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Abstract

In this work we introduce the notion of pre-invex function for functions between
Banach spaces. By using these functions, we obtain necessary and sufficient conditions
of optimality for vectorial problems with restrictions of inequalities. Moreover, we will
show that this class of problems has the property that all local optimal solution is in
fact global.
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1. Introduction and formulation of the problem

In this work, we consider the following problem of optimization:

Minimize f(x)

subject to
−g(x) ∈ K
x ∈ S ⊂ E















(P)

where E, F,G are Banach spaces, f : E → F, g : E → G. We assume that the spaces
F and G are ordered by cones Q ⊂ F, K ⊂ G and that these cones are closed, convex
and with nonempty interior.

We denote by F = {x ∈ S : −g(x) ∈ K} the feasible set of (P).
We can consider the following order partial in F :

y, z ∈ F, y �F z ⇔ z − y ∈ Q
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(analogously for G).
Also, we can consider the following relation:

y, z ∈ F, y ≺G z ⇔ z − y ∈ intQ

(where int Q is the interior of Q).
Then, we have two concepts of solution for (P):

Definition 1. We say that x0 ∈ F is an efficient solution for (P) if x ∈ F ,
f(x) �F f(x0) ⇒ f(x) = f(x0).

Definition 2. We say that x0 ∈ F is a weak efficient solution for (P) if there is
not x ∈ F such that f(x) ≺F f(x0).

This class of problem has many applications in mathematical economy and engi-
neering. The problem finite dimensional (i.e., when in (P ) we take E = Rn, F = Rp

and G = Rm; Q = Rp
+ and K = Rm

+ ) was studied by Osuna-Gómez [1] with relation
to the optimality conditions. Our purpose in this work is extend these results for
arbitray Banach spaces.

The notion of convexity is very important in the optimization theory. The follow-
ing results are well known: if θ : S ⊂ Rn→ R is a convex function denfined on S,
where S is a nonempty, convex subset of Rn, then

1. If x̄ ∈ S is a local minimum of f on S, then x̄ is a global minimum of f (on S);

2. If θ is differentiable on S and S is open set, ∇θ(x1)(x2 − x1) ≤ θ(x2) −
θ(x1),∀x1, x2 ∈ S (and, in particular, if x̄ ∈ S, ∇θ(x̄) = 0 then x̄ is a global
minimum of S).

These two properties of convex functions are very important in optimization the-
ory.

In fact, there exist other class of functions that are not convex and that has
properties analogous: are the so-called generalized convex functions ([14], [15], [16],
[17].)

We suggest the following definition of pre-invex functions between Banach spaces.
We note that this definition generalize the notion given early by Hanson and Mond
[4], for the case scalar. We will prove that these class of functions satisfy properties
analogous to (1) and (2) and this will be useful to obtain some optimality conditions
for problem (P ), (In the sense of weak efficiency).

The paper is organized as follows: in Section 2 we give the definition of pre-invexity
and we prove some results. In Section 3 we study the optimality conditions. In the
Section 4 we prove the global results for weak efficiency.
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2. Pre-invex functions

In this Section, we define the pre-invexity for functions between Banach spaces and
we study some properties. Also, we stress the alternative theorem of Gordan type for
pre-invex functions. This results will be crucial to obtain the optimality conditions
for problem (P ).

Definition 3. (Hanson & Mond, [4]) Let E be a Banach space. The function θ : Ω ⊂
E → R is called pre-invex with respect to η on S ⊂ Ω if for all x1, x2 ∈ S and for
each λ ∈ (0, 1), there exists a vector function η : S × S → E such that

θ(x2 + λη(x1, x2)) ≤ λθ(x1) + (1− λ)θ(x2)

If the set S ⊂ E has the following property

x2 + λη(x1, x2) ∈ S, ∀x1, x2 ∈ S, ∀λ ∈ (0, 1)

we will say that S is invex with respect to the vectorial function η.
Let Q∗ := {ω∗ ∈ F ∗ : 〈ω∗, x〉 ≥ 0 ∀x ∈ Q} the dual cone of Q and F ∗ the

topological dual of F. We denote 〈·, ·〉 the canonical duality in the F ∗ ×F (that is,
〈ω∗, x〉 = w∗(x), ∀w∗ ∈ F ∗,∀x ∈ F )

We generalize the Definition 3 to the functions betwen Banach spaces in the fol-
lowing way:

Definition 4. Let E and F two Banach spaces. The function f : Ω ⊂ E → F is
called pre-invex with respect to η on S ⊂ Ω if for each ω∗ ∈ Q∗, the composition
function ω∗ ◦ f is pre-invex with respect to η, in the sense of the Definition 3.

Lemma 1. The Definition 4 is equivalent to: for all x1, x2 ∈ S and each λ ∈ (0, 1),
there exists a vector η : S × S → E such that

f(x2 + λη(x1, x2)) �F λf(x1) + (1− λ)f(x2) (1)

To prove this result, we will need recall the following lemma (see [13], p. 215).

Lemma 2. Let F be a Banach space ordered by the cone Q ⊂ F, with Q convex and
closed. If there exists y ∈ F such that 〈y∗, y〉 ≥ 0 ∀y∗ ∈ Q∗ then y ∈ Q.

The inverse affirmation is cleary true.

Proof: (Of the Lemma 1)
Let x1, x2 ∈ S and λ ∈ (0, 1).
The following equivalences are true

f(x2 + λη(x1, x2)) �F λf(x1) + (1− λ)f(x2)

⇐⇒ λf(x1) + (1− λ)f(x2)− f(x2 + λη(x1, x2)) ∈ Q
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⇐⇒ ω∗(λf(x1) + (1− λ)f(x2)− f(x2 + λη(x1, x2)) ≥ 0,∀ω∗ ∈ Q∗

⇐⇒ ω∗ ◦ f(x2 + λη(x1, x2)) ≤ λω∗ ◦ f(x1) + (1− λ)ω∗ ◦ f(x2), ∀ω∗ ∈ Q∗

where the firts equivalence follows from the definition of �F , the second from Lemma
2 and the third from the linearity of ω∗.�

The following property of the directionally differentiable pre-invex functions will
be extensively used in the rest of the paper.

Lemma 3. Let f : Ω ⊂ E → F be a pre-invex function on S ⊂ Ω, directionally
differentiable. Then

(ω∗ ◦ f)′(x, η(x, y)) ≤ ω∗ ◦ f(y)− ω∗ ◦ f(x)

∀ω∗ ∈ Q∗,∀x, y ∈ S.

Proof: Assume that f is pre-invex on S. Then, by Definition 4 ω∗ ◦ f is pre-invex
on S, for all ω∗ ∈ Q∗ (in the sense of Definition 3).

Then, by Definition 3,

ω∗ ◦ f(x + λη(x, y)) ≤ ω∗(λf(y) + (1− λ)f(x)) (2)

∀λ ∈ (0, 1).
From (2)

ω∗ ◦ f(x + λη(x, y))− ω∗ ◦ f(x) ≤ λω∗(f(y)− f(x)). (3)

Dividing the inequality (3) by λ, and taking the limit when λ → 0+, we obtain

(ω∗ ◦ f)′(x, η(x, y)) ≤ ω∗ ◦ f(y)− ω∗ ◦ f(x)

∀ω∗ ∈ Q∗, ∀x, y ∈ S.�

We will recall the following result, see [2], p.54.

Lemma 4. If Q ⊂ F is a convex cone, intQ 6= ∅ and 0 6= p ∈ Q∗, then p(s) > 0
when s ∈ intQ.

Also, we will prove the following Alternative Theorem of Gordan’s Type. This
result will be useful in the next sections.

Theorem 5. Let f : E → F be a pre-invex function with respect to η on F ⊂ E,
where F is an invex set with respect to η. Let Q ⊂ F be a convex cone with nonempty
interior. Then, either:
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(i) there exists x ∈ F such that −f(x) ∈ intQ;

or

(ii) there exists p ∈ Q∗ \ {0} such that (p ◦ f)(F) ⊂ R+.

Proof: Firstly, we assume that the system (i) and (ii) have solutions x ∈ F and
p ∈ Q∗ \ {0}.

Then, from Lemma 4, we have that p(f(x)) < 0, with x ∈ F , consequently we
obtain one contradiction with (ii).

Now, we assume that the system (ii) has not solution. We will prove that the
system (i) has solution.

We put
A := f(F) + intQ.

The set A is open: In fact, let k ∈ A. Then there exist x ∈ F and s ∈ intQ such
that k = f(x) + s.

Since, s ∈ intQ there exist a ball N with center at zero such that s + N ⊂ Q.
But, k + N = f(x) + (s + N) ⊂ A and, consequently A is open.
Now, we will prove that A is convex. Let k1, k2 ∈ A and τ ∈ (0, 1).
Then, k1 = f(x1) + s1, k2 = f(x2) + s2, with x1, x2 ∈ F and s1, s2 ∈ intS.

(1− τ)k1 + τk2 = [(1− τ)f(x1) + τf(x2)] + [(1− τ)s1 + τs2]. (4)

But, since f is pre-invex, we have

(1− τ)f(x1) + τf(x2) ∈ f(x2 + τη(x1, x2)) + Q (5)

and
(1− τ)s1 + τs2 ∈ intQ. (6)

By hypothesis F is invex, that is,

x2 + τη(x1, x2) ∈ F , (7)

is true.
From (4)-(7) we obtain (1− τ)k1 + τk2 ∈ A, that is, the set A is convex.
Since the system (1) has not solution, then 0 /∈ A. From Hahn-Banach Theorem,

there exists p ∈ F ∗ \ {0} such that

p(A) ⊂ R+. (8)

We fix s ∈ intQ. We would like to prove: p(f(x)) ≥ 0,∀x ∈ F .
Since s ∈ intQ, we have

s + N ⊂ int Q (9)

for some ball N.
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For τ ∈ R+ sufficiently big, we have
1
τ

f(x) ∈ N and from (9) we have s −
1
τ

f(x) ∈ intQ, and recalling that int Q is a cone, we obtain τs − f(x) ∈ intQ , that

is τs ∈ f(x) + int Q ⊂ A, and, therefore, by (8) we have

p(s) ≥ 0,∀s ∈ intQ. (10)

But, for each ε > 0 sufficiently small such that k = f(x) + εs ∈ A and, therefore,

(p ◦ f)(x) = p(k)− εp(s) ≥ −εp(s) → 0

as ε → 0+, consequently
(p ◦ f)(x) ≥ 0 ∀x ∈ F . (11)

For each s0 ∈ Q, p(s0) = 1
τ p(τs0) and for τ > 0 small, τs0 ∈ int Q, therefore of

(10) we have p(s0) ≥ 0 ∀s0 ∈ int Q, that is,

p ∈ Q∗\{0} (12)

and, (11) and (12) imply that p is a solution of the system (2).�

3. Conditions of optimality

This Section is divided in three subsections. In Subsection 3.1, we study the scalar
optimization problem, i.e. when the objective function is real-valued; in 3.2 we es-
tablish and prove the scalarization theorem, this theorem will be important because
relationship the optimal solution of the scalar problem with the vectorial problem,
and in 3.3 we use the above result to obtain optimality conditions for the vectorial
problem (P ).

3.1. Conditions of optimality for scalar problems

Now, we consider the following scalar optimization problem:

Minimize θ(x)

subject to
−g(x) ∈ K
x ∈ S ⊂ E















(PM)

where E,G are Banach spaces, G is ordered by the closed convex cone with nonempty
interior K, θ : E → R, g : E → G are continuous and S is a nonempty open subset of
E.

Theorem 6. We assume that the functions in the problem (PM), θ and g are pre-
invex functions with respect to the same η and are directionally differentiable. Let x
be a solution of (PM). Then, there exist α ≥ 0 and µ∗ ∈ K∗, not simultaneously zeros
such that

(αθ)′(x, η(x, y)) + (µ∗ ◦ g)′(x, η(x, y)) ≥ 0,∀y ∈ S
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〈µ∗, g(x)〉 = 0.

Proof: From the hypotheses make, we have that the feasible set F := {x ∈ S :
−g(x) ∈ K} is invex with respect to η.

Let x be the solution of (PM). In this case, the system

−
[

θ(x)− θ(x)
g(x)

]

∈ int(R+ ×K)

has no solution x ∈ F .
From Theorem 5, we have that there exists p = (τ , v∗) ∈ (R+×K∗)\{(0, 0)} such

that
τ [θ(x)− θ(x)] + v∗ ◦ g(x) ≥ 0,∀x ∈ F (13)

consequently
v∗ ◦ g(x) = 0. (14)

We observe that for each ε > 0 sufficiently small, we have x+εη(x, y) ∈ F ,∀y ∈ S
since F is invex with respect to η.

From (13) and (14) we obtain

lim
ε→0+

τθ(x + εη(x, y))− τθ(x) + v∗ ◦ g(x + εη(x, y))− v∗ ◦ g(x)
ε

= (15)

= (τθ)′(x, η(x, y)) + (v∗ ◦ g)′(x, η(x, y)) ≥ 0.

Setting in (15) α = τ e µ∗ = v∗, we obtain the desirable result.�

3.2. A theorem of scalarization

We will consider the following optimization problem

Minimize f(x)

subject to x ∈ Γ







(P1)

where f : E → F, Γ ⊂ E, E and F are Banach spaces, F is ordered for the closed,
convex cone Q with nonempty interior.

The following theorem of scalarization is true for the problem (P1):

Theorem 7. Assume that in (P1) the function f is pre-invex with respect to η in the
set Γ and that the feasible set Γ is invex with respect to η. If x∗ ∈ Γ is a weak efficient
solution of (P1), then there exists ω∗ ∈ Q∗ \ {0} such that

ω∗ ◦ f(x∗) ≤ ω∗ ◦ f(x), ∀x ∈ Γ.
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Proof: We consider the following sets

U := {u ∈ F : 0 ≺F u}; V := {v ∈ F : v �F f(x∗)− f(x), for some x ∈ Γ}.

Since x∗ is a weak efficient solution of (P1), we obtain U ∩ V = ∅.
In fact, assume the contrary, that is, that there exists z ∈ U ∩ V.
In this case, there exists x ∈ Γ such that 0 ≺F z �F f(x∗)−f(x) and consequently,

f(x) ≺F f(x∗), x ∈ Γ.

But this is a contradiction with the fact that x∗ is a weak efficient solution of (P1).
Then, U ∩ V = ∅.

U is obviously open and convex (because U = int Q and Q is convex).
In view of the fact that the function f pre-invex and the set Γ is invex, we have

that V is convex.
In fact, let v1, v2 ∈ V and λ ∈ (0, 1). Then, there exist x1, x2 ∈ Γ such that

v1 �F f(x∗)− f(x1) e v2 �F f(x∗)− f(x2).

It is easily see that

λv1 �F λf(x∗)− λf(x1) e (1− λ)v2 �F (1− λ)f(x∗)− (1− λ)f(x2)

and we deduce that

λv1 + (1− λ)v2 � F f(x∗)− [λf(x1) + (1− λ)f(x2)]

� F f(x∗)− f(x2 + λη(x1, x2))

where the last inequality is consequence of the pre-invexity of f. Since Γ is an invex
set with respect to η, we have x2 + λη(x1, x2) ∈ Γ and, therefore, V is convex.

From Hahn-Banach Theorem, there exists w∗ ∈ F ∗\{0} such that

〈w∗, v〉 ≤ 0 ≤ 〈w∗, u〉, ∀u ∈ U , ∀v ∈ V.

The second inequality implies 〈w∗, u〉 ≥ 0, ∀u ∈ intQ.
But, Q is convex with nonempty interior, and then is verified that intQ = Q (v.

[7], p. 413) and this implies w∗ ∈ Q∗.
We observe that for each x ∈ Γ, we have f(x∗)− f(x) ∈ V , moreover

〈w∗, f(x∗)− f(x)〉 ≤ 0,∀x ∈ Γ.

�

3.3. Conditions of optimality for vectorial problems

In this section, we obtain optimality conditions for the problem (P).
Observe that the weak efficient solutions of a vectorial pre-invex functions are

completally characterized by a estationary condition. In fact:
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Theorem 8. Let f : Ω ⊂ E → F be a pre-invex function on S ⊂ Ω with respect to
η and are directionally differentiable. Then, x is a weak efficient solution of f on the
open set S if and only if

(ω∗ ◦ f)′(x, η(x, y)) ≥ 0 (16)

∀y ∈ S, ∀ω∗ ∈ Q∗.

Proof: Firstly we show the implication (⇒). We assume that x is a weak efficient
solution and that (16) is not true.

In this case, there exist y ∈ S and ω∗ ∈ Q∗ such that

(ω∗ ◦ f)′(x, η(x, y)) < 0. (17)

Since S is open and x ∈ S, we have that x + λη(x, y) ∈ S, for λ > 0 sufficiently
small.

From (17), we obtain

lim
λ→0+

ω∗ ◦ f(x + λη(x, y))− ω∗ ◦ f(x)
λ

< 0

and, therefore, for λ > 0 sufficient small, we get

ω∗(f(x + λη(x, y))− f(x)) < 0.

Since ω∗ ∈ Q∗, ω∗ 6= 0, we have

f(x + λη(x, y)) ≺F f(x)

with x + λη(x, y) ∈ S. This is a contradiction whit the fact that x is a weak efficient
solution.

Now, we prove the reverse implication (⇐).
To done this, we assume that is true the condition (16) and that x is not weak

efficient solution.
In this case, there exists y ∈ S such that f(y) ≺F f(x).
Let ω∗ ∈ Q∗ \ {0} (it is possible to show that Q∗ 6= {0}; see [9]) and we obtain

ω∗ ◦ f(y)− ω∗ ◦ f(x) < 0. (18)

Then,
0 ≤ (ω∗ ◦ f)′(x, η(x, y)) ≤ ω∗ ◦ f(y)− ω∗ ◦ f(x) < 0

(where the first inequality is obtained from the hypothesis done, the second follows
of Lemma 3 and the third from (18)) and therefore this is absurd.�

The finite dimensional version of the Theorem 8 is in [1], Teorema 2.2, p. 24.
Next, we give some optimality conditions (necessary and sufficient conditions) for

the problem (P).
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Theorem 9. (Necessary condition) Assume that in the problem (P) the functions f
and g are pre-invex with respect to the same η, are directionally differentiable and the
set S is invex with respect to η. If x is a weak efficient solution of (P), then there
exist λ∗ ∈ Q∗, µ∗ ∈ K∗, not all zeros such that

(λ∗ ◦ f)′(x, η(x, y)) + (µ∗ ◦ g)′(x, η(x, y)) ≥ 0,∀y ∈ F

〈µ∗, g(x)〉 = 0.

Proof: From the hypotheses done, we have that the feasible set F is invex with
respect to η. By using Theorem 7 , there exists λ∗ ∈ Q∗\{0} such that

λ∗ ◦ f(x) ≤ λ∗ ◦ f(x),∀x ∈ F .

Then, by applying Theorem 6 , there exist α ≥ 0 and µ∗ ∈ K∗ not all zeros such
that

α(λ∗ ◦ f)′(x, η(x, y)) + (µ∗ ◦ g)′(x, η(x, y)) ≥ 0 , y ∈ F ,

〈µ∗, g(x)〉 = 0.

It is sufficient set λ∗ = αλ∗ and we obtain the desirable result.�

Theorem 10. (Sufficient condition) Assume that in the problem (P) the functions f
and g are pre-invex with respect to to the same function η, directionally differentiable
and that the set S is invex with respect to η. If there exist x ∈ F and (λ∗, µ∗) ∈
Q∗ ×K∗, with λ∗ 6= 0 such that

(λ∗ ◦ f)′(x, η(x, x)) + (µ∗ ◦ g)′(x, η(x, x)) ≥ 0, ∀y ∈ F (19)

〈µ∗, g(x)〉 = 0. (20)

Then x is a weak efficient solution of (P).
Proof: Assume the contrary, that is x is not a weak efficient solution of (P).

Then, there exist x ∈ F such that f(x) ≺F f(x) and since λ∗ ∈ Q∗, λ∗ 6= 0, by using
Lemma 4, we have λ∗(f(x)− f(x)) < 0 and using Lemma 3, we obtain

(λ∗ ◦ f)′(x, η(x, x)) < 0. (21)

Also, we have

(µ∗ ◦ g)′(x, η(x, x)) ≤ µ∗ ◦ g(x)− µ∗ ◦ g(x) ≤ 0

where the first inequality is obtained from Lemma 3 and the second by the feasibility
of x and of (20). Consequently, we have

(µ∗ ◦ g)′(x, η(x, x)) ≤ 0. (22)
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Adding the inequalities (21) and (22), we obtain

(λ∗ ◦ f)′(x, η(x, x)) + (µ∗ ◦ g)′(x, η(x, x)) < 0.

This is a contradiction with (19), because x ∈ F .
Therefore, x is a weak efficient solution for (P). �

Remark 1. We observe that λ∗ can be 0, in this case of the problem is called ab-
normal. To obtain λ∗ 6= 0 is necessary some restrictions on the data, maybe the most
popular is the following condition:

Slater regularity condition: ∃ x0 ∈ F such that g(x0) ≺F 0.

Lemma 11. On the hypotheses of the above Theorem, if the Slater regularity con-
dition is verified, then λ∗ 6= 0.

Proof: In fact, supose that the hypotheses of the Theorem 10 is verified and the
Slater regularity conditions is true. If we consider λ∗ = 0, we will prove a contradic-
tion. To done this, we observe that there exists µ∗ ∈ K∗\{0}, such that

(µ∗ ◦ g)′(x, η(x, y)) ≥ 0, ∀y ∈ F (23)

and

〈µ∗, g(x)〉 = 0. (24)

But,

(µ∗ ◦ g)′(x, η(x, x0)) ≤ µ∗ ◦ g(x0)− µ∗ ◦ g(x) (25)

= µ∗ ◦ g(x0) < 0

(where the first inequality is consequence of the Lemma 3, the equality is obtained
(24) and the last inequality from g(x0) ≺F 0 e µ∗ 6= 0). This is a contradiction with
(23). Consequently, λ∗ 6= 0.�

4. Global weak efficiency

In this Section we will consider the following optimization problem

Minimize f(x)

subject to x ∈ Γ







(P1)

where f : E → F, Γ ⊂ E, E and F are Banach spaces, F is ordered by the cone,
closed, convex, pointed and with interior nonempty Q.

We will call x0 ∈ Γ a global weak efficient solution for the problem (P1) if it
is a weak efficient solution of f on the set Γ, in the sense of the Definition 2.
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Also, we will say that x0 ∈ Γ is local weak efficient solution for the problem
(P1) if there exists some neighborhood N of x0 such that x0 is a weak efficient solution
of f on the set Γ ∩N.

Now, we will proof that if f is a pre-invex function in the problem (P1), then local
efficiency implies global efficiency. In fact, we have

Theorem 12. If f is pre-invex with respect to η and the set Γ is invex with respect
to η, then all solution weakly efficient local of (P1) is one solution weakly efficient
global of (P1).

Proof: Assume that the function f is pre-invex on Γ and that x ∈ Γ is a local
weak efficient solution of (P1) but that is not global.

Then, there exist x′ ∈ Γ such that

f(x)− f(x′) ∈ intQ. (26)

Since f is pre-invex and Γ is invex (with respect to η), there exists a function
η : E × E → E such that x + αη(x′, x) ∈ Γ for each α ∈ (0, 1) and

f(x + αη(x′, x)) �F αf(x′) + (1− α)f(x)

or equivalently,
αf(x′) + (1− α)f(x)− f(x + αη(x′, x)) ∈ Q

or
α(f(x′)− f(x)) + f(x)− f(x + αη(x′, x)) ∈ Q, ∀α ∈ (0, 1). (27)

Since Q is a pointed cone, from (26) and (27) we obtain η(x′, x) 6= 0.
We observe

f(x)− f(x + αη(x′, x)) = [α(f(x′)− f(x)) + f(x)− f(x + αη(x′, x))]

+α(f(x)− f(x′))

∈ Q + int Q ⊂ intQ, ∀α ∈ (0, 1)

this is contradiction with the optimality of the point x.�
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