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Summary

The main object of this paper is to compare the efficiency of measuring instruments
that are used to measure the same quantity of interest in a group of n individuals. The
model considered was introduced in Grubbs (1948, 1973) and the inference for the model
parameters is based on maximum likelihood estimation. A simulation study is used
for comparing different test statistics for testing equality of biases and variances in the
measuring instruments. A data set is used to illustrate the approach considered.

Key Words: Maximum likelihood estimation; Accuracy and precision; EM algorithm;
Large sample tests.

1 Introduction

The paper treats the problem of comparative calibration, where p measuring instruments
are used to measure the same unknown quantity = in a common group of experimental
units. This type of problem is very common in scientific work. Grubbs (1973) presents an
application where it is of interest comparing the efficiency of three chronometers, Chris-
tensen and Blackwood (1993) present an application comparing five thermocouples. More
recently, Bedrick (2001) considers three different approaches for measuring soil sediments.
Consider p instruments for measuring an usual characteristic in a group of n objects.
Let Yj; be the measure given by the instrument 7, 7 = 1, ..., p, associated to an unknown
quantity x;, j = 1,...,n. The model considered in Grubbs is given by the linear relation

Yij = ai + x5 + ey (1.1)
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where ¢;; and x; are independent, with e;; ~ N (0, ¢;) and z; ~ N(py, ¢5), ¢ = 1,...,p and
j =1,...,n. It follows that E(Y};) = o; + ps, Var(Yi;) = ¢, + ¢ and Cov(Y;, Yi;) = ¢y,
i # j. The parameters a,...,a, are associated to the additive bias (accuracy) of the
measuring instruments and ¢, ..., ¢, are associated to the precision of the measuring
instruments.

Following Bedrick (2001), for eliminate redundancy, we assume that there is a ref-
erence instrument that measures, without bias the quantity of interest. Without loss of
generality we consider this to be instrument so that «; = 0.

In the context of Grubbs measurement error model, quality of measurement is evalu-
ated in terms of the precision ( the inverse of the variance) and the accuracy (or bias) of the
different instruments. The hypotheses of interest are: the instruments have the null bias
(or mean) Hy @ oy = g = ... = o, = 0, the same variance Hyy : ¢y = ¢g = ... = ¢, = 0,
and simultaneous Hy : a1 = ag = ... = oy = 0,1 = ¢ = ... = ¢, = ¢, which is the
primary interest in this work.

For p = 2 Grubbs (1948, 1973) presents an inferential study based on multivariate
techniques. Maloney and Rastogi (1970) show that Pitman’s (1939) test is equivalent to
Hys. For p > 2, Choi and Wette (1972) develops a test for evaluating the equality of the
variance of the measuring instruments (Hyy). Jaech (1973) considers a test for evaluating
the equality of variances Hyy. Christensen and Blackwood (1993) consider a multivariate
linear model for testing Hy,, Hyp2 and Hy shows that the test for Hy is equivalent to testing
Hj:v,=6;=0,i=1,...,p— 1 in the multivariate regression model

Yij — 5 = 0i +Vil.j + €j,

i=1,...,p—1. Recently, Bedrick (2001) develops a test based in the score statistics but
considering a different parametrization than the are considered in this paper.

In this paper we present an inferential study based on the Wald, score and likelihood
ratio statistics. We consider maximum likelihood estimation by using the EM-algorithm.
Under some restrictions on measurement error variances we study the asymptotic be-
haviour of some parameter estimates.

The paper is organized as follows. Section 2 presents the estimation procedures using
the EM-algorithm and the information matrix is derived. Section 3 presents Wald, score
and likelihood ratio for testing the hypothesis derived in Section 1. Maximum likelihood
estimators for the restricted models (under the null) and the EM algorithm in the more
general situations.



2 Grubbs models

The model given in (1.1), can be represented in matrix form as

Yj = a+1pxj+sj (21)
where Yj = (nj,...,}/;,j)T, €; = (elj, ...,epj)T, a — (0,&2, ...,O[p)T, 1p = (1, ...,1)T
and & = (ag,...,ap)", j=1,...,n. The normal model is obtained considering

Yj ~ NP(I‘I’J 2)7 (22)

where g = (0,) = a + 1, and T = X(0s) = ¢.1,1] + D(¢p), with 6, = (s, ™)',
Os = (¢, ") and D(¢p) = diag(¢r, ..., d,), @ = (¢1,...,4,)T. We denote the parameters
in the model by 8 = (8],0%)".

For p > 3 the maximum likelihood estimator do not have closed form. In order
to implement the EM algorithm, we derive next the complete (unobserved) likelihood
function, which incorporate both, the observed and unobserved data, and is given by
y=(Yy,..,Y,)" and ¢ = (x1,...,2,)", respectively. As will be seen, theses two put
together will provide a much simpler and tractable likelihood function. Now, we define
Zj=(x;,Y,)", so that

Zj ~ NP+1(u’z7 Ez)a

. Mz _ ¢x 1;—;9590

The complete data log-likelihood function corresponding to 8 = (u,, ', ¢, @) is

where

n

00|z, ..., z,) = cte — gl0g|2z| - %;(zj —p,) 27Nz — ), (2.3)
where
p 171
ml=o o ad == (e TBEAT) e

1=1

with ¢ = 1+ ¢,1) D" (¢)1,,.



2.1 The E and M steps

There are two steps in each cycle of the EM algorithm. The E and M steps. In the E step
the algorithm finds the expectation of the complete data log-likelihood function given the
observed data. But, since we are dealing with regular exponential families, to implement
the E step it is sufficient to compute the expected value of the sufficient statistics that
follow from the complete data likelihood function. Hence, since the sufficient statistics
depends only on & = (x1,...,2,)" through z; and :r?, the E step is implemented by
computing

Pu

c

Pa

%= Blujly;, 0] = pa+ 1, DN (@)(y; —p)  and Varlzly;, 0] ==, (25)

so that 5

with ¢ as in (2.4). The M step of the algorithm obtains the next value of the unknown
parameters by maximizing the complete data likelihood with the sufficient statistics re-
placed by their expected values obtained at the E step. As show in Dempster et al.(1977),
each step of the algorithm increases the observed likelihood [(8|y). By differentiating the
logarithm of the complete likelihood function given in (2.3) with respected to €, we obtain
the following equations:

-~

My = T, ai:gi._i‘a aa,‘:sww:

~ 1 ~ 1 _ _

o= » (pj—)*  and ¢ = - > (i — Ui — x + ),
i1

L RS ) I I ,
where T = EZ:E]-, Sezr = EZ(% —z)? and ;, = ﬁZyij, i=2,...,p.
j=1 7=1 7=1
Now, let Ir(@) be denote the expected information matrix. Hence, after some alge-
braic manipulations, it can be shown that

Ly, Ly 0O 0
(o) = | T e 00

0 0 I%% I¢I¢
0 0 Iy, 1oy

where the elements of the matrix I(@) are presented in the Appendix I.
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Note that Ir(6) can be represented as Ir(0) = Diag(Iy,Is), where I and Ig are the
submatrices corresponding to 0, and @, respectively. Moreover, the maximum likelihood
estimator @ of 8 is asymptotically normally distributed with mean vector @ and covariance
matrix V = I;(0)!, which we denoted by AN(6,V). Thus, the maximum likelihood

o~

estimators & and ¢ are asymptotically independent.

3 Tests for Precision and Accuracy

In this Section, we consider the study of the performance of the test for the hypotheses
Hy, Hy; and Hyy using the Wald (W), Score (S) and likelihood ratios (G) statistics. These
test, which are sometimes called the classical tests are particularly useful when the param-
eter space is multidimensional. Therefore, these three test statistics are asymptotically
equivalent under the null hypothesis .

The null hypothesis considered in Section 1 can be written as H : A@ = 0, where the
matrix A is 7 x (2p+ 1), dimensional with rank(A) =7 < 2p+1. Thus, the statistics W,
S and G can be write as,

W =n[AB) [ATI; (9)A] '[AG], S = %f/’TIFl(E)INI and G = 2[((0) — ()], (3.1)

where @ and @ are MLEs under unrestricted and restricted models, respectively and

U =U(0) = Z5(6).

3.1 The Wald statistics

We want to test the hypothesis Hy considered in Section 1. We note that Hy may be
written as Hy : C6, = 0, where 0, = (a',¢')" and C = < I(;] X ) is 2¢ x (2p — 1)
1

dimensional matrix of rank 2¢ and ¢ = p — 1, with

1 -1 0 ...0 0
01 -1 ...0 0

Ar=1| . . . . (3.2)
00 0 ... 1 -1

matrix ¢ X p. Thus, the Wald statistics for testing Hy is given by
Wo = Wor + W, (3.3)
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where Wo; = n@'[I,)I;'T] ] *& and Wy, = naAlT[AIH(p)TEIH(Tp)AIT]*lq/{\) are the Wald
statistics for testing Hy, and Hyy, individually. The notation I, is used to denote the
r X (r 4+ 1) matrix given by Iy = [0,I,]. The large sample null distribution of Wy, and
Wy are X;2)71' Furthermore, Wy, and Wy, are independent, so W, has an approximate
null x3, , distribution.

3.2 The Score statistics

Let O the maximum likelihood estimator of @ under Hy. Then, after some algebraic
manipulations it follows that

ﬁl‘ = g..: _ 1 Z Z yl] .j 7 (34)

j 1 =1
~ 1 <&
¢$:ﬁ (g.j_g Zzym ) =9,
j=1 j 1 =1
p
where ?..— Zzym and y ; = Zyij-
y 1 =1 i:l

If ax < 0, then we consider that the MLEs for the variances satisfy ax =0 and

ZZ Yij —Y.)- (3.5)

j 1 =1
The score statistics for testing Hy is given by

So = So1 + Soz2, (3.6)

1
where Sor = 2370, (7, —7.)* and Sp» = —b"Bb, with
n

b - n(¢e — 9)1, + > DWW, — 27 > W1, W,

2¢2 7j=1 7=1

20
1-27 |77 plp—1) "7

B =



W. =y, —a —1 Nxand?:ﬁv(bixﬁv.
Y o ¢+ oy
Note that, as Ir is a block diagonal matrix, then the statistics Sy, and Sy, are asymp-
totically independent. Therefore, the statistics Sp; and Spp are the scores statistics for
testing Hy, and Hy, individually, assuming that the other hypothesis hold.
Similar result is obtained in Bedrick (2001) for the Grubbs model using a different
parametrization than the considered in this paper.

Under the hypothesis Hy;, the MLE 0 of 8 has not a closed form, in this case, the
MLE is obtained via the algorithm EM , and the estimators in the E and M steps are:

Step E:
¢x i ¢x

?[I;Dfl(qﬁ) (y; —m)] and 22 =77+ —. (3.7)

Tj =y +
j=H B

Step M: We maximize the function ¢(0|z1, ..., z,,) and we obtain the following estimators:

n n

~ ~ _ ~ 1 )
He = T, ¢x:—2($]—$)2 and ¢’L:EZ(yZ]_$])2J Z:17"'7p'

The score statistics is obtained by substituting the MLE under Hy;, in the statistics S
given in (3.1).

Finally, after some computations, the MLEs of the parameters under Hy, are given
by

He =Y, Q=i —IT

< 1 O 2 —\2
¢ = nlp—1) ;;((yzj ~%:) =W —7.)) (3.8)
Fo= - i(y.j ~7.) - %-

If ¢, <0, then we consider 5;,3 = 0 and the restricted MLE for ¢ is given by

5= 1% SN - 7). (3.9)

j=1 i=1
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1
Thus, the score statistic is given by Sp; = —b'Bb, where b e B are given in (3.6),
n

W, =y; —a' — 1,]i, and in this case the estimators are as in (3.8).

3.3 The Likelihood Ratio statistics

The likelihood ratio statistics for the hypotheses considered in the Section 1 does not
present close form. The main reason being that the unrestricted and restricted MLEs do
not present closed form, but its numerical implementation is simple and as the simulation
study has we shall show, it present good properties.

4  Restricted Maximum likelihood

Following Jaech (1985), when one of the variances is estimated as being (close to or less
than) zero, the conclusion may be that the corresponding instrument measures precisely
(without error) the quantity of interest. In the case where one of the measurements
measures precisely the characteristic of interest, the variance of the measurement errors
corresponding to that instrument may be taken to be zero. We consider two situations:
¢1 = 0 (standard instrument with null variance) and without loss of generality ¢, = 0
(one nonstandard instrument with null variance).

4.1 The case ¢; =0

If the condition ¢, = 0 is considered, then it follows from the assumptions considered in
(1.1) that Y'; ~ N,(p, X), where p is as in (2.2) and

¢a: 212 )
> =
( o1 Xy ’
where 215 = ¢,1, = %5 and Xp = ¢,1,1] + D(v), with D(vp) = diag(¢s, ..., #,) and
,lvb - (¢27 ey ¢p)T'

The vector parameters in this case, is given by @ = (uz, ', ¢, z,bT)T and the maxi-
mum likelihood estimators are

bo =1, Q=70 —U., ¢;i=35Snu+Si—25, ¢,=>51, (4.1)



n

N 1 : :
where Yi. = ﬁzlyljal = 27 -~ P and Skl = ﬁzl(yk] - yk)(yl] - yl) ) kal = 17 o P- Let
j= j=
0. = (ay, ..., p, P2, ..., d,) ", Walds statistic can be used for testing hypothesis like the one
considered in previous the section. The information matrix is presented in the Appendix
II.

4.2 The case ¢, =0

We consider now the possibility that one instrument nonstandard measure precisely (with-
out error) the quantity of interest, without loss of generality, we consider ¢, = 0. Thus,
it follows that Y; ~ N,(u, X), where p is as in (2.2) and

X X
> = ] 49
( 221 ¢$ ) ( )
where 1 = ¢,1,1; + D(7) and Xy, = ¢,1, = ¥, with D(7) = diag(éy, ..., d,),
T=(¢,...,0,)" and ¢ =p— 1.

The vector parameters in this case, is given by 8 = (uz, @', ¢,,7")" and the maximum
likelihood estimators are

ﬁx =1, az = Yi. — Y1, ¢x = Sppa ¢z = Spp + Si — 2Spi; (43)

where y, and Sy, ¢ = 1,...,p, are as in (4.1). Note that the maximum likelihood
estimators of the variance are non negative. The information matrix is presented in
the Appendix III, that can be used for testing hypothesis like the one considered in the
previous section, using the Wald statistics.

5 Applications

The data set presented in Jaech (1985) arose from an experiment that was conducted in
which the densities of 43 sintered uranium fuel pellets for use in nuclear reactors were
measure by six instruments.

In this application it is considered that instrument one is the reference (or standard)
instrument, which correspond to the geometric method and operator 1. The table shows
iterations of the EM-algorithm indicating that convergence is attained in approximately
50 iterations, providing estimates for the sequence ¢;,7 = 1,...,6. Note that the estimates
are close to the ones reported in Jaech (1985, pp. 162).



Table 1: Convergence of the EM algorithm

iter P1 P2 P3 P4 Ps Ps

11 0.0095 0.0042 0.0275 0.0813 0.1394 0.0274
21 0.0072 0.0073 0.0251 0.0759 0.1319 0.0304
31 0.0069 0.0076 0.0249 0.0754 0.1313 0.0308
41 0.0068 0.0076 0.0249 0.0753 0.1313 0.0309
51 0.0068 0.0076 0.0249 0.0753 0.1313 0.0309

Std. Dev. (0.0024) (0.0026) (0.0060) (0.0168) (0.0289) (0.0073)

Estimates for the other parameters are:
fr = 4.3972(0.0316); ¢, = 0.0361(0.0084); ay; = —0.0270(0.0183), ay =
0.0386 (0.0272), &y = 0.3188 (0.0437), a5 = 0.3230 (0.0567), ag = 0.2228 (0.0296),
where the numbers in parenthesis denote corresponding standard deviations.

First consider the hypotheses Hy, the maximum likelihood estimates of 8 is given by
fe = 4.5433, ¢ =0.0709, ¢, = 0.0350.

Under_hypotheses Hy;, the maximum likelihood estimates of € is given by j, =
4.4152, ¢, = 0.0360, ¢, = 0.0063, ¢, = 0.0118, ¢3 = 0.0246, ¢, = 0.1665, ¢5 =
0.2231, ¢ = 0.0776. In this case, convergence is attained approximately in iteration 40.
Finally, under Hp, the maximum likelihood estimators are given by p, = 4.3972, a =
—0.0270, a3 = 0.0386, a4 = 0.3188, a5 = 0.3230, ag = 0.2228, ¢, = 0.0393, ¢ =
0.0449.

For testing hypothesis Hy, Hy; and Hy, defined in Section 1, we use Wald, score and
likelihood ratio statistics.

Hypothesis Hy is rejected, since Wy = 200.8226 Ey = 124.7358 and )y = 192.7844.

Hypothesis Hyy, is also rejected since Wy, = 151.5859, Ey = 74.8692 and @y, =
103.9554.

Hypotheses Hyy, of equal precisions, is also rejected since Wy, = 49.2366,
Eyp = 77.9824 and Qe = 94.7256. The general conclusion is that the instruments are
not accurate neither precise. Similar results are obtained in Jaech (1985).
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6 A simulations study

In this Section we show a simulation study where estimates of the significance level and
power of the three test statistics under H, are presented. Each Monte Carlo estimation
of the significance level of the tests is based on 1000 independent samples generated
according to the model defined by (1.2) with oy = ... =, =0and ¢; = ... = ¢, = 1,
p = 3,5 sample sizes n = 25, 50 and 100. The power of the tests were also estimated. In
all cases, the characteristic of interest z; was generated according to the N(0, ¢,), with
¢, = 0.1,0.25,1.0.

Table 2 presents the estimated significance level in percents of the three test statistics
corresponding to the nominal level of 5%. We can observe that the significance level of
the Wald statistics converges slower to the nominal level, as n increases, than the other
statistics. The score test seems to converge faster to the nominal level, while the two other
statistics overestimate the 5% nominal level for small values of n. It can also be noted
that ¢, seems not to exert great influence on the significance level of the three statistics.
This was also noted in other simulation studies as can also be noted in Figure 1 which
presents, for n = 25, 50,100, with p = 3,5, estimated cumulative frequencies of the three
statistics, for Hy, with theoretical cumulative frequencies corresponding to the chi-square
distribution with eight degrees of freedom that we denote by x2.

Table 3 presents power estimates for the three test statistics corresponding to model
(1.2) with the parameter values considered above. The score statistics seems to present
similar behavior as the likelihood ratio test while the Wald statistics seems to present a
slightly inferior behavior. No noticiable difference seems to be noted as ¢, increase.

Hence, for the structural normal Grubbs model, we recomend using the score statistics
which presents the best behavior in terms of significance level and power for testing
hypothesis Hy, Hy, and Hy,. The approximation to the chi-square distribution, even for
small values of n is worth noticing

7 Concluding remarks

The paper presents estimation and hypothesis testing in a structural normal Grubbs model
frequently considering for comparing the efficiency of instruments used for measuring an
unknown quantity in a group of common individual. Parameter estimation is considered
via maximum likelihood, by using the EM-algorithm. Hypothesis testing is approached
by using Wald, score and likelihood ratio statistics. Simulation studies seem to indicate
that the score statistic presents the best behavior in terms of nominal level and power.
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Table 2: Estimated significance levels of the three test with nominal level of 5%.

Sample size p=3 p=2>

T n w E Q| W E @

25 76 49 79105 45 7.2

N(0,0.25) 50 52 44 50| 71 49 6.0
100 6.6 54 63| 7.1 49 6.3

25 76 45 69| 9.8 4.0 6.0

N(0,1.0) 50 58 49 56| 74 4.0 58
100 58 44 53| 6.3 44 53

Table 3: Estimated power of the three test for the alternative Hy : ay = 0, a3 = 0.5, ¢ =
¢2 =1, ¢p3 = 1.5, with p = 3.

z; N(0, 0.01) N(0, 0.25) N(0, 1.0)

n | W E Q| W E Q| W E Q@
25 | 37.2 362 375|346 356 374345 320 35.6
50 | 67.1 704 66.4|60.8 641 64.4|57.6 60.3 60.2
100 [ 949 96.5 94.9 | 91.5 93.0 92.7|90.8 93.1 92.0
200 | 100 100 100 | 100 100 100 | 99.9 99.9 99.9

Appendix I. Information matrix for the unrestricted model

After some algebraic manipulation, the information matrix for the unrestricted models
is given by

Il‘w Kz Iﬂ:ca 0 0
Tya 0 0
0 0 1 bode I bt
0 0 Ipp, gy

where
Tyope = 1;2_11;0: Lypa = IJE_I]I(TP) - [aTuz: Too = ]I(P)E_I]I(TP)’
1 [c—1\% 2 _
o = g () e D 0,
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Figure 1: Empirical (...) and theoretical (-) distribution of statistics Wald, Score and

likelihood ratios, respectively for testing Hy, where a) n =25, b) n = 50 and ¢) n = 100,
with p = 5.

Iys = —%21;[)2((1;) — ¢ *(c—1)1,D*(¢p) + ¢ *1,D (¢)=D *(9),
—2
Iy = 3D7®)+ 56D (HMD(g) — ¢ gD ($)MD (@)
+2072¢ID72(¢)2MD71(¢) — 071¢ID72(¢)2D72(¢).

Appendix II. Information matrix for the model with ¢; =0

The information matrix corresponding to the model considered in Section (4.1.) is
given by
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Lywe 0 0 0
0 Ioa O 0
IF(O) - 0 0 I¢>w¢x 0 )
0 0 0 Iyy
1 . 1 1,
where 1, ,. = " Ino =D (), Is,4, = 392 and Iy = §D ().

Appendix III. Information matrix for the model with ¢, =0

The information matrix corresponding to the model considered in Section (4.2) is
given by

Ly 0 lye, O 0
0 lue o 0 0

IF(O) - Iap,uz QpOs Iapap 0 0 ’
0 0 0 Iy, 0O

1 1
where 1, ,. = ¢—, oy = ¢—, Ina. =
X X

= 1 =——and I,, = =D )
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