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Abstract

In this paper we give a strong law of large numbers and a central limit theorem for
fuzzy random variables. To do this, we use the embedding of the space of compact
fuzzy sets with continuous levels applications into a Banach space, via support
functions.
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1 Introduction

In many real situations uncertainty of data come from two sources: from the
random mechanism generating it and from the vagueness of outcomes. Fuzzy
random variables, introduced by [13], are suitable tools for modelling such
situations. Fuzzy random variables (frv’s) generalize the concept of random
variables as well as that of random sets.
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To make this tool useful for statistical analysis of inexact data, several au-
thors have extended some classical results on random variables to frv’s. Of
particular concern are those describing the asymptotic behaviour of suitably
normalized sums of frv’s. In this setting, the classical strong law of large num-
bers (SLLN) has been extended by [3] for compact random sets and by [7] for
frv’s. Although, to our knowledge, the result in [7] is the most general SLLN
for frv’s, here we give a SLLN which is a weaker version of that in [7]. The
reason is that our proof is much simpler. It basically follows the same lines
that the one in [3] for compact random sets.

Another classical result of great importance is the central limit theorem (CLT).
[18] has proved a CLT for compact random sets. Extensions for frv’s can be
found in [9] and [11]. In this paper we prove a CLT that extends that in [9]
by assuming different conditions than those in [11].

The CLT in this paper extend that in [9] in two important aspects: while these
authors work with the space of convex compact fuzzy sets with Lipschitzian
levels, which is a separable space but it is not complete (see [14]), our purpose
is to show that it suffices to work with compact fuzzy sets with continuous
levels to get CLT for frv’s.

We want also to remark that the condition we assume on the frv’s to get our
CLT, the continuity of the level sets, is different from that assumed in [11], the
convexity of the level sets. None of these assumptions entail the other. The
difference in the assumed conditions is due to the way each result face the non-
separability of involved metric spaces of fuzzy sets. To solve this difficulty, in
[11] the authors identify isometrically each frv with convex and compact level
sets with an empirical process and then apply the results in [17]. Our approach
is similar to that used in [18].

Within the arguments used in the papers [3] and [18], there are two which
turn out to be fundamental: the Theorem of Shapley and Folkman, that we
generalize to the fuzzy context, and the results in Mourier [10], that we ap-
ply directly by using the Minkowski embedding Theorem given in [14]. This
embedding Theorem is our main tool.

We have also extended the results stated here to the context of separable Ba-
nach spaces, by using a generalization of the Minkowski embedding Theorem
in [14] given in [15]. These extensions will be published in a forthcoming paper
[6].

The paper is organized as follows. In Section 2, after giving some definitions
a basic results on fuzzy sets, we discuss some useful consequences of the em-
bedding Theorem in [14] and we also deal with frv’s, their expectations and
their support functions. The main results are exposed in last Section.
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2 Preliminaries

2.1 Fuzzy sets

Let K(Rm) and Kc(Rm) denote the set of the nonempty compact subsets of
Rm and the set of the nonempty compact convex subsets of Rm, respectively.
The Hausdorff metric H over K(Rm) is defined by

H(A,B) = max
{

sup
a∈A

d(a,B), sup
b∈B

d(b, A)
}

.

A linear structure is defined in K(Rm) by the operations

A + B = {a + b / a ∈ A, b ∈ B} and λA = {λa / a ∈ A},

where A,B ∈ K(Rm), λ ∈ R.

Let Fm be the space of fuzzy compact sets, that is, Fm is the set of u : Rm →
[0, 1] with the following properties

(i) u is normal, i.e., there exists x0 ∈ Rm such that u(x0) = 1,
(ii) u is upper semicontinuous, and
(iii) [u]0 = supp (u) = {x ∈ Rm / u(x) > 0} ∈ K(Rm).

For each 0 < α ≤ 1, let [u]α = {x / u(x) ≥ α} denote the α-level set of u.
From (i)-(iii), it follows that [u]α ∈ K(Rm), ∀ α ∈ [0, 1].

Let Fm
k = {u ∈ Fm / [u]α ∈ Kc(Rm), ∀α ∈ [0, 1]}. For any u ∈ Fm

k , the support
function of u, Su(·, ·) : [0, 1]× Sm−1 → R, is defined by

Su(y, α) = σ[u]α(y),

where σA(y) = supa∈A 〈y, a〉 is the support function of the set A ⊂ Rm, 〈·, ·〉
denotes usual inner product in Rm, Sm−1 = {x ∈ Rm / ‖x‖ = 1} and ‖.‖ is
the Euclidean norm.

The linear structure in Fm is defined by the operations

(u + v)(x) = sup
y∈X

min{u(y), v(x− y)}, (λu)(x) =











u(xλ−1) if λ 6= 0,

χ{0}(x) if λ = 0,
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where u, v ∈ Fm, λ ∈ R and χA denotes the characteristic function of A ⊆ Rm.
Note that [u + v]α = [u]α + [v]α and [λu]α = λ[u]α, ∀ u, v ∈ Fm, ∀ α ∈ [0, 1],
∀ λ ∈ R.

We can endow Fm with several metrics. Some usual distances between fuzzy
sets are

Dp(u, v) =



































1
∫

0

H([u]α, [v]α)pdα





1/p

if p ∈ [1,∞),

sup
α∈[0,1]

H([u]α, [v]α) if p = ∞.

With each distance, we can also define the norm of a fuzzy set u by

‖u‖p = Dp(χ{0}, u).

It is well known (see for example [8]) that the metric space (Fm, Dp) is complete
for each 1 ≤ p ≤ ∞, and that (Fm, Dp) is separable for each 1 ≤ p < ∞, but
(Fm, D∞) is not.

We say that the fuzzy set u is level continuous if the mapping α → [u]α is
H-continuous, that is, given ε > 0, there exists a δ > 0 such that

|α− β| < δ ⇒ H([u]α, [u]β) < ε.

We say that u is Lipschitz if there is a constant L ≥ 0, such that

H([u]α, [u]β) < L |α− β|

∀ α, β ∈ [0, 1].

From now on we will work with the metric D∞. To simplify notation, we will
suppress the subindex ∞ in the distance and in the induced norm. Note that
this way we use the same notation for the Euclidean norm of a point x ∈ Rm

and for the norm of a fuzzy set.

In this paper we will consider the following subspaces of (Fm, D)

Fm
k = {u ∈ Fm / [u]α ∈ Kc(Rm) ∀α ∈ [0, 1]},
Fm

c = {u ∈ Fm / u is level continuous},
Fm

ck = Fm
k ∩ Fm

c and
Fm

Lk = {u ∈ Fm
k / u is Lipschitz}.

Note that Kc(Rm) ↪→ Fm
Lk ↪→ Fm

ck.

4



2.2 The embedding Theorem

As we said in the introduction, the main tool for proving the our SLLN and
CLT for frv’s is the extension of the Minkowski embedding Theorem given in
[14]. For completeness, we include here this Theorem and discuss some of its
consequences. Before stating it, we first give some useful results.

For each A ∈ K(Rm) we denote by coA the convex hull of A.

Proposition 2.1 Let u ∈ Fm. Then the family (co[u]α)α∈[0,1] satisfies

(a) co[u]α ∈ K(Rm), ∀ α ∈ [0, 1],
(b) if α ≤ β then co[u]α ⊇ co[u]β, and
(c) for all α1 ≤ ... ≤ αn, ... such that αn ↑ α, co[u]α =

⋂∞
n=1 co[u]αn.

PROOF. The statements in (a) and (b) are immediate. To show (c), let
α1 ≤ ... ≤ αn, ... such that αn ↑ α. Then, [u]α =

⋂∞
n=1[u]αn and hence co[u]α =

co
⋂∞

n=1[u]αn =
⋂∞

n=1 co[u]αn . This completes the proof. �

From Proposition 2.1 is follows that the family (co[u]α)α∈[0,1] satisfies the con-
ditions in the representation Theorem of Negoita and Ralescu (see [8]), and
therefore there exists a fuzzy set, co(u), such that

[co(u)]α = co[u]α, ∀α ∈ [0, 1].

Note that if u ∈ Fm
c , then co(u) ∈ Fm

ck, because H(coA, coB) ≤ H(A,B),
∀ A,B ∈ K(Rm).

Next we give another further useful immediate consequence of Proposition 2.1.

Corollary 2.2 Let u, v ∈ Fm, then co(u + v) = co(u) + co(v).

Let C([0, 1] × Sm−1) denote the set of continuous real functions defined on
[0, 1]× Sm−1 endowed with the usual metric d∞,

d∞(f, g) = max
z∈[0,1]×Sm−1

|f(z)− g(z)| ,

and let ‖ · ‖∞ denote the associated norm.

Puri and Ralescu [12] showed that there is an embedding j : Fm
Lk → C([0, 1]×

Sm−1). This fact is very important since (Fm
k , D) is not separable, which is
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an interesting property in integration theory, and (Fm
Lk, D) is. Unfortunately,

(Fm
Lk, D) is not a complete subspace of (Fm

k , D).

Since Fm
Lk ↪→ Fm

ck and (Fm
ck, D) is a closed subspace of (Fm

k , D) and therefore
complete, the question that arises is if the application j can be extended to
the class Fm

ck. The answer to this question is affirmative and was given in [14]
as follows.

Theorem 2.3 The application j : Fm
ck → C([0, 1]×Sm−1) defined by j(u) = Su

is positively homogeneous, additive and it is also an isometry.

As an immediate consequence of Theorem 2.3, we have that the metric space
(Fm

ck, D) is separable. In [14] the authors also show that Fm
ck is the maximal

complete and separable subspace of Fm that can be embedded in C([0, 1] ×
Sm−1) via the isometry j.

Let u, v ∈ Fm
ck, from Theorem 2.3 it follows that

D(u, v) = sup{|Su(α, z)− Sv(α, z)| / (α, z) ∈ [0, 1]× Sm−1}
= ‖Su − Sv‖∞ ,

and hence,

‖u‖ = sup{|Su(α, z)| / (α, z) ∈ [0, 1]× Sm−1} = ‖Su‖∞ .

2.3 Fuzzy random variables

Let (Ω,A, P ) be a probability space. A frv X is a Borel measurable function,
X : Ω → Fm, in the sense that X−1(S) ⊆ A, where S is the σ-field generated
by the open sets of the metric space (Fm, D), that is, X is a random element
in Fm. Note that if X is a frv, then ‖X‖ is a random variable.

The expectation of X is the fuzzy set EX whose level sets satisfy

[EX]α = EXα

where Xα : Ω → K(Rm), defined by Xα(w) = [X(w)]α, is a random compact
set and EXα is the Aumann expectation,

EXα = {EZ / Z ∈ L1(Ω,A, P ) and Z(w) ∈ Xα(w) a.s.},

where EZ is the expectation of the random vector Z. Each random vector Z
in the definition of EXα is called a selection of Xα. Aumann [4] showed that
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such selections exist, under some conditions on Xα.

As a consequence of the results in Aumann (see also [16]) we have that if P
is nonatomic, then EX = E(coX).

Note that if X is a random vector, then EX = EX. To simplify notation,
from now on we will use the same symbol E to denote both expectations, the
expectation of a frv and the expectation of a random vector.

If X is a frv in Fm
ck, then

SX(α, z) = σ[X]α(z)

is a stochastic process in C([0, 1]× Sm−1) with continuous parameter (α, z) ∈
[0, 1]× Sm−1. From Theorem 2.3, the correspondence between X and SX(·, ·)
is isometric. This isometry allow us to define concepts for the frv X by using
the corresponding concept for the random functions SX(α, z). This way, the
concept of independence for frv’s follows from the well defined independence
of random functions.

3 Main results

As we said in the introduction, to prove our SLLN and CLT for frv’s we need,
in addition of Theorem 2.3, to generalize to the fuzzy context the Theorem
of Shapley and Folkman (see [2]). So, before stating our main results, we give
this generalization.

Proposition 3.1 Let u1, u2, ..., un ∈ Fm with ‖ui‖ < M , 1 ≤ i ≤ n, for some
positive finite constant M ∈ R. If an ∈ R, an > 0, then

D
( n

∑

i=1

ui

an
, co

( n
∑

i=1

ui

an

))

≤ a−1
n

√
mM, ∀n.

In particular, if a−1
n → 0, then

lim
n→∞

D
( n

∑

i=1

ui

an
, co

( n
∑

i=1

ui

an

))

= 0.

PROOF. Since [ui]α ∈ K(Rm) and ‖[ui]α‖ ≤ ‖ui‖ < M , i = 1, 2, ...n, from
the Proposition in [3] we have that
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H
( n

∑

i=1

[ui]α

an
, co

( n
∑

i=1

[ui]α

an

))

≤ a−1
n H

( n
∑

i=1
[ui]α, co

( n
∑

i=1
[ui]α

))

≤ a−1
n

√
mM,

and hence

D
( n

∑

i=1

ui

an
, co

( n
∑

i=1

ui

an

))

≤ a−1
n

√
mM.

�

3.1 Strong law of large numbers

Theorem 3.2 Let Xi, i = 1, 2, ... be independent and identically distributed
rfv’s in Fm

c with E ‖X1‖ < ∞ and Tn = X1 + ... + Xn. Then

lim
n→∞

D
(Tn

n
,EcoX1

)

= 0 a.s.

PROOF. Let Yi = coXi, 1 ≤ i ≤ n, and Rn = Y1 + ...+Yn. Since E ‖coX1‖ =
E ‖Y1‖ = E ‖SY1‖∞ < ∞, by the triangle inequality, we have

D
(Tn

n
,EX1

)

≤ D
(Tn

n
,
Rn

n

)

+ D
(Rn

n
,EY1

)

. (1)

From Proposition 3.1 and Lemma 1 in [5],

D
(Tn

n
,
Rn

n

)

≤ n−1√m max
i≤n

‖Xi‖ → 0 a.s., (2)

as n →∞.

Since ESYi(α, z) = SEYi(α, z), by using the the isometry between Yi and its
support process SYi(α, z), we get

D
(

Rn(w)
n

,EY1

)

=
∥

∥

∥

∥

SRn(w)
n

− SEY1

∥

∥

∥

∥

∞
, ∀ω ∈ Ω. (3)

Now, from (3) and the SLLN in C([0, 1]× Sm−1) (see [10]),

D
(Rn

n
,EY1

)

→ 0 a.s., (4)
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as n →∞. Finally, the result follows from (1), (2) and (4). �

3.2 Central limit theorem

For each frv X in Fm
ck, let ΨX the covariance kernel of the stochastic process

SX(α, z),

ΨX{(α, z), (β, g)} = E{SX(α, z)− SEX(α, z)}{SX(β, g)− SEX(β, g)}.

Theorem 3.3 Let Xi, i = 1, 2, ... be independent and identically distributed
frv’s in Fm

c with E ‖X1‖2 < ∞ and Tn = X1 + ... + Xn. Then

√
nD

(Tn

n
,EcoX1

)

−→ ‖Z‖ , in distribution,

as n → ∞, where Z is a centered Gaussian variable in C([0, 1]× Sm−1) with
covariance kernel ΨcoX1.

PROOF. With the triangle inequality and following the notation in the proof
of Theorem 3.2, we have

√
nD

(Tn

n
,EX1

)

≤
√

nD
(Tn

n
,
Rn

n

)

+
√

nD
(Rn

n
,EY1

)

. (5)

From Proposition 3.1 and Lemma 1 in [5],

√
nD

(Tn

n
,
Rn

n

)

≤
√

m
(

max1≤i≤n ‖Xi‖2

n

)1/2

→ 0 a.s., (6)

as n →∞.

From Theorem 2.3,

√
nD

(Rn

n
,EY1

)

=
√

n
∥

∥

∥SRn
n
− SEY1

∥

∥

∥

∞
=

∥

∥

∥

∥

∥

1√
n

n
∑

i=1
(SYi − ESY1)

∥

∥

∥

∥

∥

∞
. (7)

Now, to apply the CLT in C([0, 1]× Sm−1) (Corollary 7.17 in [1]), we have to
check two conditions. We first see that

1
∫

0

h
1
2 (t)dt < ∞, (8)
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where

h(t) = log N(t), t > 0,

and N(t) is the minimum number of spheres with radius t covering [0, 1]×Sm−1

with the metric e on [0, 1]× Sm−1, defined by

e{(α, z), (β, g)} = |α− β|+ ‖z − g‖ .

Since a cube with side 2 can be covered with (2k)m cubes, all of them with
side 1/k, in the same way [0, 1]× Sm−1 can be covered with (2k)m+1 spheres,
each having radius 1/k, and hence

N(t) ≤ Kmt−1, t > 0

where Km is a constant. Therefore, the integral (8) is finite.

Now we check the second condition,

|SY1(α, z)− SY1(β, g)| ≤ Me{(α, z), (β, g)}.

where M is a nonnegative random variable having finite second moment. This
condition holds since

|SY1(α, z)− SY1(β, g)| = |SY1 {(α, z)− (β, g)}| ≤ ‖SY1‖ e{(α, z), (β, g)}.

Now, by the CLT in C([0, 1]× Sm−1),

1√
n

n
∑

i=1
{SYi − E(SY1)}−→Z, in distribution, (9)

as n → ∞, where Z is a centered Gaussian variable in C([0, 1] × Sm−1) with
covariance kernel ΨX1 . Finally, as the mapping (α, z) → ‖(α, z)‖, (α, z) ∈
[0, 1]× Sm−1, is continuous, the result follows from (5), (6), (7) and (9). �
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[7] A. Colubi, M López-Dı́az, J.S. Domı́nguez-Menchero, M.A Gil, A generalized
strong law of large numbers, Probability Theory and Related Field 114 (1999)
401-417.

[8] P. Diamond, P. Kloeden, Metric Space of Fuzzy Sets, World Scientific,
Singapore, 1994.

[9] E.P. Klement, M.L. Puri, D.A. Ralescu, Limit theorems for fuzzy random
variables. Proceedings of Royal Society of London. -Series A 19 (1986) 171-
182.

[10] E. Mourier, L - random elements and L∗ - elements in Banach spaces, Proc.
Third Berkeley Symp. Math. Statis. and Probability, Univ. of California, 2
(1995), 231-242.

[11] F.N. Proske, M.L. Puri, Central limit theorem for Banach space valued fuzzy
random variables, Proceedings of the Americam Mathematical Society, 130
(2002) 1493-1501.

[12] M.L. Puri, D.A. Ralescu, The concept of normality for fuzzy radom variables,
The Annals of Probability 13 (1985) 1373-1379.

[13] M.L Puri, D.A. Ralescu, Fuzzy random variables, Journal of Mathematical
Analysis and Applications 114 (1986) 409-422.

[14] M.A. Rojas-Medar, R.C. Bassanezi, H. Román-Flores, A generalization of the
Minkowski embedding theorem and applications, Fuzzy Sets and System, 102
(1999) 263-269.

[15] H. Román-Flores and M.A. Rojas-Medar, Embedding of level- continuous fuzzy
sets on Banach spaces, Information Sciences 144 (2002) 227-247.

[16] F. Tardella, A new proof of the Lyapunov convexity theorem, Siam J. Control
and Optimization, 28 No 2 (1990) 478-481.

[17] A.W. van der Vaat , J.A. Wellner, Weak convergence and empirical process,
Springer, 1996.

11



[18] W. Weil, An application of the central limit theorem for Banach-space-valued
random variables to the theory of random sets, Z. Wahrscheinlinchkeitstheorie
Verw. Gebiete 60 (1982) 203-208.

12


