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ABSTRACT

Seismic images obtained by Kirchhoff time or depth migmatoe always accompanied by some
artifacts known as “migration noise”, “migration bounda&ffects”, or “diffraction smiles”, which
may severely affect the quality of the migration result. Mafthese undesirable effects are caused
by a limited aperture if the algorithms make no special dssjimn to avoid them. Likewise, strong
amplitude variation along reflection events may also caim#as artifacts. All these effects can
be explained mathematically by means of the Method of StatipPhase. However, such a purely
theoretical explication is not always easy to understanépplied geophysicists. By relating the
terms of the stationary-phase approximation to simple g#ooal situations, a more physical
interpretation of the migration artifacts can be obtairkedimple numerical experiment for post-
stack (zero-offset) data indicates the problem and helgietelop an intuitive understanding of
the effects and the methods to avoid them.



INTRODUCTION

Since the early work of Hagedoorn (1954), migration conedyatve strongly improved and are
now an important tool in the world of seismic imaging, eitlsrprestack or poststack time and
depth migration (see, e.g., Yilmaz, 2001). Hagedoornginal (graphical) migration scheme us-
ing surfaces of maximum convexity was later related to theenuation and became familiar as
“Kirchhoff migration” (Schneider, 1978). The name was afosvith regard to the “Kirchhoff in-
tegral”, which is used to describe the (forward) propagatibseismic waves within a given depth
model. Since the Kirchhoff integral by itself cannot be usedolve the inverse problem, i.e., to
describe backward propagation, Kirchhoff migration wasoiduced as its adjoint operation that
describes the forward propagation of the recorded waveiette reverse direction. This turns
out to be a very good approximation to backward propagatdoreg as evanescent waves can be
neglected.

Kirchhoff migration treats each depth poiff on a sufficiently dense grid like a diffraction
point. In an a-priori given macrovelocity model, the reletvpart of the Green’s function of a
point source at any single diffraction poiff in the depth domain is calculated. The kinematic
part of this Green'’s function is the configuration-specifirdction-traveltime surface, also called
“Huygens surface”.

The amplitudes of the input seismograms (or, to be more Bpeof their derivatives) are
stacked along the Huygens surface and assigned to the deiith\g. This explains why the
Kirchhoff migration scheme is also called a “diffractiomsk”. If so desired, the effect of geo-
metrical spreading can be removed from the output ampkétbgenultiplying the data during the
stack with a true-amplitude weight factor that is calcuat®m the dynamic part of the Green’s
function.

Ideally, the extent of the Huygens surfaces, that is, theatimn aperture, should be limitless
so that no contributions due to the abrupt truncation of thva sccur. In practice, of course, the
aperture is always limited by the region over which seisnatachave been acquired. In other
words, because of the finiteness of the survey area, Kir€ntmgfation will always be a “limited
aperture migration” (LAM) (Sun, 1998).

This is, however, not the only reason why we have to deal vhi¢gheffects of a finite migra-
tion aperture. In practial migration implementations,rev@nges of source and receiver positions
might be excluded where data actually have been acquireth &procedure can be advantageous
because

e less traces to sum leads to a speedup of the whole migrathoe §s,

e a smaller operator excludes steeper dips, which helps tiol ayerator aliasing (see, e.g.,
Abma et al., 1999),

e less summation of data away from the signal reduces theistaokunwanted noise.

For the best possible reduction of aliasing and noise asasethe best computational efficiency,
one would like to use a model-based aperture restrictioen,ane would like to make use of the
(projected) Fresnel zone (see, e.g., Schleicher et al7, 28 and Bancroft, 2001). Unfortunately,
it is difficult to determine the exact center and size of thesRel zone for each depth point prior to
or during migration. A reasonable compromise between acguand practicability is to specify a
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common maximum migration aperture radius or a maximum gigakperator dip. These aperture
reductions lead to dip-restricted migration operatordasgxample, a 45migration. With these
kinds of operators, higher dips cannot be imaged. In regMrese dips are known to be restricted,
this is a very convenient way of reducing aliasing and imprgxcomputational efficiency at the
same time. It should, however, be kept in mind that closeg¢ortaximum dip, these dip-restricted
migration operators will achieve only kinematically carémages (see, e.g., Schleicher et al.,
1997; Sun, 1998). For true-amplitude migration, the maxmayerator dip must always be chosen
somewhat larger than the maximum reflector dip to be imaged.

The fact that the migration aperture is limited causesaatsfknown as migration noise, bound-
ary or aperture effects, or migration smiles. In this paperrelate the mathematical explanation
of the migration artifacts by means of the Method of StatigriRhase (see, e.g., Bleistein, 1984;
Sun, 1998; Bleistein et al., 2001) to simple geometricalagions. This more physical interpre-
tation leads to a more intuitive insight into these effe@kcourse, since the stacking operations
are the same in Kirchhoff time and depth migration, the gpoading artifacts are conceptually
identical in both processes. Thus, we restrict our presentigsion to Kirchhoff depth migration.
It should, however, be kept in mind that everything said drahs in this paper with respect to an
image in depth holds in the same way for an image in time.

KIRCHHOFF MIGRATION

Mathematically, the Kirchhoff migration process is exgex as an integration over the recorded
wavefield and reads in 3-D (Tygel et al., 1996)

v =~ [ derag wos(@ ) 250 , ()
A

t=rp (£,M)

whereV/ (M) is the value assigned to one diffraction paldtin the depth domain after migration
and U(E, t) denotes the data in the time domain (seismograms). Theaeadatissumed to con-
sist of analytic traces which allows the handling of compieftection coefficients (supercritical
reflections) and possible caustics along the ray paths. Aty@amtrace is formed by the actual
trace recorded in the field as the real part and its Hilbentsfiirm as the imaginary part. The vec-
tor E = (&1, &) is the so-called configuration parameter vector and reptedlke trace position.
Sources and receivers are grouped into pairs, whose losaie described as a functionf?)fr he
actual form of this function depends on the measurementgunafiion. The migration aperturé

is the area over whi05 varies to cover all source-receiver pairs used in the stack.

The factorWDS(E, M) is a true-amplitude weight function which may (true-amypli¢ migra-
tion) or may not (purely kinematic migration) be includedlire migration scheme. The stacking
surfacerp (E, M) is the above-mentioned Huygens surface. The time derevidisieeded in order
to correctly recover the source pulse (Newman, 1975).

We assume that at least one reflection event is present irethiis data/ (€, ). Then, these
data can be described by zero-order ray theory (see Gegeeny, 2001) as

U(E N = Rea Pl =), @

where R, denotes the angle-dependent reflectivifysymbolizes the point-source geometrical
spreading factor, anBi describes all other effects on the amplitude, such as sstreegth, source
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and receiver coupling, transmission loss and attenuatitimei reflector overburden, to name a few.
Moreover, F'(t) is the analytic source wavelet which is shifted to the atrirae 7, (reflection
traveltime). A seismic trace with several (primary) evemigy be described by superposition of
individual seismic events of the type of equation (2).

To enable a Fourier transform, we introduce the tinas an additional parameter in equation
(2). This is nothing but a mathematical trick that can be uredby setting = 0. Then, we can
rewrite equation (1) in the frequency domain as

VM, w) = 2 (o / [ des dea Ws(€ ) ey e ©)
where F'(w) and V(M,w) denote the Fourier transforms @f(t) and V (M, t), respectively.
Moreover, 74 (&, M) is the difference between the diffraction and reflectiorvatames, i.e.,

Tdif = TD — TR-

In 2.5-D, i.e., when the medium does not vary with respechéodoordinate perpendicular to
the seismic line (crossline direction), the out-of-plgpentegration in equation (3) can be eval-
uated analytically. Since all data acquired on lines pelr&ti the actual seismic line would be
identical, the migration aperturé can be assumed to be infinite in thedirection. Kirchhoff mi-
gration then reduces to an in-plane stack over the apertteeval(a, b) in the&; -direction covered
by the seismic line. Sincg is now the only integration variable, we can drop the indea Wtite
the 2.5-D Kirchhoff migration integral as

b
S B [ aeWED (€M) R “

V(M w)=1/—

a

WhereW( is the 2.5-D weight factor that guarantees true amplitudésis 1-D stack. Itis com-
posed of the 3-D weight factor and the result of the analytiatson of the out-of-plane integral.

THE METHOD OF STATIONARY PHASE

In general, the integrals in equation (3) and the remaimitegiral in equation (4) cannot be solved
analytically. The Method of Stationary Phase provides a@fanalyzing their main contributions.
Although in principle a high-frequency approximation, thkethod of Stationary Phase yields
highly accurate predictions of the migration results ingaismic frequency range. Mathematically,
the prerequisites for applying the Method of Stationarydehare implicitly fulfilled, since we
perform all calculations within the framework of zero-orday theory which is strictly valid only
for high frequencies.

For simplicity, we restrict the following analysis to thésZD case. Conceptually, there is no
difference in the application of the Method of Stationara®to the double integral for 3-D mi-
gration. The qualitative discussion involves the sameraggus and leads to the same conclusions.
The quantitative analysis is similar but slightly more cdicgdted, mainly resulting in a different
amplitude behavior of the artifacts.



Reducing it to its basic structure, the integral in equat®rcan be written in the form

b
I(w) = / F(6)e 1O | (5)

The Method of Stationary Phase is based on the observatatrfahhigh frequencies, i.e., for
large values ofv, the factore™?(€) oscillates very rapidly, thus covering full periods in vempall
intervals of¢. If £(&) is not itself an oscillating function, its values do not sigty vary in any such
interval. Thus, the integration over a full periode?(¢) yields approximately zero and does not
contribute to the overall value of the integral. The onlyioeg where=*»4¢) does not oscillate are
those where the phase functigfg) remains approximately constantstationary. Mathematically,
points of stationary phase are those where the phase fangtjo has a horizontal tangent, i.e.,
a vanishing derivative. Non-negligible contributions mbeigral (5) are, therefore, to be expected
from the vicinity of these points. Further contributiongntegral (5) are to be expected from the
boundaries of the integration interval because there niiegration generally does not cover a full
period ofe™(),

To illustrate the above observations, we consider the rayraf zero-offset data from a simple
earth model with a horizontal reflector at a depth of 1 km. Fpomt M atx = 3 km on the
reflector and a frequency of 30 Hz, Figure 1(a) and (b) showptieese and amplitude of the
integrand in equation (4), respectively, as a functiof.dfhe real part of the exponential function
is depicted in part (c) of that figure. Note that this functgirongly oscillates everywhere except
in the vicinity of the point where the phase is stationarpafy, part (d) shows the real part of the
full integrand function. It is evident that the amplitude dodation does not alter the oscillatory
character of the integrand function.

Let us now discuss integral (5) in a more quantitative waypuncase, the phase functigns
the difference between the diffraction and reflection titave curves;r;; ;. Thus, the real part of
the integrand function (Figure 1(d)) has zeroes at

T T
|Tdif|:|TD_TR|:na:n§; (6)

whereT = 27 /w is the period of the monofrequency wave under considerakgnation (6) is
equivalent to the definition of the boundary of thié Fresnel zone (see, e.Gerveny and Soares,
1992). Therefore, the alternating zones of negative anidiywamplitude of the integrand function
are physically equivalent to the Fresnel zones

Now, consider an integration of the functigrexp(iwq) from the center (where, = 75) to the
sides. At first, this sums up positive contributions fromfihs Fresnel zone, ending at the first zero
in either direction. Subsequent Fresnel zones, each eatlthg next zero, will add purely negative
or positive contributions to integral (5). In other wordsgénel zones with odd numbers contribute
positively to the integral while Fresnel zones with even bens contribute negatively. Because of
the above observation that an integration over a full pefied over two consecutive Fresnel zones,
yields approximately zero, it becomes clear why the prialogontribution to integral (5) will stem
from the vicinity of the stationary point. Hence, an intagra over only the first Fresnel zone

1To be exact, what is involved in Kirchhoff migration is theojected Fresnel zone in the data space (Hubral et
al., 1993). The true Fresnel zone in depth can be observée ikitchhoff modeling integral. Conceptually, however,
there is no difference.



T T T T T 17‘ i j i ‘7
| 7 /\
0.351 ] ©0.8) 1

©
0.3 2
=
EO.ZS’ %0.6
g 02 ks
'|: H—
0.15[ g04r
0.1} 2
0.2
0.05}
O" L L L L 0 1 1 1 1 1
2 25 3 35 4 2 25 3 35 4
Midpoint coordinate [km] Midpoint coordinate [km]
(a) Phase function(¢) (b) Amplitude functionf (§)
T O T NaNt
8 o5t 8 05
2 2
= =
£ £
© ©
39 g 0
N N
T T
S £
S-05t ] 2-05
At LEET R AL
2 25 3 35 4 2 2.5 3 35 4
Midpoint coordinate [km] Midpoint coordinate [km]
(c) Real part of exponential functiari-? (d) Real part of integrand function

Figure 1: lllustration of the integrand in equation (4). Pdase functiog (). (b) Amplitude func-
tion f(£). (c) Real part of the exponential functierp(iwq). (d) Real part of the complete inte-
grand functionf - exp(iwq).

already provides a very good approximation of the totalgrae On the other hand, its full value
cannot be recovered, if the integration interval does negcthe first Fresnel zone completely.

It has to be noted, however, that the above discussion htiiddysonly for a monofrequent
signal. For a transient, band-limited signal, one has ttacepthe half-period’/2 in equation (6)
by some estimate of the the wavelet lenggh

In Appendix A, we shortly summarize the analysis of the mtigraintegral (5) by means of
the Method of Stationary Phase under the assumption of desisignple and isolated point of
stationary phase. The result of this analysis up to secahetam1//w is

~ *\ iwg(E*) 2m i |:f(b) iwg(b) f(a’) iwq(a)
) = O S T e e 1O

where the prime denotes the derivative with respedt teor high frequencies, these expressions
describe the major contributions to the final migrated imdade first term stems from the sta-
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tionary point¢* of the phase = mp — 73, that is, the tangency point between the Huygens and
reflection traveltime curves, and forms the actual migrateaige of the reflector(s). In general,
this contribution will be the dominant part of the total naggd section. The second term comes
from the endpoints of the integration/stacking operatas. this second contribution that describes
the main migration artifacts. Because of the higher orddr/igw, its amplitudes generally will

be lower than those of the reflector image. Note, howevet,uhder certain circumstances these
effects can be as strong as (or even stronger than) a refle@ge.

Apart from the edges of the acquisition aperture and th&istgoperator, also discontinuities
along the reflection events in the seismic data may causkittd®f endpoint contributions. These
discontinuities affect the integral as if acting piecewasethe data. In other words, we may say
that “artificial” endpoints are created which cause the tialtl aperture effects. There are several
situations in which such discontinuities can occur. Thay loa caused by illumination problems
or missing traces in the data. In this case, the migratiotesnsan even be desirable as they may
help to reconstruct reflector continuity. Moreover, amyalé variations along the reflection event,
which may be due to focusing and defocusing of the reflectagew@an cause similar effects as
endpoints.

It is to be remarked that migration artifacts due to a limiggerture, illumination problems,
or missing traces are inherent to seismic migration, inddeastly of the actual migration scheme
employed. Artifacts due to strong amplitude variations foudising effects are, however, a conse-
guence of Kirchhoff migration and can be largely reducedhwiher migration schemes such as,
e.g., finite-difference wave-equation migration.

In contrast to the data boundaries, actually ending refleétothe earth do not provoke mi-
gration smiles. In this case, edge diffractions are presetiie seismic data that are collapsed
by migration into the endpoint of the reflector. Because efdlffractions, the reflection event in
the data has no actual endpoint but dies off over a larger ruittraces. In this way, endpoint
contributions are suppressed. The latter observatioa@rpoints towards a well-known way of
suppressing migration artifacts: tapering. We will disctigs in a later section.

GEOMETRICAL EXPLANATION OF THE APERTURE EFFECTS

The migration aperture effects are most easily explainechegns of a simple numerical experi-
ment for poststack data. The model consists of two halfepaeparated by a horizontal interface.
The velocities in the upper and lower half-spacesié]r)e: 2 km/s andv,(f) = 3 kml/s, respec-
tively, and the shear wave velocities are giveniyy= v,/+/3. The density is constant in the
whole model. The zero-offset seismogram was generated bgndig ray tracing using a zero-
phase Ricker wavelet with 20 Hz, a time samplinglof= 1 ms and a trace distance A€ = 5 m.

It was migrated with a 2.5-D Kirchhoff true-amplitude deptiigration scheme on a dense grid
(dz = 10 m, dz = 2 m) using the true velocity.

For this simple model, the stacking operator is given by aehlypla. We limited its spatial
extent to 800 m with respect to the horizontal coordinaténefdpex. In this way, the number of
traces contributing to the stack for each depth point was BRO migration target zone was placed
at the end of the survey line so as to show the boundary effébtsresulting migrated image is
depicted in Figure 2. Note that no effort was made to enhanoedoice the migration artifacts.
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Figure 2: ZO seismogram and corresponding depth image@dttstack migration. Several char-
acteristic depth points/; and their pertinent stacking operators are shown. Thesgsaikto give
a simple geometrical explanation of the limited aperturgration effects.

By means of Figure 2, we are now going to discuss the boundtagte from a geometrical
point of view, which allows us to gain a more intuitive insigte then relate them to the above
discussion of the interference in integral (5) and to theltex its stationary-phase evaluation as
given by equation (7). For this purpose, we discuss theipogilf the Huygens curves pertaining
to a series of characteristic depth poinfs to M.

Points on the reflector: M,

The actual reflector (which is unknown prior to migrationbislt up by depth points liké/;. The
pertinent Huygens curve is tangent to the reflection trawelicurve. Thus, amplitudes gathered
along such a curve sum up coherently and provide high stgakisults that are assigned to the
corresponding depth point. Note that in general, for ldgenahomogeneous media, the tangency
point does not coincide with the apex of the stacking cureerelate this physical explanation to
our earlier considerations of the Method of Stationary Bhag identify these tangency points
with the “points of stationary phase”. The value assignetftas mathematically described by the
first term in equation (7). No boundary effects are presecabse the input data at the endpoints
of the stacking operator, which correspond to the limitségrations andb in equation (4), are



zero. Of course, in practice there will always be some endmaintributions because of the noise
inherent in the seismograms.

Points on the reflector boundary: M,

The point)/; represents the boundary of the migrated reflector imageHTUygens curve of this
point is, in principle, equivalent to the one of poiif;. However, since the stationary point is
located directly at the margin of the ZO gather, only half tperator is within the data volume.
Thus, summing up along the stacking curve results in an andglivalue which is half of the value
assigned td\/;. This coincides with the stationary-phase analysis foicts® when the stationary
point falls on the boundary of the integration interval. mhihe left-hand-side integral in equation
(A-7) extends only frong* to infinity, which, due to symmetry, results in half the rigtand-side
value. Thus, the leading term in equation (7) is divided by 2.

Points off the reflector: M;

Points like M3 represent the majority of diffraction points within thegat zone. They have Huy-
gens curves which completely cross the reflection signahr8img up amplitudes along such op-
erators leads to low values due to destructive interferefrmem a mathematical point of view, the
point of stationary phase (i.e., where the traveltime angigéas curves have the same time dip)
as well as the endpoints of the operator are outside thelsifimarefore, both terms in equation
(7) are zero.

Migration artifacts caused by the finite stacking operator: M, M;, and Mg

For points likeM,, the endpoints of the stacking operator lie within the reitecsignal. Because
of the limited aperture, the stack does not sum up all the miatassary for complete destructive
interference in the same way as it does for pdifit Thus, the migration output at, is not as low

as that for point\/;. In consequence, a migration artifact appears in paralliide actual reflector.
With increasing size of aperture, the effecfiat moves away from the actual reflector and might be
located outside of the target zone. Sun (1998) showed tisaplerture effect completely separates
from the reflector image if the aperture is larger than onsrekzone (see also Section “How to
avoid aperture effects”).

The relationship of the above observations to the Methodaifdhary Phase is straightforward.
Like for point M3, the point of stationary phase is outside the signal. Howeke endpoints of
the operator lie inside the signal. Therefore, the first tefraquation (7) yields no contribution,
but its second term predicts a non-zero migration outpiif at

The situation at poinfi/; is in principle equivalent to that at poidt/,. However, as only one
endpoint lies within the reflection signal (the other endpbes outside the data), the amplitude at
M is just half of that at\/,.

Point Mg marks the transition between the two situations of poidisand M5. The endpoint
of its pertinent Huygens curve coincides with the boundamiytP in the data, where the survey
ends. It is for this reason that af; the migration artifact splits into two effects. Additiohato
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Figure 3: Analysis of the migration smile. (a) Kinematigalt coincides with the isochron of the
border pointP of the data. (b) The sum of peak amplitudes of two oppositetpain the isochron
branches [1] and [2] yields approximately zero.

the limited-operator effect described above, a limitethddfect appears in the migrated traces.

Migration artifacts caused by the finite survey area: M, and Mjg

The most prominent migration artifact is the “migration Ehrepresented by points/; and M.
The pertinent Huygens curves cross the reflection signaitigxat the end of the survey line.
In this way, the destructive interference is incompleterat of the endpoints, thus leading to a
non-negligible contribution.

It is worthwhile to observe that the position of the migratsmile is given by the geometrical
location of all points of the type ai/; and Mg whose Huygens curves cut the border pamof
the reflection signal. Note that, because of the duality betwthe Huygens curve and the isochron
(see, e.qg., Tygel et al., 1995), this is the isochrorPofThe resulting migration artifact follows
this isochron, which is a half-circle for our constant-v@tg zero-offset experiment as shown in
Figure 3(a).

Observe the inverted polarity (red is positive, blue is nhiegaof the artifact between poinfg;
andMsg. This can be explained with the help of the symmetry of theatoe. The dashed part of the
Huygens curve of\/; that is outside the data is identical to the solid part of thigdens curve of
Mg that is inside the data. Thus, the stacRatwill contribute with exactly that part of the data that
is missing atV/;. The actual values of the migration results at poivitsand Mg depend on the form
of the source wavelet as well as on the (half-)derivativdiagpn the migration process. However,
the fact that these values are complementary to each othreteépendent of these conditions. For
a better visualization of this complementarity, we havekgitthe peak amplitudes along both
branches of the migration smile corresponding to paldtsand Mg. When adding the amplitude
of two opposite points from the two branches, we can veriflyigure 3(b) that the sum at; and
My indeed yields zero (except, of course, for a numerical grror

Again, we can directly relate the above physical interpiir@tiato the terms of the stationary-
phase evaluation of the Kirchhoff-migration integral. @ticse, the migration outputs at poiriitg
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Figure 4: Frequency behavior of the boundary effects in2.5he amplitude afi/, (circles) and
M; (crosses) decays witty /w as predicted by the Method of Stationary Phase.

and My are described by the second term in equation (7). The finrst yeglds a zero contribution
since the stationary point is outside the reflection sigsainathe case of pointd/s, M,, Ms,
and M. At both points,M; and Mg, the actual contribution stems from the lower integral timi
a = 2500 m. Since the Huygens curves of both points terminate at time gsition,f (a) is the
same for both of them. So where is the inverted polarityZrtte sign of the derivative, i.e., in
our simple example the dip of the stacking curve, at the suewel. As we can easily observe in
Figure 2 this sign is positive fal/sy but negative fo\/;.

The Method of Stationary Phase evaluation allows for a masngtative analysis of the mi-
gration smile. Using equation (7) and recalling the add#idactor,/w in front of the integral in
equation (4) (which stems from the time half-derivativehie priginal Kirchhoff migration inte-
gral), we see that the main contribution to the migrationltesill be frequency independent while
the boundary effects will decay proportionallytg,/w. Figure 4 shows the amplitude of the mi-
gration output at pointd/, (circles) andM; (crosses) as a function of the dominant frequency of
the source wavelet used in the modeling. The actually okseswnplitudes follow almost exactly
the predicted behavior (solid line).

Prestack Migration and Comparison with Sun (2000)

The reader might notice that the examples of “Limited ApertMigration” (LAM) in Sun (2000)

do not distinguish between the different types of migratidifacts as described above. The reason
is quite simple: Sun uses a prestack migration example wiimgle shot only and, in addition,
he shows only a single trace of the migration result in theereof the survey. In that case, only
one artifact is visible, namely that due to the limited opa&ras represented above by points
and M;. Of course, both aperture effects are also present in giestégration as can be seen
in Figure 5. To construct this figure, the data were sorted aammon-offset gathers and then
migrated separately. The actual migration operator wagddto a maximum aperture radius of
0.8 km around its apex. The respective migration resultdiapayed in parallel planes to the front
face of the cube, which is identical to the zero-offset ntigrashown in Fig. 2. Perpendicular to
the front face is the offset axis. In this way, the side facthefcube is an image gather that depicts
the same reflector point as obtained from migration of alietf.
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Figure 5: 2-D prestack migration of the same model used inZfdeexample. The maximum
aperture radius was 0.8 km. Both types of artifacts can berobd. The effect caused by the

limited operator has a moveout in the image gathers.

As the operator moveout reduces with higher offset, théaattdue to the limited migration
operator moves closer to the migrated reflection for lardgets. The isochron-type artifact due
to the limited survey area moves along thaxis in offset direction due to different reflector
illumination for different offsets. Note that a post-migjam stack can significantly reduce these
migration artifacts, because of the mentioned moveoutendtfset direction. In spite of that, in
complex media some strong artifacts will generally remasgible in the final migrated section.

Boundary effects in 3-D

In 3-D, the physical conditions that cause boundary effaststhe same as in 2.5-D, these being
the ends of the seismic data and of the stacking operatorefidre, the migration artifacts to
be observed in 3-D Kirchhoff migration are conceptually saene as in 2.5-D. One will see the
migration smile from the survey end as well as the effect dubée limited operator size. This is
confirmed by a corresponding 2-D stationary-phase anadysigegral (1), which also reveals the
two leading-order contributions to be those from the stetig point(s) and the integration limits.

However, the increase in dimension slightly changes theasdn. The geometrical situation
and, accordingly, the mathematical derivations are monepticated. The stacking operator is no
longer a line but a surface and its boundary is not a point tineaFor that reason, the amplitude
behavior of the artifacts can be different.

Figure 6 shows corresponding numerical results from a 3-gration. The model and all its
parameters are the same as for the above 2.5-D experimé&mdeaxg it identically into the third
dimension. Indicated is the//w-behavior (solid line) together with the amplitudes of th® 3
migration artifacts at points that correspond to poihis and M- in Figure 2, here denoted in
guotation marks, i.e., as\f,” and “M-;". The amplitude of the artifact at pointVl;” decays with
1/y/w (as in the 2.5-D case). However, the artifact built up by t®like “A/,” shows almost no
frequency dependence.

The observed amplitude behavior of both effects can be mquey the 2-D Method of Sta-
tionary Phase. However, it would go beyond the scope of éigiepto enter into the mathematical
details of 3-D migration artifacts and to comment on all amiiies and differences to the 2.5-D
situation. This will be the topic of a forthcoming paper oe 8D case.

12



X measured data at "M7"
O measured data at "M4"

— theory

Normalized amplitude

10 26 36 46 Sb 60
Frequency [Hz]
Figure 6: Amplitude behavior of the boundary effects in a 8igration. Circles: amplitudes at
a point “M,", crosses: amplitudes at a point/;”, solid line: 1/,/w behavior predicted by the
Method of Stationary Phase for point/;”.

HOW TO AVOID APERTURE EFFECTS

Above, we have already indicated that there is a well-kn@ghnique to reduce migration artifacts
resulting from the limited migration aperture. All that hasbe done is to avoid an abrupt end of
the operator but let it die off over a couple of traces, i.ppla a taper. This has to be done at
two different places: Firstly, the input seismograms apeted at the endpoints of the survey area.
Secondly, the finite operator is not just truncated but apeited at its endpoints. In terms of the
stationary-phase solution (7), the values'¢d) and f (b) are artificially set to zero. This has to be
done smoothly in order not to violate the underlying assumngif a slowly varying functiory (¢).
Then, this approach reduces the contributions of the opeeaidpoints and, thus, helps to obtain
a migrated image with less migration artifacts.

When applying a taper, the fundamental question is over hamyrtraces it should extend. On
the one hand, the taper ought to be large enough not to viblatemoothness assumption so as to
effectively suppress the artifacts. On the other hand,aukhnot be too large so as not to loose
more information than necessary on the amplitudes at theeguands or to stack unnecessary
information at the operator ends. Sun (1998) suggestsritiaeisame way as the stacking region
should cover the first (projected) Fresnel zone, the tapgomeshould extend over the second
(projected) Fresnel zone around the stationary point. tufately, this point cannot be estimated
prior to or during migration. Therefore, we have to use ongairaa compromise to avoid the
aperture effects.

To get an idea about the size of the taper region, we propedeltbwing simple criterion for
zero-offset (poststack) migration. As is well-known, tadimatically migrate all reflectors at depth
z up to maximum dip anglé,,, the stacking operator may be restricted to a radius of

r = ztand,, . (8)

If the same reflectors are to be migrated dynamically cdgrgbie radius must be increased by the
size FZ(1) of the projected first Fresnel zone. As shown in Appendip¥'B,(1) is given in the
frequency domain by

vznT + nvT ) 2
FZ(H) _ \/QCOSGm ( 4 )

cos 0,

(9)
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with n = 1, wherew is the medium velocity and’ the period of the considered monofrequency
wave. Like in equation (6), the half-peridd/'2 has to be replaced by some estimate of the wavelet
lengthr,, if formula (9) is to be applied in the time domain. AccordiogSun (1998), the artifacts
are suppressed as well as possible, while affecting theitudes as little as possible, when the
operator is increased by Z(2) instead of FZ(1). The additional operator extensidnz (2) —
FZ(1) is the second projected Fresnel zone, over which the tapertbie applied. Of course, the
formulas given above are strictly valid for constant veipoinly. For inhomogeneous media, they
can only be used as a “rule of thumb” to get a rough idea ab@uaferture size and the taper
region.

Formula (9) can also be used to obtain an estimate for theo$ittee end-of-survey taper. By
substitutingz = vt cos6,,/2 and setting: = 1, the size of the taper at two-way timecan be
estimated. If a constant taper size is prefertein be replaced by the maximum time value in the
data. Correspondingly,in equation (9) can also be replaced by the maximum deptteidésired
migrated image.

Figure 7 demonstrates the effect of tapering the input datdlee stacking operator for different
aperture and taper sizes.

Figure 7(a) shows the migrated reflector image when stackédandip-limited0° migration
operator using the optimal aperture of one projected Fresme, without applying a taper. Both
the migration artifacts due to the limited operator and syrarea are present. As we can see, the
optimal aperture guarantees the separation of the end éffec the reflector image, the ampli-
tudes of which are also correct. Figure 7(b) shows the sargeated reflector image with the opti-
mal taper applied. Both artifacts are almost completelypiglated. In Figure 7(c), we see the effect
of a too small taper. Although both migration artifacts areéuced, they remain clearly visible. Fi-
nally, Figure 7(d) compares the amplitudes along the reftestage for different combinations of
aperture and taper sizes. When the aperture is too smaélyeatthe amplitudes far away from the
data margins are correctly recovered (dotted line), ajhaie optimal taper is used. When the
optimal (or a larger) aperture is applied, all amplitudegbeas are restricted to the data margins.
For too small a taper, the survey-end artifact is not comrepleemoved (dashed line). Too large
a taper destroys the amplitudes where they can be retrieoadthe data (dash-dotted line). The
optimal taper size is the one that eliminates all artifactsrecovers the amplitudes as close to the
margins as possible (solid line).

The taper function used for the migration examples showa isea two-sided Hanning window
for both the operator and the end-of-survey taper. For coisga we also tested a two-sided
triangular window. The shapes of these functions are degict Sun (1998, 2000) for 2-D and 3-
D. Both types of taper functions yield nearly identical l&surhe optimal values for the aperture
and taper sizes were calculated by means of equation (Qkwith km, v = 2 km/s,7,, = 50 ms,
and#@,, = 0°, resulting inFZ(1) = 320 m andFZ(2) = 458 m. To test the effect of a too
small and large aperture or taper size, respectively, tukistg regionf'Z (1) and the taper region
FZ(2) — FZ(1) were halfed or doubled.

At this stage, let us point out that with respect to taperimg,algorithmically agree but con-
ceptually disagree with Sun (1998, 2000). As opposed to ienglo not think the taper function
should be conceived of as a part of the weight function bexatihe following reasons: Firstly, in
kinematic Kirchhoff migration schemes there exist no tameplitude weight functions. However,
taper functions are still required to obtain a high-quatitigration result with reduced artifacts.
Secondly, there arvo taper functions that need to be applied. One serves to aleidperture
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Figure 7: Effects of tapering. (a) Migration result withaplying a taper function at all. (b)
Migration result with taper function applied according tp €9). (c) Migration result with a taper
function that is too small. (d) Amplitude comparison of diftnt migration results with optimal
and smaller/larger aperture/taper region, respectively.

effect of the limited survey area. This taper is completaljependent of any weight function and
applied directly to the input data before migration. Theosetctaper is applied to the operator
during migration and may be implemented as a part of the wéigiction. We prefer, however, to
think of the true-amplitude weight and the taper functiogsléferent concepts, even though we
keep in mind that they may be combined in practice to speetdeaiplgorithm.

CONCLUSION

Artifacts known in Kirchhoff migration as “migration noise“migration boundary effects” or
“diffraction smiles” can be mathematically explained byans of the Method of Stationary Phase.
In this paper, we have provided a more physical explanatiathaese effects by discussing the
constructive and destructive interference of the stackmpke geometrical situations. This helps
to relate the terms of the stationary-phase approximatih the actually observed migration
artifacts. It turned out that, for practical applicatioose has to distinguish between two principal
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types of artifacts. These are

e boundary effects due to a limited survey aperture, and

e artifacts due to a limited migration operator.

Both types of artifacts are mathematically equivalent aardlze explained by means of the bound-
ary terms that result from the stationary-phase analysiseomigration integral. As predicted by
the Method of Stationary Phase, the principal migratioifaatss in 2.5-D exhibit d //w decay as
compared to the reflector image.

Based on our geometrical analysis, we had a closer look all&a@vn way to avoid the aper-
ture effects: tapering. The most important question wigpeet to tapering is how to determine
the taper region. Too small a region won'’t suppress the &fighile too large a region will destroy
more information than necessary. We have shown that thé taeer region is closely connected
to the minimum aperture. Schleicher et al. (1997) have ddrihe minimum aperture for a dy-
namically correct migration to be the first projected Frézoae (Hubral et al., 1993) around the
specular point. Sun (1998) has demonstrated that the sammum aperture of the size of the
first projected Fresnel zone is sufficient to separate theatqreend effect from the desired image.
We have confirmed both observations numerically. Moredeeget rid of the operator-end effect,
a taper region of the size of the second projected Fresnel gloould be added to the operator. In
principle, the projected Fresnel zone(s) can be deterndoedg migration, even in inhomoge-
neous media, from dynamic ray quantities. However, to spgethe process, it is often useful to
fix the operator size beforehand. Then, the constant-wgltmimula should help to get an idea of
an adequate aperture and taper region.
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APPENDIX A
STATIONARY-PHASE EVALUATION

In this Appendix, we shortly summarize the evaluation oégral (5) by means of the Method of
Stationary Phase. For simplicity, we assume that therelysame simple point of stationary phase,
denoted by*, in the integration intervala, b). Here, “simple” means that the second derivative of
q at&* does not vanish, i.eq’(£*) # 0. Of course, it also must not become prohibitively small.
For more than one point of stationary phase, additionagnaildimits are introduced, separating
I(w) into several integrals with one poifit each. Then, the same analysis provides the sum of
contributions from these points, provided they aatated from each other, i.e., each being located
outside the first Fresnel zone of the others. If this is notdse " (£*) will become too small. For
details about these conditions, please refer to Bleisfi€l84).

Since we expect the main contribution to integral (5) to shem the vicinity of¢*, we expand
f(&) and¢(€) in Taylor series up to second order &t where we know thay'(£*) = 0. This
approximates the integral (5) by a sum of three integrals,

b
Iw) = f(g")e=ue /efg de + [ [ (€ - gr)einle € ge

%,—/ ~ J
Io(a) 11(04)

b
2

l " e *) i ) EM
£ SIENHE) [ (€= g2 g where = 35

(@\w_

(A-1)

o 3
N J/

Ix(a)
The quality of this approximation is illustrated in Figur@)l. Note that in the center part, where
we expect the main contribution to integral (5), the coiecick is almost perfect. We remark that at
non-simple stationary points, i.e., wher£*) = 0, this approach will not work. In this case, the
Taylor series foy and f have to be continued up to the order of the first non-vanistieryative
of q. If ¢ is constant or zero, integral (5) is no longer of oscillatcimaracter and cannot be treated
by the Method of Stationary Phase.

As opposed to the integral in equation (5), integrilsl;, and I, in equation (A-1)can be
solved analytically.

Integrall; is the one that is solved most easily. It yields

b

1 d - *\2 ]_ . *\2 b
— = | 2 pa(E—€T) — | pta(6—€7) -
Ii{a) 2iq _/ dfe de = 2iq [ ]a ’ (A-2)

wherea # 0 because of the condition that the stationary point must datesd and simple, i.e.,
q"(¢*) # 0. We see that/; contains only contributions from the boundaries of thegra&on
interval. Integrall, is immediately known oncé, is determined since it is related to the latter as

b
d 9 1dly(a)
2 pia(e=€)? ge — 22200 A-3
_/d 1 da (A-3)

s|)—l
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Figure A-1: (a) Quality of the approximation of the integdaof equation (5) by a second-order
Taylor series expansion. Shown are the real parts of thgramel function (solid line) and its
approximation using second-order Taylor expansions oé@had amplitude (dashed line), central
part. (b) Real part of the oscillating (solid line) and b&tlaped (dashed line) integrand functions
of the integrals in equation (A-7).

The Fresnel integral, requires the most extensive analysis. To study its intdgnétis sepa-
rately, we subdivide it again into a sum of three integrals,

o.¢] a oo

Iy(a) = /eia(fé*)ng_ /eia(éé*)2d§_/€ia(§é*)zdg‘ (A-4)

b

—00

In case the stationary point is at (or very close to) one ofritegral boundaries or b, the corre-
sponding one of the above boundary integrals is eliminatéeldize first integral is carried out from
£* to infinity.

Since the phase function is monotonic in the two boundasgiratis, a transformation of vari-
ables(¢ — £*)? = u and subsequent repeated partial integration yields a psevéas inl/«a (or
1/w), the leading terms of which are

a

- *\2 1 1 - *\2
ia(E—€%) de ~ — ia(a—E") A-5
/e ¢ 2ic (a—{*)e ’ (A-5)
and -
/eia(ﬁf*)2d§ ~ _i 1 gla(b—¢)? (A-6)
2ia (b— &)

b

For non-isolated points of stationary phase, the distaptedent* and at least one of the integral
boundaries is too small, such that the corresponding appation (A-5) or (A-6) is not valid.

The integrals in equations (A-5) and (A-6) are the boundantributions tol,. The remaining
integral describes the contribution from the point of stiadéiry phase. A detailed analysis in the
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complex plane (see, e.g., Stamnes, 1986) shows that

o0

/ gatcerge = LEISON [ ol ge [T igsana (A7)
\/_ —iQ

—o0

with the definition of the complex square root
= +/|z| exp{iarg(z)/2} , —m < arg(z) < 7. (A-8)

By symmetry, the left-hand-side integral in equation (Ayiélds exactly half this contribution
if its lower limit is £*.

Figure 1(b) visualizes the above identity (A-7). The reaftpaf the oscillating function
¢¢€)” "and the bell-shaped functien!®¢* are the solid and dashed curves, respectively. Note
that equatlon (A-7) states that integrations from minusnityfito infinity over the two curves in
Figure 1(b) yield identical results, except for a factgr/2, or, considering also the imaginary
parts,e’ S9ne,

Combining equations (A-5) to (A-7), we obtain foy up to the first order imv !

T 1 ]_ : *\2 ]_ : *\2
I ~ e - = ia(b—=£%)2 ia(a—&*) ) A-9
o(@) —ia+2ia (b—f*e a—§*e (A-9)
By equation (A-3), this yields fof, up to the first order iy !
1 , 2 : 2
~ _ ¥ pieb=E7)? _ (, _ gx)piala—E")? -
I~ 5 ((b=)e (a—€)e ) (A-10)

In other words, likel,, I, also describes only contributions from the boundaries ®@ikegration
interval to that order. Collecting the terms of equationl(fand recognizing the Taylor expansions

5 andf(f), we finally find

I(w) = f(&)e™e) 27 € [f (0) wawy _ S(9) iwgta)

—iwg"(€) " iw [g(0)° ¢(a)

where the prime denotes the derivative with respe¢t tdnder the assumption of a single, isolated
point of stationary phase, the above analysis of the mgnatitegral (4) by means of the Method
of Stationary Phase has shown that its first two terms in équéf-11) are of the ordet /\/w
andl/w, respectively. If the stationary point coincides with ofiéghe boundaries, i.e., if (a) = 0

or ¢'(b) = 0, equation (A-11) has to slightly modified. The correspogdiundary contribution
ata or b is eliminated and the leading term is divided by 2, as alreadicated in the context of
equations (A-4) and (A-7).

] (a1
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APPENDIX B
PROJECTED FRESNEL ZONE

In this Appendix, we derive expression (9) for the projedteesnel zone in the zero-offset con-
figuration, assuming a plane reflector with dignd a constant background velocity{see Fig-
ure B-1). The projected Fresnel zone is defined as the profect the true Fresnel zone in depth
along neighboring reflection rays into the earth’s surfatebfal et al., 1993). In other words, the

projected Fresnel zone ends where the ray reflected at tip@endf the true Fresnel zone reaches

the earth’s surface.

diffraction
traveltime Ty

reflector

Figure B-1: Construction of the projected Fresnel zone.

We start from the definition of the Fresnel zone, equationA6)*, the reflection traveltime,
Tr, Of the normal ray reflected aff (see Figure B-1), is

2
TR = —V1r2+ 22, (B-1)

v

wherer is given by equation (8). The diffraction traveltime of amal/ (n), also measured &t,
is

2
o = —\/r2 + 22 + £(n)?, (B-2)
v

where/(n) is the distance betweeld and M (n). Substituting these two expressions fgrand
Tp in equation (6) and solving fak(n), one finds

onT\?> onT onT\?  onTz
/ _ /72 2 — . B-3
() \/( 4 > * 2 V' T2 \/( 4 > +2cos€ (8-3)

This is the size of the true Fresnel zone at the reflector ithddp obtain the size of the projected
Fresnel zone, we still have to project this distance inte@tréh’s surface along neighboring normal

rays (dashed rays in Figure B-1). Since these rays are glath projection provides an additional
division bycos 6, thus yielding formula (9).
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