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Abstrat

In this artile we deal with a speial lass of planar quadrati di�erential forms with

polynomial oeÆients. The main results onern global and loal strutural stability as

well as the �nite determinay in this lass.
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1 Introdution

The geometri-qualitative study of ows and general dynamial systems on surfaes has been

during many deades the objet of a growing interest in many branhes of pure and applied

mathematis. After the works of Poinar�e, Lyapunov and Bendixson this has beome a well-

established subjet in mathematis and the fous of onsiderable attention. Moreover, nowadays

it is fairly aessible for a broad sienti� audiene. From various sides, attention has been paid

to the onept of strutural stability and speially to the results of Peixoto (mainly [16℄ and

[17℄), and to the higher dimensional extensions (due mainly to Anosov [1℄ and Smale [21℄).

On the other hand, quadrati di�erential forms appear naturally in several mathematial

ontexts. For example, they play a ruial role in Di�erential Geometry (see for example [2℄,

[22℄) in the lassi�ation of umbili points of a surfae and in the study of steady-state solutions

of some partial di�erential equations (see for example [7℄, [13℄).

Our approah, as in Davydov [6℄, Kuz'min [13℄ and Guinez [8℄-[11℄, links those two major

areas by presenting a qualitative analysis of planar quadrati di�erential forms via the simulta-

neous behavior of two planar diretion �elds. More spei�ally:
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A quadrati di�erential form (QDF) ! on R

2

is an element of the form

! = a(x; y)dx

2

+ b(x; y)dxdy + (x; y)dy

2

;

where a; b;  are real valued funtions in an open domain D � R

2

. If (b

2

� 4a)(x; y) � 0 for

eah (x; y) 2 D, we an assoiate to it a on�guration C(!) = ff

1

; f

2

; Sing(!); S

(f

1

;f

2

)

g, where

f

1

; f

2

is a pair of one-dimensional foliations in D � Sing(!). Sing(!) is the singular set of

quadrati di�erential form ! and S

(f

1

;f

2

)

is the tangeny set between f

1

and f

2

in D. Note that

Sing(!) � S

(f

1

;f

2

)

.

We also observe that if (b

2

� 4a)(p) > 0 the set !(p)

�1

(0) is the union of two transversal

lines l

1

; l

2

. The ase l

1

= l

2

ours when (b

2

� 4a)(p) = 0. Those lines are tangent to the

foliations f

1

; f

2

at p, respetively. Moreover, the foliations f

1

and f

2

are tangent to the vetor

�elds

�

_x = 2a(x; y)

_y = �b(x; y) + (�1)

j

p

(b

2

� 4a)(x; y)

(1)

for j = 1; 2 respetively, exept possibly when a � 0.

On the other hand, if �

i

= A

i

dx + B

i

dy is a 1-form (or vetor �eld) in the plane, i = 1; 2

then ! = �

1

�

2

is a quadrati di�erential form in the plane with � � 0. Moreover, the pair

f

1

; f

2

assoiated to ! = �

1

�

2

satis�es f

i

= �

i

�

i

, i = 1; 2, where �

i

: R

2

! R is null if only if

A

i

(x; y) = 0, i = 1; 2. Then if we suppose that, A

2

1

(x; y) + A

2

2

(x; y) = 0, (x; y) = 0 we have a

identi�ation between the set of all quadrati di�erential forms with � � 0 and the set �� �,

where � is the set of all 1-forms in the plane.

A form ! is a planar homogeneous polynomial QDF of degree m provided that a; b;  are

homogeneous polynomials in the variables x and y of degreem. Given a homogeneous polynomial

form ! of degree m suh that � =

p

b

2

� 4a is a homogeneous polynomial, the one dimensional

foliations assoiated to it, f

1

; f

2

belong to the set H

m

of all homogeneous polynomial vetor �elds

(or 1-forms) of degree m. We denote by A

m

the set of all homogeneous polynomial quadrati

di�erential forms with � satisfying the above onditions. Then A

m

an be identi�ed with a

subset of H

m

�H

n

.

On the other hand, if � and � are planar homogeneous polynomial 1-forms of degrees m and

n, respetively, then ! = �:� is a homogeneous polynomial QDF of degree k = m + n. This

shows that H

m

�H

n

an be identi�ed with a subset of A

k

. Moreover, in both ases, we have a

similar assoiated on�guration C(!).

In this paper we deal with a speial lass of planar polynomial QDF of degree k. We onsider

a subspae of A

k

given by the set �

k

= H

m

�H

n

, with m+ n = k.

We get the onept of strutural stability in our lass of QDF from the following de�nition:

Two forms ! and !

0

in A

k

are equivalent if there exists a homeomorphism h suh that h(C(!)) =

C(!

0

). That means that h is a simultaneous equivalene between the pair of foliations f

1

; f

2

assoiated to ! and the pair f

0

1

; f

0

2

assoiated to !

0

, respetively. It takes the singular set of !

to the singular set of !

0

and the tangent set of (f

1

; f

2

) to the tangent set of (f

0

1

; f

0

2

).

Guinez, in [11℄, introdued the set F

n

of the planar polynomial positive QDF with degree

less than or equal to a positive integer m. He haraterized the struturally stable elements in

F

n

. We emphasize that in [11℄ the ase where f

i

, i = 1 and/or 2 has no harateristi diretions

is not onsidered.

Here we give a omplete haraterization of the strutural stability in �

k

. It is worthwhile

to mention that the ase where � and � are global foi is extensively studied. Problems related

with �nite determinay of QDF are also studied here.
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This paper is organized as follows. In the remainder of this setion we present basi de�nitions

and results neessary throughout this paper and we state our main results. In Setion 2 we study

pairs of planar polynomial foi. We exhibit a topologial invariant for the strutural stability of

suh pairs and give neessary and suÆient onditions for these pairs to be struturally stable.

Loal and global situations are onsidered. We do the same for those pairs where � and/or �

are not foi, in Setion 3. Those setions pave the way for the proofs of the main results, whih

are given in Setion 4.

1.1 Historial notes

Reently many authors have worked in planar homogeneous polynomial vetor �elds; for exam-

ple, Sibirsky [20℄, Cima and Llibre [14℄, Collins [5℄, Llibre, Del Rio and Rodrigues [4℄, among

others. All of them treat the problem of the lassi�ation of homogeneous polynomial vetor

�elds.

Conerning QDF, the works of Guinez and Brue-Tari on stability and normal forms of

families of QDF are worth mentioning. In [8℄-[11℄ Guinez restrited the analysis to homogeneous

systems of order m and some problems. In a reent paper, Gutierrez, Oliveira and Teixeira [12℄

lassi�ed the singularities of a speial lass of QDF via Newton diagrams. In this work, ases

without harateristi orbits were avoided again.

On pairs of vetor �elds in the plane, Brue-Fidal [3℄, Mihel [15℄, Davydov [7℄, Teixeira [23℄,

Oliveira and Tari [18℄-[19℄ among others, obtained results.

1.2 Setting the problem

A vetor �eld X = (P;Q) 2 H

m

in di�erential systems terminology is written as

_x = P (x; y);

_y = Q(x; y):

(2)

In polar oordinates x = r os �, y = r sin �, the expressions above go over to

_r = r

m

f(�);

_

� = r

m�1

g(�);

where

f(�) = os �:P (os �; sin �) + sin �:Q(os �; sin �);

g(�) = os �:Q(os �; sin �)� sin �:P (os �; sin �):

(3)

If s satis�es _s = r

m�1

, then the system an be written as

r

0

= rf(�);

�

0

= g(�);

(4)

where r

0

and �

0

denote the derivative of r and �, respetively, with respet to s.

Throughout the paper we are assuming that g(�) has only zeros with multipliity k = 1. We

also assume that f(�

0

) 6= 0 provided that g(�

0

) = 0. This means that we always get a linear

system with hyperboli ritial points.
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Finally, onsidering the hange of variable � =

r

1 + r

we are able to study the system in a

neighborhood of the in�nity and we have:

�

0

= �(1� �)f(�);

�

0

= g(�);

(5)

when (�; �) is taken in the open disk D = f(�; �) : 0 � � < 1g. Observe that this system is also

de�ned for � � 1. We also observe that the boundary of D is an invariant irle under the ow

of the system. This irle orresponds to the in�nity of the �rst system. So the indued vetor

�eld E(X) de�ned in a neighborhood U of D is an analyti extension of the vetor �eld X at

in�nity.

The onept of strutural stability in �

k

= H

m

�H

n

is the following

(X;Y ) 2 �

k

is struturally stable with respet to perturbations in H

m

�H

n

if there exists a

neighborhood U �V of (X;Y ) in �

k

suh that for all (X

0

; Y

0

) 2 U �V , (X;Y ) and (X

0

; Y

0

) are

topologially equivalent.

We shall say that two pairs of vetor �elds (X;Y ) and (X

0

; Y

0

) are loally topologially

equivalent at the origin (resp. at in�nity) if there exist two neighborhoods U and V of the origin

(resp. in�nity) and a homeomorphism h : U ! V that arries orbits of the pair of ows indued

by (X;Y ) onto orbits of the pair of ow indued by (X

0

; Y

0

). As usual, we derive the onept

of loal equivalene between two pairs of vetor �elds at a point p.

Denote by �

k

= �

m

0

��

n

0

, where �

m

0

is the set of all planar struturally stable homogeneous

polynomial vetor �eld of degree m with respet to perturbations in H

m

and m+ n = k.

1.3 Basi results

The struturally stable homogeneous polynomial vetor �elds in the plane have been studied in

[4℄ and [14℄. Next, we reall some basi results.

Proposition 1.1 Let X 2 H

m

. Assume that E(X) has no ritial points on �D and I

X

=

R

2�

0

f(�)

g(�)

d� 6= 0; where f and g are given as in system (3). Then the phase portrait of E(X) in

D is a global fous.

Proposition 1.2 Let X 2 H

m

. Assume that (0; 0) is an isolated ritial point of X and E(X)

has hyperboli ritial points on �D. Then E(X) has no limit irles in D. If �

0

is a zero of

g(�) then the straight line with slope tan �

0

whih passes through the origin is invariant under

the ow indued by E(X).

The following proposition shows that there exists a duality between the ow of the indued

vetor �eld E(X) in a neighborhood of the origin and in a neighborhood of the in�nity.

Proposition 1.3 Let X 2 H

m

and suppose that (0; 0) is an isolated ritial point of X.

(i) Assume E(X) has no ritial point in � = 1. Then � = 0 is an isolated periodi orbit for

the ow indued by the system if and only if I

X

6= 0.

(ii) Assume E(X) has ritial points in � = 1. Then (1; �

0

) is a hyperboli ritial point if

and only if the ritial point (0; �

0

) is also hyperboli. Moreover, the ritial points (0; �

0

) and

(1; �

0

) are topologially di�erent.
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Theorem 1.4 The vetor �eld X 2 H

m

is struturally stable with respet to perturbations in

H

m

if and only if, it satis�es one of the following onditions:

(i) If E(X) has no ritial points on �D and I

X

6= 0.

(ii) If E(X) has ritial point on �D and all these points are hyperboli.

Propositions 1.1 and 1.2 are proved in [4℄. Proposition 1.3 and Theorem 1.4 are proved in [14℄.

Suppose that X 2 H

m

and Y 2 H

n

, with m > n. Then the indued pair (E(X); E(Y )) is

expressed as

E(X) =

�

r

0

= rf

1

(�)

�

0

= g

1

(�)

E(Y ) =

�

r

0

= r

m�n

f

2

(�)

�

0

= r

m�n�1

g

2

(�)

;

(6)

respetively, where f

i

and g

i

are de�ned as in the system (5), to i = 1; 2.

The system above is simultaneously equivalent to the following system sine that the multi-

pliation of a vetor �eld by a non-zero funtion leaves its phase portrait unhanged.

E(X) =

�

r

0

= rf

1

(�)

�

0

= g

1

(�);

E(Y ) =

�

r

0

= rf

2

(�)

�

0

= g

2

(�)

;

(7)

Then, by means of the hange oordinates � = r=r + 1 we get

�

�

0

= �(1� �)f

1

(�);

�

0

= g

1

(�)

�

�

0

= �(1� �)f

2

(�);

�

0

= g

2

(�);

(8)

where f

i

and g

i

are de�ned as in (3), i = 1; 2.

Note that the indued vetor �eld E(X) has no ritial points on �D provided that g

1

(�) 6= 0

for all � in S

1

. As g

1

is a homogeneous polynomial funtion of degree m+ 1, we onlude that

E(X) has no ritial points on �D, provide that m is odd.

Given vetor �elds X = (P

1

; Q

1

) and Y = (P

2

; Q

2

) in H

m

and H

n

, respetively, we de�ne

the tangent set S

(X;Y )

as the set of all points p in the plane where X(p) and Y (p) are tangent.

Then

S

(X;Y )

= f(x; y) : (P

1

Q

2

� P

2

Q

1

)(x; y) = 0g:

The tangent set of the indued pair (E(X); E(Y )) will be denoted by E(S). Let us hek

what happens with this set in oordinates (�; �). We have

E(S) = f(�; �) : �:(�� 1):(f

1

g

2

� f

2

g

1

)(os �; sin �) = 0g

= f� = 0g [ f� = 1g [ f� : (P

1

Q

2

�Q

2

P

1

)(1; �) = 0g;

where � = tan �. As f� = 0g and f� = 1g are invariant sets of both vetor �elds, they belong to

the tangent set (ommon orbits). If (X;Y ) has no tangeny outside the origin and the in�nity

5



then E(S) = f� = 0g [ f� = 1g. Otherwise the tangent set is given by f� = 0g [ f� = 1g plus

the points where X and Y are tangent.

We denote by S

(X;Y )

the set of the zeros of the homogeneous polynomial funtion of degree

m+ n,

Æ(x; y) = (P

1

Q

2

� P

2

Q

1

)(x; y):

If Æ has zeros with multipliity k > 1, then for small perturbation of (X;Y ) in H

m

�H

n

, the

perturbed tangent set does not have the same number of zeros. This shows that the pair is not

stable. Then, if we want to study pairs (X;Y ) that are struturally stable, we must impose that

Æ either has no zeros or has only simple zeros, i.e., Æ

0

(�

0

) 6= 0 provided that Æ(�

0

) = 0. In this

ase we will say that Æ is simple.

We onsider the following sublasses in the spae of polynomial quadrati di�erential forms

in the plane:

1. Non-simple set: �

k

ff

= f(�; �) 2 �

k

: both E(�) and E(�) have no ritial points in �Dg

2. Simple set: �

k

= �

k

=�

k

ff

1.4 Statement of main results

We denote by �

k

0

the set of all struturally stable QDF in �

k

.

Theorem A: The form ! = (�; �) 2 �

k

belongs to �

k

0

if and only if it satis�es the following

onditions:

i) (�; �) belongs to �

k

;

ii) The ritial points of E(�) and E(�) at �D are distint.

iii) Æ is simple.

About the �nite determinay of an analytial QDF we have the following onlusion:

Theorem B: Let ! =

P

i�m

!

i

be a germ of an analytial QDF in fR

2

; 0g, where !

i

is a

homogeneous polynomial QDF of degree i. The QDF ! is m-determined, provided that one of

the following onditions is satis�ed:

(i) !

m

satis�es the onditions of Theorem A;

(ii) !

m

2 �

m

ff

where Æ has no zeros.

2 The non-simple set

First we onsider (X;Y ) 2 �

k

ff

. Assuming that Æ is simple, two situations must be onsidered:

(i) Æ has no zeros; (ii) Æ has zeros.

2.1 Global approah

Consider the ase where (X;Y ) is a pair of global foi where Æ has only simple zeros. Then there

exist transversal setions T

i

assoiated to E(X) and E(Y ) ontained in S

(X;Y )

. Fix a transversal

setion T

i

. Let (�

X

; �

Y

) be the respetive assoiated returning maps.
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Let (

e

X;Y ) be a homogeneous polynomial perturbations of (X;Y ). Any equivalene h be-

tween them indues an simultaneous equivalene

e

h between the returning maps. As a onse-

quene of the onstrution,

e

h is a simultaneous onjugay between the returning maps.

We also note that departing from a point p 2 T

i

we have several itineraries walking alternately

on piees of orbits of X and Y . This means that there exist many ways to return to T

i

through

the orbits of X and Y . This fat give us a suspiious that the equivalene

e

h an not exist. This

is proved in the next result.

Proposition 2.1 Let (X;Y ) 2 �

k

. Assume that E(X) and E(Y ) has no ritial points at �D

and Æ has at least a zero. Then the pair (X;Y ) is not struturally stable under perturbations in

H

m

�H

n

.

To prove this Theorem a topologial invariant assoiated to pairs of returning maps is ex-

hibited. Let us onstrut this invariant.

Suppose that X and Y are global foi and Æ has at least one zero at � = �

0

. Let �

1

(resp. �

2

) be a returning map of the vetor �eld X (resp. Y ) de�ned in a transversal setion

T

0

= f(r; �) : � = �

0

g. So �

i

(t) = �

i

t, where �

i

=

R

2�

0

f

i

(�)

g

i

(�)

d�; i = 1; 2 (thanks to homogeneous

ondition).

We an suppose, without lost of generality that �

i

2 (0; 1), i = 1; 2.

Given an arbitrary point p

0

2 T

0

in a neighborhood of r = 1 (in�nity), take the fundamental

domain [�

1

(p

0

); p

0

℄ � T

0

, so assoiated to eah point q in (0; �

1

(p

0

)) there exists an integer l

suh that q = �

l

1

(p), where p 2 (�

1

(p

0

); p

0

). So if q = �

k

2

(p

0

) we have

p = �

�l

1

Æ �

k

2

(p

0

) =

�

k

2

�

l

1

p

0

:

This implies that

�

1

p

0

�

�

k

2

�

l

1

p

0

� p

0

, �

1

�

�

k

2

�

l

1

� 1 (9)

to l > k.

So

k

l

�

log�

2

log�

1

�

k

l + 1

: (10)

When k goes to in�nity, l > k goes to in�nity and

k

l

�

k

l+1

goes to zero. From this we an

onlude that �

(X;Y )

=

log�

2

log�

1

is a number assoiated to the pair (X;Y ).

Lemma 2.2 Let (X;Y ) 2 �

k

be a pair of vetor �elds suh that both E(X) and E(Y ) have

no ritial points on �D and Æ has at least one zero. Then the number �

(X;Y )

is a topologial

invariant for (X;Y ) in H

m

�H

n

.

Proof If there exists an equivalene h : (

e

X;

e

Y ) ' (X;Y ) then the same h must send S

(X;Y )

to S

(

e

X;

e

Y )

. Therefore if T

0

denote a branh of �

(

e

X;

e

Y )

then h(T

0

) is also a branh of �

(X;Y )

.

Observe that T

0

(resp. T

1

= h(T

0

)) is a transversal setion to X and Y (resp.

e

X and

e

Y ), hene in T

0

(resp. T

1

) we obtain returning maps assoiated to (X;Y ) (resp. to (

e

X;

e

Y )).

Moreover h indues a simultaneous equivalene between (�

1

; �

2

) and ( e�

1

; e�

2

). This implies that

�(X;Y ) = �(

e

X;

e

Y ). 2

7



Proof of Proposition 2.1

We an suppose that an arbitrary perturbation of (X;Y ) has the form (X;

e

Y ), where

e

Y is an

arbitrary perturbation of Y in H

n

. This observation plus Lemma 2.2 shows that if two pairs are

equivalent then �

i

=

e

�

i

, i = 1; 2. So (X;Y ), under our assumptions, it an not be struturally

stable under perturbations in H

m

�H

n

. 2

2.2 Loal approah

Theorem 2.3 Let (X;Y ) 2 �

k

. Assume that E(X) and E(Y ) has no ritial points on �D.

Then the pair (X;Y ) is C

0

loally struturally stable at origin under perturbations in H

m

�H

n

if and only if Æ has no zeros.

Proof Suppose that Æ has at least one zero. We follow the ideas of Theorem 2.1 to show the

non-loal struturally stability of the pair (X;Y ).

We need to show that there exists a loal equivalene between the pair (X;Y ) and any small

perturbation (X;

e

Y ) of it provided that Æ has no zeros.

First, onsider the lift of the pair (X;Y ) to the ylinder S

1

� [0; 1℄ and denote by �

t

X

(p) and

'

t

Y

(p) the orbits of X and Y through p in the ylinder, respetively. We need to onsider the

ases:

A) sign(I

X

) = sign(I

Y

). In this ase there exists a unique intersetion point between �

t

X

(p)

and '

t

Y

(p) to eah p �xed. Fix a irle r = r

0

in the ylinder and a point p in the dis D

0

entered at the origin and radius r = r

0

. The orbit �

t

X

(p) and '

t

Y

(p) through the point p will

interept r = r

0

in points p

X

and p

Y

, respetively. Denote the orbit of

e

Y through p

Y

by  

t

Y

(p

Y

).

This orbit will interept �

t

X

(p) at a unique point q. Finally we de�ne a map H : D

0

! D

0

suh

that H(p) = q.

B) sign(I

X

) = �sign(I

Y

). In this ase, the orbit of X and Y through a point p in D

0

will

interept eah other in�nitively many times. Then, given a point p

0

= (r

0

; �), take �

t

X

(p

0

) and

'

t

Y

(p

0

), orbit of X and Y through p

0

. Denote by p

1

the �rst point where �

t

X

(p

0

) interept

'

t

Y

(p

0

). The region limited by �

t

X

(p

0

) and '

t

Y

(p

0

) between p

0

and p

1

is di�eomorph to a disk

D

1

with enter at origin. To de�ne the loal equivalene H, between (X;Y ) and (X;

e

Y ), in a

point q in D

1

, we proeed as in the above ase. We shall �nd two points q

X

and q

Y

in the

boundary �D

1

of D

1

and a number k that represents the number of intersetions that our

between the orbits until they meet �D

1

. Through q

Y

we will onsider the orbit of

e

Y . Then we

de�ne H(q) = ~q, where ~q is the k

th

intersetion of the orbit of X through q

X

and the orbit of

e

Y

through q

Y

.

In both ases, the map H de�nes an equivalene between (X;Y ) and (X;

e

Y ) in a neighbor-

hood of the origin. See Figure 1. 2

Remark 2.4 The map H is not a loal equivalene in a neighborhood of the in�nity (H is not

neessarily ontinuous in a neighborhood of the in�nity).

It follows from the proof of the above Theorem some onlusion about the loal strutural

stability of pairs (satisfying the above assumption) at origin, with respet to polynomial pertur-

bations:
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p
X

p
Y

h(p)p

p
0

q

p
X

p
Y

p
1

Figure 1: Lifting of the pair (X;Y ) into the ylinder

Proposition 2.5 Let (X;Y ) be a pair of germs of analytial vetor �elds at origin in the plane.

Suppose that (X;Y ) = (

P

k�n

X

k

;

P

k�n

Y

k

), where X

k

and Y

k

are homogeneous polynomial

vetor �elds of degree k. Assume (X

m

; Y

n

) satis�es the assumptions of Theorem 2.3. Then the

phase portrait of (X;Y ) at origin is loally equivalent to the phase portrait of (X

m

; Y

n

) at origin.

In the later Proposition we also guarantee that these pairs are �nitely determined. Finite

determinay is also a natural question for pairs satisfying the onditions of Theorem 2.1. The

next example is related to this situation.

Example 2.6 Suppose that ('

1

(t); '

2

(t)) = (

1

2

t;

1

3

t) is a pair of returning maps assoiated to

the pair of vetor �elds (X

0

; Y

0

) in the onditions of Theorem 2.1. Then

'

n

1

(t

0

) > '

n

2

(t

0

);8t

0

and 8n 2 N

�

: (11)

Suppose that a small perturbation of (X

0

; Y

0

) by higher terms gives the following pair of

returning maps

 

1

(t) =

1

2

t� at

2

;  

2

(t) = '

2

(t) =

1

3

t:

We know that if there exists an equivalene h between (X

0

; Y

0

) and X = (X

0

; Y

0

) + h(x; y),

the non-homogeneous polynomial perturbation of it, then h indues an equivalene

e

h between the

pair of returning maps. But we shall show that suh equivalene an not exist. In fat, from

(11), we have

e

h('

n

1

(t

0

)) =  

n

1

(

e

h(t

0

)) >  

n

2

(

e

h(t

0

)) =

e

h('

n

2

(t

0

));8t

0

and 8n 2 N

�

:

It is straightforward to derive that

'

n

(

e

h(t

0

)) =

1

2

n

e

h(t

0

)�

a

2

n�2

:(

1

2

+ :::+

1

2

n

):

e

h(t

0

)

2

+ ::::

Take a positive integer n

0

>

log(1�4:h(t

0

):a)

log2�log3

. This implies that  

1

n

0

(

e

h(t

0

))�  

2

n

0

(

e

h(t

0

)) < 0:

Proposition 2.7 Let (X;Y ) 2 �

k

. Assume that both E(X) and E(Y ) have no ritial points

on �D. Then the pair (X;Y ) is not �nite determined provided that Æ has a simple zero.
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Proof Let (�

1

; �

2

) be the pair of returning maps assoiated to (X;Y ), with �

i

(t) = �

i

t, where

�

i

is given as in Proposition 2.1, i = 1; 2. Assume without lost of generality that 0 < �

2

< �

1

< 1

and write �

1

=

1

�

and �

2

=

1

�

, where � and � are greater than 1. Then �

n

1

� �

n

2

for all positive

integer n.

Note that

'

n

1

(p

0

)� '

n

2

(p

0

) = �

n

1

p

0

� �

n

2

p

0

> 0

and goes to the origin when n goes to in�nity.

Consider a small perturbation of (X;Y ) with respet to non-homogeneous terms of higher

degree and suppose that there exists an equivalene h between (X;Y ) and its perturbation.

Then

e

h('

n

1

(p

0

))�

e

h('

n

2

(p

0

)) =  

1

(

e

h(p

0

))�  

2

(

e

h(p

0

)) > 0:

It is lear that any suh perturbation an be hosen as (

e

X;Y ). Moreover, the returning map

assoiated to the perturbation

e

X an be written as  

1

(t) = �

1

t�R

1

(t), where R

1

(t) = at

k

+ :::,

with a > 0 and k is the �rst non-zero jet of R

1

.

Then

 

n

1

(h(p

0

)) =

1

�

n

h(t

0

)�

a

�

n�2

:

�

1

�

+

1

�

k

+ :::+

1

�

(n�1)k�(n�2)

�

:h(t

0

)

k

+ ::::

As in the above example, we an �nd a positive integer n

0

suh that the iteration order

hanges after some n

0

, showing that suh equivalene an not exist. 2

As onsequene of Theorem 2.3 we get some onlusions about the behavior of positive

quadrati di�erential forms. Let ! be a positive quadrati di�erential form given by the produt

of two 1-forms in the plane and satisfying the assumptions of Proposition 2.5. Sine ! is a

homogeneous polynomial form, the Newton Diagram assoiated to ! has a unique fae and by

Proposition 2.5 we have that ! is loally equivalent to !

�

(See [12℄ for details). We observe that

here both di�erential 1-forms have no harateristi diretions. Re-writing:

Corollary 2.8 Let ! = �:� be a positive quadrati di�erential form in the plane, where � and

� are planar polynomial di�erential 1-forms satisfying the assumptions of Proposition 2.5. Then

! is loally equivalent to !

�

at origin.

Now we shall onsider a non usual global equivalene between pairs of vetor �elds, intro-

dued in [23℄.

De�nition 2.9 Two pairs (X;Y ) and (X

0

; Y

0

) in �

k

are mild-equivalent if there exists a home-

omorphism h : D ! D suh that (X

0

; Y

0

) at p is germ equivalent to (X;Y ) at h(p).

Let (X;Y ) 2 �

k

ff

\�

k

, where Æ has only simple zeros. The above equivalene sends transver-

sal setion of X and Y belongs to S

(X;Y )

to transversal setion of X

0

and Y

0

in S

(X

0

;Y

0

)

. More-

over, the number of open regions in D � �

(X;Y )

is the same that in h(D) � �

(X

0

;Y

0

)

. Then,

given an arbitrary point p 2 D we an desribe the loal phase portrait of the pair (X;Y ) in a

neighborhood of p. Lets onsider eah situation:

1. If p 2 D � �

(X;Y )

. Then X and Y are regular and transversal. Then (X;Y ) is loally

topologially equivalent to (

�

�x

;

�

�y

).
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2. If p 2 �

(X;Y )

and �

(X;Y )

has only non degenerated singularities (for all �

0

suh that

�(�

0

) = 0 we have �

0

(�

0

) 6= 0). Then (X;Y ) is loally topologially equivalent to (

�

�x

;

�

�x

+

2x

�

�y

) (See [18℄).

3. If p 2 �D ��

(X;Y )

. In this ase we have two regular vetor �elds without ontat exept

at y = 0 (ommon leaf). Then, the pair is loally topologially equivalent to (

�

�x

; (1 +

x)

�

�x

+ y

�

�y

), to y � 0 (See [2℄).

4. If p 2 �D \�

(X;Y )

. The X and Y are regular vetor �elds with disriminant set given by

y = 0 (ommon leaf) plus a regular urve. Then the pair (X;Y ) is loally topologially

equivalent to (

�

�x

; (1 + x

2

)

�

�x

� 2xy

�

�y

), to y � 0 (See [18℄.

3 The simple set

Here we onsider (X;Y ) 2 �

k

, where either E(X) or E(Y ) has ritial points at �D, say E(Y ).

We know that if E(X) has no ritial points at �D then m is odd and to eah ritial point

�

0

2 �D of E(Y ), we have assoiated a urve (See Proposition 1.2). As in [12℄, we alled it of

separating urve (it is alled a separatrix if �

0

is a saddle point and a pseudo-separatrix, if �

0

is

a node point). This urve is an invariant manifold of �

0

. Then we all setor of E(Y ) in D to

eah region between two onseutive separating urves of E(Y ) (See [12℄ for details).

Moreover, if E(Y ) is a vetor �eld with ritial points at �D and n is also odd then we get

some immediate onlusions.

Lemma 3.1 Let Y 2 H

m

be a vetor �eld with n odd. Suppose that Y has ritial points on

�D, then:

1. If k is the number of zeros of g

2

(�), then k = 4j, where j is a non zero positive integer.

2. The phase portrait of E(X) has an even number of singular setors (ellipti, paraboli and

hyperboli).

Proof 1: From (3) we observe that g

2

(�) is a homogeneous polynomial of degree n+1 (even).

As E(Y ) has only hyperboli ritial points on �D, g

2

(�) has only simple zeros. Then g

1

has

an even number of zeros � = tan �. Moreover, if � is a root of g

2

, i.e., �

2

= tan � is a zero, then

�mod(k�) is also a zero. As the zeros are simple, we get a number 4j of zeros of g

2

, where j is

a positive integer greater than 1. This fat implies that we get a even number of setors in D,

where eah separating urve is assoiated to a hyperboli singular point of E(Y ).

Moreover, as the topologial type of a ritial point p on �D is haraterized by the sign of

g

0

2

(�):f

2

(�) and the sign is the same for � and � + � (tan � = tan(� + �)), we onlude that all

symmetri ritial points have the same topologial type. 2

Consequenes of the later Lemma:

1. There exists a symmetry in D, with respet to the involution �(x; y) = (�x;�y).

2. To know the phase portrait of X is enough to know the sequene of the 2j ritial points

on �D. The others 2j ritial points will have the same behavior.

Example: If m = 1 (linear vetor �eld), we get 4 ritial points. From remark before we an

onlude that we an �nd 3 distint lasses the equivalene to Y if n = 1: all ritial points are
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of the node type, all ritial points are of the saddle type, the sequene is node, saddle, node,

saddle (or saddle,node,saddle,node).

3. Two vetor �elds X and Y in �

k

with di�erent sequene of ritial points on �D are

non-equivalents (See Proposition 4.10 in [12℄).

3.1 Global approah

First, onsider (X;Y ) 2 �

k

, where E(X) has no ritial points on �D. Assume that �

0

and

�

1

are two onseutive ritial points of E(Y ) on �D with the same topologial type. The

orrespondent setor S of E(Y ) will be an ellipti setor (if both ritial points are of the nodal

type) or hyperboli type (if both ritial points are of the saddle type). Reall that E(X)j

S

is

equivalent to the vetor �eld

�

�x

. Then near �D in S, eah integral urve of E(Y ) will interept

a integral urve of E(X) in two distint points (See Figure 2). This shows that there is a urve

of tangeny between the integral urves of E(Y ) and E(X) in hyperboli and ellipti setors.

Assuming now that �

0

and �

1

are two onseutive ritial points of E(Y ) with distint topologial

type (node and saddle). The assoiated setor of E(Y ) is paraboli and there is no urve of

ontat in S (See Figure 2), provided that Æ has only simple zeros.

∆θ θ1 2 θ θ21

Figure 2: Contat in a hyperboli (or in an ellipti) setor and in a paraboli setor

Theorem 3.2 Let (X;Y ) be in �

k

. Assume that E(X) has no ritial points on �D. If E(Y )

has ritial points on �D, then (X;Y ) is C

0

struturally stable under perturbations in H

m

�H

n

if only if Æ has only simple zeros.

Proof As observed later, if Æ has one zero with multipliity � 2, (X;Y ) is not struturally

stable. To show the required stability, under onditions, is enough to exhibit an equivalene that

maintain the integral urves of X and takes the integral urves of Y onto the integral urves of

e

Y , where

e

Y is an arbitrary perturbation of Y in H

n

.

In D we have �nite many number of hyperboli, ellipti and paraboli setors of E(Y ). Let

T be an arbitrary separating urve of a setor of E(Y ). Then T is also a transversal setion for

E(X) and in T we have de�ned a returning map � assoiated to E(X). The same holds for a

small perturbation of E(Y ) in H

n

. Sine an equivalene takes a separating urve of E(Y ) in a

separating urve of E(

e

Y ), we have an indued returning map in h(T ) satisfying the following

relation � Æ h = h Æ �

0

, where �

0

is the returning map assoiated to E(X) in h(T ).

For any T

i

, another separating urve of E(Y ), we have a homeomorphism l

i

: T ! T

i

obtained by sliding along the integral urve of E(X) from T to T

i

.

12



Let } (resp. }

0

) be a setor of E(Y ) (resp. E(

e

Y )) with separating urves T

1

and T

2

(resp.

T

0

1

and T

0

2

). Denote by �

S

(resp. �

0

S

) the urve of tangeny between E(X) and E(Y ) in }

(resp. E(X) and E(

e

Y ) in }

0

), if there exist and by R

i

(resp. R

0

i

) the open region between T

i

and �

S

(resp. T

0

i

and �

0

S

), i = 1; 2.

As before, there exist indued mappings l

1

: T ! T

1

, l

2

: T ! T

2

and l

�

S

: T ! �

S

. For

eah i = 1; 2, we derive homeomorphisms k

i

: T

i

! T

0

i

, de�ned by k

i

= (l

0

i

)

�1

Æ h Æ l

i

, i = 1; 2

and k

�

: �

S

! �

0

S

given by k

�

= l

�1

�

Æ h Æ l

�

. These homemorphism there exist sine we must

have a homeomorphism h : T ! T

0

satisfying h Æ � = �

0

Æ h.

Let us see how to extend h to eah setor S of E(X) onto the orresponding setor S

0

of

E(

e

X).

� In one ellipti setor. Consider p

0

2 R

1

. Denote by �

X

and �

Y

the integral urves of

E(X) and E(Y ) passing through p

0

. These integral urves interept �

S

in p

X

and p

Y

,

respetively. Consider the points k

�

(p

X

) and k

�

(p

Y

) in �

0

S

and the integral urves of

E(X) and E(

e

Y ) through these points, respetively. These urves meet eah other in

q

0

2 R

0

i

. Then de�ne h(p

0

) = q

0

. The map h is a homeomorphism from R

1

to R

0

1

. Now in

R

2

proeed in the same way and the extension to S is well done beause H agree with k

�

in �.

Now it is possible to extend h to �D in a natural way.

∆
1 2 21Τ Τ Τ

p

p

p
Y

X

Τ

Y

21

0

Y
q q

q

S

Figure 3: Phase portrait in some setors of X

� In one hyperboli setor we proeed in the same way as above.

� In one paraboli setor. Fix one leaf C

1

of E(X) and notie that C

1

onnets two points

p

1

2 T

1

with p

2

2 T

2

. Let C

2

be the leaf of E(X) onneting k

1

(p

1

) and k

2

(p

2

). De�ne

one homeomorphism h between C

1

and C

2

. Given a point q

0

2 S. There is a unique point

q

Y

2 C

1

and q

X

2 T

1

, where the orbits of E(X) and E(Y ) through q

0

interept C

1

and

T

1

, respetively.

Applying k

1

: T

1

! T

0

1

and h : C

1

! C

2

we obtain h(q

Y

) 2 C

2

and k

1

(q

X

) 2 T

0

1

,

respetively. Through these points there exists a unique integral urve of E(

e

Y ) and E(X),

respetively, and they meet eah other in a unique point q 2 S

0

. Then extent h to S onto

S

0

de�ning h(q

0

) = q.

Now we extend this homeomorphism to �D in a natural way. Given a point q

0

2 �D,

onsider a sequene (q

n

) in S onverging to q

0

. De�ne h(q

0

) = lim

n!1

h(q

n

) . Observe that

the limit does not depend on the sequene.
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The next step is to extend the homeomorphism onstruted on eah setor to all spae. We

need guarantee that the gluing proess is well de�ned. But this is ensured due the fat that the

homeomorphism h restrited to the separating urves agrees with the indued returning maps.

2

Now, onsider (X;Y ) 2 �

k

, where E(X) and E(Y ) have distint ritial points on �D. As

in the ase studied later, we have �nite many setors of eah vetor �eld in D.

Theorem 3.3 Let (X;Y ) be in �

k

. Assume that E(X) and E(Y ) have distint ritial points

on �D. Then (X;Y ) is C

0

struturally stable under perturbations in H

m

�H

n

if only if Æ either

has only simple zeros or no zeros.

The proof here follows the same ideas used in the proof of Theorem 3.2. As before we just

need to distinguish eah setor and separating urves and the branhes of the tangent set. See

more details of the proof (to the loal ase) when Æ has no zeros (Proposition 4.10 in [12℄).

3.2 Loal approah

As in the ase where X and Y has no ritial points in �D, we an get some onlusions about

pairs of vetor �elds whih an be written as a sum of homogeneous vetor �elds in the plane:

Proposition 3.4 Let (X;Y ) be a pair of analytial vetor �elds in the plane. Suppose that

(X;Y ) = (

P

k�m

X

k

;

P

k�n

Y

k

), where X

i

and Y

i

are homogeneous polynomial vetor �elds of

degree i. Either (X

m

; Y

n

) satis�es the assumptions of Theorem 3.2 or of Theorem 3.3. Then

the phase portrait of (X;Y ) at origin is loally equivalent to the phase portrait of (X

m

; Y

n

) at

origin.

This Proposition an be proved in the same way as Theorem C in [4℄ using the tehnis of

Theorems 3.2 and Theorem 3.3. Note that as a onsequene, we have �nite determinay of the

pairs (X;Y ) satisfying the above onditions.

We have a dual result about loal equivalene in a neighborhood of the in�nity. Here we say

\phase portrait of (X;Y ) at in�nity" instead of \phase portrait of (X;Y ) in a neighborhood of

the in�nity".

Proposition 3.5 Let (X;Y ) be a pair of analytial vetor �elds in the plane. Suppose that

(X;Y ) = (

m

X

k=1

X

k

;

n

X

k=1

Y

k

), where X

k

and Y

k

are homogeneous polynomial vetor �elds of degree

k. Assume that (X

m

; Y

n

) satis�es the assumptions either of Theorem 3.2 or of Theorem 3.3.

Then the phase portrait of (X;Y ) at in�nity is loally equivalent to the phase portrait of (X

m

; Y

n

)

at in�nity.

Applying the onlusions of this setion to quadrati di�erential forms we have

Corollary 3.6 Let ! = �:� be a positive quadrati di�erential form in the plane, where � and

� are planar polynomial di�erential 1-forms satisfying the assumptions of Proposition 3.4. Then

! is loally equivalent to !

�

at origin.
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4 Proof of the main results

Now we an joint the onlusions presented here to onlude the proof of the main results:

Proof of Theorem A: It follows from Theorems 2.1, 3.2 and 3.3.

Proof of Theorem B: If follows from Theorems 2.5 and 3.4.

Remark 4.1 Observe that �

k

ff

is a open in �

0

� �

0

then �

k

0

is never dense in �

k

.

Remark 4.2 Under some onditions, the results obtained in this paper an be applied to study

urvature lines in a smooth manifold M ; for example, if the urvature lines in M are given by

homogeneous QDF and they an deompose as a produt of two homogeneous diretion �elds (in

the onditions mentioned in the introdution of this artile).
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