
Discrete Newton’s method with local variations for

solving large-scale nonlinear systems ∗

Maria A. Diniz-Ehrhardt † Márcia A. Gomes-Ruggiero ‡ Véra L. Rocha Lopes §

José Mario Mart́ınez ¶

Abstract

A globally convergent discrete Newton method is proposed for solving large-scale nonlin-
ear systems of equations. Advantage is taken from discretization steps so that the residual
norm can be reduced while the Jacobian is approximated, besides the reduction at Newtonian
iterations. The Curtis-Powell-Reid (CPR) scheme for discretization is used for dealing with
sparse Jacobians. Global convergence is proved and numerical experiments are presented.

Key words: Nonlinear systems, discrete Newton’s method, local variations method.

1 Introduction

The problem of solving nonlinear systems of equations

F (x) = 0, (1)

where
F : IRn → IRn, F ∈ C1(IRn),

F = (f1, . . . , fn), appears frequently in applications to Physics, Chemistry and Engineering [11].
In this paper we introduce a new method to solve problem (1) which is based on two ideas: the

evaluation of the discrete approximation of large scale sparse Jacobian matrices by groups, with
just one function evaluation per group [6], and the local variations method [1, 12, 13]. The way in
which we combine these ideas is what characterizes our algorithm. Roughly speaking, a typical
iteration of the new algorithm starts from a current “base point” (the initial approximation or
the previous iterate) and is defined by the following features:

(i) The groups used are CPR-valid groups in the sense of [3, 6];

∗All the authors are from: DMA-IMECC-UNICAMP, 13083-970 Campinas SP, Brazil. They were supported
by PRONEX-Optimization 76.79.1008-00, FAPESP (Grant 2001-04597-4) and CNPq.

†e-mail: cheti@ime.unicamp.br
‡e-mail: marcia@ime.unicamp.br
§Also supported by FAPESP (Grant 2001-07987-8); e-mail: vlopes@ime.unicamp.br
¶e-mail: martinez@ime.unicamp.br

1

(ii) A new trial point is obtained each time a group is incorporated for updating the Jacobian
matrix;

(iii) This trial point is used as “base point” for updating the next group of Jacobian columns if
its residual norm is smaller than the residual norm at the previous base point of the discretization;
otherwise, the base point remains the same;

(iv) The discretization process described in (i)-(iii) continues until the last group is incorpo-
rated;

(v) A Newtonian iteration with line search is performed when the discretization finishes.
Global convergence is obtained using classical backtracking in which we introduce a tolerant

strategy of Li-Fukushima type [8].
We present a model algorithm, a particular case of which is the implemented method.
Besides testing the new method with boundary value problems, as done by Polak [13] and

Goldfarb and Toint [6], we apply our algorithm to solve some problems from the classical liter-
ature [9]. The numerical results show a good performance of this approach.

The paper is organized as follows. In Section 2 we describe the general algorithm and we
present a convergence result. In Section 3 we give a more detailed description of the evaluation
of the Jacobian matrix by groups as proposed by Goldfarb and Toint and of the local variations
method. Section 4 presents our numerical experiments. Finally, in Section 5, we make some
comments and present some conclusions about this work.

2 Model algorithm and convergence

Assume that F : IRn → IRn, F ∈ C1(IRn), and ‖ · ‖ an arbitrary norm. We denote J(x), the
Jacobian matrix of F (x). Assume also that J satisfies the Lipschitz condition

‖J(x) − J(y)‖ ≤ L‖x− y‖ ∀x, y ∈ IRn. (2)

Then,

‖F (y)− F (x)− J(x)(y − x)‖ ≤ L

2
‖x− y‖2 ∀x, y ∈ IRn. (3)

Assume that σ ∈ (0, 1), 0 < τmin < τmax < 1, α−1 = 1, c > 0, c′ > 0 and that {ηk} is a
sequence such that ηk > 0 for all k = 0, 1, 2, . . . and

∑∞
k=0 ηk = η <∞.

Let x0 ∈ IRn be an arbitrary initial point.
Given xk ∈ IRn, the kth iterate of the algorithm, the steps for obtaining xk+1 are given in

Algorithm 1.

2

Algorithm 1. (Model Algorithm)

Step 1: Compute Bk ∈ IRn×n such that

‖Bk − J(xk)‖ ≤ c αk−1. (4)

Step 2: Compute (if possible) dk ∈ IRn such that

Bkdk + F (xk) = 0. (5)

Step 3:

step 3.1: Set α← 1.
step 3.2: If

‖F (xk + αdk)‖ ≤ (1− ασ)‖F (xk)‖+ ηk, (6)

set αk = α and go to Step 4.
If (6) does not hold, compute αnew ∈ [τminα, τmaxα], set α← αnew and repeat step 3.2.

Step 4: Compute xk+1 ∈ IRn such that

‖xk+1 − xk‖ ≤ c′αk‖dk‖ (7)

and
‖F (xk+1)‖ ≤ ‖F (xk + αkdk)‖. (8)

Remark. Since ηk > 0 the condition (6) necessarily holds if α is small enough. Therefore, the
iteration is well defined whenever the linear system (5) has a solution.

Theorem 1. Assume that, for some sequence of indices K1 ⊂ IN , we have that J(xk) is nonsin-
gular and ‖J(xk)

−1‖ ≤M . Then
lim

k→∞
‖F (xk)‖ = 0

and every limit point of {xk} is a solution of the system (1).

Proof. We consider two disjoint possibilities:
(i) For infinitely many indices k ∈ K ⊂ IN , we have that αk ≥ ᾱ > 0.
(ii) limk→∞ αk = 0.
Let us analyze first Case (i). From (6) and (8)

‖F (xk+1)‖ ≤ (1− αkσ)‖F (xk)‖+ ηk,

for all k = 0, 1, 2,
Adding all these inequalities, we get

0 ≤ ‖F (x0)‖+
∞∑

k=0

ηk − σ
∞∑

k=0

αk‖F (xk)‖.

3

σ
∑

k∈K

αk‖F (xk)‖ ≤ σ
∞∑

k=0

αk‖F (xk)‖ ≤ ‖F (x0)‖+ η.

Therefore,
lim
k∈K
‖F (xk)‖ = 0.

Given ε > 0 let k0 be such that
(a) For all k ∈ K, k ≥ k0, ‖F (xk)‖ ≤ ε/2;
(b)

∑∞
ℓ=k0

ηℓ ≤ ε/2.
Then, if k ≥ k0,

‖F (xk)‖ ≤ ‖F (xk0
)‖+

k−1∑

ℓ=k0

ηℓ ≤ ‖F (xk0
)‖+

∞∑

ℓ=k0

ηℓ ≤
ε

2
+

ε

2
= ε.

Therefore,
lim

k→∞
‖F (xk)‖ = 0. (9)

Consider now Case (ii). Then
lim

k→∞
αk = 0.

Thus, for k ∈ IN large enough, there exists

α′
k ∈ [

αk

τmax

,
αk

τmin

]

such that
lim

k→∞
α′

k = 0 (10)

and

‖F (xk + α′
kdk‖ > (1− α′

kσ)‖F (xk)‖. (11)

Define
Tk = ‖F (xk + α′

kdk)− F (xk)− J(xk)α
′
kdk‖.

Then, by (11),
Tk + ‖F (xk) + J(xk)α

′
kdk‖ > ‖F (xk)‖ − α′

kσ‖F (xk)‖.
So,

Tk + ‖α′
k[F (xk) + J(xk)dk]‖+ (1− α′

k)‖F (xk)‖ > ‖F (xk)‖ − α′
kσ‖F (xk)‖.

Then by (5),
Tk + α′

k‖Bk − J(xk)‖ ‖dk‖ > α′
k(1− σ)‖F (xk)‖.

So, by (4)
Tk

α′
k

+ α′
k−1c ‖dk‖ > (1− σ)‖F (xk)‖.

Then, by (3),

4

L

2
α′

k‖dk‖2 + α′
k−1c ‖dk‖ > (1− σ)‖F (xk)‖. (12)

Now, for k ∈ K1, ‖J(xk)−1‖ ≤M . But, by (4),

lim
k→∞

‖Bk − J(xk)‖ = 0;

So, for k ∈ K1 large enough,
‖B−1

k ‖ ≤ 2M.

So, since
‖F (xk)‖ ≤ ‖F (x0)‖+ η,

we have that ‖dk‖ is bounded for k ∈ K1, large enough.
Then, by (10) and (12),

lim
k∈K1

‖F (xk)‖ = 0.

As in the deduction of (9), this implies that

lim
k→∞

‖F (xk)‖ = 0.

So, every limit point must be a solution. ✷

Remark: Theorem 1 shows that the only reason why the algorithm can fail is when it is not
well defined (perhaps because of singularity of the Hessian) or unboundedness of ‖J(xk)−1‖. In
particular, Theorem 1 implies that, if x∗ is a limit point but not a solution, the Jacobian J(x∗)
is necessarily singular.

Theorem 2. Assume that ‖J(xk)
−1‖ ≤M for all k ∈ IN and that

‖Bk − J(xk)‖ ≤ cmin{α0, . . . , αk−1} (13)

for all k ∈ IN . Then, there exists ᾱ > 0 such that αk ≥ ᾱ for all k ∈ IN . Moreover, for all
r ∈ (1− σᾱ, 1), there exists k0 ∈ IN such that

‖F (xk+1)‖ ≤ ‖F (xk)‖ for all k ≥ k0. (14)

Proof. Assume, by contradiction, that K2 is an infinite sequence of indices such that

lim
k∈K2

αk = 0.

Then, by (13),
lim

k→∞
‖Bk − J(xk)‖ = 0.

Therefore, for k large enough, B−1
k exists and

‖B−1
k ‖ ≤ 2M.

5

Then, by (5),
‖dk‖ ≤ 2M‖F (xk)‖ (15)

By Theorem 1, limk→∞ ‖F (xk)‖ = 0. So, by (15),

lim
k→∞

‖dk‖ = 0.

Now, by (3) and (15),
‖F (xk + dk)‖

= ‖F (xk + dk)− F (xk)−Bkdk + (F (xk) + Bkdk)− (F (xk) + J(xk)dk) + F (xk) + J(xk)dk‖
≤ ‖F (xk + dk)− F (xk)− J(xk)dk‖+ ‖(Bk − J(xk))dk‖

≤ L‖dk‖2 + ‖Bk − J(xk)‖ ‖dk‖
≤ [4M2L‖F (xk)‖+ 2M‖Bk − J(xk)‖] ‖F (xk)‖.

Since ‖F (xk)‖ → 0 and ‖Bk − J(xk)‖ → 0, the previous inequality implies that (6) holds with
α = 1 for k large enough. Therefore, for k large enough, αk = 1. This contradicts the initial
assumption. Therefore, αk is bounded away from zero, as we wanted to prove. The second part
of the prove follows straightforwardly from (6). ✷

Counterexample. It is interesting to show that αk might not be bounded away from zero
under the rule (4), even in situations in which the sequence converges to an isolated solution of
(1). Define F : IR→ IR by F (x) = x2 − 1, x0 = −2, Bk = J(xk) = 2xk if k is even, Bk = 1 if k
is odd. Take, for example, σ = 1/2. Clearly,

lim
k→∞

xk = −1,

α2k = 1 ∀ k ∈ IN,

but
lim

k→∞
α2k+1 = 0.

This shows that the rule (13) is necessary for proving the existence of a lower bound of αk.

Theorems 1 and 2 did not use the assumption (7). This assumption, however, is necessary
to prove local convergence of the algorithm, as we show in Theorem 3 below.

Theorem 3. Assume the hypotheses of Theorem 1 and, in addition, suppose that x∗ is a limit
point of {xk},

lim
k∈K3

xk = x∗,

J(x∗) is nonsingular and {‖B−1
k ‖}k∈IN is bounded. Then, xk converges to x∗. If, in addition,

(13) holds, there exists ᾱ > 0 such that αk ≥ ᾱ for all k ∈ IN and {xk} converges at a linear
rate to x∗ in the sense that for all r ∈ (1− σᾱ, 1) there exists k1 ∈ IN such that

‖J(x∗)(xk+1 − x∗)‖ ≤ r‖J(x∗)(xk − x∗)‖ (16)

6

for all k ≥ k1.

Proof. By Theorem 1 we have that

lim
k→∞

‖F (xk)‖ = 0 (17)

and
F (x∗) = 0.

By the boundedness of {‖B−1
k ‖}k∈IN , (5), (6), (7) and (17), we have that

lim
k→∞

‖xk+1 − xk‖ = 0.

Since J(x∗) is nonsingular, by the Inverse Function Theorem, there exists ε > 0 such that
‖F (x)‖ > 0 whenever 0 < ‖x− x∗‖ ≤ ε. Let k0 be such that

‖xk+1 − xk‖ ≤
ε

2
(18)

for all k ≥ k0. The set {x ∈ IRn | ε
2 ≤ ‖x−x∗‖ ≤ ε} can contain only a finite number of iterates

xk. Otherwise, it should contain a limit point that, by Theorem 1, should be a solution of (1).
Therefore, there exists k1 ≥ k0 such that, for all k ≥ k1, either ‖xk−x∗‖ < ε/2 or ‖xk−x∗‖ > ε.
But, since there exist infinitely many iterates such that ‖xk − x∗‖ < ε/2 and (18) holds for all
k ≥ k1, it follows that ‖xk − x∗‖ < ε/2 must hold for all k large enough. Since x∗ is the only
possible limit point in this ball, it follows that xk converges to x∗.

By Theorem 2, if (13) holds, there exists ᾱ > 0 such that αk ≥ ᾱ for all k ∈ IN . Let
r ∈ (1− σᾱ, 1), r′ ∈ (1− σᾱ, r). By Theorem 2, for k large enough,

‖F (xk+1‖ ≤ r′‖F (xk)‖.

Then, by (3),

‖J(x∗)(xk+1 − x∗)‖ −
L

2
‖xk+1 − x∗‖2 ≤ r′‖J(x∗)(xk − x∗)‖+

r′L

2
‖xk − x∗‖2.

So,

‖J(x∗)(xk+1 − x∗)‖ −
L

2
‖J(x∗)

−1‖ ‖J(x∗)(xk+1 − x∗)‖ ‖xk+1 − x∗‖

≤ r′‖J(x∗)(xk − x∗)‖+
Lr′

2
‖J(x∗)

−1‖ ‖J(x∗)(xk − x∗)‖‖xk − x∗‖.

Therefore,

(1− L

2
‖J(x∗)

−1‖ ‖xk+1 − x∗‖)‖J(x∗)(xk+1 − x∗)‖

≤ (r′ +
Lr′

2
‖J(x∗)

−1‖ ‖xk − x∗‖)‖J(x∗)(xk − x∗)‖.

Thus,
‖J(x∗)(xk+1 − x∗)‖ ≤ Qkr

′‖J(x∗)(xk − x∗)‖

7

where

Qk =
1 + Lr′

2 ‖J(x∗)
−1‖ ‖xk − x∗‖

1− L
2 ‖J(x∗)−1‖ ‖xk+1 − x∗‖

.

Since limk→∞ Qk = 1 the desired result is proved. ✷

3 Discretization and local variations

Assume that J(x), the Jacobian matrix of F (x), has a sparse structure. The standard dis-
cretization of a Jacobian considers J(x) as a full matrix and has to perform n + 1 function
evaluations for computing the approximation. For each j, j = 1, 2, . . . , n, the jth column, of
the approximation of J(x) is given by:

(Ĵ)j =
F (x + hej)− F (x)

h
, (19)

where h ∈ IR, h 6= 0, is the step size and ej is the jth vector of the canonical basis of IRn.
For the case in which J(x) is sparse, Curtis, Powell and Reid [3] proposed an algorithm to

evaluate the approximate Jacobian matrix with a reduced number of function evaluations (see
[3]). The idea was to update groups of columns of Ĵ that could be evaluated together, using
only one function evaluation for each group. The CPR strategy to deal with problems where the
Jacobian matrix has a known sparse structure is based on generating the groups, the first one
always starting with the first column, and then going in the natural order of the columns. The
only requirement is that the same group must have all its nonzero elements on different rows.
Those groups are called CPR-valid.

The greedy choice of CPR groups suggested in [3] does not always give the least possible
number of groups (see, for instance [10, 2, 6]). Coleman and Moré [2] showed that this problem,
for a general sparse pattern, is equivalent to a certain coloring problem on a suitable graph, and
proposed the use of graph coloring algorithms to obtain less groups then CPR method. But
again, it is not always that this strategy uses the minimum number of groups.

Newsan and Ramsdell [10] proved that it is always possible to estimate the sparse Jacobian
matrix in a number of function evaluations which is equal to the maximum number of nonzero
elements on a single row.

Goldfarb and Toint [6] also used the CPR idea to solve nonlinear sparse systems coming
from the discretization of boundary value problems in partial differential equations, by finite
diferences. With their strategy, they perform a number of function evaluations that is equal to
the number of CPR-valid groups plus one; and the number of groups that they need to use is
the maximum number of nonzero elements on a single row.

In this work, we use the strategy of Goldfarb and Toint for boundary value problems and
the CPR strategy for general problems. It is not hard to see that, if we use the information
about how the grid was constructed, the CPR-valid groups can easily be identified [6].

Our algorithm is a particular case of Algorithm 1, described in the previous section. In
this section we describe how to compute the iterate xk+1, starting from xk + αkdk and how to
compute, at the same time, the new matrix Bk+1. The first procedure is the local variations

8

method and the second is the discretization scheme. Details (including the way to compute the
first iteration) are left to the following section.

To simplify the notation, let us define y1 = xk +αkdk. Initially, y1 will be called “base point”
of the discretization. Let hk+1 6= 0 be a discretization step, such that

|hk+1| ≤ βαk (20)

where β > 0 is a parameter independent of k.
Assume that {v1, . . . , vq} ⊂ IRn is the set of (nonnull) “CPR directions”, which is also

independent of the iteration index k.
The following algorithm describes how to obtain xk+1.

Algorithm 2.

For j = 1, . . . , q, execute Steps 1 to 3.

Step 1. If 〈dk , vj〉 ≤ 0, set wj = −vj ; else, set wj = vj.

Step 2. Compute z ← yj + hk+1wj.

Step 3. If
‖F (z)‖ < ‖F (yj)‖ (21)

set yj+1 = z; else set yj+1 = yj.

Step 3. Define xk+1 = yq+1.

At the beginning of the algorithm, when we have an initial x0 given externally, we apply
Steps 1 and 2 of Algorithm 2 starting from y1 = x0 and, at Step 3, we redefine x0 ← yq+1.

Clearly, by (20) and (21) the conditions (7) and (8) are satisfied.

Now we explain how to compute the matrix Bk+1 and we prove that, in this way, the
condition (4) is satisfied so that the new algorithm is a particular case of Algorithm 1.

To each CPR direction vj it is associated a set Ij ⊂ {1, . . . , n} such that

I1 ∪ . . . ∪ Iq = {1, . . . , n},

Ij ∩ Iℓ = ∅ if i 6= j

and
[vj]i = 1 if i ∈ Ij , 0 otherwise .

The sets Ij are related to the sparsity of J(x) in the following way: if i1, i2 ∈ Ij and i1 6= i2,
then

∂fℓ

∂xi1

(x)
∂fℓ

∂xi2

(x) = 0

for all ℓ = 1, . . . , n, x ∈ IRn.

9

Let us write, to simplify the notation, h = hk+1. The vector [F (yj + hvj) − F (yj)]/h
contributes to the construction of the matrix Bk+1 as follows: if ν ∈ Ij and the ith coordinate
of [F (yj + hvj) − F (yj)]/h is nonnull, then the (i, ν) entry of Bk+1 is set to be equal to this
coordinate.

Then, for all j = 1, . . . , q,

Bk+1vj = [F (yj + hvj)− F (yj)]/h. (22)

Now, by (3),

‖F (yj + hvj)− F (yj)− J(yj)hvj‖ ≤
L

2
h2‖vj‖2.

Therefore,

‖F (yj + hvj)− F (yj)

h
− J(yj)vj‖ ≤

L

2
|h| ‖vj‖2.

So, by (22),

‖[Bk+1 − J(yj)]vj‖ ≤
L

2
|h| ‖vj‖2.

By the definition of vj this implies that there exists a constant c1, independent of the iteration
index k, such that

‖Bk+1 − J(yj)‖ ≤ c1|h|. (23)

But, by the definition of yj we have that

‖yj − xk+1‖ ≤ c2|h|,

therefore, by (2),
‖J(yj)− J(xk+1)‖ ≤ c2L|h|.

Then, by (23),
‖Bk+1 − J(xk+1)‖ ≤ (c2L + c1)|h|.

So, by the choice (20), the condition (4) holds. Clearly, if we choose, instead of (20),

|hk+1| ≤ β min{α0, . . . , αk} (24)

the assumption (13) is satisfied as well.

4 Implementation features

Algorithm 1 was implemented with the discrete Newton definition of Bk described in the previous
section and the local variations procedure given by Algorithm 2 for defining xk+1, after the
computation of xk + αkdk. The theorems proved in Section 2 give the theoretical properties of
the algorithm for the choices (20) and (24) of the discretization step hk+1.

In this section we give more details about the implementation of the algorithm.
¿From now on, || . || means the Euclidean norm.

10

4.1 The choice of the discretization step

Given smin and smax such that 0 < smin < smax <∞ we defined

s0 = smax

and
sk = min{smax,max{smin, ‖dk‖}}, if k > 0.

Finally,
|hk+1| = min{α0, . . . , αk}sk, k = 0, 1,

We used smin =
√

εmach, where εmach is the machine precision; smax will be defined in the
next section.

4.2 Line search procedure

If the vector xk + αkdk does not give an acceptable decrease in the value of the function, in the
sense of (6), then we compute the new step size as

αnew = min{τmaxα , max{τminα ,
α

2
}}.

4.3 The sequence ηk

We define:

• ftip(0) = ‖F (x0)‖,

• ftip(k) = min{‖F (xk)‖, f tip(k − 1)}, if k is a multiple of 10 and

• ftip(k) = ftip(k − 1), otherwise.

Then, we set:

ηk =
ftip

(k + 1)1.1
.

4.4 Algorithmic parameters

For the parameter σ used in the criterion (6), we took σ = 10−4.
The values chosen for the limits of the interval for taking the new value of the parameter α were
τmin = 10−6 and τmax = 1.0.

4.5 Stopping criteria

The process is finished successfully if

‖F (xk)‖ ≤ 10−6 and k < 500.

11

5 Numerical Experiments

In order to test the new algorithm proposed in this work we implemented also the discrete
Newton algorithm, where the approximation of the Jacobian matrix is obtained by groups. Let
us describe now this algorithm.

Given:

• q, the number of CPR-valid groups for the Jacobian matrix;

• Ij , j = 1, . . . q, the vectors of the indices of the columns at the group q;

• str, the array which contains the sparse structure of Jacobian matrix: (i, j) ∈ str if the
(i, j) entry of Jacobian is nonzero;

• ε > 0, the tolerance for the stopping criterion;

• x0 ∈ IRn, the initial approximation for the solution of (1);

• hε > 0, the finite-difference step size.

Let xk ∈ IRn be the kth iterate of the algorithm. Then the steps for obtaining xk+1 are given
as follows:

Algorithm 3.

Step 1: While ‖F (xk)‖ > ε perform Steps 2 to 4.

Step 2: Evaluate the approximation of the Jacobian matrix:
For gcol = 1, . . . , q

For all j ∈ Igcol and i such that (i, j) ∈ str:

compute: Ĵi,j = ((F (xk + hεvj))i − (F (xk))i)/hε,
where the direction vector vj is defined as in
algorithm 2.

Step 3: Compute the direction s, solution of: Ĵs = −F (xk).

Step 4: Set: xk+1 = xk + s and k = k + 1.

We ran both algorithms with the same parameters as described in the last section. All the
tests were performed in an Pentium III - 1.0GHz computer, using the software MatLab 6.0.

5.1 Academic Tests

The first set of numerical experiments consists of 12 problems selected from Moré, Garbow and
Hillstrom [9] collection.

The results are presented in Table 1 with the following notation:

• (Problem, n, q) denotes the name of the nonlinear system, its dimension and number
of CPR-valid groups of the Jacobian matrix, respectively;

12

• Algorithm: DN indicates the discrete Newton method (algorithm 3) and DNLV indicates
the discrete Newton method with local variations (algorithms 1 and 2);

• δ denotes the initial value for step size for discretization of matrix Ĵ : for DN algorithm,
this value is fixed for all iterations and δ = hε =

√
εmach ‖x0‖∞ (if ‖x0‖∞ = 0 then we

chose
√

εmach); for DNLV, δ = smax;

• Conv: C indicates that the stopping criterion was satisfied for one approximation xk, and
NC1 indicates that the maximum number of iterations was exceeded and NC2 means non
convergence with normf = Nan (non numeric value);

• (Iter, Feval) denotes the number of iterations and the number of function evaluations
performed by the algorithm; according to the DN algorithm the number of function evalu-
ations is given by the formula:

((q+1)*iter + 1)

and for DNLV algorithm, this number will be given by same formula plus the number of
function evaluations performed at line search steps and

• ‖F (x)‖2 indicates the norm-2 of the function at the solution obtained by the algorithm.

We observe that for some problems, the performance of DNLV could be better if a more
tolerant line search process were used. For example, using ηk = 1039 at the three first iterations,
the performance of DNLV method is the same of DN method for Rosenbrock problem. But this
tolerant line search resulted in a worse perfomance for DNLV at other tests. So we fixed the
strategy indicated in algorithm 3 for all the tests performed in this work.

Comparing the performance of DNLV using different choices for the parameter δ we concluded
that the best choice is δ = 0.02. This choice was made because despite of better results were
obtained with δ = 0.2 or δ = 0.7 for a few problems, the algorithm with δ = 0.02 had a more
robust performance.

To illustrate a comparison between DN and DNLV (with δ = 0.02) algorithms, we plotted, in
the same figure, the number of iterations performed by these methods at each problem numbered
from 1 to 11 according to the order that they appear in Table 1. A similar comparison was done
using the number of function evaluations. These results are showed in Figure 1, where the
symbols + and ♦ represents DNLV and DN methods respectively.

In five problems (problems numbers 2, 4, 7, 8, and 11) both algorithms had the same per-
formance and in four problems (problems numbers 3, 6, 9 and 10) the two algorithms had a
similar performance in terms of number of iterations: algorithm DNLV performed just one more
iteration than algorithm DN, but the difference between the number of function evaluations is
more significant, because at each iteration this number is equal to the the number of CPR-valid
groups plus one. Finally, in Problems 1 and 5 the DNLV algorithm had its worst performance.

13

(Problem,n,ngroup) Algorithm δ Conv. (Iter, Evalf) ‖F (x)‖2

(Rosenbrock,2,2) DN ∼ 1.5D−08 C (2,7) 0.155D−13
DNLV 0.02 C (5,21) 0.133D−13

0.2 C (5,21) 0.222D−14
0.7 C (7,28) 0.000D+00

(Powell badly scaled,2,2) DN ∼ 1.5D−08 C (10,31) 0.358D−06
DNLV 0.02 C (10,31) 0.594D−06

0.2 C (11,34) 0.561D−06
0.7 C (13,40) 0.405D−07

(Helical valley,3,3) DN ∼ 1.5D−08 C (9,37) 0.616D−07
DNLV 0.02 C (10,41) 0.653D−12

0.2 C (9,37) 0.419D−07
0.7 C (7,29) 0.343D−06

(Box three-dimensional,3,3) DN ∼ 2.9D−07 C (4,17) 0.317D−08
DNLV 0.02 C (4,17) 0.445D−06

0.2 C (5,21) 0.811D−08
0.7 C (5,21) 0.618D−09

(Powell singular,4,2) DN ∼ 4.5D−08 C (12,37) 0.756D−06
DNLV 0.02 C (17,52) 0.869D−06

0.2 C (20,61) 0.479D−06
0.7 C (19,58) 0.989D−06

(Trigonometric,10,10) DN 1.5D−09 C (7,78) 0.801D−11
DNLV 0.02 C (8,95) 0.506D−07

0.2 NC1 (500,10057) 0.113D−00
0.7 NC1 (500,9386) 0.580D−02

(Brown almost-linear,50,50) DN ∼ 7.5D−09 C (1,52) 0.123D−13
DNLV 0.02 C (1,52) 0.286D−11

0.2 C (1,52) 0.502D−13
0.7 C (1,52) 0.100D−12

(Discrete boundary value, 100,3) DN ∼ 1.1D−09 C (2,9) 0.108D−08
DNLV 0.02 C (2,9) 0.196D−07

0.2 C (2,9) 0.463D−06
0.7 C (3,13) 0.136D−07

(Broyden tridiagonal,100,3) DN ∼ 1.5D−08 C (4,17) 0.106D−08
DNLV 0.02 C (5,21) 0.583D−09

0.2 C (5,21) 0.255D−07
0.7 C (6,25) 0.475D−06

(Broyden banded,100,7) DN ∼ 1.5D−08 C (5,41) 0.154D−07
DNLV 0.02 C (6,49) 0.144D−07

0.2 C (7,57) 0.344D−07
0.7 NC2 (13,16) NaN

(Discrete integral equation,50,50) DN ∼ 3.7D−09 C (2,103) 0.768D−06
DNLV 0.02 C (2,103) 0.937D−06
DNLV 0.2 C (3,154) 0.527D−06
DNLV 0.7 C (3,154) 0.457D−07

Table 1: First set of numerical tests

14

0 1 2 3 4 5 6 7 8 9 10 11 12
0

2

4

6

8

10

12

14

16

18

problem

ite
ra

tio
ns

Figure 1: Comparison between algorithms DN and DNLV: number of iterations.

0 1 2 3 4 5 6 7 8 9 10 11 12
0

20

40

60

80

100

120

140

160

problem

fu
nc

tio
n

ev
al

ua
tio

ns

Figure 2: Comparison between algorithms DN and DNLV: number of function evaluations.

15

5.2 Bratu and Convection-Diffusion Problems

The problems considered in this section consist on finding u : [0, 1] × [0, 1]→ IR such that

Gλ(u) = f(s, t), (25)

with boundary conditions, where G is an operator that involves second-order partial derivatives
of u. As in [7], we assumed the following known solution for the problem:

u∗(s, t) = 10st(1 − s)(1− t)es4.5

. (26)

In our tests we used a grid with 63 interior points in each axis. The unknowns of the dis-
cretized system are the values of u at these grid points. All the derivatives were approximated
using central differences. Replacing in (25) the function and the derivatives by their approxi-
mations, and using the boundary conditions, we obtain a nonlinear system of equations like (1),
whose dimension is 3969 (the total number of grid points).

We ran the DN and DNLV algorithms with the initial approximation x0 = 0, and we took
δ = 0.02 for DNLV. This value was the one with the best performance among all the tests showed
in Table 1 (the best in 8 problems). The other parameters were the same used for the academic
tests.

In what follows, we define the operators considered in this work. In all the cases, the
boundary condition is u = 0 and ∆ is the Laplacian operator. The number of groups is always
q = 5. In Tables 2 and 3, we used the same notation as the one used in Table 1 and the last
column was introduced shown the CPU time, in seconds.

1. Bratu Problem

Gλ(u) = −∆u + λeu.

In Table 2, we show the results obtained when the algorithms DN and DNLV were applied for
Bratu problem with several values of λ. For this formulation of the problems, only negative
values of λ have physical meaning; for these values the performance of both algorithms were the
same as showed in Table 2 for λ = −100 and λ = −50.

Positive values of λ make the problems mathematically more difficult and we used some
of them to compare the performance of the algorithms for solving harder problems. For λ =
20 , 50 , 60 , 100 and 500 the algorithm DN did not converge, while the DNLV obtained the solution
of the system for all the values of λ.

When both methods converged, the best performance of DN was for λ = 400 and the best
performance of DNLV, for λ = 25. For the other problems DN was slightly better than DNLV.

16

λ Algorithm Conv. (Iter, Evalf) ‖F (x)‖2 Time(s)

-100 DNVL C (6,37) 0.444D-09 5.66

DN C (5,31) 0.352D-10 2.80

-50 DNLV C (6,37) 0.415D-10 5.60

DN C (5,31) 0.342D-10 2.86

0 DNLV C (1,7) 0.883D-10 0.93

DN C (1,7) 0.661D-10 0.61

20 DNLV C (7,46) 0.556D-08 6.54

DN NC2 (5,31) NaN 4.78

25 DNLV C (6,38) 0.304D-06 5.49

DN C (7,43) 0.256D-06 6.87

50 DNLV C (10,65) 0.172D-06 9.45

DN NC2 (11,67) NaN 10.16

60 DNLV C (13,81) 0.306D-07 12.08

DN NC2 (18,109) NaN 17.25

75 DNLV C (8,49) 0.195D-06 7.31

DN C (6,37) 0.425D-10 5.82

100 DNVL C (10,63) 0.125D-09 9.45

DN NC2 (8,49) NaN 7.36

150 DNLV C (8,49) 0.183D-07 7.58

DN C (6,37) 0.149D-06 5.82

200 DNLV C (11,67) 0.256D-07 10.38

DN C (6,37) 0.176D-06 5.82

300 DNLV C (9,55) 0.120D-06 8.57

DN C (6,37) 0.255D-08 5.88

400 DNLV C (97,779) 0.918D-07 95.68

DN C (7,43) 0.228D-09 6.82

500 DNLV C (60,554) 0.804D-06 60.86

DN NC2 (18,109) NaN 17.31

Table 2: Bratu Problem.

17

2. Convection-Diffusion Problem

Gλ(u) = −∆u + λu(us + ut)

It is shown, in Table 3, the results obtained for the convection-diffusion problem for both DN

and DNLV methods. Again, we worked with different values for the parameter λ.
About these results, we can observe that the DN method did not converge when we took λ

equal to ±200, ±150, ±100 , and the new algorithm, DNLV, was always successful.
In the tests where both methods converged, we can say that they presented almost the same

performance.

λ Algorithm Conv. (Iter, Evalf) ‖F (x)‖2 Time(s)

-200 DNLV C (52,571) 0.751D-06 64.20

DN NC2 (17,103) NaN 17.85

-150 DNLV C (57,623) 0.350D-10 70.30

DN NC2 (24,145) NaN 26.37

-100 DNLV C (23,216) 0.927D-07 26.91

DN NC2 (24,145) NaN 26.42

-75 DNLV C (19,161) 0.350D-10 21.48

DN C (11,67) 0.363D-10 10.98

-50 DNLV C (10,71) 0.343D-10 10.76

DN C (9,55) 0.347D-10 8.95

-25 DNLV C (6,37) 0.123D-08 6.15

DN C (6,37) 0.123D-08 5.82

25 DNLV C (5,31) 0.447D-06 5.16

DN C (5,31) 0.445D-06 4.89

50 DNLV C (8,53) 0.331D-10 8.41

DN C (9,66) 0.957D-06 9.72

75 DNLV C (9,66) 0.957D-06 9.72

DN C (10,61) 0.465D-09 10.05

100 DNLV C (14,116) 0.638D-07 15.71

DN NC2 (28,169) NaN 30.32

150 DNLV C (19,176) 0.305D-06 22.13

DN NC2 (27,163) NaN 28.89

200 DNLV C (35,366) 0.344D-10 42.63

DN NC2 (19,115) NaN 20.16

Table 3: Convection-Diffusion Problem

With the objective of comparing and analyzing the performance of the solvers DN and DNLV

we applied the tool “performance profile” indroduced by Dolan and Moré, [5]. In a few words,
this tool compares the performance of ns solvers of a set S for the resolution of np problems of
a set P using a measure like the number of iterations, the number of function evaluations or the
computing time. ms,p denotes the total of the measure chosen required to solve problem p by

18

solver s. For each problem p and solver s the performance ratio rs,p is computed:

rs,p =
ms,p

min{ms,p ∀s ∈ S}
if the problem p is solved by solver s; otherwise,

rs,p = rM ,

where rM is a large enough fixed parameter.
Then, for each s ∈ S, the cumulative distribution function ρs : IR → [0, 1], for performance

ratio rs,t, is built:

ρs(t) =
1

np

size{p ∈ P | rs,p ≤ t}.

This function represents the performance of the solver s, it is nondecreasing and piecewise
constant. At the analysis of solver s, two points give us very important information, which are:
ρs(1) and t, such that, ρs(t) = 1. The value of ρs(1) indicates the probability of solver s be the
best solver in terms of set S and using the measure ms,t. And the efficiency of solver s in terms
of the number of problems that can be solved is evaluated by the minimum value of t, denoted
by ts, such that ρs(t) = 1, if there exists such value for t < rM . So, the winner in terms of
robustness will be the solver ŝ for which tŝ = min{ts,∀s ∈ S}.

We performed this analysis, considering the 25 problems listed at Tables 2 and 3 (13 Bratu
problems and 12 convection-diffusion problems), the two algorithms DN and DNLV and the number
of iterations as the measure of performance. We plotted at Figure 3 the function ρs : [1, 20] →
[0, 1] for both solvers. From this figure we observe that DNLV solves approximately 70% of the
problems with the minimum number of iterations and this solver get ρs(t) = 1 for t ∼ 14. The
algorithm DN solves approximately 45% of the problems with the minimum number of iterations,
and only 55% of the problems can be solved by this software. So, for this set of problems, the
solver DNLV has the best “performance profile” in terms of minimum number of iterations and
robustness.

2 4 6 8 10 12 14 16 18 20
0

0.2

0.4

0.6

0.8

1

performance profile: iterations

t

ρ s(t
)

DN
DNLV

Figure 3: Performance profile with the number of iteratios as measure.

19

6 Conclusions

Analyzing the Tables 1–3, we can conclude that the new algorithm DNLV is competitive and it
seems to be more robust than the discrete Newton’s method implemented in DN algorithm. We
believe that this fact is due to the different strategies that we used in our method: local varia-
tions, that allows us to change the base points; the reduction of the step size of the discretization
and the line search process, that produces the global convergence results.

Finally, for the boundary value problems tested, the performance of DNLV may be considered
much better than that of DN, taking into account the number of problems solved by DNLV which
DN could not solve. This can be seen in Tables 2 and 3. We observe that this conclusion can
also be taken from the analysis made of the performance of both methods, considering their
performance profiles (using the number of iterations as measure, see Figure 3). DNLV solved all
the problems, 70% of them with the minimum number of iterations, while DN solved only 55% of
the problems and only 45% of the problems were solved with the minimum number of iterations.

References

[1] Banitchouk, N. V., Petrov, V. M. and Chernousko, R. L., Numerical Solution of Problems
with Variational Limits by the Method of Local Variations, Z̆. Vyčisl. Mat. i Mat. Fiz., Vol.
6, pp 947-961, (1966).

[2] Coleman, T. F. and Moré, J. J., Estimation of Sparse Jacobian Matrices and Graph Coloring
Problems, SIAM J. Numer. Anal., Vol. 20, pp 187-209, (1983).

[3] Curtis, A., Powell, M. J. D. and Reid, J., On the Estimation of Sparse Jacobian Matrices,
J, Inst. Math. Appl. Vol. 13, pp 117-119, (1974).

[4] Dennis, Jr., J. E. and Schnabel, R. B., Numerical Methods for Unconstrained Optimization

and Nonlinear Equations, SIAM Classics in Applied Mathematics, (1996).

[5] Dolan, E. D. and Moré, J. J., Benchmarking Optimization Software with Performance
Profiles, Math. Program. Series A91, pp 201-213, (2002)

[6] Goldfarb, D. and Toint, Ph. L., Optimal Estimation of Jacobian and Hessian Matrices
that Arise in Finite Difference Calculations, Mathematics of Computation, Vol. 43 167, pp
69-88, (1984).

[7] Kelley, C. T., Iterative Methods for Linear and Nonlinear Equations, SIAM, (1995).

[8] Li, Dong-Hui and Fukushima, M., Derivative-Free Line Search and Global Convergence of
Broyden-Like Method for Nonlinear Equations, Optimization Methods and Software 13, pp
181–201, (2000).

[9] Moré, J. J., Garbow, B. S. and Hillstrom, K. E., Testing Unconstrained Optimization Soft-
ware, ACM Transactions on Mathematical Software, Vol. 7, 1 pp 17-41, (1981).

20

[10] Newsam, G. N. and Ramsdell, J.D., Estimation on Sparse Jacobian Matrices, SIAM J.
Algebraic Discrete Methods, Vol. 4, pp 404-418, (1983).

[11] Pérez, R., Lopes, V. L. R., Solving Recent Applications by Quasi-Newton Methods, to appear
in Applied Numerical Mathematics.

[12] Polak, E., Computational Methods in Optimization: A Unified Approach, Academic Press,
New York, (1970).

[13] Polak, E., A Globally Convergent Secant Method with Applications to Boundary Value Prob-
lems, SIAM Journal of Numerical Analysis, Vol. 11 , 3, pp 529-537, (1974).

21

