U ! V that 
arries orbits of the pair of 
ows indu
ed

by (X;Y ) onto orbits of the pair of 
ow indu
ed by (X

0

; Y

0

). As usual, we derive the 
on
ept

of lo
al equivalen
e between two pairs of ve
tor �elds at a point p.

Denote by �

k

= �

m

0

��

n

0

, where �

m

0

is the set of all planar stru
turally stable homogeneous

polynomial ve
tor �eld of degree m with respe
t to perturbations in H

m

and m+ n = k.

1.3 Basi
 results

The stru
turally stable homogeneous polynomial ve
tor �elds in the plane have been studied in

[4℄ and [14℄. Next, we re
all some basi
 results.

Proposition 1.1 Let X 2 H

m

. Assume that E(X) has no 
riti
al points on �D and I

X

=

R

2�

0

f(�)

g(�)

d� 6= 0; where f and g are given as in system (3). Then the phase portrait of E(X) in

D is a global fo
us.

Proposition 1.2 Let X 2 H

m

. Assume that (0; 0) is an isolated 
riti
al point of X and E(X)

has hyperboli
 
riti
al points on �D. Then E(X) has no limit 
ir
les in D. If �

0

is a zero of

g(�) then the straight line with slope tan �

0

whi
h passes through the origin is invariant under

the 
ow indu
ed by E(X).

The following proposition shows that there exists a duality between the 
ow of the indu
ed

ve
tor �eld E(X) in a neighborhood of the origin and in a neighborhood of the in�nity.

Proposition 1.3 Let X 2 H

m

and suppose that (0; 0) is an isolated 
riti
al point of X.

(i) Assume E(X) has no 
riti
al point in � = 1. Then � = 0 is an isolated periodi
 orbit for

the 
ow indu
ed by the system if and only if I

X

6= 0.

(ii) Assume E(X) has 
riti
al points in � = 1. Then (1; �

0

) is a hyperboli
 
riti
al point if

and only if the 
riti
al point (0; �

0

) is also hyperboli
. Moreover, the 
riti
al points (0; �

0

) and

(1; �

0

) are topologi
ally di�erent.
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Theorem 1.4 The ve
tor �eld X 2 H

m

is stru
turally stable with respe
t to perturbations in

H

m

if and only if, it satis�es one of the following 
onditions:

(i) If E(X) has no 
riti
al points on �D and I

X

6= 0.

(ii) If E(X) has 
riti
al point on �D and all these points are hyperboli
.

Propositions 1.1 and 1.2 are proved in [4℄. Proposition 1.3 and Theorem 1.4 are proved in [14℄.

Suppose that X 2 H

m

and Y 2 H

n

, with m > n. Then the indu
ed pair (E(X); E(Y )) is

expressed as

E(X) =

�

r

0

= rf

1

(�)

�

0

= g

1

(�)

E(Y ) =

�

r

0

= r

m�n

f

2

(�)

�

0

= r

m�n�1

g

2

(�)

;

(6)

respe
tively, where f

i

and g

i

are de�ned as in the system (5), to i = 1; 2.

The system above is simultaneously equivalent to the following system sin
e that the multi-

pli
ation of a ve
tor �eld by a non-zero fun
tion leaves its phase portrait un
hanged.

E(X) =

�

r

0

= rf

1

(�)

�

0

= g

1

(�);

E(Y ) =

�

r

0

= rf

2

(�)

�

0

= g

2

(�)

;

(7)

Then, by means of the 
hange 
oordinates � = r=r + 1 we get

�

�

0

= �(1� �)f

1

(�);

�

0

= g

1

(�)

�

�

0

= �(1� �)f

2

(�);

�

0

= g

2

(�);

(8)

where f

i

and g

i

are de�ned as in (3), i = 1; 2.

Note that the indu
ed ve
tor �eld E(X) has no 
riti
al points on �D provided that g

1

(�) 6= 0

for all � in S

1

. As g

1

is a homogeneous polynomial fun
tion of degree m+ 1, we 
on
lude that

E(X) has no 
riti
al points on �D, provide that m is odd.

Given ve
tor �elds X = (P

1

; Q

1

) and Y = (P

2

; Q

2

) in H

m

and H

n

, respe
tively, we de�ne

the tangent set S

(X;Y )

as the set of all points p in the plane where X(p) and Y (p) are tangent.

Then

S

(X;Y )

= f(x; y) : (P

1

Q

2

� P

2

Q

1

)(x; y) = 0g:

The tangent set of the indu
ed pair (E(X); E(Y )) will be denoted by E(S). Let us 
he
k

what happens with this set in 
oordinates (�; �). We have

E(S) = f(�; �) : �:(�� 1):(f

1

g

2

� f

2

g

1

)(
os �; sin �) = 0g

= f� = 0g [ f� = 1g [ f� : (P

1

Q

2

�Q

2

P

1

)(1; �) = 0g;

where � = tan �. As f� = 0g and f� = 1g are invariant sets of both ve
tor �elds, they belong to

the tangent set (
ommon orbits). If (X;Y ) has no tangen
y outside the origin and the in�nity

5



then E(S) = f� = 0g [ f� = 1g. Otherwise the tangent set is given by f� = 0g [ f� = 1g plus

the points where X and Y are tangent.

We denote by S

(X;Y )

the set of the zeros of the homogeneous polynomial fun
tion of degree

m+ n,

Æ(x; y) = (P

1

Q

2

� P

2

Q

1

)(x; y):

If Æ has zeros with multipli
ity k > 1, then for small perturbation of (X;Y ) in H

m

�H

n

, the

perturbed tangent set does not have the same number of zeros. This shows that the pair is not

stable. Then, if we want to study pairs (X;Y ) that are stru
turally stable, we must impose that

Æ either has no zeros or has only simple zeros, i.e., Æ

0

(�

0

) 6= 0 provided that Æ(�

0

) = 0. In this


ase we will say that Æ is simple.

We 
onsider the following sub
lasses in the spa
e of polynomial quadrati
 di�erential forms

in the plane:

1. Non-simple set: �

k

ff

= f(�; �) 2 �

k

: both E(�) and E(�) have no 
riti
al points in �Dg

2. Simple set: �

k

= �

k

=�

k

ff

1.4 Statement of main results

We denote by �

k

0

the set of all stru
turally stable QDF in �

k

.

Theorem A: The form ! = (�; �) 2 �

k

belongs to �

k

0

if and only if it satis�es the following


onditions:

i) (�; �) belongs to �

k

;

ii) The 
riti
al points of E(�) and E(�) at �D are distin
t.

iii) Æ is simple.

About the �nite determina
y of an analyti
al QDF we have the following 
on
lusion:

Theorem B: Let ! =

P

i�m

!

i

be a germ of an analyti
al QDF in fR

2

; 0g, where !

i

is a

homogeneous polynomial QDF of degree i. The QDF ! is m-determined, provided that one of

the following 
onditions is satis�ed:

(i) !

m

satis�es the 
onditions of Theorem A;

(ii) !

m

2 �

m

ff

where Æ has no zeros.

2 The non-simple set

First we 
onsider (X;Y ) 2 �

k

ff

. Assuming that Æ is simple, two situations must be 
onsidered:

(i) Æ has no zeros; (ii) Æ has zeros.

2.1 Global approa
h

Consider the 
ase where (X;Y ) is a pair of global fo
i where Æ has only simple zeros. Then there

exist transversal se
tions T

i

asso
iated to E(X) and E(Y ) 
ontained in S

(X;Y )

. Fix a transversal

se
tion T

i

. Let (�

X

; �

Y

) be the respe
tive asso
iated returning maps.

6



Let (

e

X;Y ) be a homogeneous polynomial perturbations of (X;Y ). Any equivalen
e h be-

tween them indu
es an simultaneous equivalen
e

e

h between the returning maps. As a 
onse-

quen
e of the 
onstru
tion,

e

h is a simultaneous 
onjuga
y between the returning maps.

We also note that departing from a point p 2 T

i

we have several itineraries walking alternately

on pie
es of orbits of X and Y . This means that there exist many ways to return to T

i

through

the orbits of X and Y . This fa
t give us a suspi
ious that the equivalen
e

e

h 
an not exist. This

is proved in the next result.

Proposition 2.1 Let (X;Y ) 2 �

k

. Assume that E(X) and E(Y ) has no 
riti
al points at �D

and Æ has at least a zero. Then the pair (X;Y ) is not stru
turally stable under perturbations in

H

m

�H

n

.

To prove this Theorem a topologi
al invariant asso
iated to pairs of returning maps is ex-

hibited. Let us 
onstru
t this invariant.

Suppose that X and Y are global fo
i and Æ has at least one zero at � = �

0

. Let �

1

(resp. �

2

) be a returning map of the ve
tor �eld X (resp. Y ) de�ned in a transversal se
tion

T

0

= f(r; �) : � = �

0

g. So �

i

(t) = �

i

t, where �

i

=

R

2�

0

f

i

(�)

g

i

(�)

d�; i = 1; 2 (thanks to homogeneous


ondition).

We 
an suppose, without lost of generality that �

i

2 (0; 1), i = 1; 2.

Given an arbitrary point p

0

2 T

0

in a neighborhood of r = 1 (in�nity), take the fundamental

domain [�

1

(p

0

); p

0

℄ � T

0

, so asso
iated to ea
h point q in (0; �

1

(p

0

)) there exists an integer l

su
h that q = �

l

1

(p), where p 2 (�

1

(p

0

); p

0

). So if q = �

k

2

(p

0

) we have

p = �

�l

1

Æ �

k

2

(p

0

) =

�

k

2

�

l

1

p

0

:

This implies that

�

1

p

0

�

�

k

2

�

l

1

p

0

� p

0

, �

1

�

�

k

2

�

l

1

� 1 (9)

to l > k.

So

k

l

�

log�

2

log�

1

�

k

l + 1

: (10)

When k goes to in�nity, l > k goes to in�nity and

k

l

�

k

l+1

goes to zero. From this we 
an


on
lude that �

(X;Y )

=

log�

2

log�

1

is a number asso
iated to the pair (X;Y ).

Lemma 2.2 Let (X;Y ) 2 �

k

be a pair of ve
tor �elds su
h that both E(X) and E(Y ) have

no 
riti
al points on �D and Æ has at least one zero. Then the number �

(X;Y )

is a topologi
al

invariant for (X;Y ) in H

m

�H

n

.

Proof If there exists an equivalen
e h : (

e

X;

e

Y ) ' (X;Y ) then the same h must send S

(X;Y )

to S

(

e

X;

e

Y )

. Therefore if T

0

denote a bran
h of �

(

e

X;

e

Y )

then h(T

0

) is also a bran
h of �

(X;Y )

.

Observe that T

0

(resp. T

1

= h(T

0

)) is a transversal se
tion to X and Y (resp.

e

X and

e

Y ), hen
e in T

0

(resp. T

1

) we obtain returning maps asso
iated to (X;Y ) (resp. to (

e

X;

e

Y )).

Moreover h indu
es a simultaneous equivalen
e between (�

1

; �

2

) and ( e�

1

; e�

2

). This implies that

�(X;Y ) = �(

e

X;

e

Y ). 2
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Proof of Proposition 2.1

We 
an suppose that an arbitrary perturbation of (X;Y ) has the form (X;

e

Y ), where

e

Y is an

arbitrary perturbation of Y in H

n

. This observation plus Lemma 2.2 shows that if two pairs are

equivalent then �

i

=

e

�

i

, i = 1; 2. So (X;Y ), under our assumptions, it 
an not be stru
turally

stable under perturbations in H

m

�H

n

. 2

2.2 Lo
al approa
h

Theorem 2.3 Let (X;Y ) 2 �

k

. Assume that E(X) and E(Y ) has no 
riti
al points on �D.

Then the pair (X;Y ) is C

0

lo
ally stru
turally stable at origin under perturbations in H

m

�H

n

if and only if Æ has no zeros.

Proof Suppose that Æ has at least one zero. We follow the ideas of Theorem 2.1 to show the

non-lo
al stru
turally stability of the pair (X;Y ).

We need to show that there exists a lo
al equivalen
e between the pair (X;Y ) and any small

perturbation (X;

e

Y ) of it provided that Æ has no zeros.

First, 
onsider the lift of the pair (X;Y ) to the 
ylinder S

1

� [0; 1℄ and denote by �

t

X

(p) and

'

t

Y

(p) the orbits of X and Y through p in the 
ylinder, respe
tively. We need to 
onsider the


ases:

A) sign(I

X

) = sign(I

Y

). In this 
ase there exists a unique interse
tion point between �

t

X

(p)

and '

t

Y

(p) to ea
h p �xed. Fix a 
ir
le r = r

0

in the 
ylinder and a point p in the dis
 D

0


entered at the origin and radius r = r

0

. The orbit �

t

X

(p) and '

t

Y

(p) through the point p will

inter
ept r = r

0

in points p

X

and p

Y

, respe
tively. Denote the orbit of

e

Y through p

Y

by  

t

Y

(p

Y

).

This orbit will inter
ept �

t

X

(p) at a unique point q. Finally we de�ne a map H : D

0

! D

0

su
h

that H(p) = q.

B) sign(I

X

) = �sign(I

Y

). In this 
ase, the orbit of X and Y through a point p in D

0

will

inter
ept ea
h other in�nitively many times. Then, given a point p

0

= (r

0

; �), take �

t

X

(p

0

) and

'

t

Y

(p

0

), orbit of X and Y through p

0

. Denote by p

1

the �rst point where �

t

X

(p

0

) inter
ept

'

t

Y

(p

0

). The region limited by �

t

X

(p

0

) and '

t

Y

(p

0

) between p

0

and p

1

is di�eomorph to a disk

D

1

with 
enter at origin. To de�ne the lo
al equivalen
e H, between (X;Y ) and (X;

e

Y ), in a

point q in D

1

, we pro
eed as in the above 
ase. We shall �nd two points q

X

and q

Y

in the

boundary �D

1

of D

1

and a number k that represents the number of interse
tions that o

ur

between the orbits until they meet �D

1

. Through q

Y

we will 
onsider the orbit of

e

Y . Then we

de�ne H(q) = ~q, where ~q is the k

th

interse
tion of the orbit of X through q

X

and the orbit of

e

Y

through q

Y

.

In both 
ases, the map H de�nes an equivalen
e between (X;Y ) and (X;

e

Y ) in a neighbor-

hood of the origin. See Figure 1. 2

Remark 2.4 The map H is not a lo
al equivalen
e in a neighborhood of the in�nity (H is not

ne
essarily 
ontinuous in a neighborhood of the in�nity).

It follows from the proof of the above Theorem some 
on
lusion about the lo
al stru
tural

stability of pairs (satisfying the above assumption) at origin, with respe
t to polynomial pertur-

bations:

8



p
X

p
Y

h(p)p

p
0

q

p
X

p
Y

p
1

Figure 1: Lifting of the pair (X;Y ) into the 
ylinder

Proposition 2.5 Let (X;Y ) be a pair of germs of analyti
al ve
tor �elds at origin in the plane.

Suppose that (X;Y ) = (

P

k�n

X

k

;

P

k�n

Y

k

), where X

k

and Y

k

are homogeneous polynomial

ve
tor �elds of degree k. Assume (X

m

; Y

n

) satis�es the assumptions of Theorem 2.3. Then the

phase portrait of (X;Y ) at origin is lo
ally equivalent to the phase portrait of (X

m

; Y

n

) at origin.

In the later Proposition we also guarantee that these pairs are �nitely determined. Finite

determina
y is also a natural question for pairs satisfying the 
onditions of Theorem 2.1. The

next example is related to this situation.

Example 2.6 Suppose that ('

1

(t); '

2

(t)) = (

1

2

t;

1

3

t) is a pair of returning maps asso
iated to

the pair of ve
tor �elds (X

0

; Y

0

) in the 
onditions of Theorem 2.1. Then

'

n

1

(t

0

) > '

n

2

(t

0

);8t

0

and 8n 2 N

�

: (11)

Suppose that a small perturbation of (X

0

; Y

0

) by higher terms gives the following pair of

returning maps

 

1

(t) =

1

2

t� at

2

;  

2

(t) = '

2

(t) =

1

3

t:

We know that if there exists an equivalen
e h between (X

0

; Y

0

) and X = (X

0

; Y

0

) + h(x; y),

the non-homogeneous polynomial perturbation of it, then h indu
es an equivalen
e

e

h between the

pair of returning maps. But we shall show that su
h equivalen
e 
an not exist. In fa
t, from

(11), we have

e

h('

n

1

(t

0

)) =  

n

1

(

e

h(t

0

)) >  

n

2

(

e

h(t

0

)) =

e

h('

n

2

(t

0

));8t

0

and 8n 2 N

�

:

It is straightforward to derive that

'

n

(

e

h(t

0

)) =

1

2

n

e

h(t

0

)�

a

2

n�2

:(

1

2

+ :::+

1

2

n

):

e

h(t

0

)

2

+ ::::

Take a positive integer n

0

>

log(1�4:h(t

0

):a)

log2�log3

. This implies that  

1

n

0

(

e

h(t

0

))�  

2

n

0

(

e

h(t

0

)) < 0:

Proposition 2.7 Let (X;Y ) 2 �

k

. Assume that both E(X) and E(Y ) have no 
riti
al points

on �D. Then the pair (X;Y ) is not �nite determined provided that Æ has a simple zero.
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Proof Let (�

1

; �

2

) be the pair of returning maps asso
iated to (X;Y ), with �

i

(t) = �

i

t, where

�

i

is given as in Proposition 2.1, i = 1; 2. Assume without lost of generality that 0 < �

2

< �

1

< 1

and write �

1

=

1

�

and �

2

=

1

�

, where � and � are greater than 1. Then �

n

1

� �

n

2

for all positive

integer n.

Note that

'

n

1

(p

0

)� '

n

2

(p

0

) = �

n

1

p

0

� �

n

2

p

0

> 0

and goes to the origin when n goes to in�nity.

Consider a small perturbation of (X;Y ) with respe
t to non-homogeneous terms of higher

degree and suppose that there exists an equivalen
e h between (X;Y ) and its perturbation.

Then

e

h('

n

1

(p

0

))�

e

h('

n

2

(p

0

)) =  

1

(

e

h(p

0

))�  

2

(

e

h(p

0

)) > 0:

It is 
lear that any su
h perturbation 
an be 
hosen as (

e

X;Y ). Moreover, the returning map

asso
iated to the perturbation

e

X 
an be written as  

1

(t) = �

1

t�R

1

(t), where R

1

(t) = at

k

+ :::,

with a > 0 and k is the �rst non-zero jet of R

1

.

Then

 

n

1

(h(p

0

)) =

1

�

n

h(t

0

)�

a

�

n�2

:

�

1

�

+

1

�

k

+ :::+

1

�

(n�1)k�(n�2)

�

:h(t

0

)

k

+ ::::

As in the above example, we 
an �nd a positive integer n

0

su
h that the iteration order


hanges after some n

0

, showing that su
h equivalen
e 
an not exist. 2

As 
onsequen
e of Theorem 2.3 we get some 
on
lusions about the behavior of positive

quadrati
 di�erential forms. Let ! be a positive quadrati
 di�erential form given by the produ
t

of two 1-forms in the plane and satisfying the assumptions of Proposition 2.5. Sin
e ! is a

homogeneous polynomial form, the Newton Diagram asso
iated to ! has a unique fa
e and by

Proposition 2.5 we have that ! is lo
ally equivalent to !

�

(See [12℄ for details). We observe that

here both di�erential 1-forms have no 
hara
teristi
 dire
tions. Re-writing:

Corollary 2.8 Let ! = �:� be a positive quadrati
 di�erential form in the plane, where � and

� are planar polynomial di�erential 1-forms satisfying the assumptions of Proposition 2.5. Then

! is lo
ally equivalent to !

�

at origin.

Now we shall 
onsider a non usual global equivalen
e between pairs of ve
tor �elds, intro-

du
ed in [23℄.

De�nition 2.9 Two pairs (X;Y ) and (X

0

; Y

0

) in �

k

are mild-equivalent if there exists a home-

omorphism h : D ! D su
h that (X

0

; Y

0

) at p is germ equivalent to (X;Y ) at h(p).

Let (X;Y ) 2 �

k

ff

\�

k

, where Æ has only simple zeros. The above equivalen
e sends transver-

sal se
tion of X and Y belongs to S

(X;Y )

to transversal se
tion of X

0

and Y

0

in S

(X

0

;Y

0

)

. More-

over, the number of open regions in D � �

(X;Y )

is the same that in h(D) � �

(X

0

;Y

0

)

. Then,

given an arbitrary point p 2 D we 
an des
ribe the lo
al phase portrait of the pair (X;Y ) in a

neighborhood of p. Lets 
onsider ea
h situation:

1. If p 2 D � �

(X;Y )

. Then X and Y are regular and transversal. Then (X;Y ) is lo
ally

topologi
ally equivalent to (

�

�x

;

�

�y

).
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2. If p 2 �

(X;Y )

and �

(X;Y )

has only non degenerated singularities (for all �

0

su
h that

�(�

0

) = 0 we have �

0

(�

0

) 6= 0). Then (X;Y ) is lo
ally topologi
ally equivalent to (

�

�x

;

�

�x

+

2x

�

�y

) (See [18℄).

3. If p 2 �D ��

(X;Y )

. In this 
ase we have two regular ve
tor �elds without 
onta
t ex
ept

at y = 0 (
ommon leaf). Then, the pair is lo
ally topologi
ally equivalent to (

�

�x

; (1 +

x)

�

�x

+ y

�

�y

), to y � 0 (See [2℄).

4. If p 2 �D \�

(X;Y )

. The X and Y are regular ve
tor �elds with dis
riminant set given by

y = 0 (
ommon leaf) plus a regular 
urve. Then the pair (X;Y ) is lo
ally topologi
ally

equivalent to (

�

�x

; (1 + x

2

)

�

�x

� 2xy

�

�y

), to y � 0 (See [18℄.

3 The simple set

Here we 
onsider (X;Y ) 2 �

k

, where either E(X) or E(Y ) has 
riti
al points at �D, say E(Y ).

We know that if E(X) has no 
riti
al points at �D then m is odd and to ea
h 
riti
al point

�

0

2 �D of E(Y ), we have asso
iated a 
urve (See Proposition 1.2). As in [12℄, we 
alled it of

separating 
urve (it is 
alled a separatrix if �

0

is a saddle point and a pseudo-separatrix, if �

0

is

a node point). This 
urve is an invariant manifold of �

0

. Then we 
all se
tor of E(Y ) in D to

ea
h region between two 
onse
utive separating 
urves of E(Y ) (See [12℄ for details).

Moreover, if E(Y ) is a ve
tor �eld with 
riti
al points at �D and n is also odd then we get

some immediate 
on
lusions.

Lemma 3.1 Let Y 2 H

m

be a ve
tor �eld with n odd. Suppose that Y has 
riti
al points on

�D, then:

1. If k is the number of zeros of g

2

(�), then k = 4j, where j is a non zero positive integer.

2. The phase portrait of E(X) has an even number of singular se
tors (ellipti
, paraboli
 and

hyperboli
).

Proof 1: From (3) we observe that g

2

(�) is a homogeneous polynomial of degree n+1 (even).

As E(Y ) has only hyperboli
 
riti
al points on �D, g

2

(�) has only simple zeros. Then g

1

has

an even number of zeros � = tan �. Moreover, if � is a root of g

2

, i.e., �

2

= tan � is a zero, then

�mod(k�) is also a zero. As the zeros are simple, we get a number 4j of zeros of g

2

, where j is

a positive integer greater than 1. This fa
t implies that we get a even number of se
tors in D,

where ea
h separating 
urve is asso
iated to a hyperboli
 singular point of E(Y ).

Moreover, as the topologi
al type of a 
riti
al point p on �D is 
hara
terized by the sign of

g

0

2

(�):f

2

(�) and the sign is the same for � and � + � (tan � = tan(� + �)), we 
on
lude that all

symmetri
 
riti
al points have the same topologi
al type. 2

Consequen
es of the later Lemma:

1. There exists a symmetry in D, with respe
t to the involution �(x; y) = (�x;�y).

2. To know the phase portrait of X is enough to know the sequen
e of the 2j 
riti
al points

on �D. The others 2j 
riti
al points will have the same behavior.

Example: If m = 1 (linear ve
tor �eld), we get 4 
riti
al points. From remark before we 
an


on
lude that we 
an �nd 3 distin
t 
lasses the equivalen
e to Y if n = 1: all 
riti
al points are
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of the node type, all 
riti
al points are of the saddle type, the sequen
e is node, saddle, node,

saddle (or saddle,node,saddle,node).

3. Two ve
tor �elds X and Y in �

k

with di�erent sequen
e of 
riti
al points on �D are

non-equivalents (See Proposition 4.10 in [12℄).

3.1 Global approa
h

First, 
onsider (X;Y ) 2 �

k

, where E(X) has no 
riti
al points on �D. Assume that �

0

and

�

1

are two 
onse
utive 
riti
al points of E(Y ) on �D with the same topologi
al type. The


orrespondent se
tor S of E(Y ) will be an ellipti
 se
tor (if both 
riti
al points are of the nodal

type) or hyperboli
 type (if both 
riti
al points are of the saddle type). Re
all that E(X)j

S

is

equivalent to the ve
tor �eld

�

�x

. Then near �D in S, ea
h integral 
urve of E(Y ) will inter
ept

a integral 
urve of E(X) in two distin
t points (See Figure 2). This shows that there is a 
urve

of tangen
y between the integral 
urves of E(Y ) and E(X) in hyperboli
 and ellipti
 se
tors.

Assuming now that �

0

and �

1

are two 
onse
utive 
riti
al points of E(Y ) with distin
t topologi
al

type (node and saddle). The asso
iated se
tor of E(Y ) is paraboli
 and there is no 
urve of


onta
t in S (See Figure 2), provided that Æ has only simple zeros.

∆θ θ1 2 θ θ21

Figure 2: Conta
t in a hyperboli
 (or in an ellipti
) se
tor and in a paraboli
 se
tor

Theorem 3.2 Let (X;Y ) be in �

k

. Assume that E(X) has no 
riti
al points on �D. If E(Y )

has 
riti
al points on �D, then (X;Y ) is C

0

stru
turally stable under perturbations in H

m

�H

n

if only if Æ has only simple zeros.

Proof As observed later, if Æ has one zero with multipli
ity � 2, (X;Y ) is not stru
turally

stable. To show the required stability, under 
onditions, is enough to exhibit an equivalen
e that

maintain the integral 
urves of X and takes the integral 
urves of Y onto the integral 
urves of

e

Y , where

e

Y is an arbitrary perturbation of Y in H

n

.

In D we have �nite many number of hyperboli
, ellipti
 and paraboli
 se
tors of E(Y ). Let

T be an arbitrary separating 
urve of a se
tor of E(Y ). Then T is also a transversal se
tion for

E(X) and in T we have de�ned a returning map � asso
iated to E(X). The same holds for a

small perturbation of E(Y ) in H

n

. Sin
e an equivalen
e takes a separating 
urve of E(Y ) in a

separating 
urve of E(

e

Y ), we have an indu
ed returning map in h(T ) satisfying the following

relation � Æ h = h Æ �

0

, where �

0

is the returning map asso
iated to E(X) in h(T ).

For any T

i

, another separating 
urve of E(Y ), we have a homeomorphism l

i

: T ! T

i

obtained by sliding along the integral 
urve of E(X) from T to T

i

.
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Let } (resp. }

0

) be a se
tor of E(Y ) (resp. E(

e

Y )) with separating 
urves T

1

and T

2

(resp.

T

0

1

and T

0

2

). Denote by �

S

(resp. �

0

S

) the 
urve of tangen
y between E(X) and E(Y ) in }

(resp. E(X) and E(

e

Y ) in }

0

), if there exist and by R

i

(resp. R

0

i

) the open region between T

i

and �

S

(resp. T

0

i

and �

0

S

), i = 1; 2.

As before, there exist indu
ed mappings l

1

: T ! T

1

, l

2

: T ! T

2

and l

�

S

: T ! �

S

. For

ea
h i = 1; 2, we derive homeomorphisms k

i

: T

i

! T

0

i

, de�ned by k

i

= (l

0

i

)

�1

Æ h Æ l

i

, i = 1; 2

and k

�

: �

S

! �

0

S

given by k

�

= l

�1

�

Æ h Æ l

�

. These homemorphism there exist sin
e we must

have a homeomorphism h : T ! T

0

satisfying h Æ � = �

0

Æ h.

Let us see how to extend h to ea
h se
tor S of E(X) onto the 
orresponding se
tor S

0

of

E(

e

X).

� In one ellipti
 se
tor. Consider p

0

2 R

1

. Denote by �

X

and �

Y

the integral 
urves of

E(X) and E(Y ) passing through p

0

. These integral 
urves inter
ept �

S

in p

X

and p

Y

,

respe
tively. Consider the points k

�

(p

X

) and k

�

(p

Y

) in �

0

S

and the integral 
urves of

E(X) and E(

e

Y ) through these points, respe
tively. These 
urves meet ea
h other in

q

0

2 R

0

i

. Then de�ne h(p

0

) = q

0

. The map h is a homeomorphism from R

1

to R

0

1

. Now in

R

2

pro
eed in the same way and the extension to S is well done be
ause H agree with k

�

in �.

Now it is possible to extend h to �D in a natural way.

∆
1 2 21Τ Τ Τ

p

p

p
Y

X

Τ

Y

21

0

Y
q q

q

S

Figure 3: Phase portrait in some se
tors of X

� In one hyperboli
 se
tor we pro
eed in the same way as above.

� In one paraboli
 se
tor. Fix one leaf C

1

of E(X) and noti
e that C

1


onne
ts two points

p

1

2 T

1

with p

2

2 T

2

. Let C

2

be the leaf of E(X) 
onne
ting k

1

(p

1

) and k

2

(p

2

). De�ne

one homeomorphism h between C

1

and C

2

. Given a point q

0

2 S. There is a unique point

q

Y

2 C

1

and q

X

2 T

1

, where the orbits of E(X) and E(Y ) through q

0

inter
ept C

1

and

T

1

, respe
tively.

Applying k

1

: T

1

! T

0

1

and h : C

1

! C

2

we obtain h(q

Y

) 2 C

2

and k

1

(q

X

) 2 T

0

1

,

respe
tively. Through these points there exists a unique integral 
urve of E(

e

Y ) and E(X),

respe
tively, and they meet ea
h other in a unique point q 2 S

0

. Then extent h to S onto

S

0

de�ning h(q

0

) = q.

Now we extend this homeomorphism to �D in a natural way. Given a point q

0

2 �D,


onsider a sequen
e (q

n

) in S 
onverging to q

0

. De�ne h(q

0

) = lim

n!1

h(q

n

) . Observe that

the limit does not depend on the sequen
e.
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The next step is to extend the homeomorphism 
onstru
ted on ea
h se
tor to all spa
e. We

need guarantee that the gluing pro
ess is well de�ned. But this is ensured due the fa
t that the

homeomorphism h restri
ted to the separating 
urves agrees with the indu
ed returning maps.

2

Now, 
onsider (X;Y ) 2 �

k

, where E(X) and E(Y ) have distin
t 
riti
al points on �D. As

in the 
ase studied later, we have �nite many se
tors of ea
h ve
tor �eld in D.

Theorem 3.3 Let (X;Y ) be in �

k

. Assume that E(X) and E(Y ) have distin
t 
riti
al points

on �D. Then (X;Y ) is C

0

stru
turally stable under perturbations in H

m

�H

n

if only if Æ either

has only simple zeros or no zeros.

The proof here follows the same ideas used in the proof of Theorem 3.2. As before we just

need to distinguish ea
h se
tor and separating 
urves and the bran
hes of the tangent set. See

more details of the proof (to the lo
al 
ase) when Æ has no zeros (Proposition 4.10 in [12℄).

3.2 Lo
al approa
h

As in the 
ase where X and Y has no 
riti
al points in �D, we 
an get some 
on
lusions about

pairs of ve
tor �elds whi
h 
an be written as a sum of homogeneous ve
tor �elds in the plane:

Proposition 3.4 Let (X;Y ) be a pair of analyti
al ve
tor �elds in the plane. Suppose that

(X;Y ) = (

P

k�m

X

k

;

P

k�n

Y

k

), where X

i

and Y

i

are homogeneous polynomial ve
tor �elds of

degree i. Either (X

m

; Y

n

) satis�es the assumptions of Theorem 3.2 or of Theorem 3.3. Then

the phase portrait of (X;Y ) at origin is lo
ally equivalent to the phase portrait of (X

m

; Y

n

) at

origin.

This Proposition 
an be proved in the same way as Theorem C in [4℄ using the te
hni
s of

Theorems 3.2 and Theorem 3.3. Note that as a 
onsequen
e, we have �nite determina
y of the

pairs (X;Y ) satisfying the above 
onditions.

We have a dual result about lo
al equivalen
e in a neighborhood of the in�nity. Here we say

\phase portrait of (X;Y ) at in�nity" instead of \phase portrait of (X;Y ) in a neighborhood of

the in�nity".

Proposition 3.5 Let (X;Y ) be a pair of analyti
al ve
tor �elds in the plane. Suppose that

(X;Y ) = (

m

X

k=1

X

k

;

n

X

k=1

Y

k

), where X

k

and Y

k

are homogeneous polynomial ve
tor �elds of degree

k. Assume that (X

m

; Y

n

) satis�es the assumptions either of Theorem 3.2 or of Theorem 3.3.

Then the phase portrait of (X;Y ) at in�nity is lo
ally equivalent to the phase portrait of (X

m

; Y

n

)

at in�nity.

Applying the 
on
lusions of this se
tion to quadrati
 di�erential forms we have

Corollary 3.6 Let ! = �:� be a positive quadrati
 di�erential form in the plane, where � and

� are planar polynomial di�erential 1-forms satisfying the assumptions of Proposition 3.4. Then

! is lo
ally equivalent to !

�

at origin.
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4 Proof of the main results

Now we 
an joint the 
on
lusions presented here to 
on
lude the proof of the main results:

Proof of Theorem A: It follows from Theorems 2.1, 3.2 and 3.3.

Proof of Theorem B: If follows from Theorems 2.5 and 3.4.

Remark 4.1 Observe that �

k

ff

is a open in �

0

� �

0

then �

k

0

is never dense in �

k

.

Remark 4.2 Under some 
onditions, the results obtained in this paper 
an be applied to study


urvature lines in a smooth manifold M ; for example, if the 
urvature lines in M are given by

homogeneous QDF and they 
an de
ompose as a produ
t of two homogeneous dire
tion �elds (in

the 
onditions mentioned in the introdu
tion of this arti
le).
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