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Abstra
t

Using the residue theorem with an appropriate 
ontour of inte-

gration, we dis
uss a 
lass of real improper integrals. By means of

a 
hange of variables we 
an simplify 
al
ulations by 
onverting an

integral whi
h depends on a parameter in a 
omplex plane to another

that does not depend on the parameter. We then have a bran
hing

point in addition to a simple pole in pla
e of one single (a unique)

pole.

1 Introdu
tion

Earlier or later, a student of physi
s will en
ounter the improper integrals in a

variety of appli
ations in a problem, for example, where the Fourier transform

pro
edure is the tool to be used. We remember that the Fourier transform

methodology takes the problem in the 
on�guration spa
es to the momentum

spa
es. We solve the so-
alled transformed problem in the momentum spa
es,

whi
h are supposedly simpler, and get the solution of the problem in the


on�guration spa
es by means of the inverse Fourier transform.

On the other hand, a student of engineering use the methodology of

Lapla
e transform to redu
e the initial (or boundary) problem, as in an

ele
tri
 
ir
uit or a mass-spring problem, for example, to another apparently

more simple one. In the same way as with the Fourier transform, the student

takes the solution ba
k to the initial (�rst) parameter problem by means of

the inverse Lapla
e transform.
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Both, the Fourier and Lapla
e transforms

1

are de�ned by improper inte-

grals. In general, the inverse transform are made by using 
omplex variables,

parti
ularly the residue theorem with an appropriate 
ontour of integration.

In this study we are interested in 
al
ulating a 
ertain type of real im-

proper integral by means of 
omplex variables, i.e., we use the residue theo-

rem with an appropriate 
ontour of integration to 
al
ulate the real improper

integral. We emphasize the importan
e of �rstly introdu
ing an appropriate


hange of the variable before the 
al
ulation involving a 
omplex variable.

This paper is organized as follows: in se
tion two, we introdu
e the main

problem, asso
iated with the respe
tive improper integrals in a simple way,

without use the 
omplex variable (this 
an be seen in a �rst 
al
ulus 
ourse).

In se
tion three we introdu
e the 
omplex variable to simplify the initial

problem and we then obtain the solution of the initial problem. In se
tion

four we introdu
e an appropriate 
hange of the variable before performing

the integral and �nally, in se
tion �ve we present our 
omments.

2 A 
lass of improper integrals

Our aim in this paper is to 
al
ulate the following real integral whi
h appear,

for example, where sometimes is ne
essary to 
onsider an area of a region

whi
h extends inde�nitely to the right (or to the left) along the axis x:


(k) =

Z

1

0

dx

ax

2k

+ 2bx

k

+ 


(1)

with a;b, 
 2 R, a 6= 0 and k = 1; 2; : : : We emphasize that the spe
ial 
ase

k = 1 
an be performed in terms of the hypergeometri
 fun
tion.

2

Before approa
hing the general problem it is appropriate to 
onsider a

spe
ial 
ase, where the denominator has no zeros in the positive real axis.

Take, for example, the 
ase where k = 1 = a = 
 and b = 0, i.e., the integral


(1) =

Z

1

0

dx

1 + x

2

: (2)

Probably this integral was and still is, maybe, the �rst improper integral


al
ulated expli
itly, in one of the �rst 
ourses of 
al
ulus. As it is known,

1

For the other types of integral transforms, we refer the reader to the referen
e [1, 2℄.
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(1) =

Z

1

0

dx

ax

2

+ 2bx+ 


=

1

p

a


2

F

1

(1=2; 1=2; 3=2; 1�b

2

=a
) with a > 0 and b

2

< a
.
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this integral 
an be 
al
ulated without having real zeros in the denominator

by means of a trigonometri
 
hange of variable

3

x = tan � and the result is


(1) = �=2. We note that the integral in eq.(2) is also a spe
ial 
ase (k = 2

and � = 1) of the integral




�

(k) =

Z

1

0

dx

�+ x

k

(3)

with <(�) > 0, that, after 
hanging the variable x = �

�

y, 
an be written as

the following




�

(k) = �

��1

Z

1

0

dy

1 + y

k

(4)

with k = 2; 3; : : : <(�) > 0 and � = 1=k.

Using eq.(4) one 
an ask, for example, if the 
al
ulus of 


�

(3) is analogous.

In this 
ase we have a real zero in the denominator and two others 
omplex


onjugate roots. And in the 
ase of k = 4? Here we don't have any real

roots. In general, if k is an odd number, x = �1 is always a zero in the

denominator but if k is an even number we don't have real roots in the

denominator. In addition, we 
an 
onsider the spe
ial 
ases k = 2; 3; 4 and 5

as partial fra
tions, but for n > 5 the job is extremely laborous.

Going ba
k to our original problem, i.e., the integral in eq.(1), we intro-

du
e the following 
hange of a variable

x

k

= t

and we 
an write
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(k) =

1

k

Z

1

0

t

�

at

2

+ 2bt + 


dt

where a 6= 0 and we have de�ned the parameter � = (1� k)=k:

Using partial fra
tion we 
an write for the above expression


(k) =

1=k

t

2

� t

1

Z

1

0

�

t

�

t� t

2

�

t

�

t� t

1

�

dt

3

This integral 
an also be 
al
ulated by means of partial fra
tions but, in this 
ase, we

must extend this method to the 
omplex variable be
ause the denominator has no real

zeros.

4

For a > 0, b

2

< a
 we 
an express the results in terms of the hypergeometri
 fun
tion,

i.e., 
(k) =

1

k

a

�(�+1)=2




(��1)=2

B(�+1; 1��)

2

F

1

[(�+1)=2; (1��)=2; 3=2; 1�b

2

=a
℄ where

B(p; q) is the beta fun
tion.

3



where at

1;2

= �b �

p

� with � = b

2

� a
 whi
h we admit is di�erent from

zero.

5

Turning ba
k to the initial variable, x, we get


(k) =

1

t

2

� t

1

Z

1

0

�

1

x

k

� t

2

�

1

x

k

� t

1

�

dx:

Admitting that the roots t

1

and t

2

are su
h that �t

1

= �

1

and �t

2

= �

2

we

obtain
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(k) =

1

t

2

� t

1

Z

1

0

 

1

x

k

+ �

2

�

1

x

k

+ �

1

!

dx

whi
h 
an be written as follows


(k) =

(�t

2

)

�

� (�t

1

)

�

t

2

� t

1

Z

1

0

dx

1 + x

k

= �(t

1

; t

2

; �) 


�

(k) (5)

where we introdu
e the parameter

�(t

1

; t

2

; �) =

(�t

2

)

�

� (�t

1

)

�

t

2

� t

1

:

Eq.(5) shows that, with the restri
tion quoted above, eqs.(1) and (4) are

proportional, and thus we need to 
onsider only one of them. For simpli
ity

we'll dis
uss the eq.(4) and furthermore, without loss of generality, we'll take

� = 1.

3 Using 
omplex variables

For reasons presented in se
tion 2, we believe that it is 
lear that the integral

in eq.(1) or eq.(5) for k > 5 is diÆ
ult to 
al
ulate by using partial fra
tions

be
ause the 
al
ulus is extremely laborous. Thus, at this point we must

introdu
e the 
omplex variables to simplify our initial problem.

As we know, the integral transforms methodology 
hanges the original

problem into another problem that is simpler them the �rst one. Here, we

5

The 
ase � = 0, where t

1

= t

2

we then have a pole of the se
ond order.

6

We ex
lude only the 
ase where the roots t

1

and t

2

are real and positives. In this 
ase

we have the result of the integration given by the expression

Z

1

0

dx

1� x

q

=

�

q


ot

�

�

q

�

,

where q > 1.
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are looking for another more appropriate integral to 
al
ulate our original

integral, eq.(4). We introdu
e the 
omplex variables and use the residue

theorem with an appropriate 
ontour of integration. As we have seen in

se
tion 2, �rst we need to 
onsider a spe
ial 
ase, k = 2. In this 
ase, it is

probably also the �rst 
ase studied when the 
al
ulation of the real integrals

by means of 
omplex variables is dis
ussed.

We 
onsidere the following 
omplex integral

I

C

dz

1 + z

2

(6)

where the integral is taken into the 
omplex plane (for this 
hange we 
all it

the transformed problem) 
ounter
lo
kwise and the 
ontour C is 
omposed of

a straight right line (real axis) from �R up to +R, with R > 0 and 
losed by

a semi
ir
le, in the upper half-plane, 
entered at the origin and radius R (the

same result 
an be obtained if we 
lose the 
ontour in the lower half-plane),

as in Figure 1

Figure 1: Contour for the integral in eq.(6).

Using the residue theorem we 
an write

I

C

dz

1 + z

2

= 2�iRes (z = i)

be
ause the unique point (a simple pole) whi
h is inside the 
ontour of inte-

gration is z = i.
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Rounding the 
ontour of integration in the positive sense we get

Z

R

�R

dx

1 + x

2

+

Z

C

R

dz

1 + z

2

= 2�i lim

z!i

�

(z � i)

1

1 + z

2

�

where C

R

is a semi
ir
le 
entered at the origin and radius R. Taking the limit

R !1 the integral on C

R

goes to zero, by means of the Jordan Lemma[3℄

and if we know that the fun
tion on the integral is an even fun
tion, we

obtain

Z

1

0

dx

1 + x

2

=

�

2

= 
(1)

whi
h is exa
tly the same result obtained in se
tion 2, without using the


omplex variables.

Here we also ask if is that easy to 
al
ulate the integral for other values

of the parameter? The answer is no. For example, we quote that the 
ase

k = 3, where we have the 
omplex integral

I

C

dz

1 + z

3

(7)

but the 
ontour, 
losed and oriented in the positive sense is 
omposed of two

straight right line, one of them from the origin up to R (R > 0) and another

from R exp(2�i=3) up to the origin, joined by an ar
 of a 
ir
le 
entered at

the origin and radius R. In this 
ontour only a pole (a simple pole) is inside

the 
ontour, i.e., in this 
ase z =exp(�i=3) is the unique pole whi
h is inside

the 
ontour, as in Figure 2.

y

Re

R0

C

z = e

x

2 /3ip

ip/3

Figure 2: Contour for the integral in eq.(7).
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Again, using the residue theorem we 
an show that the improper integral,

for k = 3, is 2�=3

p

3.

This reasoning 
ould be extended to the other values of k as follows: we


onsider the same 
omplex integral

I

C

1

1 + z

k

where C is now 
onstru
ted by two straight right line, one of them from the

origin up to R and another of R exp(2�i=k) up to the origin and an ar
 of

the 
ir
le 
entered at the origin and radius R. For this 
ontour only one of

the k roots of �1 is inside the 
ontour. If we pro
eed as in the 
ase k = 3

we 
on
lude that

Z

1

0

dx

1 + x

k

=

�=k

sen (�=k)

�

1

k

B

 

1

k

;

k � 1

k

!

(8)

where k = 2; 3; : : : and B(p; q) is the beta fun
tion.

7

4 An appropriate 
hange of variables

As we have already mentioned, our aim is to 
al
ulate real integrals as in

eq.(1) whi
h 
an be transferred to equations like the eq.(4) type as we have

seen in se
tion 2. In se
tion 3, we have used the residue theorem with an

appropriate 
ontour of integration. We note that despite the similarity, the


ontour depends on the value of the parameter k, i.e., it is always 
omposed

of two straight right line and an ar
 of a 
ir
le in whi
h the length depends

on the parameter k.

Here, we 
onsider another type of 
ontour that is not dependent on the

parameter k. We 
hange the 
ontour of the integration des
ribed above,

whi
h was 
hosen in su
h a way that we have only a simple pole inside the


ontour, with another 
ontour that 
ontains a bran
hing point at z = 0 and

a one unique simple pole at z = �1. It is appropriate be
ause we take

the 
ontour of integration that lets the bran
hing point outside the 
ontour

7

If we had the general integral

Z

1

0

x

��1

1 + x

�

dx with <(�) � <(�) > 0 we 
ould make

the same 
hange of variable and apply this integral to our integral with the appropriate

identi�
ation of the parameters with the result as

1

�

B

�

�

�

;

� � �

�

�

.
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and our problem is redu
ed to 
al
ulating the residue in point z = �1,

independent of the parameter k.

To this end we must �rstly introdu
e a 
hange of variable x

k

= t in eq.(4)

and without loss of generality we use � = 1 and get




1

(k) =

1

k

Z

1

0

t

1�k

k

1 + t

dt

where k = 2; 3; : : : To 
al
ulate this integral we use the 
omplex variables,

i.e., we 
onsider the following 
omplex integral

I

�

z

��1

z + 1

dz (9)

with � = 1=k and � is an appropriate 
ontour of integration. We note that the

integral presents a fun
tion having a simple pole at z = �1 and a bran
hing

point at z = 0 be
ause the exponent of z is always in the interval 0 < � < 1.

We 
hoose the 
ontour �, oriented in the positive sense, 
omposed by two

straight right line L

1

and L

2

and two 
on
entri
 
ir
les C

1

and C

2


entered

at the origin with radii � (0 < � < 1) and R (R > 1), respe
tively, as in

Figure 3.

R

L

2

x

y

C

2

0

C

1

L

1

�

z = �1

Figure 3: Contour for the integral in eq.(9)
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Now, running the 
ontour of integration and using the residue theorem

we 
an write

I

�

z

��1

1 + z

dz =

Z

R

�

x

��1

1 + x

+

I

�

R

z

��1

1 + z

dz +

Z

�

R

(x e

2�i

)

��1

1 + x

dx +

Z

�

�

z

��1

1 + z

dz

= 2�iRes(z = �1):

Using Jordan lemma[3℄ we 
an show that the integral on �

R

goes to zero,

for R !1. For the integral on �

�

, we parameterize the 
ir
le z = � exp(i�)

with 0 < � < 2� and taking the limit � ! 0, we 
an also show that the

integral on �

�

goes to zero. We note that with both limits, � ! 0 and

R!1, we re
over the extremes of integration and then we get

n

1� e

2�i(��1)

o

Z

1

0

x

��1

1 + x

dx = 2�i lim

z!�1

(

(z + 1)

 

x

��1

z + 1

!)

= 2�i e

�i(��1)

:

On the other hand, we note as we have said in Se
tion 2, that this 
ontour

is not dependent on the parameter k. Then, multiplying the expression above

for exp[��i(� � 1)℄ we 
an write

n

e

�i(��1)

� e

��i(��1)

o

Z

1

0

x

��1

1 + x

dx = 2�i:

Using an Euler relation for the fun
tion sin z we obtain

Z

1

0

x

��1

1 + x

dx = �

�

sin[�(� � 1)℄

whi
h 
an be write as

Z

1

0

x

��1

1 + x

dx =

�

sin(��)

:

Finally, turning ba
k in the initial variable, x = t

k

we get

Z

1

0

dt

1 + t

k

=

�=k

sin(�=k)

whi
h is exa
tly the same result obtained in eq.(8) by means of another


ontour of integration depending on the parameter k.
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5 Comments

In this paper we have dis
ussed, by means of an appropriate 
hange of vari-

able, the integration of a 
lass of real fun
tions using 
omplex variables. An-

other type of 
ontour with the same aim 
an be seen in Capelas de Oliveira[4℄.

It is important to note that with a simple 
hange of a variable, we redu
e

the problem depending on a parameter k, to another one not dependent on k.

With this 
hange of a variable, our integral 
an be 
al
ulated, independent of

k, by means of a unique 
ontour of integration, whi
h ex
lude the bran
hing

point and whi
h has only a simple pole inside the 
ontour.
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