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Abstract

Sharp orders of Kolmogorov’s n-widths dn(W r
p (Md), Lq(M

d)) of

Sobolev’s classes W r
p (Md) on compact globally symmetric spaces of

rank 1 are found for different p and q. In particular, we are considering
the cases 1 ≤ p ≤ 2 ≤ q < ∞, 2 ≤ p ≤ q < ∞ and 1 < q ≤ p ≤ 2.

1 Introduction

Let X be a Banach space, and A be a (convex, compact, centrally symmetric)
subset of X. The Kolmogorov’s n–width of A in X is defined by

dn(A, X) := inf
Xn

sup
f∈A

inf
g∈Xn

‖f − g‖,

where Xn runs over all subspaces of X of dimension n or less. The Gel’fand’s
n-width of A in X is defined by

dn(A, X) := inf
Ln

sup
x∈Ln∩A

‖x‖,

where Ln runs over all subspaces of codimension at most n. The Bernstein’s
n-width of A in X is defined by

bn(A, X) := sup
Xn+1

sup{ǫ > 0 : (ǫB ∩ Xn+1) ⊂ A},
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where Xn+1 is any (n + 1)-dimensional subspace of X, and B = {x ∈ X :
‖x‖ ≤ 1} is the unit ball of X.

In the present paper we investigate the asymptotic behavior of the n-
widths of Sobolev’s classes W r

p (Md) in Lq(M
d) on a compact globally sym-

metric space of rank 1 or two point homogeneous space Md. Each of such
manifolds Md can be considered as the orbit space of some compact subgroup
H of the orthogonal group G, that is Md = G/H. On any such manifold there
is an invariant Riemannian metric ρ(·, ·), an invariant Haar measure dν and
a Laplace-Beltrami operator ∆. A function Z(·) : Md → R is called zonal
if Z(h−1·) = Z(·) for any h ∈ H. Two-point homogeneous spaces admit
essentially only one invariant differential operator, the Laplace-Beltrami op-
erator. A complete classification of the two point homogeneous spaces was
given by Wang [15]. They are the spheres Sd, d=1,2,3,...; the real projective
spaces P d(IR), d=2,3,4...; the complex projective spaces P d(lC), d=4,6,8,...;
the quaternionic projective spaces P d(IH), d=8,12,... and the Cayley elliptic
plane P 16(Cay).

Suppose that ϕ is a function on Md with finite Lp(M
d) = Lp norm

given by ‖ϕ‖p = (
∫

Md |ϕ|pdν)1/p if 1 ≤ p < ∞, by ‖ϕ‖∞ = ess sup |ϕ|
if p = ∞ and let Up := {ϕ| ‖ϕ‖p ≤ 1}. The real Hilbert space L2(M

d)
with usual scalar product 〈〈f, g〉〉 =

∫

Md f(x)g(x)dν(x) has the decomposi-
tion L2(M

d) = ⊕∞
l=0Hl. There is a unique, real zonal element Z(l) ∈ Hl,

which is a kernel of an integral operator for an orthogonal projection onto
Hl. Let {Y l

k}
dl

k=1 be an orthonormal basis of Hl, dl = dim Hl. It is known
that dim Hl ≍ ld−1 (see [1]). Let Z be a zonal integrable function on Md. For
any integrable function g we can define the convolution h as the following
h(·) = (Z ∗ g)(·) =

∫

Md Z(cos(ρ(·, x))g(x)dν(x). For the convolution on Md

we have the Young’s inequality ‖Z∗g‖q ≤ ‖Z‖r‖g‖p, where 1/q = 1/p+1/r−1
and 1 ≤ p, q, r ≤ ∞. It is possible to show that for any r > 0, the function

gr(·) ∼
∞
∑

k=1

(k(k + α + β + 1))−r/2Z(k)(·)

is integrable on Md. The Sobolev’s class W r
p (Md), r > 0, can be defined as

the set of all functions f on Md given by f = gr ∗φ+ c where ‖φ‖Lp(Md) ≤ 1,
c ∈ IR and φ ⊥ 1. References to the previously-mentioned results from
harmonic analysis can be found in [1, 3, 5].

In this paper there are several universal constants which enter into the es-
timates. These positive constants are mostly denoted by the letters C, C1, C2, ...
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We did not carefully distinguish between the different constants, neither did
we try to get good estimates for them. The same letter will be used to de-
note different universal constants in different parts of the paper. For easy of
notation we will write an ≫ bn for two sequences, if an ≥ Cbn for n ∈ IN and
an ≍ bn if C1bn ≤ an ≤ C2bn for all n ∈ IN and some constants C, C1 and C2.
Also, we shall put

(a)+ :=
{

a, a > 0,
0, a ≤ 0.

Through the text [a] means entire part of a ∈ R.
The main result establishes sharp in power scale asymptotic behavior of

Kolmogorov’s n-widths.

Theorem 1.1. For Sobolev’s classes on Md we have the following estimates
as n → ∞. If 2 ≤ p ≤ q < ∞, r > d/2, then

dn(W
r
p (Md), Lq(M

d)) ≍ n−r/d.

If 2 ≤ p ≤ q = ∞, r > d/2, then

dn(W r
p (Md), Lq(M

d)) ≪ n−r/d(log n)1/2.

If 1 ≤ p ≤ 2 ≤ q < ∞, r > d/p, then

dn(W
r
p (Md), Lq(M

d)) ≍ n−r/d+1/p−1/2.

If 1 ≤ p ≤ 2 ≤ q = ∞, r > d/p, then

dn(W r
p (Md), Lq(M

d)) ≪ n−r/d+1/p−1/2(log n)1/2.

Theorem 1.2. For Sobolev’s classes on Md we have the following estimates
as n → ∞. If 1 < q ≤ p ≤ 2, r > 0, then

dn(W r
p , Lq(M

d)) ≍ bn(W r
p , Lq(M

d)) ≍ n−r/d.

If 1 = q ≤ p ≤ 2, r > 0, then

n−r/d(log n)−1/2 ≪ bn(W r
p , Lq(M

d)) ≤ dn(W
r
p , Lq(M

d)) ≪ n−r/d.
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Remark 1.1. For Sobolev’s classes on Md we have the following estimates
as n → ∞ (see [11]). If 2 ≤ p ≤ q < ∞, r > d/2, then

dn(W r
p (Md), Lq(M

d)) ≪ n−r/d(log n)1/2.

If 2 ≤ p ≤ q = ∞, r > d/2, then

dn(W r
p (Md), Lq(M

d)) ≪ n−r/d log n.

If 1 ≤ p ≤ 2 ≤ q < ∞, r > d/p, then

dn(W r
p (Md), Lq(M

d)) ≪ n−r/d+1/p−1/2(log n)1/2.

If 1 ≤ p ≤ 2 ≤ q = ∞, r > d/p, then

dn(W r
p (Md), Lq(M

d)) ≪ n−r/d+1/p−1/2 log n.

Remark 1.2. For Sobolev’s classes on Md we have the following estimates
as n → ∞ (see [1]):

dn(W
r
p (Md), Lq(M

d)) ≫
{

n−r/d, 2 ≤ p, q < ∞, r > 0,
n−r/d+1/p−1/2, 1 ≤ p ≤ 2 ≤ q ≤ ∞, r > d/p.

If 1 ≤ p = q ≤ ∞, r > 0 or 2 ≤ q ≤ p < ∞, r > 0, then

dn(W
r
p (Md), Lq(M

d)) ≍ n−r/d.

If 1 ≤ p ≤ q ≤ 2, r > d(1/p − 1/q), then

dn(W
r
p (Md), Lq(M

d)) ≍ n−r/d+1/p−1/q.

2 Estimates of Levy Means

Let E = (IRn, ‖ · ‖) be an n-dimensional Banach space. Furthermore, let

|||x|||=(
∑n

k=1 |xk|
2)

1/2
be the Euclidean norm on IRn and let

Sn−1 = {x ∈ IRn : |||x||| = 1}
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be the Euclidean unit sphere in IRn. The Levy mean is defined by

M = M(IRn, ‖ · ‖) =
(∫

Sn−1
‖x‖2 dµ

)1/2

,

where µ denotes the normalized rotation invariant measure on Sn−1. In
order to specify the norm ‖ · ‖ whose Levy mean we want to estimate, we
consider an arbitrary system of harmonics {ξk(τ)}n

k=1 ⊂ ⊕N
l=0Hl orthonormal

in L2(M
d, dν(τ)). Set Ξn = span {ξ1, . . . , ξn} and let J : IRn → Ξn be

the coordinate isomorphism that assigns to α = (α1, . . . , αn) ∈ IRn the
function ξα =

∑n
k=1 αk ξk ∈ Ξn. The definition

‖α‖(p) := ‖Jα‖Lp(Md)

induces a norm on IRn. The following result gives estimates for the Levy
mean M(‖ · ‖(p)).

Theorem 2.1. Let {ξk}
n
k=1 be an arbitrary system of orthonormal harmon-

ics in ⊕N
l=0Hl, n = dim⊕N

l=0Hl. Then the following inequalities hold:
1) if 2 ≤ p < ∞, then 1 ≤ M(‖ · ‖(p)) ≤ Cp1/2;
2) if p = ∞, then 1 ≤ M(‖ · ‖(∞)) ≤ C(lnn)1/2;
3) if 1 ≤ p ≤ 2, then 0 < C ≤ M(‖ · ‖(p)) ≤ 1;

4) if p = 2, then M(‖ · ‖(2)) = 1.

Proof. It is easy to check that 4) follows from the definition. Since the Levy
mean M(‖ · ‖(p)) is a monotone increasing function in p for 1 ≤ p ≤ ∞, the
lower bounds in 1), 2) and the upper bound in 3) follow from 4).

We now turn to the upper estimate in 1) and the lower estimate in 3).
Let dγ(x) = e−π|||x|||2dx be the Gaussian measure on IRn. For an arbitrary
function f ∈ C(Sn−1) we define an extension f̃ to IRn \ {0} by f̃(x) =
|||x||| · f(x/|||x|||). In [2, p. 71] it is shown that

∫

Sn−1
f(x)dµ(x) =

(2π)1/2

n1/2

∫

IRn
f̃(x) dγ(x). (1)

Let (rk) denotes the sequence of Rademacher functions rk(θ) = sign sin(2kπθ),
for θ ∈ [0, 1] and k = 1, 2, . . ., and for m = 1, 2, . . .; i = 1, 2, . . . , n let

δm
i (θ) = m−1/2

(

r(i−1)m+k(θ) + · · ·+ rim(θ)
)

.
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It follows by Lemma 2.1 in [12, p. 585] that if h : IRn → IR is a continuous
function satisfying

h(x1, . . . , xn)e−
∑n

i=1
|xi| → 0 uniformly when

n
∑

i=1

|xi| → ∞,

then
∫

IRn
h(x)dγ(x) = lim

m→∞

∫ 1

0
h
(

(2π)−1/2(δm
1 (θ), . . . , δm

n (θ))
)

dθ. (2)

Applying (1) and (2) for the functions f(x) = ‖x‖(p), x ∈ Sn−1 and h(x) =

f̃(x) = ‖x‖(p), x ∈ IRn, we have

∫

Sn−1
‖x‖(p)dµ(x) =

(2π)1/2

n1/2
lim

m→∞

∫ 1

0
‖(2π)−1/2(δm

1 (θ), . . . , δm
n (θ))‖(p)dθ

= n−1/2 lim
m→∞

∫ 1

0

(

∫

Md
|

n
∑

i=1

δm
i (θ)ξi(τ)|pdν(τ)

)1/p

dθ.

Setting ξ̃(i−1)m+k(τ) = m−1/2ξi(τ), τ ∈ Md, for i = 1, 2, . . . , n; k = 1, 2, . . . , m
and m = 1, 2, . . ., we have

n
∑

i=1

δm
i (θ)ξi(τ) =

mn
∑

j=1

rj(θ)ξ̃j(τ)

and therefore

∫

Sn−1
‖x‖(p)dµ(x) = n−1/2 lim

m→∞

∫ 1

0





∫

Md
|

mn
∑

j=1

rj(θ)ξ̃j(τ)|pdν(τ)





1/p

dθ. (3)

The Khintchine inequality (see [14, p. 41], [4]) states that

b(p)

(

u
∑

s=1

|cs|
2

)1/2

≤

(

∫ 1

0
|

u
∑

s=1

rs(θ) cs|
p dθ

)1/p

≤ c(p)

(

u
∑

s=1

|cs|
2

)1/2

,

where b(1) ≥ 1/2 and

c(p) = 21/2





Γ
(

1+p
2

)

Γ
(

1
2

)





1/p

≍ p1/2, p → ∞.
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From the addition formula (see e.g. [5]) and from the definition of ξ̃j(τ), it
follows that

mn
∑

j=1

|ξ̃j(τ)|2 =
n
∑

i=1

|ξi(τ)|2 = n.

Therefore from the Khintchine inequality and (3) we have

∫

Sn−1
‖x‖(p)dµ(x) ≤ n−1/2 lim

m→∞





∫

Md

∫ 1

0
|

mn
∑

j=1

rj(θ)ξ̃j(τ)|pdθdν(τ)





1/p

≤ c(p)n−1/2 lim
m→∞







∫

Md





mn
∑

j=1

|ξ̃j(τ)|2





p/2

dν(τ)







1/p

= c(p)n−1/2 lim
m→∞

(∫

Md
np/2dν(τ)

)1/p

= c(p) (4)

and
∫

Sn−1
‖x‖(p)dµ(x) ≥ n−1/2 lim

m→∞

∫

Md

∫ 1

0
|

mn
∑

j=1

rj(θ)ξ̃j(τ)|dθdν(τ)

≥ b(1)n−1/2 lim
m→∞

∫

Md





mn
∑

j=1

|ξ̃j(τ)|2





1/2

dν(τ) ≥
1

2
(5)

Any polynomial tN ∈ ⊕N
k=0Hk can be presented in the form tN = DN ∗tN ,

where DN =
∑N

k=0 Z(k). Using Hölder inequality we can show that

‖tN‖L∞(Md) ≤ ‖DN‖L∞(Md)‖tN‖L1(Md)

and since DN = DN ∗ DN , then

‖DN‖L∞(Md) ≤ ‖DN‖
2
L2(Md) =

N
∑

k=0

‖Z(k)‖2
L2(Md) = n.

It means that
‖I‖L1(Md)∩TN→L∞(Md)∩TN

≤ n,

where I is the embedding operator and TN := ⊕N
k=0Hk. It is easy to see that

‖I‖L∞(Md)→L∞(Md) = 1. Application of Riesz-Thorin Interpolation Theorem
gives

‖tN‖L∞(Md) ≤ n1/p‖tN‖Lp(Md), 1 ≤ p ≤ ∞. (6)
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Hence,
n−1/2‖x‖(p) ≤ |||x||| ≤ ‖x‖(p), x ∈ IRn, 2 ≤ p ≤ ∞. (7)

From Young’s inequality we have

‖tN‖L2(Md) ≤ ‖DN‖L2(Md)‖tN‖L1(Md) ≤ n1/2‖tN‖L1(Md)

and consequently,

‖x‖(p) ≤ |||x||| ≤ n1/2‖x‖(p), x ∈ IRn, 1 ≤ p ≤ 2. (8)

The following result is in [2, p. 60]:

(γ(ρ))−1 ≤
(∫

Sn−1
‖x‖ρdµ(x)

)(∫

Sn−1
‖x‖dµ(x)

)−ρ

≤ γ(ρ),

where γ(ρ) depends just on ρ > 0 and ‖ · ‖ is an arbitrary norm on Rn such
that a||| · ||| ≤ ‖ · ‖ ≤ b||| · |||, b/a ≤ n1/2. Since we have (7) and (8), then
this result is true for the norms ‖ · ‖ = ‖ · ‖(p), 1 ≤ p ≤ ∞. Thus from (4)
and (5)

γ(2)−1/2/2 ≤ M(‖ · ‖(p)) ≤ γ(2)1/2c(p), 1 ≤ p < ∞.

Finally to get the upper bound in 2) we apply (6) for p = log n and thus

M(‖ · ‖(∞)) =
(∫

Sn−1
‖x‖2

(∞)dµ(x)
)1/2

=
(∫

Sn−1
n2/p‖x‖2

(p)dµ(x)
)1/2

≤ γ(2)1/2n1/pc(p) ≪ (log n)1/2.

We remark that some estimates of Levy means in functional spaces have
been found in [6, 7, 9, 10, 11, 8].

3 Estimates of n-Widths

Let us fix a norm ‖ · ‖ on IRn and denote by E the Banach space (IRn, ‖ · ‖)
with unit ball BE. The dual space Eo = (IRn, ‖ · ‖o) is endowed with the
norm

‖x‖o = sup{|〈x, y〉| : y ∈ BE},

where 〈·, ·〉 is the standard scalar product on IRn.
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Theorem 3.1. (see [13]) Let Eo = (IRn, ‖ · ‖o). For every 0 < λ < 1, there
exists a subspace Fk ⊂ IRn, with dim Fk = k > λn, such that

|||α||| ≤ C · Mo(1 − λ)−1/2‖α‖, ∀α ∈ Fk,

where C is an universal constant and

Mo =
(∫

Sn−1
‖α‖2

0dµ
)1/2

.

Proof of the Theorem 1.1. Let us put TN := ⊕N
l=0Hl, n := dim TN ,

Bn
p := Up ∩ TN and Bn

(p) := J−1Bn
p . It is easy to see that n ≍ Nd.

Now, let 0 < λ < 1 and 1 ≤ q ≤ 2. By Theorem 3.1 there exists a
subspace Fk of IRn, with dim Fk = k > λn, such that

‖x‖(2) ≤ C · M
(

‖ · ‖(q′)

)

(1 − λ)−1/2‖x‖(q), x ∈ Fk.

If m = n−k, then (1−λ)−1/2 ≤ (n/m)1/2. From Theorem 2.1, for all x ∈ Fk,
we have that

‖x‖(2) ≤ C‖x‖(q)

(

n

m

)1/2

·
{

(q′)1/2, 1 < q ≤ 2,
(log n)1/2, q = 1.

Therefore
dm(Bn

q , L2 ∩ TN) ≤ sup
x∈Fk∩Bn

(q)

‖x‖(2)

≤ sup
x∈Fk∩Bn

(q)

‖x‖(q)C ·
(

n

m

)1/2

·
{

(q′)1/2, 1 < q ≤ 2,
(log n)1/2, q = 1.

≤ C ·
(

n

m

)1/2

·
{

(q′)1/2, 1 < q ≤ 2,
(log n)1/2, q = 1.

(9)

It was shown in [1] that there is a sequence of polynomial operators TN :
W r

p (Md) → Lq(M
d) ∩ TN , N ∈ IN, such that

sup
f∈W r

p (Md)

‖f −TN (f)‖q ≪ N−r+d(1/p−1/q)+ , 1 ≤ p, q ≤ ∞, r > d(1/p−1/q)+.

(10)
Using this fact and a discretization technique, we can show that for some
absolute constant C and all 1 ≤ p, q ≤ ∞ with r > d(1/p − 1/q)+,

W r
p (Md) ⊂ C









[ǫ−1 log n]
⊕

k=0

n
−r/d
k Bnk+1

p





⊕





∞
⊕

k=[ǫ−1 log n]+1

n
−r/d+(1/p−1/q)+
k Bnk+1

q







 ,
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where ǫ > 0 is a fixed parameter, Nk = [2k/drn1/d] and nk = dim TNk
≍ 2k/rn.

Now consider the sequence (Mk)k∈IN given by

Mk =











n, k = 0,
[2−ǫkn + 1], 1 ≤ k ≤ ǫ−1 log n,

0, k > ǫ−1 log n.

It is easy to check that
∑∞

k=0 Mk ≤ C(ǫ)n, where C(ǫ) depends just on ǫ.
Using definition and properties of Gel’fand’s n-widths (see [15, p. 238]), we
have

d[C(ǫ)n+1](W r
q (Md), L2(M

d)) ≤ C
[ǫ−1 log n]
∑

k=0

n
−r/d
k dMk(Bnk+1

q , L2(M
d) ∩ TNk+1

)

+Cdiam





∞
⊕

k=[ǫ−1 log n]+1

n
−r/d+(1/q−1/2)+
k B

nk+1

2 , L2(M
d)



 . (11)

Combining (9) and (11) for r > d/2, 0 < ǫ < 2/d − 1/r and 1 ≤ q ≤ 2, we
get estimates for Gel’fand’s n-widths

dn(W r
q (Md), L2(M

d)) ≪
{

n−r/d, 1 < q ≤ 2,
n−r/d(log n)1/2, q = 1.

Now, let 1 ≤ p, q ≤ ∞; δ, r > 0; s = r − d(1/p− 1/q)+ − δ. Then by (10) we
have W r−s

p (Md) ⊂ C · Uq and hence by the definition of Sobolev’s classes

W r
p (Md) ⊂ C · W r−d(1/p−1/q)+−δ

q (Md). (12)

Finally, we just need to apply the well known duality result between Kol-
mogorov’s and Gel’fand’s n-widths

dn(W r
q (Md), L2(M

d)) = dn(W r
2 (Md), Lq′(M

d)),

where 1/q + 1/q′ = 1, the inclusion (12) for 1 ≤ p ≤ 2, q = 2 and standard
embedding arguments to get the upper bounds in the Theorem 1.1. The
lower bounds follow from Remark 1.2.

Proof of the Theorem 1.2. Let x ∈ J−1TN = IRn. The Hölder’s inequality
implies that

‖x‖o
(q) = sup{|〈x, y〉| : y ∈ Bn

(q)} = sup
y∈Bn

(q)

∣

∣

∣

∣

∫

Md
Jx · Jydν

∣

∣

∣

∣

≤ ‖Jx‖q′ = ‖x‖(q′),

10



where 1/q + 1/q′ = 1. Hence fixing 0 < λ < 1, Theorem 3.1 yield the
existence of a subspace Fk, dim Fk = k > λn, such that

‖x‖(2) = ‖Jx‖2 ≤ CM(‖ · ‖o
(q))(1 − λ)−1/2‖Jx‖q

≤ CM(‖ · ‖(q′))(1 − λ)−1/2‖Jx‖q

for all x ∈ Fk. The last estimate tells us that for

ǫ = C−1(1 − λ)1/2
(

M(‖ · ‖(q′ ))
)−1

we have
ǫBn

(q)

⋂

Fk ⊂ Bn
(2),

so that, since dim Fk > λn, we can get

bλn−1(B
n
2 , Lq(M

d)) ≥ ǫ.

It is easy to check that
n−r/dBn

2 ⊂ W r
2 (Md).

Therefore setting λ = 1/2 and applying Theorem 2.1 we obtain that

bn
2
−1(W

r
2 (Md), Lq(M

d)) ≥ n−r/dbn
2
−1(B

n
2 , Lq(M

d))

≥ C
{

n−r/d, 1 < q ≤ 2,
n−r/d(log n)−1/2, q = 1.

This gives the proof of the Theorem 1.2 in the part of lower bounds for all
1 ≤ q ≤ p ≤ 2, by embedding. The upper bounds

dn(W r
p (Md), Lq(M

d)) ≪ n−r/d, 1 ≤ q ≤ p ≤ 2,

follow from the estimate (10).
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