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Abstract

In this paper we discuss some unusual and unsuspected relations
between Maxwell, Dirac and the Seiberg-Witten equations. First
we investigate what is now known as the Maxwell-Dirac equivalence
(MDE ) of the first kind. Crucial to that proposed equivalence is the
possibility of solving for ψ (a representative on a given spinorial frame
of a Dirac-Hestenes spinor field) the equation F = ψγ21ψ̃, where F
is a given electromagnetic field. Such non trivial task is presented in
this paper and it permits to clarify some possible objections to the
MDE which claims that no MDE may exist, because F has six (real)
degrees of freedom and ψ has eight (real) degrees of freedom. Also,
we review the generalized Maxwell equation describing charges and
monopoles. The enterprise is worth even if there is no evidence until
now for magnetic monopoles, because there are at least two faithful
field equations that have the form of the generalized Maxwell equa-
tions. One is the generalized Hertz potential field equation (which we
discuss in detail) associated with Maxwell theory and the other is a
(non linear) equation (of the generalized Maxwell type) satisfied by

∗key words: Maxwell equations, Dirac equation, Seiberg-Witten equation,
MSC: 81Q05, 81R25, 78A25.
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the 2-form field part of a Dirac-Hestenes spinor field that solves the
Dirac-Hestenes equation for a free electron. This is a new and sur-
prising result, which can also be called MDE of the second kind. It
strongly suggests that the electron is a composed system with more
elementary “charges” of the electric and magnetic types. This find-
ing may eventually account for the recent claims that the electron
has been splited into two electrinos. Finally, we use the MDE of the
first kind together with a reasonable hypothesis to give a derivation
of the famous Seiberg-Witten equations on Minkowski spacetime. A
suggestive physical interpretation for those equations is also given.
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1 Introduction

In ([1]-[5]) using standard covariant spinor fields Campolattaro proposed that
Maxwell equations are equivalent to a non linear Dirac like equation. The
subject has been further developed in ([6],[8]) using the Clifford bundle for-
malism1. The crucial point in proving the mentioned equivalence2, starts
once we observe that to any given representative of a Dirac-Hestenes spinor
field3 ψ ∈ sec[

∧0(M) +
∧2(M) +

∧4(M)] ⊂ sec C̀ (M, g) there is associated
an electromagnetic field F ∈ sec

∧2(M) ⊂ sec C̀ (M, g), (F 2 6= 0) through
the Rainich-Misner theorem ([20],[6]-[8])by4

F = ψγ21ψ̃ (1)

Now, since an electromagnetic field F satisfying Maxwell equation5 has six
degrees of freedom and a Dirac-Hestenes spinor field has eight (real) degrees
of freedom some authors fell uncomfortable with the approach used in ([7],[8])
where some gauge conditions have been imposed on a nonlinear equation
(equivalent to Maxwell equation), thereby transforming it in a usual linear

Dirac equation (called the Dirac-Hestenes equation in the Clifford bundle
formalism).The claim, e.g., in [21] is that the MDE found in ([7], [8]) cannot
be general. The argument is that the imposition of gauge conditions implies
that a ψ satisfying Eq.(1) can have only six (real) degrees of freedom, and this

1The Clifford bundle formalism and some of their applications has been presented in a
series of papers, e.g., ([6]-[19]).

2The Maxwel-Dirac equivalence is abreviated as MDE when no confusion arises.
3For more information see section 2 and for details see ([12],[14]). Paper [12] unfortu-

nately contains many misprints and some errors that are corrected in the recent ([16],[17]),
which we claim to clarify in definitive the ontology of Dirac-Hestenes spinor fields.

4When F 2 = 0 the spinor associated with F through eq.(1) must be a Majorana spinor
field [6]. In the Clifford bundle formalism, if ψ is a representative of a Dirac-Hestenes
spinor, then ψ±

M = ψ 1

2
(1 ± γ01) are representatives of Majorana spinors ( [14],[15]).

5The singular here is appropriate, since we are going to see that in our formalism all
the original Maxwell equations are represented with a single equation.
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implies that the Dirac-Hestenes equation corresponding to Maxwell equation6

can be only satisfied by a restricted class of Dirac-Hestenes spinor fields,
namely the ones that have six degrees of freedom.

Incidentally, in [21] it is also claimed that the generalized Maxwell equa-
tion7

∂F = Je + γ5Jm (2)

describing the electromagnetic field generated by charges and monopoles [9]
cannot hold in the Clifford bundle formalism, because according to that
author the formalism implies that Jm = 0.

In what follows we analyze these claims of [21] and prove that they are
wrong (section 3). The reasons for our enterprise is that as will become
clear in what follows, understanding of Eqs.(1) and (2) and some reasonable
hypothesis permits a derivation and even a possible physical interpretation
of the famous Seiberg-Witten monopole equations[22] 8. So, our plan is the
following: first we introduce in section 2 the mathematical formalism used in
the paper, showing how to write Maxwell and Dirac equations using Clifford
fields. We also introduce Weyl spinor fields and parity operators in the Clif-
ford bundle formalism. In section 3 we prove that given F in Eq.(1) we can
solve that equation for ψ, and we find that ψ has eight degrees of freedom,
two of them being undetermined, the indetermination being related to the
elements of the stability group of the spin plane γ21. This is a non trivial
and beautiful result which can called inversion formula. In section 4 we in-
troduce a generalized Maxwell equation and in section 5 we introduce the
generalized Hertz equation. In section 6 we prove a Dirac-Maxwell equiva-
lence of the first kind ([1],[8]), thereby deriving a Dirac-Hestenes equation
from the free Maxwell equations. In section 7 we introduce a new form of
the Maxwell-Dirac equivalence (called MDE of the second kind) different
from the one studied in section 6. This new MDE of the second kind sug-
gests that the electron is a ‘composit’ system. To prove the Maxwell-Dirac
equivalence of the second kind we decompose a Dirac-Hestenes spinor field
satisfying a Dirac-Hestenes equation in such a way that it results in a non-
linear generalized Maxwell (like) equation (Eq.(141)) satisfied by a certain

6There is no misprint here. In the Clifford bundle formalism the traditional Maxwell
equations is represent by a unique equation.

7In Eq.(2) Je, Jm ∈ sec
∧1

(M).
8See also ([23]-[26]) for more details on Seiberg-Witten theory.
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Hertz potential field9,10. What is nice concerning these ideas is that we are
able to show in section 8 that (the analogous on Minkowski spacetime) of the
famous Seiberg-Witten monopole equations arises naturally from the MDE

of the first kind once a reasonable hypothesis is imposed. We also present a
coherent interpretation of that equations. Indeed, we prove that when the
Dirac-Hestenes spinor field satisfying the first of Seiberg-Witten equations
is an eigenvector of the parity operator them that equation describe a pair
of massless ‘monopoles’ of opposite ‘magnetic’ like charges, coupled together
by its interaction electromagnetic field. Finally, in section 9 we present our
conclusions.

2 Clifford and Spin-Clifford Bundles

Let M = (M, g,D) be Minkowski spacetime. (M, g) is a four dimensional
time oriented and space oriented Lorentzian manifold, with M ' R

4 and
g ∈ secT 0,2M being a Lorentzian metric of signature (1,3). T ∗M [TM ] is
the cotangent [tangent] bundle. T ∗M = ∪x∈MT

∗
xM , TM = ∪x∈MTxM , and

TxM ' T ∗
xM ' R1,3, where R1,3 is the Minkowski vector space . D is the

Levi-Civita connection of g, i.e., Dg = 0, R(D) = 0. Also T(D) = 0, R and
T being respectively the torsion and curvature tensors. Now, the Clifford
bundle of differential forms C̀ (M) is the bundle of algebras11 C̀ (M, g) =
∪x∈M C̀ (T ∗

xM), where ∀x ∈ M, C̀ (T ∗
xM) = C̀ 1,3, the so called spacetime

algebra. For any x ∈ M , C̀ (T ∗
xM) as a linear space over the real field

R. Moreover, C̀ (T ∗
xM) is isomorphic to the Cartan algebra

∧
(T ∗

xM) of the
cotangent space and

∧
(T ∗

xM) =
∑4

k=0

∧
k(T ∗

xM), where
∧k(T ∗

xM) is the
(

4
k

)
-

dimensional space of k-forms. Then, sections of C̀ (M, g) can be represented
as a sum of inhomogeneous differential forms. Let 〈xµ〉 be Lorentz coordinate
functions forM and let {eµ} ∈ secFM (the frame bundle) be an orthonormal
basis for TM , i.e., g(eµ, eν) = ηµν = diag(1,−1,−1,−1). Let γν = dxν ∈

9This new equivalence is very suggestive in view of the fact that there are recent (wild)
speculations that the electron can be splitted in two components[27] (see also[28]). If this
fantastic claim announced by Maris [27] is true, it is necessary to understand what is going
on. The new Maxwell-Dirac equivalence presented in section 6 may eventuallly be usefull
to understand the mechanism behind the “electron splitting” into electrinos.

10A Hertz potential field Π is an object of the same mathamtical nature as an electro-
magentic field, i.e., Π ∈ sec

∧2
(M) ⊂ sec C̀ (M). .

11C̀ (M, g) is a vector bundle associated to the orthonormal frame bundle, i.e., C̀ (M, g)
= PSO+(1,3)

×ad Cl1,3 ([16],[17]).
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sec
∧1(M) ⊂ sec C̀ (M, g) (ν = 0, 1, 2, 3) such that the set {γν} is the dual

basis of {eµ}. Moreover, we denote by ǧ the metric in the cotangent bundle.

2.1 Clifford Product

The fundamental Clifford product (in what follows to be denoted by juxtapo-
sition of symbols) is generated by γµγν +γνγµ = 2ηµν and if C ∈ sec C̀ (M, g)
we have

C = s+ vµγ
µ +

1

2!
bµνγ

µγν +
1

3!
aµνργ

µγνγρ + pγ5 , (3)

where γ5 = γ0γ1γ2γ3 = dx0dx1dx2dx3 is the volume element and s, vµ, bµv,
aµνρ, p ∈ sec

∧0(M) ⊂ sec C̀ (M, g).
Let Ar,∈ sec

∧r(M), Bs ∈ sec
∧s(M). For r = s = 1, we define the scalar

product as follows:
For a, b ∈ sec

∧1(M) ⊂ sec C̀ (M, g).,

a · b =
1

2
(ab + ba) = ǧ(a, b). (4)

We define also the exterior product (∀r, s = 0, 1, 2, 3) by

Ar ∧Bs = 〈ArBs〉r+s,

Ar ∧Bs = (−1)rsBs ∧ Ar, (5)

where 〈〉k is the component in
∧k(M) of the Clifford field. The exterior

product is extended by linearity to all sections of C̀ (M, g).
For Ar = a1 ∧ ... ∧ ar, Br = b1 ∧ ... ∧ br, the scalar product is defined as

follows12,

Ar ·Br = (a1 ∧ ... ∧ ar).(b1 ∧ ... ∧ br)

=

∣∣∣∣∣∣

a1 · b1 .... a1 · br
.......... .... ..........
ar · b1 .... ar · br

∣∣∣∣∣∣
(6)

12Note that some authors define the scalar product of multivectors in such a way that
it may differ form a signal from our definition.
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We agree that if r = s = 0, the scalar product is simple the ordinary
product in the real field.

Also, if r 6= s, then Ar · Bs = 0. Finally, the scalar product is extended
by linearity for all sections of C̀ (M, g).

For r ≤ s, Ar = a1∧ ...∧ar, Bs = b1∧ ...∧ bs we define the left contraction
by

y : (Ar, Bs) 7→ AryBs = (a1 ∧ ... ∧ ar) · (b1 ∧ ...br)∼br+1 ∧ ... ∧ bs (7)

where ∼ is the reverse mapping (reversion) defined by

∼: sec

p∧
(M) 3 a1 ∧ ... ∧ ap 7→ ap ∧ ... ∧ a1 (8)

and extended by linearity to all sections of C̀ (M, g). We agree that for
α, β ∈ sec

∧0(M) the contraction is the ordinary (pointwise) product in the
real field and that if α ∈ sec

∧0(M), Ar,∈ sec
∧r(M), Bs ∈ sec

∧s(M) then
(αAr)yBs = Ary(αBs). Left contraction is extended by linearity to all pairs
of elements of sections of C̀ (M, g), i.e., for A,B ∈ sec C̀ (M, g)

AyB =
∑

r,s

〈A〉ry〈B〉s, r ≤ s (9)

It is also necessary to introduce in the operator of right contraction de-
noted by x. The definition is obtained from the one presenting the left
contraction with the imposition that r ≥ s and taking into account that now
if Ar,∈ sec

∧r(M), Bs ∈ sec
∧s(M) then Arx(αBs) = (αAr)xBs.

The main formulas used in the Clifford calculus can be obtained from the
following ones (where a ∈ sec

∧1(M) ⊂ sec C̀ (M, g)):

aBs = ayBs + a ∧ Bs, Bsa = Bsxa +Bs ∧ a,

ayBs =
1

2
(aBs − (−)sBsa),

AryBs = (−)r(s−1)BryAs,

a ∧ Bs =
1

2
(aBs + (−)sBsa),

ArBs = 〈ArBs〉|r−s| + 〈AryBs〉|r−s−2| + ... + 〈ArBs〉|r+s|

=

m∑

k=0

〈ArBs〉|r−s|+2k (10)
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2.1.1 Hodge Star Operator

Let ? be the Hodge star operator, i.e., the mapping

? :

k∧
(M) →

4−k∧
(M), Ak 7→ ?Ak

where for Ak ∈ sec
∧k(M) ⊂ sec C̀ (M, g)

[Bk · Ak]τg = Bk ∧ ?Ak, ∀Bk ∈ sec
∧k

(M) ⊂ sec C̀ (M). (11)

τg ∈
∧4(M) is a standard volume element. Then we can verify that

?Ak = Ãkγ
5. (12)

2.1.2 Dirac Operator

Let d and δ be respectively the differential and Hodge codifferential operators
acting on sections of

∧
(M). If Ap ∈ sec

∧p(M) ⊂ sec C̀ (M), then δAp =
(−)p ?−1 d ? Ap, with ?−1? = identity.

The Dirac operator acting on sections of C̀ (M, g) is the invariant first
order differential operator

∂ = γaDea
, (13)

where {ea} is an arbitrary orthonormal basis for TU ⊂ TM and {γb} is a
basis for T ∗U ⊂ T ∗M dual to the basis {ea}, i.e., γb(ea) = δa

b , a, b = 0, 1, 2, 3.
The reciprocal basis of {γb} is denoted {γa} and we have γa · γb = ηab (ηab =
diag(1,−1,−1,−1)). Also,

Dea
γb = −ωbc

a γc (14)

Defining

ωa = ωbc
a γa ∧ γb, (15)

we have that for any Ap ∈ sec
∧p(M), p = 0, 1, 2, 3, 4

Dea
A = ea +

1

2
[ωa, A]. (16)

Using Eq.(16) we can show the very important result:

∂Ap = ∂ ∧ Ap + ∂yAp = dAp − δAp,

∂ ∧ Ap = dAp, ∂yAp = −δAp, (17)
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2.2 Dirac-Hestenes Spinor Fields

Now, as is well known, an electromagnetic field is represented by F ∈
sec
∧2(M) ⊂ sec C̀ (M, g). How to represent the Dirac spinor fields in this

formalism ? We can show that Dirac-Hestenes spinor fields, do the job.
We give here an elementary introduction to these objects13 when living on
Minkowski spacetime, using the notations of (27). There is a 2 : 1 mapping
L′ : Θ →B between B be the set of all orthonormal ordered vector frames
and Θ the set of all spin frames14 of T ∗M . Consider the set S of mappings15

M 3 x 7→ u(x) ∈ Spin+(1, 3) (18)

Choose in a constant spin frame {γa} ∈ B, a = 0, 1, 2, 3 and choose Ξ0 ∈ Θ
corresponding to a constant mapping u0 ∈ S. By constant we mean that the
equation γµ(x) = γµ(y) ((µ = 0, 1, 2, 3) and u0(x) = u0(y), ∀ x, y ∈ M) has
meaning due to the usual affine structure that can be given to Minkowski
spacetime. Given any other basis Ξu ∈ B we suppose that it is related to Ξ0

by

u0Ξ0u
−1
0 = uΞuu

−1 (19)

¿From now on in order to simplify the notation we take u0 = 1. The
frame L′(Ξ0) = {γa} is called the fiducial vector frame and Ξ0 the fiducial
spin frame. We note that Eq.(19) is satisfied by two such u’s differing by a
signal, and of course, L′(Ξu) = L′(Ξ−u).

Denote by Ξ̂ the set of all spin frames. Let,

T = {(Ξu,ΨΣu
) | u ∈ S,Ξu ∈ Θ,ΨΞu

∈ sec

+∧
M ⊂ secC`+(M, g) (20)

where
+∧
M =

∧0M +
∧2M +

∧4M

13For the theory of these objects (using vector bundles) on a general Riemann-Cartan
manifold see ([17]). Note that papers ([16],[17]) substitute ref.([12]), which must be con-
sidered outdated.

14As discussed at lenght in ([16],[17]) a spin frame can be thought as a basis of T ∗M ,
such that two ordered basis even if consisting of the same vectors, but differing by a
2π rotation are considered distinct and two ordered basis even if consisting of the same
vectors, but differing by a 4π rotation are identified.

15Sl(2,C) 'Spin+(1, 3) ∈ C`+(1, 3) is the universal covering group of the homogeneous,
restrict and orthocronous Lorentz group. There is a bijection between S and Θ.
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We define an equivalence relation on T by setting

(Ξu,ΨΞu
) ∼ (Ξu′,ΨΞ

u′
) (21)

if and only if

uΞuu
−1 = u′−1Ξu′u′, ΨΞ

u′
= ΨΞu

uu′−1. (22)

Definition: Any equivalence class [Ξu,ΨΞu
)] will be called a Dirac-

Hestenes spinor field16.
Note that the pairs (Ξu,ΨΞu

) and (Ξ−u,−ΨΣ−u
) are equivalent, but the

pairs (Ξu,ΨΣu
) and (Ξ−u,ΨΞ−u

) are not. This distinction is essential in
order to give a structure of linear space (over the real numbers) to the set
T . Indeed, we define a linear structure on T as follows

a[(Ξu1
,ΨΞu1

)] + b[(Ξu2
,ΨΞu2

)]=[(Ξu1
, aΨΞu1

)] + [(Ξu2
, bΨΞu2

)],

(a+ b)[(Ξu1
,ΨΞu1

)]=a[(Ξu1
,ΨΞu1

)] + b[(Ξu1
,ΨΞu1

)].

a, b ∈ R (23)

We can simplify the notation by recalling that every u ∈ S determines,
of course, a unique spin frame Ξu . Taking this into account we consider the
set of all pairs (u,ΨΞu

) ∈ S× secC`+(M, g)
We define an equivalence relation R in S× secC`+(M, g) as follows. Two

pairs (u,ΨΞu
), (u′,ΨΞ

u′
) ∈ secS× secC`+(M, g) are equivalent if and only if

ΨΞ
u′
u′ = ΨΞu

u (24)

Of course, Ξu′ = (v)Ξu(v)
−1with v = (u′)−1u ∈ S. Note that the pairs

(u,ΨΞu
) and (−u,−ΨΞu

) are equivalent but the pairs (u,ΨΞu
) and (−u,ΨΞu

)
are not.

Denote by S× secC`+(M, g) /R the quotient set of the equivalence classes
generated by R. Their elements will be called Dirac-Hestenes spinors. Of
course, this is the same definition as above.

¿From now on we simplify even more our notation. In that way, if we
take two orthonormal spin frames L′(Ξ) = {γµ} and L′(Ξ̇) = {γ̇µ = RγµR̃ =

Λµ
νγ

ν} with Λµ
ν ∈ SOe(1, 3) and R(x) ∈ Spine(1, 3) ∀x ∈ M , RR̃ = R̃R = 1,

16A more rigorous definition of a DHSF as a section of a (right) spin-Clifford bundle is
given in [17]. We will not need such a sofistication in the present paper.
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then we simply write the relation (Eq.(24)) between representatives of a
Dirac-Hestenes spinor field in the two spin frames as the sections ψΞ and ψΞ̇

of C̀ +(M, g) related by

ψΞ̇ = ψΞR. (25)

Recall that since ψΞ ∈ sec sec
+∧
M ⊂ secC`+(M, g), we have

ψΞ = s+
1

2!
bµνγ

µγν + pγ5. (26)

Note that ψΞ has the correct number of degrees of freedom in order to rep-
resent a Dirac spinor field and recall that the specification of ψΞ depends on
the frame Σ. To simplify even more our notation, when it is clear which is
the spin frame Ξ, and no possibility of confusion arises we write simply ψ
instead of ψΞ.

When ψψ̃ 6= 0, where ∼ is the reversion operator, we can show that ψ
has the following canonical decomposition:

ψ =
√
ρ eβγ5/2R , (27)

where ρ, β ∈ sec
∧0(M) ⊂ sec C̀ (M, g) and R(x) ∈ Spine(1, 3) ⊂ C̀ +

1,3,
∀x ∈ M . β is called the Takabayasi angle. If we want to work in terms
of the usual Dirac spinor field formalism, we can translate our results by
choosing, for example, the standard matrix representation of the one forms
{γµ} in C(4) (the algebra of the complex 4 × 4 matrices), and for ψΣ given
by Eq.(15) we have the following (standard) matrix representation [12],[16]):

Ψ =




ψ1 −ψ∗
2 ψ3 ψ∗

4

ψ2 ψ∗
1 ψ4 −ψ∗

3

ψ3 ψ∗
4 ψ1 −ψ?

2

ψ4 −ψ∗
3 ψ2 ψ?

1


 . (28)

where ψk(x) ∈ C, k = 1, 2, 3, 4 and for all x ∈M .
We recall that a standard Dirac spinor field is a section ΨD of the vector

bundle PSpine(1,3) ×λ C(4), where λ is the D( 1
2
, 0)⊕D(0, 1

2
) representation of

SL(2,C) ∼ Spine(1, 3). For details see, e.g.,([16][17]). The relation between

11



ΨD and ψ is given by

ΨD =




ψ1

ψ2

ψ3

ψ4


 =




s− ib12
−b13 − ib23
−b03 + ip
−b01 − ib02


 . (29)

where s, b12, . . . are the real functions in Eq.(26) and ∗ denotes the complex
conjugation.

We recall that the even subbundle C̀ +(M, g) of C̀ (M, g) is such that
its typical fiber is the Pauli algebra C̀ 3,0 ≡ C̀ +

1,3 (which is isomorphic to
C(2), the algebra of 2 × 2 complex matrices). Elements of C̀ +

1,3 are called
biquaternions in the old literature. The isomorphism C̀ 3,0 ≡ C̀ +

1,3 is exhibited
by putting ~σi = γiγ0, whence ~σi~σj +~σj~σi = 2δij. We recall also that the Dirac
algebra is C̀ 4,1 ≡ C(4) and C̀ 4,1 ≡ C ⊗ C̀ 1,3.

Consider the complexification C`C(M, g) of C`(g) called the complex Clif-

ford bundle. Then C`C(M, g) = C ⊗ C`(M, g) and we can verify that the
typical fiber of C`C(M, g) is C`4,1 = C ⊗ C`1,3, the Dirac algebra. Now let
{∆0,∆1,∆2,∆3,∆4} ⊂ sec C`C(M, g) be for all x ∈M an orthonormal basis
of C`4,1. We have,

∆a∆b + ∆b∆a = 2gab ,

gab = diag(+1,+1,+1,+1,−1) . (30)

Let us identify γµ = ∆µ∆4 and call I = ∆0∆1∆2∆3∆4. Since I2 = −1
and I commutes with all elements of C`4,1we identify I with i =

√
−1 and

γµ with a fundamental set generating the local Clifford algebra of C`(M, g).
Then if A ∈ sec C`C(M, g) we have

A = Φs + Aµ
Cγµ +

1

2
Bµν

C γµγν +
1

3!
τµνρ
C γµγνγν + Φpγ5, (31)

where Φs, Φp, A
µ
C , Bµν

C , τµνρ
C ∈ sec C⊗

∧0(M) ⊂ sec C`C(M, g), i.e., ∀x ∈M ,
Φs(x), Φp(x), A

µ
C(x), Bµν

C (x), τµνρ
C (x) are complex numbers.

Now, it can be verified that

f =
1

2
(1 + γ0)

1

2
(1 + iγ1γ2) ; f 2 = f , (32)
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is a primitive idempotent field of C`C(M, g). We can also verify without
difficulty that if = γ2γ1f .

Appropriate equivalence classes (see ([16],[17])) of C`C(M, g)f are repre-
sentatives of the standard Dirac spinor fields in C`C(M, g). We can easily
show that the representation of ΨD in C`C(M, g) is given by

ΨD = ψf (33)

where ψ is the Dirac-Hestenes spinor field given by Eq.(26).

2.3 Weyl Spinors and Parity Operator

By definition, ψ ∈ sec C`+(M, g) is a representative of a Weyl spinor field
([14],[15]) if besides being a representative of a Dirac-Hestenes spinor field it
satisfies

γ5ψ = ±ψγ21, (34)

where γ21 = γ2γ1. The positive (negative) “eingestates” of γ5 will be denoted
ψ+ (ψ−). For a general ψ ∈ sec C`+(M, g) we can write

ψ± =
1

2
[ψ ∓ γ5ψγ21] . (35)

Then,

ψ = ψ+ + ψ−. (36)

The parity operator P in our formalism is represented in such a way that
for ψ ∈ sec C`+(M, g),

Pψ= −γ0ψγ0 (37)

The following Dirac-Hestenes spinor fields are eingestates of the parity
operator with eingenvalues ±1:

Pψ↑ = +ψ↑, ψ↑ = γ0ψ−γ0 − ψ−,

Pψ↓ = −ψ↓, ψ↓ = γ0ψ+γ0 + ψ+ (38)

13



2.4 The spin-Dirac Operator

Associated with the covariant derivative operator Dea
(see Eq.(14)) acting on

sections of the Clifford bundle there is a spin-covariant derivative operator17

Ds
ea

acting on sections of a right spin-Clifford bundle, such that its sections
are Dirac-Hestenes spinor fields. Hopefully it will be not necessary to in-
troduce this concept here. Enough is to say that Ds

ea
has a representative

om the Clifford bundle, called D
(s)
ea

, such that if ψΞ is a representative of a
Dirac-Hestenes spinor field we have

D(s)
ea
ψΞ = ea(ψΞ) +

1

2
ωaψΞ, (39)

where ωa has been defined by Eq.(15). The representative of the spin-Dirac
operator acting on representatives of Dirac-Hestenes spinor fields is the in-
variant first order operator given by,

∂(s) = γaD(s)
ea

(40)

¿From the definition of spin-Dirac operator we see that if we restrict our
considerations to orthonormal coordinate bases {γµ = dxµ} where {xµ} are
global Lorentz coordinates then ωµ = 0 and the action of ∂(s) on Dirac-
Hestenes spinor fields is the same as the action of ∂ on these fields. We are
not going to use this operator in what follows.

2.5 Maxwell and Dirac-Hestenes Equations

With the mathematical tools presented above we have the following Maxwell
equation,

∂F = Je (41)

satisfied by an electromagnetic field F ∈ sec
∧2(M) ⊂ sec C̀ (M, g), and

generated by a current Je ∈ sec
∧1(M) ⊂ sec C̀ (M, g).

The Dirac-Hestenes equation in a spin frame Ξ satisfied by a Dirac-
Hestenes spinor field ψ ∈ sec[

∧0(M) +
∧2(M) +

∧4(M)] ⊂ sec C̀ (M, g)

17This operator is a representative in the Clifford bundle of the legitimate spin-Clifford
operator that acts of sections of a vector bundle, called the right spin-Clifford bundle. The
details of this theory is given in [17]
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is

∂ψγ2γ1 −mψγ0 +
1

2
γaψωaγ

2γ1 = 0. (42)

For what follows we restrict our considerations only for the case of or-
thonormal coordinate basis, in which case the Dirac-Hestenes equation reads

∂ψγ2γ1 −mψγ0 = 0 (43)

3 Solution of ψγ21ψ̃ = F

We now want solve18 Eq.(1) for ψ. We are going to show that contrary
to the claims of [21] a general solution for ψ has indeed eight degrees of
freedom, although two of them are arbitrary, i.e., not fixed by F alone. Once
we give a solution of Eq.(1) for ψ, the reason for the indetermination of
two of the degrees of freedom will become clear. This involves the Fierz
identities, boomerangs ([12],[14][31])and the general theorem permitting the
reconstruction of spinors from is bilinear covariants.

Let us start by observing that from Eq.(1) and Eq.(27) we can write

F = ρeβγ5Rγ21R̃ (44)

Then, defining f = F/ρeβγ5 it follows that

f = Rγ21R̃ (45)

f 2 = −1 (46)

Now, since all objects in Eq.(44) and Eq.(45) are even we can take ad-
vantage of the isomorphism C̀ 3,0 ≡ C̀ +

1,3 and making the calculations when
convenient in the Pauli algebra. To this end we first write:

We have

F =
1

2
F µνγµγν, F

µν =




0 −E1 −E2 −E3

E1 0 −B3 B2

E2 B3 0 −B1

E3 −B2 B1 0


 , (47)

18On euclidian spacetime this equation has been solved using Clifford algebra methods
in [29]. On Minkowski spacetime a particular solution of an equivalent equation (written
in terms of biquaternions) appear in [30].
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where (E1, E2, E3) and (B1, B2, B3) are respectively the Cartesian compo-
nents of the electric and magnetic fields.

We now write F in C`+(M, g), the even sub-algebra of C`(M, g). The
typical fiber of C`+(M, g)( which is also a vector bundle) is isomorphic to the
Pauli algebra. We put

~σi = γiγ0, i = ~σ1~σ2~σ3 = γ0γ1γ2γ3 = γ5. (48)

Recall that i commutes with bivectors and since i2 = −1 it acts like the
imaginary unit i =

√
−1 in C`+(M, g). From Eq.(47) and Eq.(48) (taking

into account our previous discussion) we can write

F = ~E + i ~B, (49)

with ~E = Ei~σi, ~B = Bj~σj, i, j = 1, 2, 3. We can write an analogous equation
for f,

f = ~e+ i~b (50)

Now, since F 2 6= 0 and

F 2 = F · F + F ∧ F
= −( ~E2 − ~B2) + 2i( ~E · ~B) (51)

the above equations give (in the more general case where both I1 = ( ~E2 −
~B2) 6= 0 and I2 = ( ~E · ~B) 6= 0):

ρ =

√
~E2 − ~B2

cos[arctg2β]
, β =

1

2
arctan

(
2( ~E · ~B)

~E2 − ~B2

)
(52)

Also,

~e =
1

ρ
[( ~E cos β + ~B sin β)], ~b = ( ~B cos β − ~E sin β)] (53)

3.1 A Particular Solution
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Now, we can verify that19

L =
γ21 + f√
2(1 − γ5I)

=
~σ3 − i~f

i

√
2(1 − i(~f · ~σ3)

, (54)

I = f 03 − γ5f
12 ≡ ~f · ~σ3 (55)

is a Lorentz transformation, i.e., LL̃ = L̃L = 1. Moreover, L is a particular
solution of Eq.(45). Indeed,

γ21 + f√
2(1 − γ5I)

γ21
γ12 − f√
2(1 − γ5I)

=
f [2(1 − γ5I)]

2(1 − γ5I)
= f (56)

Of course, since f 2 = −1, ~e2 = ~b2 − 1and ~e ·~b = 0 and there are only four
real degrees of freedom in the Lorentz transformation L. From this result
in [21] it is concluded that the solution of the Eq.(1) is the Dirac-Hestenes
spinor field

φ =
√
ρeγ5βL, (57)

which has only six degrees of freedom and thus is not equivalent to a general
Dirac-Hestenes spinor field (the spinor field that must appears in the Dirac-
Hestenes equation), which has eight degrees of freedom. In this way it is
stated in [21] that a the MDE of first kind proposed in ([6],[8]) cannot hold20.
Well, although it is true that Eq.(57) is a solution of Eq.(1) it is not a general

solution, it is only a particular solution.

3.2 The General Solution

The general solution R of Eq.(1) is trivially found. It is

R = LS, (58)

where L is the particular solution just found and S is any member of the
stability group of γ21, i.e.,

Sγ21S̃ = γ21, SS̃ = S̃S = 1. (59)

19Observe that this formula is similar, but not equal to Eq.(6) of [21].
20There are many other Dirac-like forms of the Maxwell equations published in the

literature. All are trivially related in a very simple way and in principle have nothing to
do with the two kinds of MDE discussed in the present paper. See [31].
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It is trivial to find that we can parametrize the elements of the sta-
bility group as

S = exp(γ03ν) exp(γ21ϕ), (60)

with 0 ≤ ν < ∞ and 0 ≤ ϕ < ∞. This shows that the most general Dirac-
Hestenes spinor field that solves Eq.(1) has indeed eight degrees of freedom
(as it must be the case, if the claims of ( [6],[8]) are to make sense), although
two degrees of freedom are arbitrary, i.e., they are like hidden variables!

Now, the reason for the indetermination of two degrees of freedom has
to do with a fundamental mathematical result: the fact that a spinor can
only be reconstruct through the knowledge of its bilinear covariants and the
Fierz identities. Explicitly, to reconstruct a Dirac-Hestenes spinor field ψ, it
is necessary to know also, besides the bilinear covariant given by Eq.(1), the
following bilinear covariants,

J = ψγ0ψ̃ and K = ψγ3ψ̃. (61)

Now, J,K and F are related trough the so called Fierz identities,

J2 = −K2 = −σ2 − ω2,

J ·K = 0, J ∧K = −(ω + γ5)F,

σ = ρ cos β, ω = ρ sin β. (62)

In the most general case when both σ, ω are not 0 we also have the notable
identities first found by Crawford [31]21,

FxJ = ωK
(γ5F )xJ = σK
F · F = ω2 − σ2

FxK = ωJ
(γ5F )xK = σJ
(γ5F ) · F = 2σω

(63)

JF = −(ω + γ5σ)K, KF = −(ω + γ5σ)J

F 2 = ω2 − σ2 − 2γ5σω, F−1 = KFK/(ω2 + σ2) (64)

21The original derivation given by Crawford uses standard Dirac spinor fields and is a
very long one indeed. In the Clifford bundle formalism the derivation is an almost trivial
exercise.
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Once we know ω, σ, J , K and F we can recover the Dirac-Hestenes spinor
field as follows. First, introduce a boomerang ([12],[14],[15]) Z ∈ C`C(M, g)
given by

Z = σ + J + iF − iKω (65)

Then, we can construct Ψ = Zf ∈ C`C(M, g)f which has the following
matrix representation (once the standard representation of the Dirac gamma
matrices are used)

Ψ̂ =




ψ1 0 0 0
ψ2 0 0 0
ψ3 0 0 0
ψ4 0 0 0


 (66)

Now, it can be easily verified that22 Ψ = Zf determines the same bilinear
covariants as the ones determined by ψ.

Recalling that (a representative) of a Dirac-Hestenes spinor field deter-
mines a unique element of Φ ∈ C`C(M)f by Φ = ψf , then it follows (from
Eq.(66) and Eq.(28) that gives the matrix representation of ψ) that we can
trivially reconstruct a ψ that solves our problem.

4 The Generalized Maxwell Equation

To comment on the basic error in [21] concerning the Clifford bundle formu-
lation of the generalized Maxwell equation we recall the following.

The generalized Maxwell equation ([9],[31]) which describes the electro-
magnetic field generated by charges and monopoles, can be written in the
Cartan bundle as

dF = Km, dG = Ke (67)

where F,G ∈
∧2(M) and Km, Ke ∈

∧3(M).

22This spinor is not unique. In fact, Z determines a class of elements Zη where η is
an arbitrary element of C`C(M, g)f which differs one from the other by a complex phase
factor. See ([12], [14],[15]) for details.
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These equations are independent of any metric structure defined on the
world manifold. When a metric is given and the Hodge dual operator ? is
introduced it is supposed that in vacuum we have G = ?F . In this case
putting Ke = − ? Je and Km = ?Jm, with Je, Jm ∈ sec

∧1(M), we can write
the following equivalent set of equations

dF = − ? Jm, d ? F = − ? Je, (68)

δ(?F ) = Jm, δF = −Je (69)

δ(?F ) = Jm, δF = −Je (70)

dF = − ? Jm, δF = −Je. (71)

Now, supposing that any sec
∧j(M) ⊂ sec C̀ (M, g) (j = 0, 1, 2, 3, 4) and

taking into account Eqs.(13-17) we get Eq.(2) by summing the two equations
in (71), i.e.,

(d− δ)F = Je +Km or (d− δ)?F = −Jm +Ke, (72)

or equivalently

∂F = Je + γ5Jm or ∂(−γ5F ) = −Jm + γ5Je. (73)

Now, writing with the conventions23 of section 2 ,

F =
1

2
F µνγµγν, ? F =

1

2
(?F µν)γµγν, (74)

then generalized Maxwell equations in the form given by Eq.(69) can be
written in components ( in Lorentz coordinates) as

∂µF
µν = Jµ

e , ∂µ(?F µν) = −Jµ
m (75)

Now, assuming as in Eq.(1) that F = ψγ21ψ̃ and taking into account the
relation between ψ and the representation of the standard Dirac spinor ΨD

given by Eq.(29), we can write Eq.(75) as

∂µΨ̄D [γ̂µ, γ̂ν] ΨD = 2Jµ
e , ∂µΨ̄Dγ̂5 [γ̂µ, γ̂ν] ΨD = −2Jµ

m,

F µν =
1

2
Ψ̄D [γ̂µ, γ̂ν] Ψ, (?F µν) =

1

2
Ψ̄Dγ̂5 [γ̂µ, γ̂ν] ΨD (76)

23In Eq.(74) ?F µν are the components of ?F .
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The reverse of the first of Eqs.(73) equation reads

∼

(∂F ) = Je −Km. (77)

First summing, and then subtracting Eq.(2) with E.(67) we get the fol-
lowing equations for F = ψγ21ψ̃,

∂ψγ21ψ̃ +
∼

(∂ψγ21ψ̃) = 2Je, ∂ψγ21ψ̃ −
∼

(∂ψγ21ψ̃) = 2Km (78)

which is equivalent to Eq.(13) in [21]24. There, it is observed that Je is even
under reversion and Km is odd. Then, it is claimed that “since reversion is
a purely algebraic operation without any particular physical meaning, the
monopolar current Km is necessarily zero if the Clifford formalism is as-
sumed to provide a representation of Maxwell’s equations equation where
the source currents Je and Km correspond to fundamental physical fields.”
It is also stated that Eq.(76) and Eq.(78) imposes different constrains on the
monopolar currents Je and Km.

It is clear that these arguments are fallacious. Indeed, it is obvious that
if any comparison is to be made, it must be done between Je and Jm or
between Ke and Km. In this case, it is obvious that both pairs of currents
have the same behavior under reversion. This kind of confusion is widespread
in the literature, mainly by people that works with the generalized Maxwell
equation(s) in component form (Eqs.(75)).

It seems that experimentally Jm = 0 and the following question suggests
itself: is there any real physical field governed by a equation of the type of
the generalized Maxwell equation (Eq.(2)). The answer is yes.

5 The Generalized Hertz Potential Equation

In what follows we accept that Jm = 0 and take Maxwell equations for
the electromagnetic field F ∈ sec

∧2(M) ⊂ sec C̀ (M, g) and a current Je ∈
sec
∧1(M) ⊂ sec C̀ (M, g) as

∂F = Je. (79)

24In [21] G is used for the three form of monopolar current.
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Let Π = 1
2
Πµνγµγν = ~Πe + i~Πm ∈ sec

∧2(M) ⊂ sec C̀ (M, g) be the so
called Hertz potential ([33],[34]). We write

[Πµν ] =




0 −Π1
e −Π2

e −Π3
e

Π1
e 0 −Π3

m Π2
m

Π2
e Π3

m 0 −Π1
m

Π3
e −Π2

m Π1
m 0


 . (80)

and define the electromagnetic potential by

A = −δΠ ∈ sec Λ1(T ?M) ⊂ sec C̀ (M, g), (81)

Since δ2 = 0 it is clear that A satisfies the Lorenz gauge condition, i.e.,

δA = 0. (82)

Also, let

γ5S = dΠ ∈ sec
∧

3(M) ⊂ sec C̀ (M, g), (83)

and call S, the Stratton potential. It follows also that

d
(
γ5S

)
= d2Π = 0. (84)

But d(γ5S) = γ5δS from which we get, taking into account Eq.(76),

δS = 0 (85)

We can put Eq.(81) and Eq.(83) in the form of a single generalized Maxwell
like equation, i.e.,

∂Π = (d− δ)Π = A+ γ5S = A. (86)

Eq.(86) is the equation we were looking for. It is a legitimate physical equa-
tion. We also have,

�Π = (d− δ)2Π = dA+ γ5dS. (87)

Next, we define the electromagnetic field by

F = ∂A = �Π = dA+ γ5dS = Fe + γ5Fm. (88)
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We observe that,

�Π = 0 ⇒ Fe = −γ5Fm. (89)

Now, let us calculate ∂F . We have,

∂F = (d− δ)F

= d2A+ d(γ5dS) − δ(dA) − δ(γ5dS).
(90)

The first and last terms in the second line of Eq.(87) are obviously null.
Writing,

Je = −δdA, and γ5J
m

= −d(γ5dS), (91)

we get Maxwell equation

∂F = (d− δ)F = Je, (92)

if and only if the magnetic current γ5Jm = 0, i.e.,

δdS = 0. (93)

a condition that we suppose to be satisfied in what follows. Then,

�A = Je = −δdA,
�S = 0. (94)

Now, we define,

Fe = dA = ~Ee + i ~Be, (95)

Fm = dS = ~Bm + i ~Em. (96)

and also

F = Fe + γ5Fm = ~E + i ~B = ( ~Ee − ~Em) + i( ~Be + ~Bm). (97)

Then, we get

�~Πe = ~E, �~Πm = ~B. (98)
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It is important to keep in mind that:

�Π = 0 ⇒ ~E = 0, and ~B = 0. (99)

Nevertheless, despite this result we have,

Hertz Theorem 25

�Π = 0 leads to ∂Fe = 0 (100)

Proof. We have immediately from the above equations that

∂Fe = −∂(γ5Fm) = −d(γ5dS) + δ(γ5dS) = γ5d
2S − γ5δdS = 0.� (101)

6 Maxwell Dirac Equivalence of First Kind

Let us consider a generalized Maxwell equation

∂F = J , (102)

where ∂ = γµ∂µ is the Dirac operator and J is the electromagnetic current
(an electric current Je plus a magnetic monopole current −γ5Jm, where Je,
Jm ∈ sec

∧1M ⊂ C̀ (M, g)). We proved in section 2 that if F 2 6= 0, then we
can write

F = ψγ21ψ̃ , (103)

where ψ ∈ sec C̀ +(M, g) is a representative of a Dirac-Hestenes field. If we
use Eq.(103) in Eq.(102) we get

∂(ψγ21ψ̃) = γµ∂µ(ψγ21ψ̃) = γµ(∂µψγ21ψ̃ + ψγ21∂µψ̃) = J . (104)

from where it follows that

2γµ〈∂µψγ21ψ̃〉2 = J , (105)

25Eq.(100) has been called the Hertz theorem in (54,[35]) and it has been used there
and and also in [36]-[42] in order to find nontrivial superluminal solutions of Maxwell
equations.
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Consider the identity

γµ〈∂µψγ21ψ̃〉2 = ∂ψγ21ψ̃ − γµ〈∂µψγ21ψ̃〉0 − γµ〈∂µψγ21ψ̃〉4, (106)

and define moreover the vectors

j = γµ〈∂µψγ21ψ̃〉0, (107)

g = γµ〈∂µψγ5γ21ψ̃〉0. (108)

Taking into account Eqs.(104)-(108), we can rewrite Eq.(104) as

∂ψγ21ψ̃ =

[
1

2
J + (j + γ5g)

]
. (109)

Eq.(109) is a spinorial representation of Maxwell equation. In the case
where ψ is non-singular (which corresponds to non-null electromagnetic fields)
we have

∂ψγ21 =
eγ5β

ρ

[
1

2
J + (j + γ5g)

]
ψ. (110)

The Eq.(110) representing Maxwell equation, written in that form, does
not appear to have any relationship with the Dirac-Hestenes equation (Eq.(43)).
However, we shall make some algebraic modifications on it in such a way as
to put it in a form that suggest a very interesting and intriguing relationship

between them, and consequently a possible (?) connection between electro-
magnetism and quantum mechanics.

Since ψ is supposed to be non-singular (F 6= 0) we can use the canon-
ical decomposition of ψ and write ψ = ρeβγ5

/2R, with ρ, β ∈ sec
∧0M ⊂

sec C̀ (M, g) and R ∈ Spin+(1,3), ∀x ∈M . Then

∂µψ =
1

2
(∂µ ln ρ+ γ5∂µβ + Ωµ)ψ, (111)

where we define the 2-form

Ωµ = 2(∂µR)R̃. (112)

Using this expression for ∂µψ into the definitions of the vectors j and g
(Eqs.(107,108)) we obtain that

j = γµ(Ωµ · S)ρ cos β + γµ[Ωµ · (γ5S)]ρ sin β, (113)
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g = [Ωµ · (γ5S)]ρ cos β − γµ(Ωµ · S)ρ sin β, (114)

where we define the spin 2-form S by

S =
1

2
ψγ21ψ

−1 =
1

2
Rγ21R̃. (115)

We now define

J = ψγ0ψ̃ = ρv = ρRγ0R−1, (116)

where v is the velocity field of the system. To continue, we define the 2-form
Ω = vµΩµ and the scalars Λ and K by

Λ = Ω · S, (117)

K = Ω · (γ5S). (118)

Using these definition we have that

Ωµ · S = Λvµ, (119)

Ωµ · (γ5S) = Kvµ, (120)

and for the vectors j and g can be written as

j = Λvρ cosβ +Kvρ sin β = λρv, (121)

g = Kvρ cos β − Λvρ sin β = κρv, (122)

where we defined

λ = Λ cosβ +K sin β, (123)

κ = K cos β − Λ sin β. (124)

The spinorial representation of Maxwell equation is written now as

∂ψγ21 =
eγ5β

2ρ
Jψ + λψγ0 + γ5κψγ0. (125)
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If J = 0 (free case)26 we have that

∂ψγ21 = λψγ0 + γ5κψγ0, (126)

which is very similar to the Dirac-Hestenes equation.
In order to go a step further into the relationship between those equations,

we remember that the electromagnetic field has six degrees of freedom, while
a Dirac-Hestenes spinor field has eight degrees of freedom and that we proved
in section 2 that two of these degrees of freedom are hidden variables. We
are free therefore to impose two constraints on ψ if it is to represent an
electromagnetic field. We choose these two constraints as

∂ · j = 0 and ∂ · g = 0. (127)

Using Eqs.(121,122) these two constraints become

∂ · j = ρλ̇+ λ∂ · J = 0, (128)

∂ · g = ρκ̇+ k∂ · J = 0, (129)

where J = ρv and λ̇ = (v · ∂)λ, k̇ = (v · ∂)k. These conditions imply that

κλ = λκ (130)

which gives (λ 6= 0):

κ

λ
= const. = − tan β0, (131)

or from Eqs.(123,124):

K

Λ
= tan(β − β0). (132)

Now we observe that β is the angle of the duality rotation from F to
F ′ = eγ5βF. If we perform another duality rotation by β0 we have F 7→
eγ5(β+β0)F, and for the Takabayasi angle β 7→ β + β0. If we work therefore

26There are ([33]-[41]) infinite families of non trivial solutions of Maxwell equations
such that F 2 6= 0. These solutions correspond to subluminal and superluminal solutions
of Maxwell equation.
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with an electromagnetic field duality rotated by an additional angle β0, the
above relationship becomes

K

Λ
= tanβ. (133)

This is, of course, just a way to say that we can choose the constant β0 in
Eq.(131) to be zero. Now, this expression gives

λ = Λ cos β + Λ tanβ sin β =
Λ

cos β
, (134)

κ = Λ tanβ cos β − Λ sin β = 0, (135)

and the spinorial representation 126 of the Maxwell equations becomes

∂ψγ21 − λψγ0 = 0 (136)

Note that λ is such that

ρλ̇ = −λ∂ · J. (137)

The current J = ψγ0ψ̃ is not conserved unless λ is constant. If we suppose
also that

∂ · J = 0 (138)

we must have

λ = const.

Now, throughout these calculations we have assumed ~ = c = 1. We
observe that in Eq.(136) λ has the units of (length)−1, and if we introduce
the constants ~ and c we have to introduce another constant with unit of
mass. If we denote this constant by m such that

λ =
mc

~
, (139)

then Eq.(136) assumes a form which is identical to Dirac-Hestenes equation:

∂ψγ21 −
mc

~
ψγ0 = 0. (140)

It is true that we didn’t prove that Eq.(140) is really Dirac equation since
the constant m has to be identified in this case with the electron’s mass, and
we do not have any good physical argument to make that identification, until
now. Of course, it is to earlier to know if these results are of some physical
value or only a mathematical curiosity. Let us wait...
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7 Maxwell-Dirac Equivalence of Second Kind

We now look for a Hertz potential field Π ∈ sec
∧2(M) satisfying the follow-

ing (non linear) equation

∂Π = (∂G +mPγ3 +m〈Πγ012〉1) + γ5(∂P +mGγ3 − γ5〈mΠγ012〉3) (141)

where G,P ∈ sec
∧0(M), and m is a constant. According to section 5 the

electromagnetic and Stratton potentials are

A = (∂G +mPγ3 +m〈Πγ012〉1, (142)

γ5S = γ5(∂P +mGγ3 − γ5〈mΠγ012〉3), (143)

and must satisfy the following subsidiary conditions,

�(∂G +mPγ3 +m〈Πγ012〉1) = Je (144)

�(γ5(∂P +mGγ3 − γ5〈mΠγ012〉3) = 0, (145)

�G +m∂ · 〈Πγ012〉1 = 0, (146)

�P −m∂ · (γ5〈Πγ012〉3) = 0. (147)

Now, in the Clifford bundle formalism, as we already explained above,
the following sum is a legitimate operation

ψ = −G + Π + γ5P (148)

and according to the results of section 2 defines ψ as a (representative) of
some Dirac-Hestenes spinor field. Now, we can verify that ψ satisfies the
equation

∂ψγ21 −mψγ0 = 0 (149)

which is as we already know a representative of the standard Dirac equation
(for a free electron) in the Clifford bundle, which is a Dirac-Hestenes equation
(Eq.(43)), written in an orthonormal coordinate spin frame.
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The above developments suggest (consistently with the spirit of the gen-
eralized Hertz potential theory developed in section 5) the following interpre-
tation. The Hertz potential field Π generates the real electromagnetic field
of the electron27. Moreover, the above developments suggest that the elec-
tron is “composed” of two “fundamental” currents, one of electric type and
the other of magnetic type circulating at the ultra microscopic level, which
generate the observed electric charge and magnetic moment of the electron.
Then, it may be the case, as speculated by Maris [27], that the electromag-
netic field of the electron can be spliced into two parts, each corresponding to
a new kind of subelectron type particle, the electrino. Of course, the above
developments leaves open the possibility to generate electrinos of fractional
charges. We still study more properties of the above system in another paper.

8 Seiberg-Witten Equations

The famous Seiberg-Witten monopole equations read in the Clifford bundle
formalism and on Minkowski spacetime28 as [27]





∂ψγ21 − Aψ = 0

F = 1
2
ψγ21ψ̃

F = dA
(150)

where ψ ∈ sec C`+(M, g) is a Dirac-Hestenes spinor field, A ∈ sec
∧1(M) ⊂

sec C`(M, g) is an electromagnetic vector potential and F ∈ sec
∧2(M) ⊂

sec C`(M, g) is an electromagnetic field.
Our intention in this section is:
(a) To use the Maxwell Dirac-Equivalence of the first kind (proved in

section 7) and an additional hypothesis to be discussed below to derive the
Seiberg-Witten equations.

(b) to give a (possible) physical interpretation for that equations.

27The question of the physical dimension of the Dirac-Hestenes and Maxwell fields is
discussed in [8].

28The original Seiberg-Witten (monopole) equations have been written in euclidian
“spacetime”.
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8.1 Derivation of Seiberg-Witten Equations

Step 1. We assume that the electromagnetic field F appearing in the second
of the Seiberg-Witten equations satisfy the free Maxwell equation, i.e., ∂F =
0.

Step 2. We use the Maxwell-Dirac equivalence of the first kind proved
in section 6 to obtain Eq.(136),

∂ψγ21 − λψγ0 = 0 (151)

Step 3. We introduce the ansatz

A = λψγ0ψ
−1. (152)

This means that the electromagnetic potential (in our geometrical units)
is identified with a multiply of the velocity field defined through Eq.(116).
Under this condition Eq.(151) becomes

∂ψγ21 − Aψ = 0, (153)

which is the first Seiberg-Witten equation!

8.2 A Possible Interpretation of the Seiberg-Witten

Equations

Well, it is time to find an interpretation for Eq.(153). In order to do that we
recall from section 2.5 that if ψ± are Weyl spinor fields (as defined through
Eq.(34), then ψ± satisfy a Weyl equation, i.e.,

∂ψ± = 0. (154)

Consider now, the equation for ψ+ coupled with an electromagnetic field
A = gB ∈ sec

∧1(M) ⊂ sec C`(M, g), i.e.,

∂ψ+γ21 + gBψ+ = 0. (155)

This equation is invariant under the gauge transformations

ψ+ 7→ ψ+e
gγ5θ;B 7→ B + ∂θ. (156)
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Also, the equation for ψ− coupled with an electromagnetic field gB ∈
sec
∧1(M) is

∂ψ−γ21 + gBψ− = 0. (157)

which is invariant under the gauge transformations

ψ− 7→ ψ−e
gγ5θ;B 7→ B + ∂θ. (158)

showing clearly that the fields ψ+ and ψ− carry opposite ‘charges’. Consider
now the Dirac-Hestenes spinor fields ψ↑, ψ↓ given by Eq.(38) which are eigen-
vectors of the parity operator and look for solutions of Eq.(153) such that
ψ = ψ↑. We have,

∂ψ↑γ21 + gBψ↑ = 0 (159)

which decouples in two equations,

∂ψ↑
+γ21 + gγ5Bψ

↑
+ = 0; ∂ψ↑

−γ21 + gγ5Bψ
↑
− = 0. (160)

These results show that when a Dirac-Hestenes spinor field associated
with the first of the Seiberg-Witten equations is in an eigenstate of the par-
ity operator, that spinor field describes a pair of particles with opposite
‘charges’. We interpret these particles29 as being massless ‘monopoles’ in
auto-interaction. Observe that our proposed interaction is also consistent
with the third of Seiberg-Witten equations, for F = dA implies a null mag-
netic current.

It is now well known that Seiberg-Witten equations have non trivial so-
lutions on Minkowski manifolds (see [25]). From the above results, in par-
ticular, taking into account the inversion formula (Eq.(56)) it seems to be
possible to find whole family of solutions for the Seiberg-Witten equations,
which has been here derived from a Maxwell-Dirac equivalence of first kind
(proved in section 6) with the additional hypothesis that electromagnetic po-
tential A is parallel to the velocity field v (Eq.(152)) of the system described
by Eq.(116). We conclude that a consistent set of Seiberg-Witten equations
on Minkowski spacetime must be





∂ψγ21 − Aψ = 0

F = 1
2
ψγ21ψ̃

F = dA
A = λψγ0ψ

−1

(161)

29Lochack [42] suggest that an equation equivalent to Eq.(160) describe massless
monopoles of opposite ‘charges’.
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9 Conclusions

In this paper we exhibit two different kinds of possible Maxwell-Dirac equiva-
lences (MDE ). Although many will find the ideas presented above speculative
from the physical point of view, we hope that they may become important,
at least from a mathematical point of view. Indeed, not to long ago, research-
ing solutions of the free Maxwell equation (∂F = 0) satisfying the constraint
F 2 6= 0 (a necessary condition for derivation of a MDE of the first kind)
conduced to the discovery of families of superluminal solutions of Maxwell
equations and also of all the main linear relativistic equations of theoreti-
cal Physics ([34],[42]). The study of the MDE of the second kind reveal an
unsuspected interpretation of the Dirac equation, namely that the electron
seems to be a composed system build up from the self interaction of two
currents of ‘electrical’ and ‘magnetic’ types. Of course, it is to earlier to say
if this discovery has any physical significance. We showed also, that by using
the MDE of the first kind together with a reasonable hypothesis we can shed
light on the meaning of Seiberg-Witten monopole equations on Minkowski
spacetime. We hope that the results just found may be an indication that
Seiberg-Witten equations (which are a fundamental key in the study of the
topology of four manifolds), is of some importance to Physics.
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