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Abstract

This paper analyzes an initial/boundary value problem for a system
of equations modelling the nonstationary flow of a nonhomogeneous
incompressible asymmetric (polar) fluid. Under conditions similar to
those usually imposed to the nonhomogeneous 3D Navier-Stokes equa-
tions, by using a spectral semi-Galerkin method, we prove the existence
of a local in time strong solution. We also prove the uniqueness of the
strong solution and some global existence results. Several estimates for
the solutions and their approximations are given. These can be used
to find useful error bounds of the Galerkin approximations.

Résumé

Dans ce papier, on analyse un problème de valeurs initiales et
valeurs aux limites pour un systeème d’équations aux dérivées
partielles qui modélise le flux instationnaire d’un fluide asymmé-
trique incompressible non homogène. Sous des conditions simi-
laires aux conditions usuellement imposées aux équations tridi-
mensionelles de Navier-Stokes non homogènes, à l’aide d’une
méthode de type semi-Galerkin, nous démontrons l’éxistence
d’une solution forte locale en temps. On établit aussi l’unicité de
solution forte et quelques résultats d’éxistence globale. Tous ces
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résultats reposent sur des estimations appropriées pour les solu-
tions et leurs approximations qui permettent d’ailleurs déduire
des estimations de l’erreur.

1 Introduction

In this paper we will study the equations for the motion of a nonhomo-
geneous viscous incompressible asymmetric fluid. These equations will be
considered in a set of the form Ω× (0, T ), where Ω ⊂ R3 is a bounded and
regular domain with boundary ∂Ω and T > 0.

Thus, let us denote by u, w, ρ and p the velocity field, the angular
velocity of rotation of the fluid particles, the mass density and the pressure
distribution, respectively. The governing equations are the following:



























ρ(ut + (u · ∇)u)− (µ + µr)∆u +∇p = 2µr curl w + ρf,
divu = 0,
ρ(wt + ρ(u · ∇)w)− (ca + cd)∆w − (c0 + cd − ca)∇div w

+ 4µrw = 2µr curlu + ρg,
ρt + u · ∇ρ = 0.

(1)

For simplicity, they will be completed with the following boundary and
initial conditions

{

u(x, t) = 0, w(x, t) = 0 on ∂Ω× (0, T ),
u(x, 0) = u0(x), w(x, 0) = w0(x), ρ(x, 0) = ρ0(x) in Ω,

(2)

In (1), f and g are known density functions of external sources for the
linear and the angular momentum of particles, respectively. The positive
constants µ, µr , c0 , ca and cd characterize the physical properties of the
fluid. Thus, µ is the usual Newtonian viscosity; µr , c0 , ca and cd are
additional viscosities related to the lack of symmetry of the stress tensor
and, consequently, to the fact that the field of internal rotation w does not
vanish. These constants must satisfy the inequality

c0 + cd > ca .

The symbols ∇, ∆, div and curl denote the gradient, Laplacian, diver-
gence and rotational operators, respectively; ut , wt and ρt stand for the
time derivatives of u, w and ρ ; the i-th components of (u ·∇)u and (u ·∇)w

2



in cartesian coordinates are given by

[(u · ∇)u]i =
n

∑

j=1

uj
∂ui

∂xj

and

[(u · ∇)w]i =
n

∑

j=1

uj
∂wi

∂xj
.

We also have

u · ∇ρ =
n

∑

j=1

uj
∂ρ
∂xj

.

For the derivation of equations (1) and a discussion on their physical
meaning, see [5]. Observe that this system includes as a particular case the
classical Navier-Stokes equations, which have been largely studied (see for
instance the classical books by Ladyzhenskaya [10] and Temam [20] and the
references therein). It also includes as a reduced model the nonhomogeneous
Navier-Stokes system, that are less known (cf. [19],[9],[11],[18]).

Concerning the model considered in this paper, let us recall that, under
certain assumptions, by using linearization and an almost fixed point Theo-
rem, Lukaszewicz established in [17] the existence of weak solutions for short
time. In this same paper, there are considerations on the possible proof of
the existence of strong solutions (assuming that the initial density is strictly
separated from zero) by using the techniques of [15] and [16] (linearization
and fixed point Theorems; recall that in [15] and [16] the density is a positive
constant).

In this paper we are also concerned with the existence of strong solutions
of (1)–(2). However, since we are mainly motivated by techniques directly
related to numerical applications, we have preferred an approach based on
spectral semi-Galerkin methods. In this way, by assuming that the initial
data are more regular than in [17] and the initial density is separated from
zero, we will prove that more regular strong solutions exist. In this process,
we will find appropriate estimates that become fundamental to derive error
bounds for the Galerkin approximations, as was already explained in the
previous paper [2]. Actually, these estimates can be viewed as one of the
main objectives in this paper.

The rest of the paper is organized as follows. In Section 2, we will explain
what is a strong solution (u,w, ρ) of (1)–(2) and we will present our main
results, Theorems 1 and 2: the existence and uniqueness of a local in time
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strong solution. We will also introduce in this Section the main tool in this
paper, namely a spectral semi-Galerkin approximation scheme for (1)–(2).

In Section 3, we will deduce the a priori estimates needed to ensure
the regularity of (u,w, ρ). To this end, we will combine arguments and
techniques that have been used in other similar contexts by several authors,
in particular by Heywood [6],[7], Kim [9] and Boldrini and Rojas-Medar [3].

In Section 4, we will use these a priori estimates to extract a convergent
subsequence and, then, to pass to the limit in the equations. In this way, we
will prove that a strong solution exists in a (possibly small) maximal time
interval [0, T0), with T0 ≤ T .

Section 5 deals with uniqueness. There, we will prove that any strong
solution must coincide with the solution furnished by Theorem 1.

In Section 6, we prove the existence of a (regular) pressure. In particular,
we see that the triplet (u,w, ρ) provided by Theorem 1 is such that, for
some p, the equations (1) are satisfied a.e. in Ω× (0, T0). Finally, Section 7
is concerned with the existence of global strong solutions for small regular
data.

2 Preliminaries and Main Results

In the sequel we will assume that Ω is a bounded domain in R3, with regular
boundary ∂Ω. We will consider the usual Sobolev spaces

Wm,q(Ω) = { f ∈ Lq(D) : ‖∂κf‖Lq(D) < +∞ for |κ| ≤ m }

for m ≥ 1 and 1 ≤ q ≤ ∞ with the usual norms ‖ · ‖W m,q . When q = 2, we
will set Hm(Ω) = Wm,2(Ω). As usual, Hm

0 (Ω) will stand for the closure of
C∞

0 (Ω) in Hm(Ω). For simplicity, if B is a Banach space with norm ‖ · ‖B ,
the natural product norm in Bm will be also denoted by ‖ · ‖B .

We will set

V(Ω) = { v ∈ (C∞
0 (Ω))3 : div v = 0 in Ω },

H = the closure of V(Ω) in (L2(Ω))3,

V = the closure of V(Ω) in (H1
0 (Ω))3.

For any Banach-space B and any T > 0, we will denote by Lr(0, T ; B)
the Banach space of the B-valued (classes of) functions defined a.e. in [0, T ]
that are Lr-integrable in the sense of Bochner. Frequently, we will consider
Banach spaces Lr(0, T ; B) with B = Wm,q(Ω). In such cases, for any v ∈
Lr(0, T ; Wm,q(Ω)), v(t) stands for the function v(·, t).
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Let P be the orthogonal projection of (L2(Ω))3 onto H induced by the
usual Helmholtz decomposition of (L2(Ω))3. By definition, the Stokes oper-
ator is the unbounded linear mapping A : D(A) ⊂ H 7→ H, with domain
D(A) = V ∩ (H2(Ω))3, given by

Av = P (−∆v) ∀v ∈ D(A).

It is well known that A is a positive self-adjoint operator. It is characterized
by the equalities

(Aw, v) = (∇w,∇v) ∀w ∈ D(A), ∀v ∈ V.

Here and in the sequel, (· , ·) stands for the usual scalar (L2(Ω))3-product.
The associated norm will be denoted by ‖ · ‖.

We will also consider in the sequel the strongly uniformly elliptic oper-
ators L0 and L, with D(L0) = D(L) = (H1

0 (Ω))3 ∩ (H2(Ω))3,

L0z = −(ca + cd)∆z − (c0 + cd − ca)∇div z ∀z ∈ D(L)

and
Lz = L0z + 4µrz ∀z ∈ D(L).

Due to the assumption c0 + cd > ca , L is indeed a positive operator.
The following assumptions on the initial velocity, angular velocity and

density will be imposed throughouth this paper:

u0 ∈ D(A), (3)

w0 ∈ D(L), (4)

ρ0 ∈ C1(Ω), 0 < α ≤ ρ0(x) ≤ β a.e. in Ω. (5)

We will also assume that

f, g ∈ L2(0, T ; (H1(Ω))3), ft , gt ∈ L2(0, T ; (L2(Ω))3). (6)

Using the orthogonal projector P and the operators A and L, we can
give a rigorous formulation of problem (1) − (2): Find a time T0 ∈ (0, T ]
and functions

u ∈ C0([0, T0);D(A)) ∩ C1([0, T0); H),

w ∈ C0([0, T0); D(L)) ∩ C1([0, T0); (L2(Ω))3) and

ρ ∈ C1(Ω× [0, T0)),
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such that






























































(ρut, v) + (ρ(u · ∇)u, v) + (µ + µr)(Au, v)
= 2µr(curlw, v) + (ρf, v) for 0 < t < T0 , ∀ v ∈ V,

(ρwt, ψ) + (ρ(u · ∇)w, ψ) + (Lw, ψ)
= 2µr(curl u, ψ) + (ρg, ψ) for 0 < t < T0 , ∀ψ ∈ (H1

0 (Ω))3,

ρt + u · ∇ρ = 0 for (x, t) ∈ Ω× [0, T0),

u(x, 0) = u0(x), w(x, 0) = w0(x), ρ(x, 0) = ρ0(x) for x ∈ Ω.

(7)

By definition, a triplet (u,w, ρ) with these properties is a strong solution
of (1)–(2) in [0, T0). We will prove below that, under assumptions (3)–
(6), the initial/boundary value problem (1)–(2) possesses exactly one strong
solution in a maximal time interval. Actually, we will see that this strong
solution is still more regular than stated above.

To this end, let us first recall some properties of the Stokes operator
A. If Ω is bounded and ∂Ω is of class C1,1, the mapping A : D(A) 7→ H
is one-to-one and onto (see for instance [1]). The inverse operator A−1 is
completely continuous as a mapping A−1 : H 7→ H. Also, A is symmetric
and, therefore, so is its inverse. Consequently, A−1 possesses an orthogonal
sequence of eigenfunctions {ϕk} which is complete in H, V and D(A). We
will denote by λk the k-th associated eigenvalue (that is, Aϕk = λkϕk for
all k). It will be assumed that {ϕk} is orthonormal in H. Accordingly,
the eigenfunctions {λ−1/2

k ϕk} and {λkϕk} are complete and orthonormal
respectively in V (endowed with the scalar product (∇u,∇v) and D(A)
(endowed with the scalar product (Au, Av)).

Notice also that, if ∂Ω is a Cm+1,1 manifold, then the eigenfunctions ϕk

belong to (Hm+2(Ω))3.
On the other hand, we will use the notation {ψk} and {γk} for the eigen-

functions and eigenvalues of L. Again, it is assumed that {ψk} is orthonor-
mal for the L2-norm. The system {ψk} is complete in (L2(Ω))3, (H1

0 (Ω))3

and D(L) and we have again regularity results for the eigenfunctions ψk

when ∂Ω is a Cm+1,1 manifold.
Let Pk the orthogonal projection of H onto the space Vk spanned by the

k first eigenfunctions ϕ1, . . . , ϕk of A. Similarly, let Rk be the orthogonal
projection of L2(Ω) onto the space Wk spanned by the k first eigenfunctions
ψ1, . . . , ψk of L. Then the solutions of (7) can be obtained by using a semi-
Galerkin method determined by the spaces Vk and Wk and the operators Pk
and Rk .
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More precisely, for each fixed k, we consider the following finite dimen-
sional problem: Find Tk ∈ (0, T ], uk ∈ C1([0, Tk); Vk), wk ∈ C1([0, Tk);Wk)
and ρk ∈ C1(Ω× [0, Tk)) such that



































Pk(ρkuk
t + ρk(uk · ∇)uk − 2µr curlwk − ρkf) + (µ + µr)Auk = 0,

Rk(ρkwk
t + ρk(uk · ∇)wk − 2µr curl uk − ρkg + Lwk = 0 and

ρk
t + uk · ∇ρk = 0

for 0 < t < Tk ,

uk(0) = Pku0 , wk(0) = Rkw0 , ρk(0) = ρ0 .

(8)

In (8), we have an initial value problem for a system of ordinary differen-
tial equations coupled to a transport equation. By using the characteristics
method, it is not difficult to prove that (8) possesses exactly one solution
(uk, wk, ρk) defined in a time interval [0, Tk). The a priori estimates estab-
lished below prove that we can take in fact Tk = T for all k ≥ 1.

The k-th approximated problem (8) can also be written in the form










































(ρkuk
t + ρk(uk · ∇)uk − 2µr curlwk − ρkf, v) + (µ + µr)(Auk, v) = 0,

(ρkwk
t + ρk(uk · ∇)wk − 2µr curluk − ρkg, ψ) + (Lwk, ψ) = 0,
for 0 < t < Tk , ∀v ∈ Vk , ∀ψ ∈ Wk ,

ρk
t + uk · ∇ρk = 0 in Ω× (0, Tk),

uk(0) = Pku0 , wk(0) = Rkw0 , ρk(0) = ρ0 .
(9)

The first main result in this paper is the following:

Theorem 1 Assume that the initial data u0 , w0 and ρ0 satisfy (3)–(5) and
the external fields f and g satisfy (6). Then (1)–(2) possesses exactly one
strong solution (u,w, ρ) defined on a (possibly small) maximal time interval
[0, T0), where T0 ≤ T . The functions u, w and ρ satisfy

P (ρut + ρ(u · ∇)u− 2µr curl w − ρf) + Au = 0, (10)

ρwt + ρ(u · ∇)w − 2µr curlu + Lw = ρg (11)

and
ρt + u · ∇ρ = 0

a.e. in Ω× (0, T0).
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Remark 1 As mentioned above, the functions u, w and ρ satisfy additional
regularity properties. More precisely, the following will be proved for any
small positive δ and γ:

u ∈ L2(0, T0; V ) ∩ L∞(0, T0; H) ∩ C0([0, T0);D(A))

∩L2(0, T0 − γ; (H3(Ω))3) ∩ L∞(δ, T0 − γ; (H3(Ω))3),

ut ∈ L3/2(0, T0; V ′) ∩ C0([0, T0); H) ∩ L2(0, T0 − γ; V )

∩L2(δ, T0 − γ; D(A)) ∩ L∞(δ, T0 − γ; V ),

utt ∈ L2(δ, T0 − γ; H).

Similar regularity properties will also be established for the angular velocity
w.

Remark 2 As in the case of the classical Navier-Stokes equations, it can
be proved that the strong solution furnished by Theorem 1 is global in time,
i.e. it is defined for any t ∈ [0, T ) if the data u0 , w0 , ρ0 , f and g are small
enough. This situation will be analyzed in Section 7.

The proof of Theorem 1 relies on appropriate estimates for the approxi-
mations (uk, wk, ρk). For future reference, let us gather them in the follow-
ing:

Proposition 1 Let (uk, wk, ρk) be the solution of (8). There exists T0 > 0
(independent of k) such that the following estimates hold for all t ∈ [0, T0):

‖∇uk(t)‖2 + ‖∇wk(t)‖2 ≤ F1(t),

‖uk
t (t)‖2 + ‖wk

t (t)‖2 +
∫ t

0
{‖∇uk

t (s)‖2 + ‖∇wk
t (s)‖2} ds ≤ F2(t),

‖Auk(t)‖2 + ‖∆wk(t)‖2 ≤ F3(t),

α0 ≤ ρk(x, t) ≤ β0 , (α0 = inf
Ω

ρ0 , β0 = sup
Ω

ρ0)

‖∇ρk(t)‖2
L∞ ≤ F4(t), ‖ρk

t (t)‖2
L∞ ≤ F5(t),

∫ t

0
{‖uk(s)‖2

H3 + ‖wk(s)‖2
H3} ds ≤ F6(t),

∫ t

0
σ(s){‖uk

tt(s)‖2 + ‖wk
tt(s)‖2} ds ≤ F7(t),

σ(t){‖∇uk
t (t)‖2 + ‖∇wk

t (t)‖} ≤ F8(t),
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σ(t){‖uk(t)‖2
H3 + ‖wk(t)‖2

H3} ≤ F9(t),
∫ t

0
σ(s){‖Auk

t (s)‖2 + ‖∆wk
t (s)‖2} ds ≤ F11(t).

Here, the Fi are nondecreasing continuous functions on [0, T0) and σ(t) ≡
min{1, t}. Furthermore, the same estimates hold for the solution (u,w, ρ)
furnished by Theorem 1.

Remark 3 Proposition 1 implies the existence of a subsequence of approx-
imations (uk, wk, ρk) that converges to the solution (u,w, ρ) in the following
sense:

(i) uk → u, wk → w strongly in Lp(δ, T0 − γ; (H3−ε(Ω))3),
weakly in L2(0, T0 − γ; (H3(Ω))3)
and weakly-∗ in L∞(δ, T0 − γ; (H3(Ω))3),

(ii) uk
t → ut, wk

t → wt strongly in Lp(δ, T0 − γ; (H1−ε(Ω))3),
weakly in L2(0, T0 − γ; (H1(Ω))3),
weakly-∗ in L∞(0, T0 − γ; (L2(Ω))3)
and weakly in L2(δ, T0 − γ; (H2(Ω))2),

(iii) uk
tt → utt, wk

tt → wtt weakly in L2(δ, T0 − γ; (L2(Ω))3),

(iv) ρk → ρ strongly in Lp(0, T0;C0,β(Ω))
(0 ≤ β < 1)
and uniformly in Ω× [0, T0 − γ],

(v) ∇ρk → ∇ρ weakly-∗ in L∞(Ω× (0, T0 − γ))3,

(vi) ρk
t → ρt weakly-∗ in L∞(Ω× (0, T0 − γ)).

The above is true for all small δ, γ and ε > 0 and any p ∈ (1, +∞). This
justifies the regularity properties of u and w mentioned in Remark 1.

Remark 4 Actually, more information can be obtained for ρk and ρ. Argu-
ing as in [14], we deduce that the distribution function for the mass density,
i.e. the function

λ 7→ meas {x ∈ Ω : ρ(x, t) ≤ λ }

is independent of t. This leads in particular to the inequalities α0 ≤ ρ(x, t) ≤
β0 .

9



Let us now refer to the uniqueness of the strong solution. Let T ′ > 0 be
given, with 0 < T ′ ≤ T0 and set

H′ = { (v, ψ, σ) : v ∈ L4(0, T ′; V ), vt ∈ L2(0, T ′; (L3(Ω))3),

ψ ∈ L2(0, T ′; (H1
0 (Ω))3), ψt ∈ L2(0, T ′; (L3(Ω))3),

σ ∈ L∞(Ω× (0, T ′)), ∇σ ∈ L2(0, T ′; (L∞(Ω))3) }.

With this notation, we can state the following uniqueness result:

Theorem 2 Assume that (v, z, σ) is a solution to (1)–(2) in [0, T ′), with
(v, z, σ) ∈ H′. Then (v, z, σ) = (u,w, ρ) in Ω× (0, T ′), where (u,w, ρ) is the
strong solution of (1)− (2) furnished by Theorem 1.

In the following Sections, we will denote by C a generic positive constant
depending at most on Ω, T and the data of the problem (the parameters
µ, µr , ca , cd , c0 , the initial conditions u0 , w0 and ρ0 and also f and g).
This will appear in most estimates below. When, for any reason, we want
to emphasize the dependence of a C on a given parameter or function, we
will put a suitable subscript.

3 A Priori Estimates

We will prove in this Section the estimates stated in Proposition 1. This
will be done in several steps, combining variants of arguments used by Hey-
wood [6],[7], Kim [9] and Boldrini and Rojas-Medar [3].

In the sequel, we will find several real-valued functions Fi , Gi , Hi , all
them defined, nondecreasing and continuous in a time interval of the form
[0, T0). They all depend on Ω, T and the data of the problem.

Lemma 1 There exists T0 with 0 < T0 ≤ T such that the approximations
(ρk, uk, wk) satisfy the following for all t ∈ [0, T0):

α0 ≤ ρk(x, t) ≤ β0 , (12)

‖uk(t)‖2 + ‖wk(t)‖2 +
∫ t

0
{‖∇uk(s)‖2 + ‖∇wk(s)‖2} ds ≤ C, (13)

‖∇uk(t)‖2 + ‖∇wk(t)‖2 ≤ F1(t), (14)
∫ t

0
{‖Auk(s)‖2 + ‖∆wk(s)‖2} ds ≤ H1(t), (15)

∫ t

0
{‖uk

t (s)‖2 + ‖wk
t (s)‖2} ds ≤ H2(t). (16)
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Proof: From the method of characteristics applied to the transport equation

ρk
t + uk · ∇ρk = 0,

it follows immediately that, whenever ρk exists, it satisfies (12).
Now, taking v = uk and ψ = wk in (9) and working as in [12] and [13],

we easily obtain:

1
2

d
dt
‖(ρk)

1
2 uk‖2 + (µ + µr)‖∇uk‖2 = (ρkf, uk) + 2µr(curlwk, uk),

1
2

d
dt
‖(ρk)

1
2 wk‖2 + (ca + cd)‖∇wk‖2 + (c0 + cd − ca)‖div wk‖2

+4µr‖wk‖2 = 2µr(curl uk, wk) + (ρkg, wk).

By adding these two equations, manipulating the terms in the right-hand
side in a standard way, using (12) and integrating with respect to time in
[0, t], we find:







































‖uk(t)‖2 + ‖wk(t)‖2 +
∫ t

0
{‖∇uk(s)‖2 + ‖∇wk(s)‖2} ds

≤ C + C
∫ t

0

{

‖f(s)‖2 + ‖g(s)‖2
}

ds

+C
∫ t

0

{

‖uk(s)‖2 + ‖wk(s)‖2
}

ds

(17)

(recall that C is a generic constant which depends on the data of the problem
but not on k). Thus, from Gronwall’s Lemma, we obtain (13). This proves
in particular that the approximate solutions (uk, wk, ρk) are defined in the
whole interval [0, T ).

Now, let us take v = uk
t and then v = −εAuk in the u-equation in (9).

By adding the resulting equations and working as in [9], we easily find:










‖uk
t ‖2 + (µ + µr)

d
dt
‖∇uk‖2 + ‖Auk‖2

≤ C
(

‖f‖2 + ‖∇wk‖2 + ‖(uk · ∇)uk‖2
)

.
(18)

We can find a similar differential inequality for wk. Indeed, if we take
ψ = wk

t in the w-equation in (9), we immediately see that
α
2
‖wk

t ‖2

+
1
2

d
dt

(

(ca + cd)‖∇wk‖2 + (c0 + cd − ca)‖divwk‖2 + 2µr‖wk‖2
)

≤ C
(

‖g‖2 + ‖∇uk‖2 + ‖(uk · ∇)wk‖2
)

.
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Taking ψ = −∆wk in the same equation, we also have

‖Lwk‖2 ≤ C
(

‖g‖2 + ‖∇uk‖2 + ‖(uk · ∇)wk‖2
)

+
β2

0

2
‖wk

t ‖2.

Consequently,






















α
2
‖wk

t ‖2 + ‖Lwk‖2

+
1
2

d
dt

(

(ca + cd)‖∇wk‖2 + (c0 + cd − ca)‖div wk‖2 + 2µr‖wk‖2
)

≤ C
(

‖g‖2 + ‖∇uk‖2 + ‖(uk · ∇)wk‖2
)

.
(19)

Observe that, by standard interpolation and Sobolev inequalities, one
has

‖(uk · ∇)uk‖2 ≤ C‖∇uk‖3‖Auk‖ ≤ ε‖Auk‖2 + Cε‖∇uk‖6

for any ε > 0 and suitable Cε > 0.
On the other hand, since L is strongly elliptic, we also have

‖(uk · ∇)wk‖2 ≤ ε‖Lwk‖2 + Cε‖∇uk‖4‖∇wk‖2.

Adding (18) and (19) and using these inequalities with suitable small ε, we
conclude that

θ̇k(t) + ψk(t) ≤ φ(t) + Cθk(t)3 (20)

for all t, where

θk(t) = (µ + µr)‖∇uk(t)‖2 + (ca + cd)‖∇wk‖2

+(c0 + cd − ca)‖divwk(t)‖2 + 2µr‖wk(t)‖2,

ψk(t) = ‖uk
t (t)‖2 + ‖Auk(t)‖2 + ‖Lwk(t)‖2,

φ(t) = C(‖f(t)‖2 + ‖g(t)‖2).

Notice that θk(0) is bounded independently of k, in view of the facts
that uk(0) = Pku0 , wk(0) = Rkw0 , u0 ∈ D(A) and w0 ∈ D(L). Making use
of Lemma 3 in [8], p. 656, we conclude that there exists T0 with 0 < T0 ≤ T
such that (14)–(16) hold in [0, T0) with suitable functions F1 , H1 and H2 .

Lemma 2 For all t ∈ [0, T0), the approximations uk and wk satisfy

‖uk
t (t)‖2 + ‖wk

t (t)‖2 +
∫ t

0
{‖∇uk

t (s)‖2 +∇wk
t (s)‖2} ds ≤ F2(t), (21)

‖Auk(t)‖2 + ‖∆wk(t)‖2 ≤ F3(t). (22)

12



Proof: By differentiating the first two equations in (9) with respect to t,
setting v = uk

t and ψ = wk
t , using the fact that ρk

t = −div (ρkuk) and
arguing as in [3], we obtain

d
dt
‖(ρk)1/2uk

t ‖2 + (µ + µr)‖∇uk
t ‖2

≤ Cε‖uk
t ‖2

(

1 + ‖∇uk‖4 + ‖∇uk‖‖Auk‖
)

+C‖∇uk‖4‖Auk‖2

+ε‖∇wk
t ‖2 + ε‖ft‖2 + C‖f‖2

H1‖uk‖ ‖∇uk‖

and

d
dt
‖(ρk)1/2wk

t ‖2 + (ca + cd)‖∇wk
t ‖2 + (c0 + cd − ca)‖div wk

t ‖2

+4µr‖wk
t ‖2

≤ Cε‖wk
t ‖2

(

1 + ‖∆wk‖2
)

+ C‖∇uk‖4‖∆wk‖2

+ε‖∇uk
t ‖2 + ε‖uk

t ‖2

+ε‖gt‖2 + ‖g‖2
H1‖uk‖‖∇uk‖

for any small ε > 0.
Adding and integrating in time these two inequalities, we obtain the

following:






























‖uk
t (t)‖2 + ‖wk

t (t)‖2

+
∫ t

0

{

‖∇uk
t (s)‖2 + ‖∇wk

t (s)‖2
}

ds

≤ Mk(t) + C
∫ t

0
Nk(s)

{

‖uk
t (s)‖2 + ‖wk

t (s)‖2
}

ds,

(23)

where


















































Mk(t) = C
∫ t

0
(‖gt(s)‖2 + ‖ft(s)‖2) ds

+C
∫ t

0
(‖f(s)‖2

H1 + ‖g(s)‖2
H1)‖uk(s)‖‖∇uk(s)‖ ds

+C
∫ t

0
‖∇uk(s)‖4(‖Auk(s)‖2 + ‖∆wk(s)‖2) ds

+C(‖uk
t (0)‖2 + ‖wk

t (0)‖2)

(24)
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and
Nk(t) = 1 + ‖∇uk(t)‖4 + ‖Auk(t)‖2 + ‖∆wk(t)‖2 (25)

for all t. Notice that Gronwall’s Lemma applied to (23) yields

‖uk
t (t)‖2 + ‖wk

t (t)‖2 ≤ Mk(t) +
∫ t

0
Mk(s)Nk(s)e

∫ t

s
Nk(σ) dσ ds (26)

for all t ∈ [0, T0).
Using (6) and the estimates in Lemma 1, we see that

Mk(t) ≤ G1(t) + C
(

‖uk
t (0)‖2 + ‖wk

t (0)‖2
)

∀t ∈ [0, T0), (27)

for some function G1 . On the other hand, taking t = 0 and v = uk
t (0) in

the first equation in (9), we deduce that






















‖uk
t (0)‖2

≤ C
(

‖(uk(0) · ∇)uk(0)‖2 + ‖f(0)‖2 + ‖∇wk(0)‖2 + ‖Auk(0)‖2
)

≤ C
(

‖u0‖2‖∇u0‖2 + ‖f(0)‖2 + ‖∇w0‖2 + ‖Au0‖2
)

,

since u0 ∈ D(A). In a similar way, we have

‖wk
t (0)‖2 ≤ C

(

‖u0‖2‖∇w0‖2 + ‖g(0)‖2 + ‖Lw0‖2
)

.

Therefore, C(‖uk
t (0)‖2 + ‖wk

t (0)‖2) is uniformly bounded and

Mk(t) ≤ G2(t) ∀t ∈ [0, T0),

for some nondecreasing function G2 .
From the estimates in Lemma 1, we also see that

∫ t

0
Nk(s) ds ≤ G3(t) ∀t ∈ [0, T0).

Thus, in view of (26), we obtain






































‖uk
t (t)‖2 + ‖wk

t (t)‖2

≤ G2(t) +
∫ t

0
G2(s)Nk(s)e

∫ t

s
Nk(σ) dσ ds

≤ G2(t)
(

1 + G3(t)eG3(t)
)

≤ G4(t).
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Using again (23), we are finally led to (21).
In order to prove (22), let us take v = Auk in the first equation in (9).

We deduce that

‖Auk‖ ≤ C
(

‖uk
t ‖+ ‖∇wk‖+ ‖f‖+ ‖(uk · ∇)uk‖

)

. (28)

Observe that

‖(uk · ∇)uk‖ ≤ C‖∇uk‖3/2‖Auk‖1/2 ≤ ε‖Auk‖+ Cε‖∇uk‖3 (29)

for any small ε > 0. Choosing ε appropriately and combining (28) and (29),
we deduce that

‖Auk‖ ≤ C
(

‖uk
t ‖+ ‖∇wk‖+ ‖∇uk‖3 + ‖f‖

)

.

A similar analysis gives

‖∆wk‖ ≤ C
(

‖wk
t ‖+ ‖∇uk‖+ ‖∇uk‖2‖∇wk‖+ ‖g‖

)

.

These inequalities, together with (14) and (21), prove (22). This completes
the proof of Lemma 2.

Lemma 3 The approximations uk and ρk satisfy the following for all t ∈
[0, T0):

∫ t

0
‖uk(s)‖2

W 2,6 ds ≤ F̃1(t), (30)
∫ t

0
‖∇uk(s)‖2

L∞ ds ≤ F̃2(t), (31)

‖∇ρk(t)‖L∞ ≤ F4(t), ‖ρk
t (t)‖L∞ ≤ F5(t). (32)

Proof: Observe that

(µ + µr)(∇uk,∇φ)
= −(Pk(ρkuk

t + ρk(uk · ∇)uk − 2µrcurl wk − ρkf), φ)
≡ (χk, φ).

(33)

for any φ ∈ V(Ω). It is clear from the previous estimates that χk is uniformly
bounded in L2(0, T ′; (L6(Ω))3) for all T ′ < T0 . Hence, from the results by
Amrouche and Girault for the Stokes operator (see [1]), we get (30). In
particular, from the usual Sobolev embedding results, we also have (31).

We can now apply Lemma 1.3 of [11] to ρk. We conclude that (32) must
hold for some functions F4 and F5 .

15



Lemma 4 The approximations wk satisfy the following estimates for any
t ∈ [0, T0):

∫ t

0
‖wk(s)‖2

W 2,6 ds ≤ F̃3(t), (34)
∫ t

0
‖∇wk(s)‖2

L∞ ds ≤ F̃4(t). (35)

Proof: For any ψ ∈ C∞
0 (Ω), we have

(Lwk, ψ)
= −(ρkwk

t + ρk(uk · ∇)wk − 2µrcurluk − ρkg, ψ)
≡ (ηk, ψ).

(36)

As before, ηk is uniformly bounded in L2(0, T ′; (L6(Ω))3) for all T ′ < T0 .
Thus, wk is uniformly bounded in L2(0, T ′; (W 2,6(Ω))3). From the Sobolev
embeddings, ∇wk is also uniformly bounded in L2(0, T ′; (L∞(Ω))3).

Lemma 5 The approximations uk and wk satisfy the following for all t ∈
[0, T0):

∫ t

0
{‖uk(s)‖2

H3 + ‖wk(s)‖2
H3} ds ≤ F6(t). (37)

Proof: Again, we will take into account (33). From (30) and the estimates
in Lemmas 1 and 2, it is not difficult to see that χk is uniformly bounded
in L2(0, T ′; (H1(Ω))3) for all T ′ < T0 . Therefore, using Stokes regularity,
we deduce that uk is also bounded in L2(0, T ′; (H3(Ω))3). This proves the
estimate for uk in (37).

Arguing in a similar way for wk (starting from (36)), we finally deduce
(37) for some F6 .

The following elementary remark will be useful for further estimates.

Remark 5 Let h : (a, b) 7→ R be a positive continuous function such that

∫ b

a
h(s) ds < +∞. (38)

Then there exists a sequence {εn} with εn → a+ such that εnh(εn) → 0 as
n → +∞.
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Lemma 6 Under the assumptions in Theorem 1, we have the following for
all t ∈ [0, T0):

∫ t

0
σ(s){‖uk

tt(s)‖2 + ‖wk
tt(s)‖2} ds ≤ F7(t), (39)

σ(t)(‖∇uk
t (t)‖2 + ‖∇wk

t (t)‖2) ≤ F8(t), (40)

σ(t){‖uk(t)‖2
H3 + ‖wk(t)‖2

H3} ≤ F9(t). (41)

Here, we have used the notation σ(t) = min{1, t}.

Proof: Differentiating the first equation in (9) with respect to t and taking
v = uk

tt , in view of the estimates in the previous Lemmas, we get

‖uk
tt‖2 +

d
dt
‖∇uk

t ‖2 ≤ G5(t)
(

1 + ‖∇uk
t (t)‖2

)

. (42)

Multiplying (42) by σ(t) and integrating in (ε, t), we obtain

∫ t

ε
σ(s)‖uk

tt(s)‖2 ds +
∫ t

ε
σ(s)

d
dt
‖∇uk

t (s)‖2 ds

≤
∫ t

ε
G5(s)σ(s)

(

1 + ‖∇uk
t (s)‖2

)

ds.

Observe that
∫ t

ε
σ(s)

d
dt
‖∇uk

t (s)‖2 ds

= σ(t)‖∇uk
t (t)‖2 − σ(ε)‖∇uk

t (ε)‖2 −
∫ t

ε
σ′(s)‖∇uk

t (s)‖2 ds.
(43)

In view of Remark 5, we can choose ε = εn with εn → 0 and

σ(εn)‖∇uk
t (εn)‖2 → 0.

Then

σ(t)‖∇uk
t (t)‖2 +

∫ t

0
σ(s)‖∇uk

tt(s)‖2 ds

≤
∫ t

0
G5(s)σ(s)

(

1 + ‖∇uk
t (s)‖2

)

ds +
∫ t

0
‖∇uk

t (s)‖2 ds

≤ G6(t)
∫ t

0

(

1 + ‖∇uk
t (s)‖2

)

ds.

(44)
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In a similar way, we can deduce that

σ(t)‖∇wk
t (t)‖2 +

∫ t

0
σ(s)‖∇wk

tt(s)‖2 ds

≤ G7(t)
∫ t

0

(

1 + ‖∇uk
t (s)‖2 + ‖∇wk

t (s)‖2
)

ds
(45)

for all t ∈ [0, T0) for some G7 . Hence, we have (39) and (40).
The estimates (41) can be proved arguing as in the proof of Lemma 5

and using that (39) holds. This completes the proof.
With similar arguments, the following Lemma also holds:

Lemma 7 Under the hypotheses in Theorem 1, we have
∫ t

0
σ(s){‖Auk

t (s)‖2 + ‖∆wk
t (s)‖2} ds ≤ F10(t) (46)

for all t ∈ [0, T0).

4 Proof of Existence

In view of the estimates given in Proposition 1, we can find a triplet (u,w, ρ)
and a subsequence, again indexed by k, such that (uk, wk, ρk) → (u,w, ρ)
in the sense indicated in Remark 3. We will now show that this suffices to
pass to the limit in (9) and obtain (7).

Thus, let us first prove that
∫ T0

0
(ρk(t)uk

t (t), v)φdt →
∫ T0

0
(ρ(t)ut(t), v)φdt (47)

and
∫ T0

0
(ρk(t)wk

t (t), z)ζ dt →
∫ T0

0
(ρ(t)wt(t), z)ζ dt (48)

as k →∞, for any v, z ∈ (C∞
0 (Ω))3 and any φ, ζ ∈ D(0, T ).

We have
∣

∣

∣

∣

∣

∫ T0

0
(ρkuk

t , v)φdt

∣

∣

∣

∣

∣

≤
∣

∣

∣

∣

∣

∫ T0

0
((ρk − ρ)uk

t , v)φdt

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∫ T0

0
(ρk(uk

t − ut), v)φdt

∣

∣

∣

∣

∣

.
(49)
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Observe that
∣

∣

∣

∣

∣

∫ T0

0
((ρk − ρ)uk

t , v)φdt

∣

∣

∣

∣

∣

≤ Cφ,v

∫ T ′

0
‖ρk − ρ‖ ‖uk

t ‖ dt

for some T ′ < T0 . Consequently, the first integral in the right hand side of
(49) converges to zero.

On the other hand,
∣

∣

∣

∣

∣

∫ T0

0
(ρ(uk

t − ut), v)φ dt

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∫ T ′

0
(uk

t − ut, ρv)φdt

∣

∣

∣

∣

∣

for some T ′ < T0 . Bearing in mind that uk
t → ut weakly-∗ in L∞(Ω×(0, T ′))

(for instance), we deduce that this integral also converges to zero. Thus, we
have proved (47). The convergence of ρkwk in (48) can be proved similarly.

Next, let us show that

∫ T0

0
(ρk(uk · ∇)uk, v)φ dt →

∫ T0

0
(ρ(u · ∇)u, v)φdt (50)

and
∫ T0

0
(ρk(uk · ∇)wk, z)ζ dt →

∫ T0

0
(ρ(u · ∇)w, z)ζ dt (51)

as k →∞ for any v, z, φ and ζ as above. We will only prove (50), since the
proof of (51) is similar.

Notice that


























































∫ T0

0
(ρk(uk · ∇)uk, v)φdt−

∫ T0

0
(ρ(u · ∇)u, v)φdt

=
∫ T0

0
((ρk − ρ)(uk · ∇)uk, v)φdt

+
∫ T0

0
(ρ((uk − u) · ∇)uk, v)φdt

+
∫ T0

0
(ρ(u · ∇)(uk − u), v)φdt.

(52)

Observe that the first integral in the right hand side of (52) converges to
zero. Indeed, we have

∣

∣

∣

∣

∣

∫ T0

0
((ρk − ρ)(uk · ∇)uk, v)φdt

∣

∣

∣

∣

∣
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≤ Cφ,v‖ρk − ρ‖L2(Ω×(0,T ′))

(

∫ T ′

0

∫

Ω
|(uk · ∇)uk|2 dx dt

)1/2

≤ Cφ,v‖ρk − ρ‖L2(Ω×(0,T ′))

(

∫ T ′

0
‖Auk‖‖∇uk‖3 dt

)1/2

and this converges to zero, in view of the estimates (14) and (22).
The second integral in the right hand side of (52) is

∫ T0

0

∫

Ω
ρ((uk − u) · ∇)uk · vφ dx dt

≤ Cφ,v‖ρ‖L∞(Ω×(0,T ))

∫ T ′

0
‖uk − u‖‖∇uk‖ dt

and also converges to zero. The third integral can be written in the form
∫ T0

0

∫

Ω
ρ(u · ∇)(uk − u) · vφ dx dt.

Since ∇uk → ∇u weakly in L2(Ω × (0, T ))3, it also converges to zero as
k → +∞.

By density, it is clear that (47), (48), (50) and (51) hold for any v ∈ D(A),
any z ∈ D(L) and φ, ζ ∈ C∞

0 (0, T ). We can now pass to the limit in (9).
Indeed, for any v ∈

⋃

j≥1 Vj and any φ ∈ D(0, T ), we have

∫ T0

0
(ρkuk

t + ρk(uk · ∇)uk − 2µr curlwk − ρkf − (µ + µr)∆uk, v)φdt = 0

for all sufficiently large k. Letting k → +∞, we obtain

〈ρut + ρ(u · ∇)u− 2µr curlw − ρf − (µ + µr)∆u, v〉 = 0

a.e. in (0, T0), for every v ∈
⋃

j≥1 Vj . This gives

P (ρut + ρ(u · ∇)u− 2µr curlw − ρf − (µ + µr)∆u) = 0

a.e. in Ω× (0, T0).
The passage to the limit in the equation for wk is analogous. In order

to deal with the equation for the density, let us simply observe that, for
instance, uk → u strongly in L2(Ω×(0, T ′)), ρk

t → ρt weakly in L2(Ω×(0, T ′))
and ∇ρk → ∇ρ weakly in L2(Ω× (0, T ′))3 for all T ′ < T0 . This gives

ρt + u · ∇ρ = 0
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in the distributional sense.

Let us now check that the initial conditions are satisfied. We will first
prove the following result:

Proposition 2 Under the assumptions in Theorem 1, we have:

lim
t→0+

‖u(t)− u0‖H1
0

= 0 (53)

and
lim

t→0+
‖w(t)− w0‖H1

0
= 0, (54)

i.e. u and w assume the initial data continuously in the H1
0 -norm.

Proof: We will only prove (53), since (54) can be proved similarly. For all
t, we have

∇uk(t)−∇uk
0 =

∫ t

0
∇uk

t (s) ds ∀k ≥ 1.

Therefore, in view of (21),

‖∇uk(t)−∇uk
0‖ ≤

∫ t

0
‖∇uk

t (s)‖ ds ≤ F2(T0/2)t (55)

for any t ∈ [0, T0/2]. Now, notice that uk is bounded in L∞(0, T0/2;D(A))
and uk

t is bounded in L∞(0, T0/2;V ). From Aubin-Lions’ Lemma, we deduce
that uk → u strongly in C0([0, T0/2];V ). Thus, we can pass to the limit in
(55), which gives

‖∇u(t)−∇uk
0‖ ≤ F2(T0/2)t ∀t ∈ [0, T0/2].

This proves (53).

Proposition 3 Under the assumtions in Theorem 1, we have:

lim
t→0+

‖Au(t)−Au0‖L2 = 0 (56)

and
lim

t→0+
‖ut(t)− ut(0)‖L2 = 0. (57)
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Proof: To prove (56), it is sufficient to show that

lim sup
t→0+

‖Au(t)‖ ≤ ‖Au0‖, (58)

since we already know that ‖Au(t)‖ is bounded near t = 0 and u(t) → u0
strongly in V . From the first equation in (9) with v = Auk, after integration
in time, we get

‖Auk(t)‖2 − ‖Auk
0‖2 = −

∫ t

0
(m(s), Auk

t (s)) ds,

where

m(t) =
1

µ + µr
(ρkuk

t + ρk(uk · ∇)uk − 2µrcurlwk − ρkf).

We have
∫ t

0
(m(s,Auk

t (s)) ds = (m(t), Auk(t))− (m(0), Au0)−
∫ t

0
(m′(s), Auk(s)) ds.

Therefore, in view of the estimates in Proposition 1, it is not difficult to
prove that

∣

∣

∣

∣

∫ t

0
(m(s), Auk

t (s)) ds
∣

∣

∣

∣

≤ |(ρk(uk · ∇)uk − 2µrcurlwk − ρkf, Auk)(t)

−(ρ0(u0 · ∇)u0 − 2µrcurl w0 − ρ0f(0), Au0)|
+G8(T0/2)

(

t + t1/4
)

for all t ∈ [0, T0/2], for some G8 . We deduce that

‖Auk(t)‖2 ≤ ‖Auk
0‖2 + G8(T0/2)

(

t + t1/4
)

+|(ρk(uk · ∇)uk − 2µrcurlwk − ρkf,Auk)(t)

−(ρ0(u0 · ∇)u0 − 2µrcurlw0 − ρ0f(0), Au0)|.

We know that, for each t ∈ [0, T0/2], Auk(t) → Au(t) weakly in L2(Ω) and
uk(t) → u(t) strongly in V . Thus,

lim inf
k→+∞

‖Auk(t)‖2 ≤ ‖Au(t)‖2,
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we have

lim
k→+∞

(ρk(uk · ∇)uk − 2µrcurlwk − ρkf,Auk)(t)

= (ρ0(u0 · ∇)u0 − 2µrcurlw0 − ρ0f(0), Au0)

and also
‖Au(t)‖2 ≤ ‖Au0‖2 + G7(T0/2)

(

t + t1/4
)

.

Obviously, this leads to (58).

For the angular velocity, we have a similar result:

Proposition 4 Under the assumtions in Theorem 1, we have:

lim
t→0+

‖∆w(t)−∆w0‖L2 = 0 (59)

and
lim

t→0+
‖wt(t)− wt(0)‖L2 = 0. (60)

Remark 6 The argument used in the proofs of these two Propositions can
also be made at any t = t0 ∈ (0, T0) instead of t = 0. This implies continuity
from the right of u, ut , w and wt in the appropriate spaces. These arguments
can also be adapted to prove continuity from the left at any t0 ∈ (0, T0). In
this way, we deduce the continuity properties indicated in Remark 1.

5 Proof of Uniqueness

Let (v, ψ, σ) be a solution to (1)–(2) in [0, T ′) and assume that (v, z, σ) ∈ H′.
Let us introduce (η, ξ, π), with η = u− v, ξ = w − ψ and π = ρ− σ. Then
these functions satisfy the following equations:



























P (ρηt + σ(v · ∇)η) + (µ + µr)Aη
= P (2µrcurl ξ + πf − πvt − π(u · ∇)u− σ(η · ∇)u),

ρξt + σ(v · ∇)ξ + Lξ
= 2µrcurl η + πg − πψt − π(u · ∇)w − σ(η · ∇)w,

πt + u · ∇π = −η · ∇σ.

(61)
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Multiplying the first equation in (61) by η and integrating over Ω, we
obtain

1
2

d
dt
‖ρ1/2η‖2 + (µ + µr)‖∇η‖2

= (2µrcurl ξ + πf − πvt − π(u · ∇)u− σ(η · ∇)u, η)

+
1
2
(ρtη, η)− (σ(v · ∇)η, η).

Now, estimating the above terms in the usual way, we obtain the following
integral inequality:

‖η(t)‖2 +
∫ t

0
‖∇η(s)‖2 ds

≤ C
∫ t

0

(

‖f(s)‖2
L3 + ‖vt(s)‖2

L3 + ‖∇u(s)‖2‖Au(s)‖2
)

‖π(s)‖2 ds

+ C
∫ t

0
‖ξ(s)‖2 ds

+ C
∫ t

0

(

‖∇v(s)‖4 + ‖∇u(s)‖4 + ‖ρt(s)‖L∞
)

‖η(s)‖2 ds.

In a similar way, from the second equation in (61), we find

‖ξ(t)‖2 +
∫ t

0
‖∇ξ(s)‖2 ds

≤ C
∫ t

0

(

‖g(s)‖2
L3 + ‖ψt(s)‖2

L3 + ‖∇u(s)‖2‖∆w(s)‖2
)

‖π(s)‖2 ds

+ C
∫ t

0
‖η(s)‖2 ds +

1
2

∫ t

0
‖∇η(s)‖2 ds

+ C
∫ t

0

(

‖∇v(s)‖2 + ‖∆w(s)‖2‖ρt(s)‖L∞
)

‖ξ(s)‖2 ds.

On the other hand, multiplying the third equation in (61) by π and
integrating with respect to x and t in Ω× (0, t), we obtain:

‖π(t)‖2 ≤ C
∫ t

0
‖η(s)‖‖∇σ(s)‖L∞‖π(s)‖ ds

≤
∫ t

0
‖η(s)‖2 ds + C

∫ t

0
‖∇σ(s)‖2

L∞‖π(s)‖2 ds.

From these estimates, we deduce that

‖η(s)‖2 + ‖ξ(s)‖2 + ‖π(s)‖2 ≤
∫ t

0
h(s)(‖η(s)‖2 + ‖ξ(s)‖2 + ‖π(s)‖2) ds
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for all t ∈ [0, T ′), where

h(t) = C(1 + ‖f‖2
H1 + ‖g‖2

H1 + ‖vt‖2
L3 + ‖ψt‖2

L3

+ ‖∇u‖2(‖Au‖2 + ‖∆w‖2)

+ ‖∇u‖4 + ‖∆w‖2 + ‖ρt‖L∞ + ‖∇v‖4 + ‖∇σ‖2
L∞).

Observe that h is an integrable function, in view of the regularity of
(u,w, ρ) and (v, ψ, σ). Consequently, we can apply Gronwall’s Lemma,
which gives

‖ξ(t)‖2 + ‖η(t)‖2 + ‖π(t)‖2 ≡ 0,

i.e. u = v, w = ψ and σ = ρ. This ends the proof of Theorem 2.

6 Some Additional Results Concerning the Pres-
sure

We can now obtain some information on the pressure:

Proposition 5 Under the assumptions of Theorem 1, there exists a func-
tion p ∈ C0([0, T0);H1(Ω)) such that

ρut + ρ(u · ∇)u− (µ + µr)∆u +∇p = 2µr curlw + ρf

a.e. in Ω× (0, T0).

Proof: Let (u,w, ρ) be the strong solution furnished by Theorem 1 and let
us set

j = ρ(f − ut − (u · ∇)u) + 2µr curlw + (µ + µr)∆u.

Then, from the regularity of (u,w, ρ) (see Remark 1), we easily deduce that

j ∈ C0([0, T0); L2(Ω)) ∩ L2(0, T0 − γ; H1(Ω)) ∀γ > 0 (62)

and
jt ∈ L2(δ, T0 − γ; L2(Ω)) ∀δ, γ > 0. (63)

From (10), we have

(j(t), v) = 0 ∀v ∈ V(Ω),

for t a.e. in [0, T0). Consequently, we deduce from De Rham’s Lemma that
j = ∇p for some p ∈ D′(Ω × (0, T0)). Furthermore, since we have (62) and
(62), we can choose p satisfying

p ∈ C0([0, T0); H1(Ω)) ∩ L2(0, T0 − γ; H2(Ω)) ∀γ > 0
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and
jt ∈ L2(δ, T0 − γ;H1(Ω)) ∀δ, γ > 0

(and depending continuously on j in the corresponding norms). This ends
the proof.

Remark 7 In order to obtain additional information on the pressure at
time t = 0, appropriate compatibility conditions on the initial data have to
be imposed. This can be done as in the case of the Navier-Stokes equations,
see [8].

7 Global Existence for Small Data

We present in this Section two additional existence results concerning global
in time strong solutions. The proofs can be easily obtained by combining
the techniques in the previous Sections and the arguments of [3].

Theorem 3 Assume that the initial data u0 , w0 and ρ0 satisfy (3)–(5).
Also, assume that

f, g ∈ L∞(0, +∞; (H1(Ω))3), ft , gt ∈ L∞(0, +∞; (L2(Ω))3). (64)

Then, if the norms

‖u0‖H1
0
, ‖w0‖H1

0
, ‖f‖L∞([0,+∞);L2(Ω)) , ‖g‖L∞([0,+∞);L2(Ω)) (65)

are sufficiently small, the strong solution (ρ, u, w) of (1)–(2) exists globally
in time and satisfies

u ∈ C0([0, +∞); D(A)), w ∈ C0([0,+∞); D(L)), ρ ∈ C1(Ω× [0, +∞)).

Moreover, there exists C such that

‖ut(t)‖+ ‖wt(t)‖+ ‖Au(t)‖+ ‖∆w(t)‖ ≤ C

for all t ≥ 0.

Proof: We can repeat the arguments used in Lemma 1. Now, (17) indi-
cates that the approximations (uk, wk, ρk) are defined in the whole interval
[0, +∞). From (20), which is also satisfied for all t ≥ 0, we deduce that































θk(t) ≤ C(‖∇u0‖2 + ‖∇w0‖2)

+ C
∫ t

0
(‖f(s)‖2 + ‖g(s)‖2) ds

+ C
∫ t

0
θk(s) ds
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for all t ≥ 0. Consequently, if the norms in (65) are sufficiently small, we
have the estimates (14)–(16) for all t ≥ 0, i.e. Lemma 1 holds with T0 = +∞.

The arguments in the proofs of the other Lemmas presented in Section 3
can now be repeated with T0 = +∞. The same can be done in the proof of
existence in Section 4. Accordingly, u, w and ρ are globally defined and the
Theorem is proved.

Remark 8 Under the assumptions of Theorem 3, it can also be proved
that, for each γ > 0, there exists a positive constant Cγ such that

sup
t≥0

e−γt
∫ t

0
eγs{‖∇ut(s)‖2 + ‖∇wt(s)‖2} ds ≤ Cγ , (66)

sup
t≥0

e−γt
∫ t

0
eγs{‖u(s)‖2

W 2,6 + ‖w(s)‖2
W 2,6} ds ≤ Cγ . (67)

Furthermore, the same estimates hold uniformly in k for the semi-Galerkin
approximations.

With similar arguments, we can also prove the following result:

Theorem 4 Assume that we have (3)–(5), (64) and

eγt(f + g) ∈ L∞(0, +∞;H1(Ω)3), eγt(ft + gt) ∈ L∞(0, +∞; L2(Ω)3),

for some γ > 0. Then, if the norms

‖u0‖H1
0
, ‖w0‖H1

0
, ‖eγtf‖L∞([0,+∞);L2(Ω)3) , ‖eγtg‖L∞([0,+∞);L2(Ω)3)

are sufficiently small, the strong solution (ρ, u, w) of (1)–(2) exists globally
in time.

There exists γ∗ ∈ (0, γ) such that

sup
t≥0

eγ∗t
(

‖∇u(t)‖2 + ‖∇w(t)‖2
)

< +∞.

Furthermore, for any θ ∈ [0, γ), we have the following:

sup
t≥0

eθt
(

‖ut(t)‖2 + ‖wt(t)‖2 + ‖Au(t)‖2 + ‖Lw(t)‖2
)

< +∞,

sup
t≥0

∫ t

0
eθs

(

‖∇ut(s)‖2 + ‖∇wt(s)‖2 + ‖u(s)‖2
W 2,6 + ‖w(s)‖2

W 2,6

)

ds < +∞,
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sup
t≥0

(‖∇ρ(t)‖L∞ + ‖ρt(t)‖L∞) < +∞,

sup
t≥0

σ̃(t)
(

‖∇ut(t)‖2 + ‖∇wt(t)‖2
)

< +∞,

sup
t≥0

∫ t

0
σ̃(s)

(

‖utt(s)‖2 + ‖wtt(s)‖2 + |Aut(s)‖2 + ‖Lwt(s)‖2
)

ds < +∞.

In the last three estimates, we have introduced σ̃(t) = min{1, t}eθt. Esti-
mates of the same kind hold for the semi-Galerkin approximations.

Notice that, under the assumptions in Theorem 3, the L∞-norms of ∇ρ
and ρt can blow up as t → +∞ (although these functions exist for all t ≥ 0).
Contrarily, the fourth estimate in Theorem 4 provides a uniform bound of
these norms in Ω× [0, +∞).

References

[1] G. Amrouche and V. Girault, On the existence and regularity of
the solutions of Stokes problem in arbitrary dimension, Proc. Japan
Acad., 67, Ser A. (1991), 171–175.

[2] J.L. Boldrini and M.A. Rojas-Medar, On the convergence rate of
spectral approximations for the equations for nonhomogeneous asym-
metric fluids, Math. Mod. and Num. Anal., 30, (1996), 123–155.

[3] J.L. Boldrini and M.A. Rojas-Medar, Global strong solutions of
the equations for the motion of nonhomogeneous incompressible fluids,
in “Numerical Methods in Mechanics”, C. Conca and G.N. Gatica Eds.,
Pitman Res. Notes Math. Ser., 371, 1997, 35–40.

[4] L. Cattabriga, Su um probleme el contorno relativo al sistema di
equazioni di Stokes, Rend. Sem. Mat. Univ. Padova 31, 1961, 235–248.

[5] D.W. Condiff and J.S. Dahler, Fluid mechanics aspects of anti-
symmetric stress, Phys. Fluids, vol. 7, No. 6, (1964), 842–854.

[6] J.G. Heywood, Classical solutions of the Navier-Stokes equations, in
“Approximation Methods for Navier-Stokes problems”, R. Rautmann
Ed., Springer-Verlag, Lecture Notes in Math., 771, 1980, 235–248.

[7] J.G. Heywood, The Navier-Stokes equations: on the existence, regu-
larity and decay of solutions, Indiana Univ. Math. J. 29 (1980), 639–681.

28



[8] J.G. Heywood and R. Rannacher, Finite element approximation of
the nonstationary Navier-Stokes problem I: regularity of solutions and
second order error estimates for spatial discretization, SIAM J. Num.
Anal. 19 (1982), 275–311.

[9] J.U. Kim, Weak solutions of an initial boundary value problem for an
incompressible viscous fluids, SIAM J. Math. Anal. 18, (1987), 890–896.

[10] O.A. Ladyzhenskaya, The Mathematical Theory of Viscous Incom-
pressible Flow, Gordon and Breach, Second revised edition, New York
1969.

[11] O.A. Ladyzhenskaya, V.A. Solonnikov, Unique solvability of an
initial and boundary value problem for viscous incompressible fluids,
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