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Abstract. In this paper we establish the existence of multiple solutions for the semilinear
elliptic problem

−∆u = g(x, u) in Ω
u = 0 on ∂Ω,

where Ω ⊂ R
N is a bounded domain with smooth boundary ∂Ω, g : Ω × R → R is a

function of class C1 such that g(x, 0) = 0 and which is asymptotically linear at infinity
with jumping nonlinearities. We considered both cases resonant and nonresonant with
respect to Fučik Spectrum. We use critical groups to distinguish the critical points.

1. Introduction

Let us consider the problem

−∆u = g(x, u) in Ω
u = 0 on ∂Ω,

(1)

where Ω ⊂ R
N is a open bounded domain with smooth boundary ∂Ω and g : Ω × R → R

be a function of class C1 such that g(x, 0) = 0, which implies that (1) possesses the trivial
solution u = 0. We will be interested in nontrivial solutions. Assume that

α± = lim
t→±∞

g(x, t)

t
, α± ∈ R, uniformly in Ω. (2)

Without loss of generality, we assume α− ≤ α+. The classical solutions of the problem (1)
correspond to critical points of the functional F defined on H1

0 (Ω), by

F (u) =
1

2

∫

Ω

|∇u|2dx −
∫

Ω

G(x, u)dx, u ∈ H1
0 (Ω), (3)

where G(x, t) =
∫ t

0
g(x, s)ds. Under the above assumptions F ∈ C2.

Denote by 0 < λ1 < λ2 ≤ · · · ≤ λj ≤ . . . the eigenvalues of (−∆, H1
0 ), where each

λj occurs in the sequence as often as its multiplicity. We note that the strict inequalities
λj−1 < λj < λj+1 imply that λj is simple.
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It is know that the existence and multiplicity of solutions for (1) strongly rely on the posi-
tion of the pair (α−, α+) ∈ R

2 with respect to the so called Fučik spectrum of (−∆, H1
0 (Ω))

(see [17], where this notion of spectrum was introduced). The latter is defined as

Σ := {(µ, ν) ∈ R
2 ; ∃ u ∈ H1

0 (Ω) \ {0},−∆u = µu+ − ν−}, (4)

where u+ = max{u, 0}, u− = u − u+. It is clear that Σ contains the lines R × {λ1} and
{λ1} ×R and the points (λj , λj), j ≥ 1. In the one dimensional case N = 1, the set Σ can
be easily described (see e.g. [17]).

Let’s assume N ≥ 2 and that λj−1 < α− ≤ λj = λj+k ≤ α+ < λj+k+1 for some
j ≥ 2 and k ≥ 0. It is known that Σ contains at least two paths cji(t), i = 1, 2, with
image in Q = [λj , λj+k+1[×]λj−1, λj] and starting at the point (λj, λj). In fact, Σ ∩ Q =
range(cj1) ∪ range(cj2) if λj is simple. We also recall that it may happen that cj1 = cj2.
Otherwise, say, the graph of cj1 lies below the graph of cj2. For this and other properties
of cj1 and cj2 we refer to [5], [19], [21] and [26].

Thus, with the above notations, we assume that

(α+, α−) lies in range(cj1) (or below it). (5)

Moreover, we assume the following hypotheses
{

g(x,t)
t

is strictly increasing for t ≥ 0, a.e. in Ω, and
g(x,t)

t
is strictly decreasing for t ≤ 0, a.e. in Ω.

(6)

lim
|t|→∞

[tg(x, t) − 2G(x, t)] = ∞, for a.e. x ∈ Ω. (7)

Theorem 1.1. Let g : Ω × R → R be a function of class C1, g(x, 0) = 0, which satisfies
(2) and (6). Suppose that there exist k ≥ 2, m ≥ k + 2 and r, α > 0 such that

λk−1 ≤
g(x, t)

t
≤ α < λk, ∀ |t| ≤ r; and λm−1 < α− ≤ λm ≤ α+ < λm+1.

Assume that (5) hold with j = m. Moreover, if (α+, α−) ∈ cm1 assume (7). Then problem
(1) has at least two nontrivial solutions.

Theorem 1.2. Let g : Ω × R → R be a function of class C1, g(x, 0) = 0, which satisfies
(2) and (6). Suppose that there exists m > 3, k ≥ 0 and r, α > 0 such that

g(x, t)

t
≤ α < λ1, ∀ |t| ≤ r; and λm−1 < α− ≤ λm = λm+k ≤ α+ < λm+k+1.

Assume that (5) hold with j = m. Moreover, if (α+, α−) ∈ cm1 assume (7). Then problem
(1) has at least four nontrivial solutions, one of those changing sign, another one positive
and a third one negative.

Remark 1.1. With the above conditions the functional F , defined by (3), has a critical
point of saddle point type, see [15]. Without the jumping nonlinearity the above results
have been proved by the author in [24]. Dancer and Zhang, in [14], have proved that
problem (1) has at least one sign changing solution, one positive solution, and one negative
solution, under the hypotheses of Theorem 1.2.
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Now consider the autonomous problem

−∆u = g(u) in Ω
u = 0 on ∂Ω,

(8)

where g : R → R is a function of class C1 such that g(0) = 0. Assume that
{

g(t) is convex if t ≥ 0, and
g(t) is concave if t ≤ 0.

(9)

The latter conditions was assumed by several authors, e.g. [1], [8] and [23] for the case
when [α−, α+] ∩ {λj} = ∅. In [6] and [7], the authors has considered this problem when
]α−, α+[∩{λj} 6= ∅.
Theorem 1.3. Let g : R → R be a function of class C1, g(0) = 0, which satisfies (9).
Suppose that there exist k ≥ 2 and m ≥ k + 2 such that λk−1 ≤ g′(0) < λk and

λm−1 < α− = lim
t→−∞

g′(t) ≤ λm ≤ α+ = lim
t→+∞

g′(t) < λm+1.

Assume that either (α+, α−) lies in cm1 or below it. Then problem (8) has at least two
nontrivial solutions.

In fact, the above hypothesis on the convexity of g implies that (see Proposition 2.1)

lim
|t|→∞

[tg(t) − 2G(t)] = ∞.

Hence the previous theorem is a corollary of Theorem 1.1.

Remark 1.2. In [4], Bartsch, Chang & Wang showed that if g′(t) > g(t)/t ∀ t 6= 0 and

g′(0) < λ1 < λ2 ≤ λk < lim
|t|→∞

g′(t) < λk+1, (k > 2),

then problem (8) has at least four nontrivial solution, two of these solutions changing sign,
one is positive and another one is negative. In [7], the authors have proved that if tg′′(t) > 0
and ℓ± > λ2, then (8) has at least three nontrivial solutions, one of these solutions change
sign. The next result is a corollary of Theorem 1.2.

Theorem 1.4. Let g : R → R be a function of class C1, g(0) = 0, which satisfies (9).
Suppose that g′(0) < λ1 and that exist m > 3 and k ≥ 0 such that

λm−1 < α− = lim
t→−∞

g(t)

t
≤ λm = λm+k ≤ α+ = lim

t→+∞

g(t)

t
< λm+k+1.

Assume that either (α+, α−) lies in cm1 or below it. Then problem (8) has at least four
nontrivial solutions, one of those change sign, one is positive and another one is negative.

Remark 1.3. The functional in the nonresonant case satisfies the Palais-Smale Condition,
(PS) in short, and the difficulty in the resonant case is the lack of a (PS) condition. But
if the function g satisfies

lim
|t|→∞

[tg(x, t) − 2G(x, t)] = ∞, uniformly in Ω,
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then in [13], Costa & Cuesta showed that this condition is sufficient to obtain a weak
version of the (PS) condition, namely the (C) condition, which was introduced by Cerami
in [9]. The (C) condition was used by Bartolo, Benci & Fortunato in [2] to prove a general
minimax theorem (see [25] for these results with the (PS) condition). The so called Second
Deformation Lemma, proved by Chang (see [11]), has a version with the Cerami condition
replacing the usual (PS) condition, as proved by Silva in [27].

In the section 4 we make some remarks on the one dimensional case, N = 1, under either
Dirichlet or periodic boundary conditions. In [20] and [29], the authors study the asymp-
totically linear case (only the Dirichlet case). Our conditions are new in the asymptotically
linear case.

2. Preliminary Lemmas

Let g : Ω × R → R be a function of class C1 such that g(x, 0) = 0. Suppose that there
exist k ≥ 2 and m ≥ k + 2 such that

λk−1 ≤ g′(x, 0) < λk

λm−1 < lim
t→−∞

g(x, t)

t
≤ λm ≤ lim

t→+∞

g(x, t)

t
< λm+1,

(10)

where the limits are uniform for x in Ω.
Let H = H1

0 (Ω) and denote the norms in H1
0 (Ω) and L2(Ω) by || · || and | · |2, respectively.

Let H1, H2 and H3 be the subspaces of H spanned by the eigenfunctions corresponding
to the eigenvalues {λ1, . . . , λk−1}, {λk, . . . , λm−1} and {λm, . . .}, respectively (dim H2 ≥ 2
provided m ≥ k + 2).

The proof of the lemmas below can be found in [24]. Let F be defined as in (3).

Lemma 2.1. Under the assumptions above and the hypothesis (6), the following statements
hold:

(i) There are r > 0 and a > 0 such that F (u) ≥ a for all u ∈ H2 ⊕ H3 with ||u|| = r;
(ii) F (u) → −∞, as ||u|| → ∞, for u ∈ H1 ⊕ H2; and

(iiii) F (u) ≤ 0 for all u ∈ H1.

Let u0 be a critical point of F , defined by (3). The Morse index µ(u0) of u0 measures the
dimension of the maximal subspace of H = H1

0 (Ω) on which F ′′(u0) is negative definite.
We denote the dimension of the kernel of F ′′(u0) by ν(u0). The next lemma evaluates
ν(u0) for a nonzero critical point of F . The proof can be found in [24].

Lemma 2.2. Under the hypotheses of Lemma 2.1, ν(u0) ≤ m − k provided that u0 is a
nonzero critical point of F defined in (3).

Now we observe a compactness condition for the functional F defined by (3), in the
resonant case.

Consider g : Ω × R → R be a C1-function and G(x, t) =
∫ t

0
g(x, s)ds such that

λj−1 ≤ lim inf
|t|→∞

g(x, t)

t
≤ lim sup

|t|→∞

g(x, t)

t
≤ λj+1, uniformly in Ω ; (11)
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there exists C(x) ∈ L1(Ω) such that

tg(x, t) − 2G(x, t) ≥ C(x), ∀ t ∈ R, a.e x ∈ Ω ; (12)

and

lim
|t|→∞

[tg(x, t) − 2G(x, t)] = ∞, a.e x ∈ Ω. (13)

In [13], Lemma 2.2, it was shown that the assumptions (11), (12) and (13) are enough to
prove that functional the F , defined by (3), satisfies the Cerami condition (see [18]). Note
that the hypothesis (6) implies (12) with C(x) = 0.

In order to prove that Theorems 1.3 and 1.4 follow from Theorems 1.1 and 1.2, respec-
tively, we have to prove that the function g satisfies (13).

Proposition 2.1. Let g : R → R be a nonlinear function of class C1, g(0) = 0, which
satisfies

{

g(t) is convex if t ≥ 0 and
g(t) is concave if t ≤ 0.

Moreover, assume that g(t)/t is bounded. Then

lim
|t|→∞

[tg(t) − 2G(t)] = ∞. (14)

Proof. Fix t > 0, and note that

1

2
[tg(t) − 2G(t)] =

∫ t

0

(g(t)

t
s − g(s)

)

ds

The convexity of g gives that (g(t)/t)s > g(s) for s ∈ (0, t). Denote by At the region of
the plane between the line s 7→ (g(t)/t)s and s 7→ g(s) in (0, t). Let s(t) ∈ (0, t) defined by

g(t)

t
s(t) − g(s(t)) = max

s∈(0,t)

(g(t)

t
s − g(s)

)

,

and the triangle △t with vertices (0, 0), (s(t), g(s(t))) and (t, g(t)). We have △t ⊂ At by
convexity of g, hence

|△t| ≤
1

2
[tg(t) − 2G(t)].

Therefore the Proposition follows from

Claim: |△t| → ∞, as t → ∞.

In fact, the height of △t, with reference to the basis bt = [(0, 0), (t, g(t))], is

h(t) =
[g(t)

t
s(t) − g(s(t))

]

cos
(

arctan
(g(t)

t

))

.

Hence lim inft→∞ h(t) > 0, since g(t)/t is bounded; and bt → ∞ as t → ∞. The claim
is proved. The argument with t < 0 is entirely similar and the proof of proposition is
complete. �
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Lemma 2.3. Let g : Ω×R → R be a continuous function satisfying: g(x, t)/t is bounded,
g(x, t) = 0 for all t ≤ 0, and

λj ≤ L(x) = lim
t→∞

g(x, t)

t
≤ λj+1, j ≥ 2. (15)

Then the C2−0-functional F+ : H1
0 → R defined by

F+(u) =
1

2

∫

Ω

|∇u|2dx −
∫

Ω

G(x, t)dx,

satisfies the (PS) condition.

Proof. Let {un} ∈ H1
0 be a sequence such that {F+(un)} is bounded, and ||F ′

+(un)|| → 0
as n → ∞. It follows that for all ϕ ∈ H1

0 we have

< F ′
+(un), ϕ >=

∫

Ω

∇u∇ϕ −
∫

Ω

g(x, un)ϕdx → 0, as n → ∞. (16)

Set ϕ = un; we have

||un||2 ≤
∫

Ω

g(x, un)undx + O(||un||) ≤ C|un|22 + O(||un||).

Therefore, we need to show that {|un|2} is bounded, which implies that {||un||} is bounded.
Since Ω is bounded and g is subcritical, then if {||un||} is bounded, by the compactness of
Sobolev embedding and by the standard processes we know that there exists a subsequence
of {un} in H1

0 which converges strongly, hence the Lemma is proved.
Assume by contradiction that |un|2 → ∞ as n → ∞. Let vn = un/|un|2. Then |vn|2 = 1

and {||vn||} is bounded. We can assume that vn → v weakly in H1
0 , strongly in L2 and a.e.

in Ω. Thus, un(x) → ∞ a.e. in Ω. From (16) it follows that

∫

Ω

[∇v∇ϕ − L(x)v+ϕ]dx, ∀ ϕ ∈ H1
0 , (17)

where v+(x) = max{0, v(x)}. By the regularity theory we have

−∆v = L(x)v+ in Ω.

By the maximum principle and by the unique continuation property, v = v+ ≥ 0 and
L ≡ λj or L ≡ λj+1. Since, j ≥ 2, v ≡ 0, which contradicts |v|2 = 1. The proof is
completed. �

3. Proofs of the main Theorems

It follows from [13] that the functional F , defined by (3), satisfies the (C) condition (or
the (PS) condition on the nonresonant case, see Lemma 6.3 in [16]). In this section some
classical definitions and results from Morse Theory are used, these results can be found in
[11] and [22] (see [28] for some results with Cerami condition). Without loss of generality,
we assume that F has only a finite number of critical points.



MULTIPLE SOLUTIONS FOR ELLIPTIC PROBLEMS WITH ASYMMETRIC NONLINEARITY 7

We first observe a result proved in [15], that says that problem (1) has a solution. Now
we consider a hypothesis analogue to the condition (7).

lim
|t|→∞

[tg(x, t) − 2G(x, t)] = −∞, for a.e. x ∈ Ω. (18)

Theorem 3.1 (Theorems 2.2 and 3.5, [15]). Let g : Ω×R → R be a Carathéodory function,
which satisfies (2). Suppose that there exists j ≥ 2 and k ≥ 0, such that

λj−1 < α− ≤ λj = λj+k ≤ α+ < λj+k+1.

Moreover, if either

(i) (α+, α−) ∈ cj1, or below it, suppose (7) and tg(x, t) − 2G(x, t) ≥ C(x), C(x) ∈
L1(Ω); or

(ii) (α+, α−) ∈ cj2, or above it, suppose (18) and tg(x, t) − 2G(x, t) ≤ C(x), C(x) ∈
L1(Ω).

Then problem (1) has a solution.

If (α+, α−) /∈ Σ the hypotheses (7) or (18) is not necessary.
Consider the decomposition

H1
0 (Ω) = V1 ⊕ V2,

where V1 is the subspace of H1
0 (Ω) spanned by the eigenfunctions corresponding to the

eigenvalues {λ1, ..., λl}, where l = j − 1 in the case (i) or l = j + k in the case (ii). For
every ǫ > 0 small enough there exists a homeomorphism γ0 in H1

0 (Ω) such that if

S = γ0(V2), A = Rγ0(B1) and ∂A = Rγ0(∂B1),

where B1 denotes the unit closed ball in V1 centered of 0, and large R (depending on ǫ);
then there exist constants a and b such that

sup
∂A

F±
ǫ < a ≤ inf

S
≤ sup

A

F±
ǫ ≤ b, (19)

where F±
ǫ = F (u) ± 2ǫ||u||2 (+ in the case (i) and − in the case (ii)). It is observed in

[15] that Fǫ (here Fǫ denote F+
ǫ or F−

ǫ ) also satisfies the Cerami condition, as long as
0 < ǫ < 1/4. This, together with (19) implies that Fǫ has a critical point uǫ, which satisfies

a ≤ Fǫ(uǫ) ≤ b and F ′
ǫ(uǫ) = 0.

As in [15] we have that uǫn
→ u in H1

0 (Ω) along some sequence ǫn → 0. Clearly u is a
critical point of F .

Remark 3.1. If g is C1, then the functionals Fǫ are of class C2. Moreover, the sets ∂A
and S homologically link and A is a l-topological ball (l = j−1 in the case (i) and l = j+k
in the case (ii)). Then by (19, the Theorems II 1.5 and II 1.5 in [11] implies that (see [28]
for Cerami condition)

Cl(Fǫ, uǫ) 6= 0.

Since uǫn
→ u and Fǫn

→ F in C1(Bρ(u), R) for some ρ > 0, by the continuity of the
critical groups (see Theorem I 5.6 in [11]) we have

Cl(F, u) 6= 0.
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Proof of Theorem 1.1. Let Hi, i = 1, 2, 3, be as in Lemma 2.1. Consider

S1 = Br ∩ (H2 ⊕ H3) and D1 = {v + te ; v ∈ H1, 0 ≤ t ≤ R, ||v + te|| ≤ R},

where Br denotes the closed ball with radius r centered of 0, and e ∈ H2 is chosen such
that

F (u) > 0 ∀ u ∈ S1 and F (u) ≤ 0 ∀ u ∈ ∂D1, (20)

this is possible by (i) and (iii) in Lemma 2.1. Since ∂D1 and S1 homologically link and
D1 is a k-topological ball, by (20) we have Hk(Fb, F0) 6= 0, where b > max{F (u) | u ∈ D}
(see Theorem II 1.1’ in [11]). Hence we can conclude, by Theorem II 1.5 in [11], that there
exists u1 critical point of F , such that

Ck(F, u1) 6= 0. (21)

By the Remark 3.1 we have that there exist u2 critical point of F , such that

Cm−1(F, u2) 6= 0. (22)

Now we have to prove that u1 6= u2, and are nontrivial. Note that 0 is a critical point of
F and µ(0) + ν(0) ≤ k − 1. By Shifting Theorem (see [11]), Cp(F, 0) = 0 for all p ≥ k. So
u1 and u2 are nontrivial, by (21) and (22). Again by Shifting Theorem we have, either

(i) Cp(F, u1) = δpµ(u1), or
(ii) Cp(F, u1) = δp(µ(u1)+ν(u1)), or
(iii) Cp(F, u1) = 0 if p /∈ (µ(u1), (µ(u1) + ν(u1)).

If (i) or (ii) hold, then Cm−1(F, u1) = 0 by (21) provided m − 1 > k. If (iii) hold then
k > µ(u1) by (21) and hence m− 1 = k − 1 + m− k ≥ µ(u1) + ν(u1) by Lemma 2.2, again
Cm−1(F, u1) = 0 by (iii). Therefore u1 6= u2 by (22).
The proof of Theorem 1.1 is finished. �

Proof of Theorem 1.2. Set

g+(x, t) =
{

g(x, t), t ≥ 0,
0, t ≤ 0,

and consider the problem

−∆u = g+(x, u) in Ω
u = 0 on ∂Ω,

(23)

Define

F+(u) =
1

2

∫

Ω

|∇u|2dx −
∫

Ω

G+(x, u)dx, u ∈ H1
0 (Ω).

Then F+ ∈ C2−0 and, by Lemma 2.3, satisfies (PS) condition.
Since g′(x, 0) < λ1, u = 0 is a strictly local minimum of F+. Let ϕ1 > 0 to be the first

eigenfunction of (∆, H1
0 ), and consider γ > λ1 such that G+(x, t) ≥ (γ/2)t2 − C for t > 0.
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Then

F+(sϕ1) =
s2

2

∫

Ω

|∇ϕ1|2dx −
∫

Ω

G+(x, sϕ1)dx

≤ λ1s
2

2

∫

Ω

ϕ2
1dx − γs2

2

∫

Ω

ϕ2
1dx + C

=
s2(λ1 − γ)

2

∫

Ω

ϕ2
1dx + C → −∞, as s → ∞.

By the mountain pass theorem, F+ has a nontrivial critical point u+. By the maximum
principle, u+ > 0. Therefore u+ is a critical point of the functional F defined by (3).
Similarly, we get a negative critical point u− of F . Moreover, as in [12], we have

rank Cp(F±|C1
0
, u±) = δp1.

Thus,

rank Cp(F |C1
0
, u±) = rank Cp(F±|C1

0
, u±) = δp1 ∀ p = 0, 1, 2, ...

Again by the Remark 3.1 there exists a nontrivial solution u such that

Cm−1(F, u) 6= 0, where m > 3.

By Theorem 1 in [10], we have

Cm−1(F |C1
0
, u) = Cm−1(F, u).

Therefore u is a third nontrivial solution.
So the Theorem follows from the next claim.

Claim: (1) has a sign changing solution w such that

Cp(F, w) = δp2Z.

Proof: We use the notation as in [4].

Let P = {u ∈ X = C1
0(Ω); u ≥ 0}, D = P∪(−P ),

·

D and ϕi the normalized eigenfunction

associated to λi, i = 1, 2; we have ϕ1 ∈
◦

P .
The main ingredient in the proof of the Claim is the negative gradient flow ϕt of F in

H , that is,
d

dt
ϕt = −∇F ◦ ϕt, ϕ0 = id.

We have that ϕt(u) ∈ X for u ∈ X and ϕt induces a continuous (local) flow on X which
we continue to denote by ϕt. The main order related property of ϕt is that P and −P are
positively invariant (by g(x, t)t ≥ 0). F has the retracting property on X (see [14]).

Now the proof follows as in Theorem 3.6 in [4] (see [24]). We sketch it briefly for
completeness. Here we denote by F a = {u ∈ X; F (u) ≤ a}.

As k > 2 by (ii) in Lemma 2.1 there exists R > 0 such that F (u) < 0 for any u ∈
span{ϕ1, ϕ2} with ||u|| ≥ R. Now we set

B = {sϕ1 + ϕ2 ; |s| ≤ R, 0 ≤ t ≤ R}
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and

∂B = {sϕ1 + ϕ2 ; |s| = R or t ∈ {0, R}}.
We have ∂B ⊂ F 0 ∪ D. Let β = maxF (B) so that (B, ∂B) →֒ (F β ∪ D, F 0 ∪ D). Let
ξβ ∈ H2(F

β ∪ D, F 0 ∪ D) be the image of 1 ∈ Z = H2(B, ∂B) under the homomorphism

Z = H2(B, ∂B) → H2(F
β ∪ D, F 0 ∪ D)

induced by the inclusion. For γ ≤ β let

jγ : H2(F
γ ∪ D, F 0 ∪ D) → H2(F

β ∪ D, F 0 ∪ D)

be also induced by the inclusion. Now we define

Γ = {γ ≤ β ; ξβ ∈ image (jγ)}
and c = inf Γ. It is a critical value by the next lemma and standard deformation arguments.

Lemma 3.1. ξβ 6= 0.

In fact, let e1 ∈
◦

P be the first eigenvalue of

−∆u − g′(x, 0)u = λu in Ω
u = 0 on ∂Ω,

and set X1 = span{e1}, X2 = X⊥
1 ∩ X. We have inf F (X2 ∩ ∂Bρ) ≥ α > 0 for some ρ > 0

small. This implies

(B, ∂B) ⊂ (F β ∪ D, F 0 ∪ D) ⊂ (X, X \ X2 ∩ ∂Bρ).

Therefore the lemma follows of that the homeomorphism

H2(B, ∂B) → H2(X, X \ X2 ∩ ∂Bρ)

induced by inclusion is nontrivial (it is showed in [4]).
As a consequence of previous lemma we have 0 /∈ Γ because j0 = 0. As F 0 ∪ D is a

strong deformation retract of F γ ∪ D for γ > 0 small enough, we have c > 0. Clearly
β ∈ Γ, hence c ∈ (0, β].

We choose ǫ > 0 small enough. Consider the commutative diagram

H2(F
c−ǫ ∪ D, F 0 ∪ D)





y
j

jc−ǫ

ց
H2(F

c+ǫ ∪ D, F 0 ∪ D)
jc+ǫ−→ H2(F

β ∪ D, F 0 ∪ D)




y

H2(F
c+ǫ ∪ D, F c−ǫ ∪ D)

Since c + ǫ ∈ Γ there exists ξc+ǫ ∈ H2(F
c+ǫ ∪ D, F 0 ∪ D) with jc+ǫ(ξc+ǫ) = ξβ. Now

ξc+ǫ /∈ image (jc−ǫ) because c − ǫ /∈ Γ. Therefore the exactness of the left column yields
H2(F

c+ǫ ∪ D, F c−ǫ ∪ D) 6= 0. This implies that there exists a critical point w such that
w /∈ D and C2(F, w) 6= 0 (see [24]).
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Let w+ = max{w, 0} and w− = w+ − w. By (6) we have

〈F ′′(w)w+, w+〉 =

∫

Ω

(|∇w+|2 − g′(x, w)w2
+)

=

∫

Ω

(w+g(x, w) − g′(x, w)w2
+)

=

∫

Ω

w2
+

(g(x, w)

w+

− g′(x, w)
)

=

∫

Ω

w2
+

(g(x, w+)

w+
− g′(x, w+)

)

< 0.

Similarly 〈F ′′(w)w−, w−〉 < 0. As w+ and w− are orthogonal, we have 〈F ′′(w)u, u〉 < 0 for
all u ∈ span{w+, w−}, that is, the Morse index of w is 2. By the Shifting Theorem we have
Cp(F, w) = δp2Z. �

4. Further Results

We now consider the one dimensional case N = 1 with, say, Ω =]0, π[. In this case Σ
can be computed explicitly (see [17]) and it is precisely the union of the (globally defined)
curves cj1, cj2 (j ≥ 2), mentioned in the introduction, together with the lines R×{λ1} and
{λ1} × R.

Theorem 4.1. Let g :]0, π[×R → R be a function of class C1, g(x, 0) = 0, which satisfies
(2). Suppose that there exist k ≥ 2 and r, α > 0 such that

λk−1 ≤ inf
t6=0

g(x, t)

t
≤ g(x, t)

t
≤ α < λk |t| ≤ r, and α+ ≥ α− > λk+1. (24)

Assume that (α−, α+) lies between the curves c(m−1)2 and cm1 with m ≥ k + 2. Moreover,
if either
(i) (α−, α+) ∈ range cm1, suppose (7) and tg(x, t) − 2G(x, t) ≥ C(x), C(x) ∈ L1; or
(ii) (α−, α+) ∈ range c(m−1)2, suppose (18) and tg(x, t) − 2G(x, t) ≤ C(x), C(x) ∈ L1; or
(ii)(α−, α+) /∈ Σ, suppose tg(x, t) − 2G(x, t) ≥ C(x) or tg(x, t) − 2G(x, t) ≤ C(x), with
C(x) ∈ L1.
Then problem

−ü = g(x, u) in ]0, π[
u(0) = u(π) = 0,

(25)

has at least two nontrivial solutions.

Proof. The idea of the proof is the same of Theorem 1.1.
The hypotheses (24) implies the statements (i), (iii) of Lemma 2.1 and the statement

(ii) with H1 ⊕ ϕk+1 (ϕk+1 the eigenfunction of the linear problem). So the problem (25)
have a nontrivial solutions u such that

Ck(F, u) 6= 0.
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By Remarks 3.1, we have a nontrivial solution w such that

Cm−1(F, w) 6= 0.

Since

Ker(F ′′(u0)) = {u ∈ H1
0 (]0, φ[) ; −ü = g′(x, u0)u},

we have

ν(u0) = dim Ker(F ′′(u0)) ≤ 1.

Thus, by the Shifting Theorem, we have

Cp(F, u) = δpkZ and Cp(F, w) = δp(m−1)Z.

Therefore w 6= u since k < m − 1, and the proof is finished. �

Now we consider the periodic problem

−ü = g(x, u) in ]0, 2π[
u(0) − u(2π) = 0 = u′(0) − u′(2π),

(26)

In this case λj = (j − 1)2 for j ≥ 1. The Fučik Spectrum Σ is defined as in (4) except that
now we work in the space H1

per(]0, 2π[), consisting of 2π periodic functions of the space
H1

0 (]0, 2π[). It is well know and it can be easily verified that Σ is composed of two lines
R × {0}, {0} × R and the curves Cj, j ≥ 2,

Cj =
{

(µ, ν) ∈ R
2
+ ;

1√
µ

+
1√
ν

=
2

j − 1

}

, j ≥ 2.

We have an analogue theorem for this case. Again we can use the existence result in [15]
(see also [13]) and the statements of the Lemma 2.1 holds too. Since

Ker(F ′′(u0)) = {u ∈ H1
per(]0, 2π[) ; −ü = g′(x, u0)u},

we have

ν(u0) = dim Ker(F ′′(u0)) ≤ 2.

Thus we can apply the Shifting Theorem to obtain the same conclusion as the proof of
Theorem 4.1 about the critical groups.

Theorem 4.2. Let g :]0, 2π[×R → R be a function of class C1, g(x, 0) = 0, which satisfies
(2). Suppose that there exist k ≥ 2, and r, α > 0 such that (24) holds. Assume that
(α−, α+) lies between the curves Cm−1 and Cm with m ≥ k + 2. Moreover, if either
(i) (α−, α+) ∈ range Cm, suppose (7) and tg(x, t) − 2G(x, t) ≥ C(x), C(x) ∈ L1; or
(ii) (α−, α+) ∈ range C(m−1), suppose (18) and tg(x, t) − 2G(x, t) ≤ C(x), C(x) ∈ L1; or
(ii) (α−, α+) /∈ Σ, suppose tg(x, t) − 2G(x, t) ≥ C(x) or tg(x, t) − 2G(x, t) ≤ C(x), with
C(x) ∈ L1.
Then problem (26) has at least two nontrivial solutions.
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Nonlinear Anal. 8 (1996), 295-314.
[14] D.N. Dancer & Z. Zhang, Fucik Spectrum, Sign-Changing, and Multiple Solutions for Semilinear

Elliptic Boundary Value Problems with Resonance at infity, J. Math. Anal. Appl. 250 (2000), 449-
464.

[15] A.N. Domingos & M. Ramos, On the Solvability of a Resonant Elliptic Equations with Asymmetric

Nonlinearity, Topol. Methods Nonlinear Anal. 11 (1998), 45-57.
[16] D.G. de Figueiredo, The Ekeland Variational Principle with Applications and Detours, TATA, Bombay

(1989)
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