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Summary

The main obje
t of this paper is to 
ompare the eÆ
ien
y of measuring instruments

that are used to measure the same quantity of interest in a group of n individuals. The

model 
onsidered was introdu
ed in Grubbs (1948, 1973) and the inferen
e for the model

parameters is based on maximum likelihood estimation. A simulation study is used

for 
omparing di�erent test statisti
s for testing equality of biases and varian
es in the

measuring instruments. A data set is used to illustrate the approa
h 
onsidered.

Key Words: Maximum likelihood estimation; A

ura
y and pre
ision; EM algorithm;
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1 Introdu
tion

The paper treats the problem of 
omparative 
alibration, where p measuring instruments

are used to measure the same unknown quantity x in a 
ommon group of experimental

units. This type of problem is very 
ommon in s
ienti�
 work. Grubbs (1973) presents an

appli
ation where it is of interest 
omparing the eÆ
ien
y of three 
hronometers, Chris-

tensen and Bla
kwood (1993) present an appli
ation 
omparing �ve thermo
ouples. More

re
ently, Bedri
k (2001) 
onsiders three di�erent approa
hes for measuring soil sediments.

Consider p instruments for measuring an usual 
hara
teristi
 in a group of n obje
ts.

Let Y

ij

be the measure given by the instrument i, i = 1; :::; p, asso
iated to an unknown

quantity x

j

, j = 1; :::; n. The model 
onsidered in Grubbs is given by the linear relation

Y

ij

= �

i

+ x

j

+ e

ij

; (1.1)
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where e

ij

and x

j

are independent, with e

ij

� N(0; �

i

) and x

j

� N(�

x

; �

x

), i = 1; :::; p and

j = 1; :::; n. It follows that E(Y

ij

) = �

i

+ �

x

, Var(Y

ij

) = �

x

+ �

i

and Cov(Y

ij

; Y

kj

) = �

x

,

i 6= j. The parameters �

1

; :::; �

p

are asso
iated to the additive bias (a

ura
y) of the

measuring instruments and �

1

; :::; �

p

are asso
iated to the pre
ision of the measuring

instruments.

Following Bedri
k (2001), for eliminate redundan
y, we assume that there is a ref-

eren
e instrument that measures, without bias the quantity of interest. Without loss of

generality we 
onsider this to be instrument so that �

1

= 0.

In the 
ontext of Grubbs measurement error model, quality of measurement is evalu-

ated in terms of the pre
ision ( the inverse of the varian
e) and the a

ura
y (or bias) of the

di�erent instruments. The hypotheses of interest are: the instruments have the null bias

(or mean) H

01

: �

1

= �

2

= ::: = �

p

= 0, the same varian
e H

02

: �

1

= �

2

= ::: = �

p

= �,

and simultaneous H

0

: �

1

= �

2

= ::: = �

p

= 0; �

1

= �

2

= ::: = �

p

= �, whi
h is the

primary interest in this work.

For p = 2 Grubbs (1948, 1973) presents an inferential study based on multivariate

te
hniques. Maloney and Rastogi (1970) show that Pitman's (1939) test is equivalent to

H

02

. For p � 2, Choi and Wette (1972) develops a test for evaluating the equality of the

varian
e of the measuring instruments (H

02

). Jae
h (1973) 
onsiders a test for evaluating

the equality of varian
es H

02

. Christensen and Bla
kwood (1993) 
onsider a multivariate

linear model for testing H

01

, H

02

and H

0

shows that the test for H

0

is equivalent to testing

H

0

0

: 


i

= Æ

i

= 0, i = 1; : : : ; p� 1 in the multivariate regression model

y

ij

� �y

:j

= Æ

i

+ 


i

�y

:j

+ �

ij

;

i = 1; : : : ; p� 1. Re
ently, Bedri
k (2001) develops a test based in the s
ore statisti
s but


onsidering a di�erent parametrization than the are 
onsidered in this paper.

In this paper we present an inferential study based on the Wald, s
ore and likelihood

ratio statisti
s. We 
onsider maximum likelihood estimation by using the EM-algorithm.

Under some restri
tions on measurement error varian
es we study the asymptoti
 be-

haviour of some parameter estimates.

The paper is organized as follows. Se
tion 2 presents the estimation pro
edures using

the EM-algorithm and the information matrix is derived. Se
tion 3 presents Wald, s
ore

and likelihood ratio for testing the hypothesis derived in Se
tion 1. Maximum likelihood

estimators for the restri
ted models (under the null) and the EM algorithm in the more

general situations.
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2 Grubbs models

The model given in (1.1), 
an be represented in matrix form as

Y

j

= a+ 1

p

x

j

+ "

j

(2.1)

where Y

j

= (Y

1j

; :::; Y

pj

)

>

; "

j

= (e

1j

; :::; e

pj

)

>

; a = (0; �

2

; :::; �

p

)

>

; 1

p

= (1; :::; 1)

>

and � = (�

2

; :::; �

p

)

>

, j = 1; : : : ; n: The normal model is obtained 
onsidering

Y

j

� N

p

(�;�); (2.2)

where � = �(�

L

) = a + 1

p

�

x

and � = �(�

S

) = �

x

1

p

1

>

p

+D(�), with �

L

= (�

x

;�

>

)

>

,

�

S

= (�

x

;�

>

)

>

and D(�) = diag(�

1

; :::; �

p

), � = (�

1

; :::; �

p

)

>

. We denote the parameters

in the model by � = (�

>

L

; �

>

S

)

>

.

For p � 3 the maximum likelihood estimator do not have 
losed form. In order

to implement the EM algorithm, we derive next the 
omplete (unobserved) likelihood

fun
tion, whi
h in
orporate both, the observed and unobserved data, and is given by

y = (Y

1

; :::;Y

n

)

>

and x = (x

1

; :::; x

n

)

>

, respe
tively. As will be seen, theses two put

together will provide a mu
h simpler and tra
table likelihood fun
tion. Now, we de�ne

Z

j

= (x

j

;Y

>

j

)

>

, so that

Z

j

� N

p+1

(�

z

;�

z

);

where

�

z

=

�

�

x

�

�

and �

z

=

�

�

x

1

>

p

�

x

1

p

�

x

�

x

1

p

1

>

p

+D(�)

�

:

The 
omplete data log-likelihood fun
tion 
orresponding to � = (�

x

;�

>

; �

x

;�)

>

is

`(�jz

1

; :::; z

n

) = 
te�

n

2

logj�

z

j �

1

2

n

X

j=1

(z

j

� �

z

)

>

�

�1

z

(z

j

� �

z

); (2.3)

where

j�

z

j = �

x

p

Y

i=1

�

i

and �

�1

z

=

�


=�

x

�1

>

p

D

�1

(�)

�D

�1

(�)1

p

D

�1

(�)

�

; (2.4)

with 
 = 1 + �

x

1

>

p

D

�1

(�)1

p

:
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2.1 The E and M steps

There are two steps in ea
h 
y
le of the EM algorithm. The E and M steps. In the E step

the algorithm �nds the expe
tation of the 
omplete data log-likelihood fun
tion given the

observed data. But, sin
e we are dealing with regular exponential families, to implement

the E step it is suÆ
ient to 
ompute the expe
ted value of the suÆ
ient statisti
s that

follow from the 
omplete data likelihood fun
tion. Hen
e, sin
e the suÆ
ient statisti
s

depends only on x = (x

1

; :::; x

n

)

>

through x

j

and x

2

j

, the E step is implemented by


omputing

bx

j

= E[x

j

jy

j

; �℄ = �

x

+

�

x




1

>

p

D

�1

(�)(y

j

� �) and V ar[x

j

jy

j

; �℄ =

�

x




; (2.5)

so that

b

x

2

j

= bx

2

j

+

�

x




; (2.6)

with 
 as in (2.4). The M step of the algorithm obtains the next value of the unknown

parameters by maximizing the 
omplete data likelihood with the suÆ
ient statisti
s re-

pla
ed by their expe
ted values obtained at the E step. As show in Dempster et al.(1977),

ea
h step of the algorithm in
reases the observed likelihood l(�jy). By di�erentiating the

logarithm of the 
omplete likelihood fun
tion given in (2.3) with respe
ted to �, we obtain

the following equations:

b�

x

= �x; b�

i

= �y

i:

� �x;

b

�

x

= S

xx

;

b

�

1

=

1

n

n

X

j=1

(y

1j

� x

j

)

2

and

b

�

i

=

1

n

n

X

j=1

(y

ij

� �y

i:

� x

j

+ �x)

2

;

where �x =

1

n

n

X

j=1

x

j

, S

xx

=

1

n

n

X

j=1

(x

j

� �x)

2

and �y

i:

=

1

n

n

X

j=1

y

ij

, i = 2; : : : ; p.

Now, let I

F

(�) be denote the expe
ted information matrix. Hen
e, after some alge-

brai
 manipulations, it 
an be shown that

I

F

(�) =

0

B

B

�

I

�

x

�

x

I

�

x

�

0 0

I

��

x

I

��

0 0

0 0 I

�

x

�

x

I

�

x

�

0 0 I

��

x

I

��

1

C

C

A

;

where the elements of the matrix I

F

(�) are presented in the Appendix I.
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Note that I

F

(�) 
an be represented as I

F

(�) = Diag(I

L

; I

S

), where I

L

and I

S

are the

submatri
es 
orresponding to �

L

and �

S

, respe
tively. Moreover, the maximum likelihood

estimator

b

� of � is asymptoti
ally normally distributed with mean ve
tor � and 
ovarian
e

matrix V = I

F

(�)

�1

, whi
h we denoted by AN(�;V). Thus, the maximum likelihood

estimators
b
� and

b

� are asymptoti
ally independent.

3 Tests for Pre
ision and A

ura
y

In this Se
tion, we 
onsider the study of the performan
e of the test for the hypotheses

H

0

, H

01

and H

02

using the Wald (W), S
ore (S) and likelihood ratios (G) statisti
s. These

test, whi
h are sometimes 
alled the 
lassi
al tests are parti
ularly useful when the param-

eter spa
e is multidimensional. Therefore, these three test statisti
s are asymptoti
ally

equivalent under the null hypothesis .

The null hypothesis 
onsidered in Se
tion 1 
an be written as H : A� = 0, where the

matrix A is r� (2p+1), dimensional with rank(A) = r � 2p+1. Thus, the statisti
s W ,

S and G 
an be write as,

W = n[A

b

�℄

>

[A

>

I

�1

F

(

b

�)A℄

�1

[A

b

�℄; S =

1

n

e

U

>

I

�1

F

(

e

�)

e

U and G = 2[`(

b

�)� `(

e

�)℄; (3.1)

where

b

� and

e

� are MLEs under unrestri
ted and restri
ted models, respe
tively and

e

U = U(

e

�) =

�

��

`(

e

�).

3.1 The Wald statisti
s

We want to test the hypothesis H

0


onsidered in Se
tion 1. We note that H

0

may be

written as H

0

: C�

�

= 0, where �

�

= (�

>

;�

>

)

>

and C =

�

I

q

0

0 A

1

�

is 2q � (2p � 1)

dimensional matrix of rank 2q and q = p� 1, with

A

1

=

0

B

B

B

�

1 �1 0 : : : 0 0

0 1 �1 : : : 0 0

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

0 0 0 : : : 1 �1

1

C

C

C

A

(3.2)

matrix q � p. Thus, the Wald statisti
s for testing H

0

is given by

W

0

= W

01

+W

02

; (3.3)
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where W

01

= n
b
�

0

[I

(q)

b

I

�1

L

I

>

(q)

℄

�1

b
� and W

02

= n

b

�

0

A

>

1

[A

1

I

(p)

b

I

�1

S

I

>

(p)

A

>

1

℄

�1

b

� are the Wald

statisti
s for testing H

01

and H

02

, individually. The notation I

(r)

is used to denote the

r � (r + 1) matrix given by I

(r)

= [0; I

r

℄. The large sample null distribution of W

01

and

W

02

are �

2

p�1

. Furthermore, W

01

and W

02

are independent, so W

0

has an approximate

null �

2

2p�2

distribution.

3.2 The S
ore statisti
s

Let

e

� the maximum likelihood estimator of � under H

0

. Then, after some algebrai


manipulations it follows that

e�

x

= y

::

;

e

� =

1

n(p� 1)

n

X

j=1

p

X

i=1

(y

ij

� y

:j

)

2

; (3.4)

e

�

x

=

1

n

n

X

j=1

(y

:j

� y

::

)

2

�

e

�

p

=

1

pn

n

X

j=1

p

X

i=1

(y

ij

� y

::

)

2

�

e

�;

where y

::

=

1

np

n

X

j=1

p

X

i=1

y

ij

and y

:j

=

1

p

p

X

i=1

y

ij

.

If

e

�

x

< 0, then we 
onsider that the MLEs for the varian
es satisfy

e

�

x

= 0 and

e

� =

1

pn

n

X

j=1

p

X

i=1

(y

ij

� y

::

)

2

: (3.5)

The s
ore statisti
s for testing H

0

is given by

S

0

= S

01

+ S

02

; (3.6)

where S

01

=

n

e

�

P

p

i=1

(y

i:

� y

::

)

2

and S

02

=

1

n

b

>

Bb, with

b =

1

2

e

�

2

"

n(

e

�

x

�

e

�)1

p

+

n

X

j=1

D(W

j

)W

j

� 2e�

n

X

j=1

W

>

j

1

p

W

j

#

;

B =

2

e

�

2

1� 2e�

2

6

6

6

4

I

p

�

1�

2e�

e

�

e

�

x

p(p� 1)

1

p

1

>

p

3

7

7

7

5

;
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W

j

= y

j

�
e
a

>

� 1

p

e�

x

and e� =

e

�

x

e

�+ p

e

�

x

:

Note that, as I

F

is a blo
k diagonal matrix, then the statisti
s S

01

and S

02

are asymp-

toti
ally independent. Therefore, the statisti
s S

01

and S

02

are the s
ores statisti
s for

testing H

01

and H

02

individually, assuming that the other hypothesis hold.

Similar result is obtained in Bedri
k (2001) for the Grubbs model using a di�erent

parametrization than the 
onsidered in this paper.

Under the hypothesis H

01

, the MLE

e

� of � has not a 
losed form, in this 
ase, the

MLE is obtained via the algorithm EM , and the estimators in the E and M steps are:

Step E:

ex

j

= �

x

+

�

x




[1

0

p

D

�1

(�)(y

j

� �)℄ and

e

x

2

j

= ex

2

j

+

�

x




: (3.7)

Step M: We maximize the fun
tion `(�jz

1

; :::; z

n

) and we obtain the following estimators:

e�

x

= �x;

e

�

x

=

1

n

n

X

j=1

(x

j

� �x)

2

and

e

�

i

=

1

n

n

X

j=1

(y

ij

� x

j

)

2

; i = 1; : : : ; p:

The s
ore statisti
s is obtained by substituting the MLE under H

01

in the statisti
s S

given in (3.1).

Finally, after some 
omputations, the MLEs of the parameters under H

02

are given

by

e�

x

= y

1:

; e�

i

= �y

i:

� �x

e

� =

1

n(p� 1)

n

X

j=1

p

X

i=1

((y

ij

� y

i:

)

2

� (y

:j

� y

::

)

2

) (3.8)

e

�

x

=

1

n

n

X

j=1

(y

:j

� y

::

)

2

�

e

�

p

:

If �

x

< 0 , then we 
onsider

e

�

x

= 0 and the restri
ted MLE for � is given by

e

� =

1

pn

n

X

j=1

p

X

i=1

(y

ij

� y

::

)

2

: (3.9)

7



Thus, the s
ore statisti
 is given by S

02

=

1

n

b

>

Bb, where b e B are given in (3.6),

W

j

= y

j

�
e
a

>

� 1

p

e�

x

and in this 
ase the estimators are as in (3.8).

3.3 The Likelihood Ratio statisti
s

The likelihood ratio statisti
s for the hypotheses 
onsidered in the Se
tion 1 does not

present 
lose form. The main reason being that the unrestri
ted and restri
ted MLEs do

not present 
losed form, but its numeri
al implementation is simple and as the simulation

study has we shall show, it present good properties.

4 Restri
ted Maximum likelihood

Following Jae
h (1985), when one of the varian
es is estimated as being (
lose to or less

than) zero, the 
on
lusion may be that the 
orresponding instrument measures pre
isely

(without error) the quantity of interest. In the 
ase where one of the measurements

measures pre
isely the 
hara
teristi
 of interest, the varian
e of the measurement errors


orresponding to that instrument may be taken to be zero. We 
onsider two situations:

�

1

= 0 (standard instrument with null varian
e) and without loss of generality �

p

= 0

(one nonstandard instrument with null varian
e).

4.1 The 
ase �

1

= 0

If the 
ondition �

1

= 0 is 
onsidered, then it follows from the assumptions 
onsidered in

(1.1) that Y

j

� N

p

(�;�), where � is as in (2.2) and

� =

�

�

x

�

12

�

21

�

22

�

;

where �

12

= �

x

1

q

= �

>

21

and �

22

= �

x

1

q

1

>

q

+D( ), with D( ) = diag(�

2

; :::; �

p

) and

 = (�

2

; : : : ; �

p

)

>

.

The ve
tor parameters in this 
ase, is given by � = (�

x

;�

>

; �

x

; 

>

)

>

and the maxi-

mum likelihood estimators are

b�

x

= �y

1:

; b�

i

= �y

i:

� �y

1:

;

b

�

i

= S

11

+ S

ii

� 2S

1i

;

b

�

x

= S

11

; (4.1)
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where �y

i:

=

1

n

n

X

j=1

y

ij

; i = 2; :::; p and S

kl

=

1

n

n

X

j=1

(y

kj

� �y

k

)(y

lj

� �y

l

) ; k; l = 1; :::; p. Let

�

�

= (�

2

; :::; �

p

; �

2

; :::; �

p

)

>

, Walds statisti
 
an be used for testing hypothesis like the one


onsidered in previous the se
tion. The information matrix is presented in the Appendix

II.

4.2 The 
ase �

p

= 0

We 
onsider now the possibility that one instrument nonstandard measure pre
isely (with-

out error) the quantity of interest, without loss of generality, we 
onsider �

p

= 0. Thus,

it follows that Y

j

� N

p

(�;�), where � is as in (2.2) and

� =

�

�

11

�

12

�

21

�

x

�

; (4.2)

where �

11

= �

x

1

q

1

>

q

+ D(� ) and �

12

= �

x

1

q

= �

>

21

, with D(� ) = diag(�

1

; :::; �

q

),

� = (�

1

; :::; �

q

)

>

and q = p� 1.

The ve
tor parameters in this 
ase, is given by � = (�

x

;�

>

; �

x

; �

>

)

>

and the maximum

likelihood estimators are

b�

x

= �y

1:

; b�

i

= �y

i:

� �y

1:

;

b

�

x

= S

pp

;

b

�

i

= S

pp

+ S

ii

� 2S

pi

; (4.3)

where y

i:

and S

kl

, i = 1; : : : ; p, are as in (4.1). Note that the maximum likelihood

estimators of the varian
e are non negative. The information matrix is presented in

the Appendix III, that 
an be used for testing hypothesis like the one 
onsidered in the

previous se
tion, using the Wald statisti
s.

5 Appli
ations

The data set presented in Jae
h (1985) arose from an experiment that was 
ondu
ted in

whi
h the densities of 43 sintered uranium fuel pellets for use in nu
lear rea
tors were

measure by six instruments.

In this appli
ation it is 
onsidered that instrument one is the referen
e (or standard)

instrument, whi
h 
orrespond to the geometri
 method and operator 1. The table shows

iterations of the EM-algorithm indi
ating that 
onvergen
e is attained in approximately

50 iterations, providing estimates for the sequen
e �

i

; i = 1; : : : ; 6. Note that the estimates

are 
lose to the ones reported in Jae
h (1985, pp. 162).
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Table 1: Convergen
e of the EM algorithm

iter

b

�

1

b

�

2

b

�

3

b

�

4

b

�

5

b

�

6

11 0.0095 0.0042 0.0275 0.0813 0.1394 0.0274

21 0.0072 0.0073 0.0251 0.0759 0.1319 0.0304

31 0.0069 0.0076 0.0249 0.0754 0.1313 0.0308

41 0.0068 0.0076 0.0249 0.0753 0.1313 0.0309

51 0.0068 0.0076 0.0249 0.0753 0.1313 0.0309

Std. Dev. (0.0024) (0.0026) (0.0060) (0.0168) (0.0289) (0.0073)

Estimates for the other parameters are:

b�

x

= 4:3972 (0:0316);

b

�

x

= 0:0361 (0:0084); b�

2

= �0:0270 (0:0183); b�

3

=

0:0386 (0:0272); b�

4

= 0:3188 (0:0437); b�

5

= 0:3230 (0:0567); b�

6

= 0:2228 (0:0296);

where the numbers in parenthesis denote 
orresponding standard deviations.

First 
onsider the hypotheses H

0

, the maximum likelihood estimates of � is given by

e�

x

= 4:5433;

e

� = 0:0709;

e

�

x

= 0:0350 :

Under hypotheses H

01

, the maximum likelihood estimates of � is given by e�

x

=

4:4152;

e

�

x

= 0:0360;

e

�

1

= 0:0063;

e

�

2

= 0:0118;

e

�

3

= 0:0246;

e

�

4

= 0:1665;

e

�

5

=

0:2231;

e

�

6

= 0:0776. In this 
ase, 
onvergen
e is attained approximately in iteration 40.

Finally, under H

02

the maximum likelihood estimators are given by e�

x

= 4:3972; e�

2

=

�0:0270; e�

3

= 0:0386; e�

4

= 0:3188; e�

5

= 0:3230; e�

6

= 0:2228;

e

�

x

= 0:0393;

e

� =

0:0449:

For testing hypothesis H

0

; H

01

and H

02

de�ned in Se
tion 1, we use Wald, s
ore and

likelihood ratio statisti
s.

Hypothesis H

0

is reje
ted, sin
e W

0

= 200:8226 E

0

= 124:7358 and Q

0

= 192:7844.

Hypothesis H

01

, is also reje
ted sin
e W

01

= 151:5859, E

01

= 74:8692 and Q

01

=

103:9554.

Hypotheses H

02

, of equal pre
isions, is also reje
ted sin
e W

02

= 49:2366,

E

02

= 77:9824 and Q

02

= 94:7256. The general 
on
lusion is that the instruments are

not a

urate neither pre
ise. Similar results are obtained in Jae
h (1985).
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6 A simulations study

In this Se
tion we show a simulation study where estimates of the signi�
an
e level and

power of the three test statisti
s under H

0

are presented. Ea
h Monte Carlo estimation

of the signi�
an
e level of the tests is based on 1000 independent samples generated

a

ording to the model de�ned by (1.2) with �

2

= : : : = �

p

= 0 and �

1

= : : : = �

p

= 1,

p = 3; 5 sample sizes n = 25; 50 and 100. The power of the tests were also estimated. In

all 
ases, the 
hara
teristi
 of interest x

j

was generated a

ording to the N(0; �

x

), with

�

x

= 0:1; 0:25; 1:0.

Table 2 presents the estimated signi�
an
e level in per
ents of the three test statisti
s


orresponding to the nominal level of 5%. We 
an observe that the signi�
an
e level of

the Wald statisti
s 
onverges slower to the nominal level, as n in
reases, than the other

statisti
s. The s
ore test seems to 
onverge faster to the nominal level, while the two other

statisti
s overestimate the 5% nominal level for small values of n. It 
an also be noted

that �

x

seems not to exert great in
uen
e on the signi�
an
e level of the three statisti
s.

This was also noted in other simulation studies as 
an also be noted in Figure 1 whi
h

presents, for n = 25; 50; 100, with p = 3; 5, estimated 
umulative frequen
ies of the three

statisti
s, for H

0

, with theoreti
al 
umulative frequen
ies 
orresponding to the 
hi-square

distribution with eight degrees of freedom that we denote by �

2

8

.

Table 3 presents power estimates for the three test statisti
s 
orresponding to model

(1.2) with the parameter values 
onsidered above. The s
ore statisti
s seems to present

similar behavior as the likelihood ratio test while the Wald statisti
s seems to present a

slightly inferior behavior. No noti
iable di�eren
e seems to be noted as �

x

in
rease.

Hen
e, for the stru
tural normal Grubbs model, we re
omend using the s
ore statisti
s

whi
h presents the best behavior in terms of signi�
an
e level and power for testing

hypothesis H

0

, H

01

and H

02

. The approximation to the 
hi-square distribution, even for

small values of n is worth noti
ing

7 Con
luding remarks

The paper presents estimation and hypothesis testing in a stru
tural normal Grubbs model

frequently 
onsidering for 
omparing the eÆ
ien
y of instruments used for measuring an

unknown quantity in a group of 
ommon individual. Parameter estimation is 
onsidered

via maximum likelihood, by using the EM-algorithm. Hypothesis testing is approa
hed

by using Wald, s
ore and likelihood ratio statisti
s. Simulation studies seem to indi
ate

that the s
ore statisti
 presents the best behavior in terms of nominal level and power.
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Table 2: Estimated signi�
an
e levels of the three test with nominal level of 5%.

Sample size p = 3 p = 5

x

j

n W E Q W E Q

25 7.6 4.9 7.9 10.5 4.5 7.2

N(0; 0:25) 50 5.2 4.4 5.0 7.1 4.9 6.0

100 6.6 5.4 6.3 7.1 4.9 6.3

25 7.6 4.5 6.9 9.8 4.0 6.0

N(0; 1:0) 50 5.8 4.9 5.6 7.4 4.0 5.8

100 5.8 4.4 5.3 6.3 4.4 5.3

Table 3: Estimated power of the three test for the alternative H

1

: �

2

= 0; �

3

= 0:5; �

1

=

�

2

= 1; �

3

= 1:5, with p = 3.

x

j

N(0; 0:01) N(0; 0:25) N(0; 1:0)

n W E Q W E Q W E Q

25 37.2 36.2 37.5 34.6 35.6 37.4 34.5 32.0 35.6

50 67.1 70.4 66.4 60.8 64.1 64.4 57.6 60.3 60.2

100 94.9 96.5 94.9 91.5 93.0 92.7 90.8 93.1 92.0

200 100 100 100 100 100 100 99.9 99.9 99.9

Appendix I. Information matrix for the unrestri
ted model

After some algebrai
 manipulation, the information matrix for the unrestri
ted models

is given by

I

F

(�) =

0

B

B

�

I

�

x

�

x

I

�

x

�

0 0

I

��

x

I

��

0 0

0 0 I

�

x

�

x

I

�

x

�

0 0 I

��

x

I

��

1

C

C

A

;

where

I

�

x

�

x

= 1

>

p

�

�1

1

p

; I

�

x

�

= 1

>

p

�

�1

I

>

(p)

= I

>

��

x

; I

��

= I

(p)

�

�1

I

>

(p)

;

I

�

x

�

x

= �

1

2�

2

x

�


� 1




�

2

+




�2

�

x

(
� 1)1

>

p

D

�1

(�)1

p

;
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Figure 1: Empiri
al (...) and theoreti
al ({) distribution of statisti
s Wald, S
ore and

likelihood ratios, respe
tively for testing H

0

, where a) n = 25 , b) n = 50 and 
) n = 100,

with p = 5.
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Appendix II. Information matrix for the model with �

1

= 0

The information matrix 
orresponding to the model 
onsidered in Se
tion (4.1.) is

given by
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I

F

(�) =

0

B

B

�

I

�

x

�

x

0 0 0

0 I

��

0 0

0 0 I

�

x

�

x

0

0 0 0 I

  

1

C

C

A

;

where I

�

x

�

x

=

1

�

x

, I

��

= D

�1

( ), I

�

x

�

x

=

1

2�

2

x

and I

  

=

1

2

D

�2

( ):

Appendix III. Information matrix for the model with �

p

= 0

The information matrix 
orresponding to the model 
onsidered in Se
tion (4.2) is

given by

I

F

(�) =

0

B

B

B

B

�

I

�

x

�

x

0 I

�

x

�

p

0 0

0 I

�

�

�

�

I

�

�

�

p

0 0

I

�

p

�

x

I

�

p

�

�

I

�

p

�

p

0 0

0 0 0 I

�

x

�

x

0

0 0 0 0 I

��

1

C

C

C

C

A

;

where I

�

x

�

x

=

1

�

x

; I

�

x

�

p

=

1

�

x

; I

�

�

�

�

= I

(q)

D

�1

(� )I

>

(q)

; I

�

�

�

p

= �I

(q)

D

�1

(� )1

q

; I

�

p

�

p

=




2

�

x

; I

�

x

�

x

=

1

2�

2

x

and I

��

=

1

2

D

�2

(� ):
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