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Abstract. It is known that whenever E1,...,En are infinite dimensional L∞-spaces
and F is any infinite dimensional Banach space, there exists a bounded n-linear map-
ping that fails to be absolutely (1; 2)-summing. In this paper we obtain a sufficient
condition in order to assure that a given n-linear mapping T from infinite dimensional

L∞-spaces into an infinite dimensional Hilbert space is absolutely (1; 2)-summing.
Besides, we also give a sufficient condition in order to obtain a fully (1; 1)-summing
multilinear mapping from l1 × ...× l1 × l2 into an infinite dimensional Hilbert space.

In the last section we introduce the concept of fully summing holomorphic mappings
and give the first examples of this kind of maps.

1. Introduction and notation

The search for a convenient multilinear version for the concept of absolutely summing
operators lead to the investigation of innumerous different classes of multilinear mappings
between Banach spaces. The first attempts in this direction were made by A. Pietsch
[19] in 1983. Since then, several related classes of multilinear mappings and polynomials
have been studied (we mention Botelho [3], Matos [8], Floret-Matos [5], Meléndez-Tonge
[12] among many others).

Throughout E1, ..., En, E, F will stand for Banach spaces. The scalar field K can be
either R or C.

The Banach spaces of all continuous n-linear mappings from E1 × ... × En into F

endowed with sup norm will be denoted by L(E1, ..., En;F ). To denote the Banach space
of all continuous n-homogeneous polynomials P from E into F with the sup norm we
use P(nE,F ).

If p > 0, the linear space of all sequences (xj)
∞
j=1 in E such that

‖(xj)
∞
j=1‖p = (

∞
∑

j=1

‖xj‖
p)

1

p < ∞

will be denoted by lp(E). We will also denote by lwp (E) the linear space formed by
the sequences (xj)

∞
j=1 in E such that (< ϕ, xj >)∞j=1 ∈ lp for every continuous linear

functional ϕ ∈ E′. We define ‖.‖w,p in lwp (E) by

‖(xj)
∞
j=1‖w,p = sup

ϕ∈BE′

‖(< ϕ, xj >)∞j=1‖p.

In the case p = ∞ we use the sup norm. One can see that ‖.‖p (‖.‖w,p) is a p-norm in
lp(E)( lwp (E)) for p < 1 and a norm in lp(E)( lwp (E)) for p ≥ 1. In any case, they are
complete metrizable linear spaces.

One of the possible natural definitions of absolutely summing multilinear mapping is
the following

Definition 1. (Matos [10]) A continuous n-linear mapping T : E1 × ... × En → F is
absolutely (p; q1, ..., qn)-summing (or (p; q1, ..., qn)-summing) at (a1, ..., an) ∈ E1 ×
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... × En if

(T (a1 + x
(1)
j , ..., an + x

(n)
j ) − T (a1, ..., an))∞j=1 ∈ lp(F )

for every (x
(s)
j )∞j=1 ∈ lwqs

(Es), s = 1, ..., n.

The space of all absolutely (p; q1, ..., qn)-summing n-linear mappings (at every point)
from E1 × ... × En into F is denoted by Lev

as(p;q1,...,qn)(E1, ..., En;F ). When q1 = ... =

qn = q, we write Lev
as(p;q)(E1, ..., En;F ). The development of this concept for polynomials,

multilinear and analytic mappings can be found in [14] and some other important results
will appear in Matos [10].

When we restrict ourselves to the origin, we have the following definition (characteri-
zation):

Definition 2. (Matos [8]) A continuous multilinear mapping

T : E1 × ... × En → F

is absolutely (p; q1, ..., qn)-summing (or (p; q1, ..., qn)-summing) if there exists C > 0
such that

(1.1) (
∞
∑

j=1

‖T (x
(1)
j , ..., x

(n)
j )‖p)

1

p ≤ C

n
∏

r=1

‖(x
(r)
j )∞j=1‖w,qr

for every (x
(k)
j )∞j=1 ∈ lwqk

(Ek), k = 1, ..., n.

Henceforth we will denote the space of all absolutely (p; q1, ..., qn)-summing n-linear
mappings (at the origin) from E1 × ... × En into F by Las(p;q1,...,qn)(E1, ..., En;F ).

The infimum of the C > 0 for which inequality (1.1) always holds defines a norm
for the space of all absolutely (p; q1, ..., qn)-summing multilinear mappings. This norm
is denoted by ‖.‖as(p;q1,...,qn). Under this norm, Las(p;q1,...,qn)(E1, ..., En;F ) is a Banach
space. When q1 = ... = qn = q, we write Las(p;q)(E1, ..., En;F ), ‖.‖as(p;q) and when-
ever T ∈ Las(p;q)(E1, ..., En;F ) we say that T is absolutely (p; q)-summing. A particular
and very important case is obtained when we deal with Las( p

n
;p,...,p)(E1, ..., En;F ). If

T ∈ Las( p

n
;p,...,p)(E1, ..., En;F ) we say that T is p-dominated. This terminology was

introduced by Matos [8] and is motivated by a multilinear version of the Grothendieck-
Pietsch Domination Theorem for p-dominated mappings.

Another natural generalization of the linear concept of absolutely summing operator
is the following

Definition 3. (Matos [9]) A continuous n-linear mapping T : E1 × ...×En → F is said
to be fully (p; q1, ..., qn)-summing if there exists C ≥ 0 such that

(1.2)





∞
∑

j1,...,jn=1

∥

∥

∥T (x
(1)
j1

, ..., x
(n)
jn

)
∥

∥

∥

p





1

p

≤ C

n
∏

r=1

‖(x
(r)
j )∞j=1‖w,qr

whenever (x
(l)
k )∞k=1 ∈ lwql

(El), l = 1, ..., n. In this case we will write

T ∈ Lfas(p;q1,...,qn)(E1, ..., En;F ).

The infimum of the C > 0 for which inequality (1.2) always holds defines a norm
for the space of all fully (p; q1, ..., qn)-summing multilinear mappings and this norm is
denoted by ‖.‖fas(p;q1,...,qn). Under this norm, Lfas(p;q1,...,qn)(E1, ..., En;F ) is a Banach
space. If q1 = ... = qn = q we write ‖.‖fas(p;q), Lfas(p;q)(E1, ..., En;F ).

Several coincidence results for fully summing mappings can be seen in Souza [20]
and connections with tensor products and Hilbert-Schmidt operators will appear in [9].

A recent result due to Bombal, Pérez-Garćia and Villanueva [2] asserts that every n-
linear mapping from L1-spaces into any Hilbert space is fully (1; 1)-summing (multiple
1-summing in their terminology).
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As in the linear case, there are innumerous other interesting coincidence and non-
coincidence theorems for the different classes of multilinear mappings related to summa-
bility. In this note we firstly deal with a different problem. We first focalize in investi-
gating situations in which we do have

Las(1;q1...,qn)(E1, ..., En;F ) 6= L(E1, ..., En;F )

and/or
Lfas(1;1)(E1, ..., En;F ) 6= L(E1, ..., En;F )

in order to obtain sufficient conditions to yield that a particular multilinear mapping
T : E1 × ... × En → F is absolutely (1; q1, ..., qn)-summing and/or fully (1; 1)-summing.
In the last section we define the concept of fully summing holomorphic mappings and
give some examples of this kind of maps.

2. Absolutely (1; 2)-summing multilinear mappings from L∞-spaces into

infinite dimensional Hilbert spaces

The great importance of L∞-spaces in the theory of absolutely summing linear op-
erators can be seen in the seminal paper of Maurey and Pisier [11]. For absolutely
summing multilinear mappings L∞-spaces are not less crucial. Recently, several authors
have been investigating absolutely summing multilinear mappings defined on L∞-spaces
(see Meléndez-Tonge [12], Botelho [3] among others). Besides, since every L∞-space has
only infinite cotype, there are several interesting nontrivial questions concerning coinci-
dence results for absolutely summing multilinear mappings defined on such spaces. In
this direction, using a generalized Grothendieck’s Inequality, D. Pérez-Garćia [18] showed
that if E1, ..., En are L∞-spaces then every bounded scalar valued multilinear mapping
T : E1×....×En → K is (1; 2)-summing. So, naturally, if H is a finite dimensional Banach
space, we can also prove that every bounded multilinear mapping T : E1 × ....×En → H

is (1; 2)-summing. In [15], among other negative results, it is indicated how to prove that
if E1, ..., En are infinite dimensional L∞-spaces and F is any infinite dimensional Banach
space, then

(2.1) L(E1, ..., En;F ) 6= Las(1;2,...,2)(E1, ..., En;F ).

Thus, if E1, ..., En are L∞-spaces and H is an infinite dimensional Hilbert space,
a natural question is to give sufficient conditions for a bounded multilinear mapping
T : E1 × .... × En → H be absolutely (1; 2)-summing. This will be one of the goals of
this note.

Firstly, for completeness, we will give a proof for (2.1). The crucial result is the
following:

Theorem 1. (Pellegrino [15]) Let F be an infinite dimensional Banach space and E1,...,
Em denote infinite dimensional Banach spaces with unconditional Schauder basis. If q

is so that 1
m ≤ q < 2 and Las(q;1)(E1, ..., Em;F ) = L(E1, ..., Em;F ) we conclude that

for any normalized unconditional Schauder basis {x
(1)
j }∞j=1,..., {x

(m)
j }∞j=1 for E1,..., Em,

respectively, the natural mapping

ψ : E1 × ... × Em → l∞ : (
∞
∑

i=1

a
(1)
i x

(1)
i , ...,

∞
∑

i=1

a
(m)
i x

(m)
i ) → (a

(1)
i ...a

(m)
i )∞i=1

is such that ψ(E1 × ... × Em) ⊂ l 2q

2−q
.

Proof. By hypothesis there exists K > 0 so that ‖T‖as(q;1) ≤ K‖T‖ for all continuous

m-linear mappings T : E1 × ... × Em → F.
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By the main Lemma of the well known Dvoretzky-Rogers Theorem (see [7, Theorem
4.2]), for every n, there exist normalized y1, ..., yn in F such that

(2.2) ‖

n
∑

j=1

λjyj‖ ≤ 2(

n
∑

j=1

| λj |2)1/2

regardless of the scalars λ1, ..., λn.

For each k = 1, ...,m, consider zk =
∞
∑

i=1

a
(k)
i x

(k)
i ∈ Ek and for each natural n, let

{µi}
n
i=1be such that

n
∑

j=1

| µj |s= 1 with s = 2
q . Define T : E1 × ... × Em → F by

T (z1, ..., zm) =

n
∑

j=1

|µj |
1

q a
(1)
j ...a

(m)
j yj ,

where we chose yj satisfying (2.2).

Since each {x
(k)
j }∞j=1 is an unconditional basis, there exists ρk > 0 such that

‖

∞
∑

j=1

εja
(k)
j x

(k)
j ‖ ≤ ρk‖

∞
∑

j=1

a
(k)
j x

(k)
j ‖ = ρk‖zk‖

for all εj ∈ {1,−1} and zk =
∞
∑

j=1

a
(k)
j x

(k)
j ∈ Ek. Hence

‖

∞
∑

j=1

εja
(k)
j x

(k)
j ‖ ≤ ρk‖zk‖

and

‖

r
∑

j=1

εja
(k)
j x

(k)
j ‖ ≤ ρk‖zk‖

for all natural r and any εj = 1 or −1. We thus have

‖T (z1, ..., zm)‖ = ‖

n
∑

j=1

|µj |
1

q a
(1)
j ...a

(m)
j yj‖

≤ 2





n
∑

j=1

|µj |
2

q | a
(1)
j ...a

(m)
j |2





1/2

≤ 2





n
∑

j=1

| µj |2/q ρ2
1...ρ

2
m





1/2

‖z1‖...‖zm‖

≤ 2ρ1...ρm‖z1‖...‖zm‖(

n
∑

j=1

| µj |2/q)1/2

≤ 2ρ1...ρm‖z1‖...‖zm‖.
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Then ‖T‖ ≤ 2ρ1...ρm and ‖T‖as(q;1) ≤ 2Kρ1...ρm. Therefore





n
∑

j=1

(

|µj |
1

q

∣

∣

∣a
(1)
j ...a

(m)
j

∣

∣

∣

)q





1/q

=





n
∑

j=1

∥

∥

∥T (a
(1)
j x

(1)
j , ..., a

(m)
j x

(m)
j )

∥

∥

∥

q





1/q

≤ ‖T‖as(q;1)

m
∏

k=1

‖(a
(k)
j x

(k)
j )n

j=1‖w,1

= ‖T‖as(q;1)

m
∏

k=1

max
εj∈{1,−1}

{‖

n
∑

j=1

εja
(k)
j x

(k)
j ‖}

≤ ‖T‖as(q;1)

m
∏

k=1

(ρk‖zk‖)

≤ 2Kρ2
1...ρ

2
m‖z1‖...‖zm‖.

Recall that the last inequality holds whenever
n
∑

j=1

| µj |s= 1. Hence





n
∑

j=1

(| a
(1)
j ...a

(m)
j |

s
s−1

q)





1/( s
s−1

)

=

∥

∥

∥

∥

(∣

∣

∣a
(1)
j ...a

(m)
j

∣

∣

∣

q)n

j=1

∥

∥

∥

∥

s
s−1

= sup







∣

∣

∣

∣

∣

∣

n
∑

j=1

µj

∣

∣

∣a
(1)
j ...a

(m)
j

∣

∣

∣

q

∣

∣

∣

∣

∣

∣

;

n
∑

j=1

| µj |s= 1







≤ sup







n
∑

j=1

(| µj |
∣

∣

∣a
(1)
j ...a

(m)
j

∣

∣

∣

q

;

n
∑

j=1

| µj |s= 1







and thus

[
n

∑

j=1

(| a
(1)
j ...a

(m)
j |

s
s−1

q)]1/( s
s−1

) ≤ (2Kρ2
1...ρ

2
m‖z1‖...‖zm‖)q.

Since s
s−1q = 2q

2−q , and n is arbitrary, the proof is done. ¤

Assuming E1 = ... = Em = c0 and using a standard localization argument, Theorem 1
furnishes a proof for (2.1). Now, let us state a natural definition of adjoint of an n-linear
mapping.

Definition 4. Let E1, ..., En and F be Banach spaces. If T ∈ L(E1, ..., En;F ), we
define the adjoint of T by

T ∗ : F ∗ −→ L(E1, ..., En; K)

ϕ −→ T ∗ϕ : E1 × ... × En −→ K

with (T ∗ϕ)(x1, ..., xn) = ϕ(T (x1, ..., xn)).

In a recent result [17] we give a sufficient condition in order to prove that a particular
n-linear mapping into a Hilbert space is absolutely (1; 1)-summing, generalizing a result
due to S. Kwapien [6]. The next result explores the essential idea of the proof and give
us a stronger result.

Theorem 2. If H is a Hilbert space and E1,..., EN are Banach spaces such that

L(E1, ..., EN ; K) = Las(1;p1,...,pN )(E1, ..., EN ; K)

and
T ∈ L(E1, ..., EN ;H)

is such that T ∗ is almost summing, then T is absolutely (1; p1, ..., pN )-summing
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Proof. Consider, for each n ∈ N, a continuous multilinear operator T : E1×...×EN −→
ln2 (n ∈ N).

If x(k,1), ..., x(k,m) ∈ Ek, 1 ≤ k ≤ N, using Khinchin’s Inequality (see [4, Theorem
1.10]), we obtain

m
∑

j=1

∥

∥

∥T (x(1,j), ..., x(N,j))
∥

∥

∥

=

m
∑

j=1

(

n
∑

k=1

∣

∣

∣

〈

T (x(1,j), ..., x(N,j)), ek

〉∣

∣

∣

2
)

1

2

=

m
∑

j=1

(

n
∑

k=1

∣

∣

∣

〈

(x(1,j), ..., x(N,j)), T ∗ek

〉∣

∣

∣

2
)

1

2

≤

m
∑

j=1

[

A−1
1

(

∫ 1

0

∣

∣

∣

∣

∣

n
∑

k=1

〈

(x(1,j), ..., x(N,j)), T ∗ek

〉

rk(t)

∣

∣

∣

∣

∣

dt

)]

= A−1
1

∫ 1

0

m
∑

j=1

∣

∣

∣

∣

∣

〈

(x(1,j), ..., x(N,j)),
n

∑

k=1

rk(t)T ∗ek

〉∣

∣

∣

∣

∣

dt

≤ A−1
1

∫ 1

0

∥

∥

∥

∥

∥

n
∑

k=1

rk(t)T ∗ek

∥

∥

∥

∥

∥

as(1;p1,...,pN )

N
∏

i=1

∥

∥

∥
(x(i,j))m

j=1

∥

∥

∥

w,1
dt.

Thus, since L(E1, ..., EN ; K) = Las(1;p1,...,pN )(E1, ..., EN ; K) there exists C > 0 such that
∥

∥

∥

∥

∥

n
∑

k=1

rk(t)T ∗ek

∥

∥

∥

∥

∥

as(1;p1,...,pN )

≤ C

∥

∥

∥

∥

∥

n
∑

k=1

rk(t)T ∗ek

∥

∥

∥

∥

∥

and thus

(2.3)

m
∑

j=1

∥

∥

∥T (x(1,j), ..., x(N,j))
∥

∥

∥ ≤ CA−1
1

N
∏

i=1

∥

∥

∥(x(i,j))m
j=1

∥

∥

∥

w,pi

∫ 1

0

∥

∥

∥

∥

∥

n
∑

k=1

rk(t)T ∗ek

∥

∥

∥

∥

∥

dt.

Since T ∗ is almost summing we obtain

(2.4)





∫ 1

0

∥

∥

∥

∥

∥

n
∑

k=1

rk(t)T ∗ek

∥

∥

∥

∥

∥

2

dt





1

2

≤ ‖T ∗‖al,2 ‖(ek)n
k=1‖w,2 = ‖T ∗‖al,2 .

We complete the proof by considering an operator T ∈ L(E1, ..., EN ;H) which adjoint
T ∗ : H −→ L(E1, ..., EN ; K) is almost summing.

If x(k,1), ..., x(k,m) ∈ Ek, with 1 ≤ k ≤ N, identify the span of the T (x(1,j), ..., x(N,j))′s,
j = 1, ...,m, with ln2 for an appropriate n and set by Ψ this map. This is possible,
since such span is a finite dimensional Hilbert space. Let P ∈ L(H) be the orthogonal
projection onto this span. We have P ∗ = P and using (2.3) and (2.4), we obtain

m
∑

j=1

∥

∥

∥T (x(1,j), ..., x(N,j))
∥

∥

∥

=
m

∑

j=1

∥

∥

∥
Ψ ◦ P ◦ T (x(1,j), ..., x(N,j))

∥

∥

∥
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≤ CA−1
1 ‖T ∗ ◦ P ∗ ◦ Ψ∗‖al,2

N
∏

i=1

∥

∥

∥
(x(i,j))m

j=1

∥

∥

∥

w,pi

≤ A−1
1 ‖T ∗‖al,2 ‖P

∗‖ ‖Ψ∗‖

N
∏

i=1

∥

∥

∥(x(i,j))m
j=1

∥

∥

∥

w,pi

≤ A−1
1 ‖T ∗‖al,2 ‖P‖ ‖Ψ‖

N
∏

i=1

∥

∥

∥
(x(i,j))m

j=1

∥

∥

∥

w,pi

= A−1
1 ‖T ∗‖al,2

N
∏

i=1

∥

∥

∥(x(i,j))m
j=1

∥

∥

∥

w,pi

.

Therefore, T is absolutely (1; p1, ..., pN )-summing .¤

Corollary 1. If H is an infinite dimensional Hilbert space, E1,..., Em are L∞-spaces
and

T ∈ L(E1, ..., Em;H)

is such that T ∗ is almost summing, then T is absolutely (1; 2)-summing.

3. Fully (1; 1)-summing multilinear mappings from l1 × ... × l1 × l2 into

infinite dimensional Hilbert spaces

In this section we first intend to prove that if each Ej is an L1-space and H is a Hilbert
space, then every n-linear form defined on E1×...×En×H is fully (1; 1)-summing whereas
if F is an infinite dimensional Banach space, there is always an n-linear mapping from
E1 × ... × En × H into F which fails to be fully (1; 1)-summing. Our first step is the
following straightforward result:

Lemma 1. If T ∈ L(E1, ..., En;F ) is such that T1 : E1 × ... × En−1 → Las(1;1)(En;F )
defined by T1(x1, ..., xn−1)(xn) = T (x1, ..., xn) is fully (1; 1)-summing, then T is fully
(1; 1)-summing.

So, we have the following theorem:

Theorem 3. If each Ej is an L1-space and H is a Hilbert space, then

L(E1, ..., En−1,H; K) = Lfas(1;1)(E1, ..., En−1,H; K).

Proof. It suffices to use that L(E1, ..., En−1;H) = Lfas(1;1)(E1, ..., En−1;H) and H =
L(H; K) = Las(1;1)(H; K) and apply Lemma 1.¤

Now, we must observe that L(E1, ..., En−1,H;F ) 6= Lfas(1;1)(E1, ..., En−1,H;F ) for
any infinite dimensional Banach space F. To achieve this result we state a simple but
useful “descending” result which proof we omit.

Proposition 1. If Lev
as(p;p1,...,pn)(E1, ..., En;F ) = L(E1, ..., En;F ) then

L(Ej ;F ) = Las(p;pj)(Ej ;F )

for every j.

Corollary 2. If Lfas(p;p1,...,pn)(E1, ..., En;F ) = L(E1, ..., En;F ) then

L(Ej ;F ) = Las(p;pj)(Ej ;F )

for every j.

Proof. It is not hard to prove that every fully (p; p1, ..., pn)-summing is absolutely
(p; p1, ..., pn)-summing at every point. Thus the descending property furnishes the proof.
¤

Now, we can assert the aforementioned non coincidence result.
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Corollary 3. If F is an infinite dimensional Banach space, H is a Hilbert space and
each Ej is an L1-space, then

L(E1, ..., En−1,H;F ) 6= Lfas(1;1)(E1, ..., En−1,H;F ).

Proof. If the result did not hold we would have L(H;F ) = Las(1;1)(H;F ), which is
impossible (see [7, Theorem 4.2]).

Finally, if H is an infinite dimensional Hilbert space, it makes sense to ask when a
mapping T from l1 × ... × l1 × H into H is fully (1; 1)-summing.

Using the same reasoning of the proof of Theorem 2, one can obtain a version of
Theorem 2 for fully summing mappings. Precisely,

Theorem 4. If H is an infinite dimensional Hilbert space, E1,..., En−1 are L1-spaces
and

T ∈ L(E1, ..., En−1,H;H)

is such that T ∗ is almost summing, then T is fully (1; 1)-summing.

4. Fully summing holomorphic mappings

The theory of absolutely summing holomorphic mappings was introduced by Matos
[8] (see also Floret-Matos [5]). Further work of the first named author [14] showed
several examples of this kind of mappings. In order to find an adequate concept of “fully
summing holomorphic mapping” we first need to introduce the concept of fully summing
homogeneous polynomials. Naturally, we will say that an n-homogeneous polynomial

is fully (r; s)-summing if its associated symmetric n-linear mapping
∨

P is fully (r; s)-
summing. The fully summing norm for polynomials will be the one induced by the

fully summing norm of its associated n-linear map, i.e., ‖P‖fas(r;s) = ‖
∨

P‖fas(r;s). One

can prove that (Pfas(r;s)(
nE;F ), ‖.‖fas(r;s)) is a Banach space. Detailed results involving

fully summing polynomials will appear in the doctoral thesis of the second named author,
under supervision of M. C. Matos.

In this section our initial step is to prove that (Pfas(r;s)(
nE;F ), ‖.‖fas(r;s))

∞
n=0 is a

holomorphy type in the sense of Nachbin.

Definition 5. (Nachbin [13]) A holomorphy type θ from E to F is a sequence of
Banach spaces

(Pθ(
mE;F ))∞m=0,

the norm of each of them denoted by ‖.‖θ , such that the following conditions hold true
(1) Each Pθ(

mE;F ) is a linear subspace of P(mE;F );
(2) Pθ(

0E;F ) = F, as a normed linear space;
(3) There exists a real number σ ≥ 1 for which the following is true. Given any

l,m ∈ N, l ≤ m, x ∈ E and P ∈ Pθ(
mE;F ), we have

∧

d
l

P (x) ∈ Pθ(
lE;F ) and

∥

∥

∥

∥

∥

1

l!

∧

d
l

P (x)

∥

∥

∥

∥

∥

θ

≤ σm ‖P‖θ ‖x‖
m−l

.

A related definition, also due to Nachbin, give the concept of θ-holomorphy type for
holomorphic mappings

Definition 6. If U ⊂ E is an open set, a given f ∈ H(E;F ) is said to be of θ-

holomorphy type at ξ ∈ U if

(1)
∧

d
m

f(ξ) ∈ Pθ(
mE;F ) for every natural m
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(2) There exist real numbers C ≥ 0 and c ≥ 0 such that
∥

∥

∥

∥

1

m!

∧

d
m

f(ξ)

∥

∥

∥

∥

θ

≤ Ccm for every natural m.

Moreover, if f is of θ-holomorphy type at every point of U we say that f is of θ-
holomorphy type on U . We denote by Hθ(U ;F ) the linear subspace of H(U ;F ) composed
by all such f of holomorphy type on U .

Theorem 5. (Pfas(r;s)(
mE;F ), ‖.‖fas(r;s))

∞
m=0 is a holomorphy type fas(r; s).

Proof. Consider k, n ∈ N so that k ≤ n and P ∈ Pfas(r;s)(
nE;F ). Let us consider

(x
(l)
j )∞j=1 ∈ lws (E), l = 1, ..., n. Thus, defining (x

(l)
j )∞j=1 = (a, 0, 0, ...) for each k+1 ≤ l ≤ n

we obtain




∞
∑

j1,...,jk=1

∥

∥

∥

∥

1

k!
dkP (a)(x

(1)
j1

, ..., x
(k)
jk

)

∥

∥

∥

∥

r




1

r

=

(

n

k

)





∞
∑

j1,...,jk=1

∥

∥

∥

∥

∨

P (x
(1)
j1

...x
(k)
jk

, a, ..., a)

∥

∥

∥

∥

r




1

r

=

(

n

k

)





∞
∑

j1,...,jn=1

∥

∥

∥

∥

∨

P (x
(1)
j1

...x
(n)
jn

)

∥

∥

∥

∥

r




1

r

≤

(

n

k

)∥

∥

∥

∥

∨

P

∥

∥

∥

∥

fas(r;s)

n
∏

l=1

∥

∥

∥
(x

(l)
j )∞j=1

∥

∥

∥

w,s

=

(

n

k

)

‖P‖fas(r;s) ‖a‖
n−k

k
∏

l=1

∥

∥

∥(x
(l)
j )∞j=1

∥

∥

∥

w,s

Thus dkP (a) ∈ Lfas(r;s)(
kE;F ) for each k. Finally,

∥

∥

∥

∥

∥

1

k!

∧

d
k

P (a)

∥

∥

∥

∥

∥

fas(r;s)

≤

(

n

k

)

‖P‖fas(r;s) ‖a‖
n−k

≤ 2n ‖P‖fas(r;s) ‖a‖
n−k

.

¤

From now on we will denote the space of holomorphic mappings from E into F by
H(E;F ).

Definition 7. We say that an holomorphic mapping f : E → F is fully (r; s)-summing

if f is of fas(r; s)-holomorphy type on E.

If f is fully (r; s)-summing, we will write f ∈ Hfas(r;s)(E;F ).
Now, we will give the first examples in which we have H(E;F ) = Hfas(r;s)(E;F ) for

some r, s.

Based on the ideas of [2] we have the following result.

Lemma 2. Suppose that

(4.1) L(E;H) = Las(2;2)(E;H)

for every Hilbert space H. Then for each H there exists CH > 0 such that

L(nE;H) = Lfas(2;2)(
nE;H)

and
‖T‖fas(2;2) ≤ Cn

H ‖T‖

for every T ∈ L(nE;H).


