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Abstrat

Using the residue theorem with an appropriate ontour of inte-

gration, we disuss a lass of real improper integrals. By means of

a hange of variables we an simplify alulations by onverting an

integral whih depends on a parameter in a omplex plane to another

that does not depend on the parameter. We then have a branhing

point in addition to a simple pole in plae of one single (a unique)

pole.

1 Introdution

Earlier or later, a student of physis will enounter the improper integrals in a

variety of appliations in a problem, for example, where the Fourier transform

proedure is the tool to be used. We remember that the Fourier transform

methodology takes the problem in the on�guration spaes to the momentum

spaes. We solve the so-alled transformed problem in the momentum spaes,

whih are supposedly simpler, and get the solution of the problem in the

on�guration spaes by means of the inverse Fourier transform.

On the other hand, a student of engineering use the methodology of

Laplae transform to redue the initial (or boundary) problem, as in an

eletri iruit or a mass-spring problem, for example, to another apparently

more simple one. In the same way as with the Fourier transform, the student

takes the solution bak to the initial (�rst) parameter problem by means of

the inverse Laplae transform.
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Both, the Fourier and Laplae transforms
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are de�ned by improper inte-

grals. In general, the inverse transform are made by using omplex variables,

partiularly the residue theorem with an appropriate ontour of integration.

In this study we are interested in alulating a ertain type of real im-

proper integral by means of omplex variables, i.e., we use the residue theo-

rem with an appropriate ontour of integration to alulate the real improper

integral. We emphasize the importane of �rstly introduing an appropriate

hange of the variable before the alulation involving a omplex variable.

This paper is organized as follows: in setion two, we introdue the main

problem, assoiated with the respetive improper integrals in a simple way,

without use the omplex variable (this an be seen in a �rst alulus ourse).

In setion three we introdue the omplex variable to simplify the initial

problem and we then obtain the solution of the initial problem. In setion

four we introdue an appropriate hange of the variable before performing

the integral and �nally, in setion �ve we present our omments.

2 A lass of improper integrals

Our aim in this paper is to alulate the following real integral whih appear,

for example, where sometimes is neessary to onsider an area of a region

whih extends inde�nitely to the right (or to the left) along the axis x:


(k) =

Z

1

0

dx

ax

2k

+ 2bx

k

+ 

(1)

with a;b,  2 R, a 6= 0 and k = 1; 2; : : : We emphasize that the speial ase

k = 1 an be performed in terms of the hypergeometri funtion.
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Before approahing the general problem it is appropriate to onsider a

speial ase, where the denominator has no zeros in the positive real axis.

Take, for example, the ase where k = 1 = a =  and b = 0, i.e., the integral


(1) =

Z

1

0

dx

1 + x

2

: (2)

Probably this integral was and still is, maybe, the �rst improper integral

alulated expliitly, in one of the �rst ourses of alulus. As it is known,

1

For the other types of integral transforms, we refer the reader to the referene [1, 2℄.
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2

< a.
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this integral an be alulated without having real zeros in the denominator

by means of a trigonometri hange of variable

3

x = tan � and the result is


(1) = �=2. We note that the integral in eq.(2) is also a speial ase (k = 2

and � = 1) of the integral




�

(k) =

Z

1

0

dx

�+ x

k

(3)

with <(�) > 0, that, after hanging the variable x = �

�

y, an be written as

the following




�

(k) = �

��1

Z

1

0

dy

1 + y

k

(4)

with k = 2; 3; : : : <(�) > 0 and � = 1=k.

Using eq.(4) one an ask, for example, if the alulus of 


�

(3) is analogous.

In this ase we have a real zero in the denominator and two others omplex

onjugate roots. And in the ase of k = 4? Here we don't have any real

roots. In general, if k is an odd number, x = �1 is always a zero in the

denominator but if k is an even number we don't have real roots in the

denominator. In addition, we an onsider the speial ases k = 2; 3; 4 and 5

as partial frations, but for n > 5 the job is extremely laborous.

Going bak to our original problem, i.e., the integral in eq.(1), we intro-

due the following hange of a variable

x

k

= t

and we an write
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(k) =

1

k

Z

1

0

t

�

at

2

+ 2bt + 

dt

where a 6= 0 and we have de�ned the parameter � = (1� k)=k:

Using partial fration we an write for the above expression


(k) =

1=k

t

2

� t

1
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t� t
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3

This integral an also be alulated by means of partial frations but, in this ase, we

must extend this method to the omplex variable beause the denominator has no real

zeros.

4

For a > 0, b

2

< a we an express the results in terms of the hypergeometri funtion,

i.e., 
(k) =

1

k

a

�(�+1)=2



(��1)=2

B(�+1; 1��)

2

F

1

[(�+1)=2; (1��)=2; 3=2; 1�b

2

=a℄ where

B(p; q) is the beta funtion.
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where at

1;2

= �b �

p

� with � = b

2

� a whih we admit is di�erent from

zero.
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Turning bak to the initial variable, x, we get


(k) =

1

t

2

� t

1

Z

1

0

�

1
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k

� t

2

�

1

x

k

� t

1
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dx:

Admitting that the roots t

1

and t

2

are suh that �t

1

= �

1

and �t

2

= �

2

we

obtain

6


(k) =

1

t

2

� t

1

Z

1

0

 

1

x

k

+ �

2

�

1

x

k

+ �

1

!

dx

whih an be written as follows


(k) =

(�t

2

)

�

� (�t

1

)

�

t

2

� t

1

Z

1

0
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1 + x

k

= �(t

1

; t

2

; �) 


�

(k) (5)

where we introdue the parameter

�(t

1

; t

2

; �) =

(�t

2

)

�

� (�t

1

)

�

t

2

� t

1

:

Eq.(5) shows that, with the restrition quoted above, eqs.(1) and (4) are

proportional, and thus we need to onsider only one of them. For simpliity

we'll disuss the eq.(4) and furthermore, without loss of generality, we'll take

� = 1.

3 Using omplex variables

For reasons presented in setion 2, we believe that it is lear that the integral

in eq.(1) or eq.(5) for k > 5 is diÆult to alulate by using partial frations

beause the alulus is extremely laborous. Thus, at this point we must

introdue the omplex variables to simplify our initial problem.

As we know, the integral transforms methodology hanges the original

problem into another problem that is simpler them the �rst one. Here, we

5

The ase � = 0, where t

1

= t

2

we then have a pole of the seond order.
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We exlude only the ase where the roots t

1

and t

2

are real and positives. In this ase

we have the result of the integration given by the expression

Z

1

0

dx

1� x

q

=

�

q

ot

�

�

q

�

,

where q > 1.
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are looking for another more appropriate integral to alulate our original

integral, eq.(4). We introdue the omplex variables and use the residue

theorem with an appropriate ontour of integration. As we have seen in

setion 2, �rst we need to onsider a speial ase, k = 2. In this ase, it is

probably also the �rst ase studied when the alulation of the real integrals

by means of omplex variables is disussed.

We onsidere the following omplex integral

I

C

dz

1 + z

2

(6)

where the integral is taken into the omplex plane (for this hange we all it

the transformed problem) ounterlokwise and the ontour C is omposed of

a straight right line (real axis) from �R up to +R, with R > 0 and losed by

a semiirle, in the upper half-plane, entered at the origin and radius R (the

same result an be obtained if we lose the ontour in the lower half-plane),

as in Figure 1

Figure 1: Contour for the integral in eq.(6).

Using the residue theorem we an write

I

C

dz

1 + z

2

= 2�iRes (z = i)

beause the unique point (a simple pole) whih is inside the ontour of inte-

gration is z = i.

5



Rounding the ontour of integration in the positive sense we get

Z

R

�R

dx

1 + x

2

+

Z

C

R

dz

1 + z

2

= 2�i lim

z!i

�

(z � i)

1

1 + z

2

�

where C

R

is a semiirle entered at the origin and radius R. Taking the limit

R !1 the integral on C

R

goes to zero, by means of the Jordan Lemma[3℄

and if we know that the funtion on the integral is an even funtion, we

obtain

Z

1

0

dx

1 + x

2

=

�

2

= 
(1)

whih is exatly the same result obtained in setion 2, without using the

omplex variables.

Here we also ask if is that easy to alulate the integral for other values

of the parameter? The answer is no. For example, we quote that the ase

k = 3, where we have the omplex integral

I

C

dz

1 + z

3

(7)

but the ontour, losed and oriented in the positive sense is omposed of two

straight right line, one of them from the origin up to R (R > 0) and another

from R exp(2�i=3) up to the origin, joined by an ar of a irle entered at

the origin and radius R. In this ontour only a pole (a simple pole) is inside

the ontour, i.e., in this ase z =exp(�i=3) is the unique pole whih is inside

the ontour, as in Figure 2.

y

Re

R0

C

z = e

x

2 /3ip

ip/3

Figure 2: Contour for the integral in eq.(7).
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Again, using the residue theorem we an show that the improper integral,

for k = 3, is 2�=3

p

3.

This reasoning ould be extended to the other values of k as follows: we

onsider the same omplex integral

I

C

1

1 + z

k

where C is now onstruted by two straight right line, one of them from the

origin up to R and another of R exp(2�i=k) up to the origin and an ar of

the irle entered at the origin and radius R. For this ontour only one of

the k roots of �1 is inside the ontour. If we proeed as in the ase k = 3

we onlude that

Z

1

0

dx

1 + x

k

=

�=k

sen (�=k)

�

1

k

B

 

1

k

;

k � 1

k

!

(8)

where k = 2; 3; : : : and B(p; q) is the beta funtion.
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4 An appropriate hange of variables

As we have already mentioned, our aim is to alulate real integrals as in

eq.(1) whih an be transferred to equations like the eq.(4) type as we have

seen in setion 2. In setion 3, we have used the residue theorem with an

appropriate ontour of integration. We note that despite the similarity, the

ontour depends on the value of the parameter k, i.e., it is always omposed

of two straight right line and an ar of a irle in whih the length depends

on the parameter k.

Here, we onsider another type of ontour that is not dependent on the

parameter k. We hange the ontour of the integration desribed above,

whih was hosen in suh a way that we have only a simple pole inside the

ontour, with another ontour that ontains a branhing point at z = 0 and

a one unique simple pole at z = �1. It is appropriate beause we take

the ontour of integration that lets the branhing point outside the ontour

7

If we had the general integral

Z

1

0

x

��1

1 + x

�

dx with <(�) � <(�) > 0 we ould make

the same hange of variable and apply this integral to our integral with the appropriate

identi�ation of the parameters with the result as

1

�

B

�

�

�

;

� � �

�

�

.
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and our problem is redued to alulating the residue in point z = �1,

independent of the parameter k.

To this end we must �rstly introdue a hange of variable x

k

= t in eq.(4)

and without loss of generality we use � = 1 and get




1

(k) =

1

k

Z

1

0

t

1�k

k

1 + t

dt

where k = 2; 3; : : : To alulate this integral we use the omplex variables,

i.e., we onsider the following omplex integral

I

�

z

��1

z + 1

dz (9)

with � = 1=k and � is an appropriate ontour of integration. We note that the

integral presents a funtion having a simple pole at z = �1 and a branhing

point at z = 0 beause the exponent of z is always in the interval 0 < � < 1.

We hoose the ontour �, oriented in the positive sense, omposed by two

straight right line L

1

and L

2

and two onentri irles C

1

and C

2

entered

at the origin with radii � (0 < � < 1) and R (R > 1), respetively, as in

Figure 3.

R

L

2

x

y

C

2

0

C

1

L

1

�

z = �1

Figure 3: Contour for the integral in eq.(9)
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Now, running the ontour of integration and using the residue theorem

we an write

I

�

z

��1

1 + z

dz =

Z

R

�

x

��1

1 + x

+

I

�

R

z

��1

1 + z

dz +

Z

�

R

(x e

2�i

)

��1

1 + x

dx +

Z

�

�

z

��1

1 + z

dz

= 2�iRes(z = �1):

Using Jordan lemma[3℄ we an show that the integral on �

R

goes to zero,

for R !1. For the integral on �

�

, we parameterize the irle z = � exp(i�)

with 0 < � < 2� and taking the limit � ! 0, we an also show that the

integral on �

�

goes to zero. We note that with both limits, � ! 0 and

R!1, we reover the extremes of integration and then we get

n

1� e

2�i(��1)

o

Z

1

0

x

��1

1 + x

dx = 2�i lim

z!�1

(

(z + 1)

 

x

��1

z + 1

!)

= 2�i e

�i(��1)

:

On the other hand, we note as we have said in Setion 2, that this ontour

is not dependent on the parameter k. Then, multiplying the expression above

for exp[��i(� � 1)℄ we an write

n

e

�i(��1)

� e

��i(��1)

o

Z

1

0

x

��1

1 + x

dx = 2�i:

Using an Euler relation for the funtion sin z we obtain

Z

1

0

x

��1

1 + x

dx = �

�

sin[�(� � 1)℄

whih an be write as

Z

1

0

x

��1

1 + x

dx =

�

sin(��)

:

Finally, turning bak in the initial variable, x = t

k

we get

Z

1

0

dt

1 + t

k

=

�=k

sin(�=k)

whih is exatly the same result obtained in eq.(8) by means of another

ontour of integration depending on the parameter k.
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5 Comments

In this paper we have disussed, by means of an appropriate hange of vari-

able, the integration of a lass of real funtions using omplex variables. An-

other type of ontour with the same aim an be seen in Capelas de Oliveira[4℄.

It is important to note that with a simple hange of a variable, we redue

the problem depending on a parameter k, to another one not dependent on k.

With this hange of a variable, our integral an be alulated, independent of

k, by means of a unique ontour of integration, whih exlude the branhing

point and whih has only a simple pole inside the ontour.
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