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Summary

The main objet of this paper is to ompare the eÆieny of measuring instruments

that are used to measure the same quantity of interest in a group of n individuals. The

model onsidered was introdued in Grubbs (1948, 1973) and the inferene for the model

parameters is based on maximum likelihood estimation. A simulation study is used

for omparing di�erent test statistis for testing equality of biases and varianes in the

measuring instruments. A data set is used to illustrate the approah onsidered.

Key Words: Maximum likelihood estimation; Auray and preision; EM algorithm;

Large sample tests.

1 Introdution

The paper treats the problem of omparative alibration, where p measuring instruments

are used to measure the same unknown quantity x in a ommon group of experimental

units. This type of problem is very ommon in sienti� work. Grubbs (1973) presents an

appliation where it is of interest omparing the eÆieny of three hronometers, Chris-

tensen and Blakwood (1993) present an appliation omparing �ve thermoouples. More

reently, Bedrik (2001) onsiders three di�erent approahes for measuring soil sediments.

Consider p instruments for measuring an usual harateristi in a group of n objets.

Let Y

ij

be the measure given by the instrument i, i = 1; :::; p, assoiated to an unknown

quantity x

j

, j = 1; :::; n. The model onsidered in Grubbs is given by the linear relation

Y

ij

= �

i

+ x

j

+ e

ij

; (1.1)
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where e

ij

and x

j

are independent, with e

ij

� N(0; �

i

) and x

j

� N(�

x

; �

x

), i = 1; :::; p and

j = 1; :::; n. It follows that E(Y

ij

) = �

i

+ �

x

, Var(Y

ij

) = �

x

+ �

i

and Cov(Y

ij

; Y

kj

) = �

x

,

i 6= j. The parameters �

1

; :::; �

p

are assoiated to the additive bias (auray) of the

measuring instruments and �

1

; :::; �

p

are assoiated to the preision of the measuring

instruments.

Following Bedrik (2001), for eliminate redundany, we assume that there is a ref-

erene instrument that measures, without bias the quantity of interest. Without loss of

generality we onsider this to be instrument so that �

1

= 0.

In the ontext of Grubbs measurement error model, quality of measurement is evalu-

ated in terms of the preision ( the inverse of the variane) and the auray (or bias) of the

di�erent instruments. The hypotheses of interest are: the instruments have the null bias

(or mean) H

01

: �

1

= �

2

= ::: = �

p

= 0, the same variane H

02

: �

1

= �

2

= ::: = �

p

= �,

and simultaneous H

0

: �

1

= �

2

= ::: = �

p

= 0; �

1

= �

2

= ::: = �

p

= �, whih is the

primary interest in this work.

For p = 2 Grubbs (1948, 1973) presents an inferential study based on multivariate

tehniques. Maloney and Rastogi (1970) show that Pitman's (1939) test is equivalent to

H

02

. For p � 2, Choi and Wette (1972) develops a test for evaluating the equality of the

variane of the measuring instruments (H

02

). Jaeh (1973) onsiders a test for evaluating

the equality of varianes H

02

. Christensen and Blakwood (1993) onsider a multivariate

linear model for testing H

01

, H

02

and H

0

shows that the test for H

0

is equivalent to testing

H

0

0

: 

i

= Æ

i

= 0, i = 1; : : : ; p� 1 in the multivariate regression model

y

ij

� �y

:j

= Æ

i

+ 

i

�y

:j

+ �

ij

;

i = 1; : : : ; p� 1. Reently, Bedrik (2001) develops a test based in the sore statistis but

onsidering a di�erent parametrization than the are onsidered in this paper.

In this paper we present an inferential study based on the Wald, sore and likelihood

ratio statistis. We onsider maximum likelihood estimation by using the EM-algorithm.

Under some restritions on measurement error varianes we study the asymptoti be-

haviour of some parameter estimates.

The paper is organized as follows. Setion 2 presents the estimation proedures using

the EM-algorithm and the information matrix is derived. Setion 3 presents Wald, sore

and likelihood ratio for testing the hypothesis derived in Setion 1. Maximum likelihood

estimators for the restrited models (under the null) and the EM algorithm in the more

general situations.
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2 Grubbs models

The model given in (1.1), an be represented in matrix form as

Y

j

= a+ 1

p

x

j

+ "

j

(2.1)

where Y

j

= (Y

1j

; :::; Y

pj

)

>

; "

j

= (e

1j

; :::; e

pj

)

>

; a = (0; �

2

; :::; �

p

)

>

; 1

p

= (1; :::; 1)

>

and � = (�

2

; :::; �

p

)

>

, j = 1; : : : ; n: The normal model is obtained onsidering

Y

j

� N

p

(�;�); (2.2)

where � = �(�

L

) = a + 1

p

�

x

and � = �(�

S

) = �

x

1

p

1

>

p

+D(�), with �

L

= (�

x

;�

>

)

>

,

�

S

= (�

x

;�

>

)

>

and D(�) = diag(�

1

; :::; �

p

), � = (�

1

; :::; �

p

)

>

. We denote the parameters

in the model by � = (�

>

L

; �

>

S

)

>

.

For p � 3 the maximum likelihood estimator do not have losed form. In order

to implement the EM algorithm, we derive next the omplete (unobserved) likelihood

funtion, whih inorporate both, the observed and unobserved data, and is given by

y = (Y

1

; :::;Y

n

)

>

and x = (x

1

; :::; x

n

)

>

, respetively. As will be seen, theses two put

together will provide a muh simpler and tratable likelihood funtion. Now, we de�ne

Z

j

= (x

j

;Y

>

j

)

>

, so that

Z

j

� N

p+1

(�

z

;�

z

);

where

�

z

=

�

�

x

�

�

and �

z

=

�

�

x

1

>

p

�

x

1

p

�

x

�

x

1

p

1

>

p

+D(�)

�

:

The omplete data log-likelihood funtion orresponding to � = (�

x

;�

>

; �

x

;�)

>

is

`(�jz

1

; :::; z

n

) = te�

n

2

logj�

z

j �

1

2

n

X

j=1

(z

j

� �

z

)

>

�

�1

z

(z

j

� �

z

); (2.3)

where

j�

z

j = �

x

p

Y

i=1

�

i

and �

�1

z

=

�

=�

x

�1

>

p

D

�1

(�)

�D

�1

(�)1

p

D

�1

(�)

�

; (2.4)

with  = 1 + �

x

1

>

p

D

�1

(�)1

p

:
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2.1 The E and M steps

There are two steps in eah yle of the EM algorithm. The E and M steps. In the E step

the algorithm �nds the expetation of the omplete data log-likelihood funtion given the

observed data. But, sine we are dealing with regular exponential families, to implement

the E step it is suÆient to ompute the expeted value of the suÆient statistis that

follow from the omplete data likelihood funtion. Hene, sine the suÆient statistis

depends only on x = (x

1

; :::; x

n

)

>

through x

j

and x

2

j

, the E step is implemented by

omputing

bx

j

= E[x

j

jy

j

; �℄ = �

x

+

�

x



1

>

p

D

�1

(�)(y

j

� �) and V ar[x

j

jy

j

; �℄ =

�

x



; (2.5)

so that

b

x

2

j

= bx

2

j

+

�

x



; (2.6)

with  as in (2.4). The M step of the algorithm obtains the next value of the unknown

parameters by maximizing the omplete data likelihood with the suÆient statistis re-

plaed by their expeted values obtained at the E step. As show in Dempster et al.(1977),

eah step of the algorithm inreases the observed likelihood l(�jy). By di�erentiating the

logarithm of the omplete likelihood funtion given in (2.3) with respeted to �, we obtain

the following equations:

b�

x

= �x; b�

i

= �y

i:

� �x;

b

�

x

= S

xx

;

b

�

1

=

1

n

n

X

j=1

(y

1j

� x

j

)

2

and

b

�

i

=

1

n

n

X

j=1

(y

ij

� �y

i:

� x

j

+ �x)

2

;

where �x =

1

n

n

X

j=1

x

j

, S

xx

=

1

n

n

X

j=1

(x

j

� �x)

2

and �y

i:

=

1

n

n

X

j=1

y

ij

, i = 2; : : : ; p.

Now, let I

F

(�) be denote the expeted information matrix. Hene, after some alge-

brai manipulations, it an be shown that

I

F

(�) =

0

B

B

�

I

�

x

�

x

I

�

x

�

0 0

I

��

x

I

��

0 0

0 0 I

�

x

�

x

I

�

x

�

0 0 I

��

x

I

��

1

C

C

A

;

where the elements of the matrix I

F

(�) are presented in the Appendix I.
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Note that I

F

(�) an be represented as I

F

(�) = Diag(I

L

; I

S

), where I

L

and I

S

are the

submatries orresponding to �

L

and �

S

, respetively. Moreover, the maximum likelihood

estimator

b

� of � is asymptotially normally distributed with mean vetor � and ovariane

matrix V = I

F

(�)

�1

, whih we denoted by AN(�;V). Thus, the maximum likelihood

estimators
b
� and

b

� are asymptotially independent.

3 Tests for Preision and Auray

In this Setion, we onsider the study of the performane of the test for the hypotheses

H

0

, H

01

and H

02

using the Wald (W), Sore (S) and likelihood ratios (G) statistis. These

test, whih are sometimes alled the lassial tests are partiularly useful when the param-

eter spae is multidimensional. Therefore, these three test statistis are asymptotially

equivalent under the null hypothesis .

The null hypothesis onsidered in Setion 1 an be written as H : A� = 0, where the

matrix A is r� (2p+1), dimensional with rank(A) = r � 2p+1. Thus, the statistis W ,

S and G an be write as,

W = n[A

b

�℄

>

[A

>

I

�1

F

(

b

�)A℄

�1

[A

b

�℄; S =

1

n

e

U

>

I

�1

F

(

e

�)

e

U and G = 2[`(

b

�)� `(

e

�)℄; (3.1)

where

b

� and

e

� are MLEs under unrestrited and restrited models, respetively and

e

U = U(

e

�) =

�

��

`(

e

�).

3.1 The Wald statistis

We want to test the hypothesis H

0

onsidered in Setion 1. We note that H

0

may be

written as H

0

: C�

�

= 0, where �

�

= (�

>

;�

>

)

>

and C =

�

I

q

0

0 A

1

�

is 2q � (2p � 1)

dimensional matrix of rank 2q and q = p� 1, with

A

1

=

0

B

B

B

�

1 �1 0 : : : 0 0

0 1 �1 : : : 0 0

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

0 0 0 : : : 1 �1

1

C

C

C

A

(3.2)

matrix q � p. Thus, the Wald statistis for testing H

0

is given by

W

0

= W

01

+W

02

; (3.3)
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where W

01

= n
b
�

0

[I

(q)

b

I

�1

L

I

>

(q)

℄

�1

b
� and W

02

= n

b

�

0

A

>

1

[A

1

I

(p)

b

I

�1

S

I

>

(p)

A

>

1

℄

�1

b

� are the Wald

statistis for testing H

01

and H

02

, individually. The notation I

(r)

is used to denote the

r � (r + 1) matrix given by I

(r)

= [0; I

r

℄. The large sample null distribution of W

01

and

W

02

are �

2

p�1

. Furthermore, W

01

and W

02

are independent, so W

0

has an approximate

null �

2

2p�2

distribution.

3.2 The Sore statistis

Let

e

� the maximum likelihood estimator of � under H

0

. Then, after some algebrai

manipulations it follows that

e�

x

= y

::

;

e

� =

1

n(p� 1)

n

X

j=1

p

X

i=1

(y

ij

� y

:j

)

2

; (3.4)

e

�

x

=

1

n

n

X

j=1

(y

:j

� y

::

)

2

�

e

�

p

=

1

pn

n

X

j=1

p

X

i=1

(y

ij

� y

::

)

2

�

e

�;

where y

::

=

1

np

n

X

j=1

p

X

i=1

y

ij

and y

:j

=

1

p

p

X

i=1

y

ij

.

If

e

�

x

< 0, then we onsider that the MLEs for the varianes satisfy

e

�

x

= 0 and

e

� =

1

pn

n

X

j=1

p

X

i=1

(y

ij

� y

::

)

2

: (3.5)

The sore statistis for testing H

0

is given by

S

0

= S

01

+ S

02

; (3.6)

where S

01

=

n

e

�

P

p

i=1

(y

i:

� y

::

)

2

and S

02

=

1

n

b

>

Bb, with

b =

1

2

e

�

2

"

n(

e

�

x

�

e

�)1

p

+

n

X

j=1

D(W

j

)W

j

� 2e�

n

X

j=1

W

>

j

1

p

W

j

#

;

B =

2

e

�

2

1� 2e�

2

6

6

6

4

I

p

�

1�

2e�

e

�

e

�

x

p(p� 1)

1

p

1

>

p

3

7

7

7

5

;
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W

j

= y

j

�
e
a

>

� 1

p

e�

x

and e� =

e

�

x

e

�+ p

e

�

x

:

Note that, as I

F

is a blok diagonal matrix, then the statistis S

01

and S

02

are asymp-

totially independent. Therefore, the statistis S

01

and S

02

are the sores statistis for

testing H

01

and H

02

individually, assuming that the other hypothesis hold.

Similar result is obtained in Bedrik (2001) for the Grubbs model using a di�erent

parametrization than the onsidered in this paper.

Under the hypothesis H

01

, the MLE

e

� of � has not a losed form, in this ase, the

MLE is obtained via the algorithm EM , and the estimators in the E and M steps are:

Step E:

ex

j

= �

x

+

�

x



[1

0

p

D

�1

(�)(y

j

� �)℄ and

e

x

2

j

= ex

2

j

+

�

x



: (3.7)

Step M: We maximize the funtion `(�jz

1

; :::; z

n

) and we obtain the following estimators:

e�

x

= �x;

e

�

x

=

1

n

n

X

j=1

(x

j

� �x)

2

and

e

�

i

=

1

n

n

X

j=1

(y

ij

� x

j

)

2

; i = 1; : : : ; p:

The sore statistis is obtained by substituting the MLE under H

01

in the statistis S

given in (3.1).

Finally, after some omputations, the MLEs of the parameters under H

02

are given

by

e�

x

= y

1:

; e�

i

= �y

i:

� �x

e

� =

1

n(p� 1)

n

X

j=1

p

X

i=1

((y

ij

� y

i:

)

2

� (y

:j

� y

::

)

2

) (3.8)

e

�

x

=

1

n

n

X

j=1

(y

:j

� y

::

)

2

�

e

�

p

:

If �

x

< 0 , then we onsider

e

�

x

= 0 and the restrited MLE for � is given by

e

� =

1

pn

n

X

j=1

p

X

i=1

(y

ij

� y

::

)

2

: (3.9)

7



Thus, the sore statisti is given by S

02

=

1

n

b

>

Bb, where b e B are given in (3.6),

W

j

= y

j

�
e
a

>

� 1

p

e�

x

and in this ase the estimators are as in (3.8).

3.3 The Likelihood Ratio statistis

The likelihood ratio statistis for the hypotheses onsidered in the Setion 1 does not

present lose form. The main reason being that the unrestrited and restrited MLEs do

not present losed form, but its numerial implementation is simple and as the simulation

study has we shall show, it present good properties.

4 Restrited Maximum likelihood

Following Jaeh (1985), when one of the varianes is estimated as being (lose to or less

than) zero, the onlusion may be that the orresponding instrument measures preisely

(without error) the quantity of interest. In the ase where one of the measurements

measures preisely the harateristi of interest, the variane of the measurement errors

orresponding to that instrument may be taken to be zero. We onsider two situations:

�

1

= 0 (standard instrument with null variane) and without loss of generality �

p

= 0

(one nonstandard instrument with null variane).

4.1 The ase �

1

= 0

If the ondition �

1

= 0 is onsidered, then it follows from the assumptions onsidered in

(1.1) that Y

j

� N

p

(�;�), where � is as in (2.2) and

� =

�

�

x

�

12

�

21

�

22

�

;

where �

12

= �

x

1

q

= �

>

21

and �

22

= �

x

1

q

1

>

q

+D( ), with D( ) = diag(�

2

; :::; �

p

) and

 = (�

2

; : : : ; �

p

)

>

.

The vetor parameters in this ase, is given by � = (�

x

;�

>

; �

x

; 

>

)

>

and the maxi-

mum likelihood estimators are

b�

x

= �y

1:

; b�

i

= �y

i:

� �y

1:

;

b

�

i

= S

11

+ S

ii

� 2S

1i

;

b

�

x

= S

11

; (4.1)
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where �y

i:

=

1

n

n

X

j=1

y

ij

; i = 2; :::; p and S

kl

=

1

n

n

X

j=1

(y

kj

� �y

k

)(y

lj

� �y

l

) ; k; l = 1; :::; p. Let

�

�

= (�

2

; :::; �

p

; �

2

; :::; �

p

)

>

, Walds statisti an be used for testing hypothesis like the one

onsidered in previous the setion. The information matrix is presented in the Appendix

II.

4.2 The ase �

p

= 0

We onsider now the possibility that one instrument nonstandard measure preisely (with-

out error) the quantity of interest, without loss of generality, we onsider �

p

= 0. Thus,

it follows that Y

j

� N

p

(�;�), where � is as in (2.2) and

� =

�

�

11

�

12

�

21

�

x

�

; (4.2)

where �

11

= �

x

1

q

1

>

q

+ D(� ) and �

12

= �

x

1

q

= �

>

21

, with D(� ) = diag(�

1

; :::; �

q

),

� = (�

1

; :::; �

q

)

>

and q = p� 1.

The vetor parameters in this ase, is given by � = (�

x

;�

>

; �

x

; �

>

)

>

and the maximum

likelihood estimators are

b�

x

= �y

1:

; b�

i

= �y

i:

� �y

1:

;

b

�

x

= S

pp

;

b

�

i

= S

pp

+ S

ii

� 2S

pi

; (4.3)

where y

i:

and S

kl

, i = 1; : : : ; p, are as in (4.1). Note that the maximum likelihood

estimators of the variane are non negative. The information matrix is presented in

the Appendix III, that an be used for testing hypothesis like the one onsidered in the

previous setion, using the Wald statistis.

5 Appliations

The data set presented in Jaeh (1985) arose from an experiment that was onduted in

whih the densities of 43 sintered uranium fuel pellets for use in nulear reators were

measure by six instruments.

In this appliation it is onsidered that instrument one is the referene (or standard)

instrument, whih orrespond to the geometri method and operator 1. The table shows

iterations of the EM-algorithm indiating that onvergene is attained in approximately

50 iterations, providing estimates for the sequene �

i

; i = 1; : : : ; 6. Note that the estimates

are lose to the ones reported in Jaeh (1985, pp. 162).
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Table 1: Convergene of the EM algorithm

iter

b

�

1

b

�

2

b

�

3

b

�

4

b

�

5

b

�

6

11 0.0095 0.0042 0.0275 0.0813 0.1394 0.0274

21 0.0072 0.0073 0.0251 0.0759 0.1319 0.0304

31 0.0069 0.0076 0.0249 0.0754 0.1313 0.0308

41 0.0068 0.0076 0.0249 0.0753 0.1313 0.0309

51 0.0068 0.0076 0.0249 0.0753 0.1313 0.0309

Std. Dev. (0.0024) (0.0026) (0.0060) (0.0168) (0.0289) (0.0073)

Estimates for the other parameters are:

b�

x

= 4:3972 (0:0316);

b

�

x

= 0:0361 (0:0084); b�

2

= �0:0270 (0:0183); b�

3

=

0:0386 (0:0272); b�

4

= 0:3188 (0:0437); b�

5

= 0:3230 (0:0567); b�

6

= 0:2228 (0:0296);

where the numbers in parenthesis denote orresponding standard deviations.

First onsider the hypotheses H

0

, the maximum likelihood estimates of � is given by

e�

x

= 4:5433;

e

� = 0:0709;

e

�

x

= 0:0350 :

Under hypotheses H

01

, the maximum likelihood estimates of � is given by e�

x

=

4:4152;

e

�

x

= 0:0360;

e

�

1

= 0:0063;

e

�

2

= 0:0118;

e

�

3

= 0:0246;

e

�

4

= 0:1665;

e

�

5

=

0:2231;

e

�

6

= 0:0776. In this ase, onvergene is attained approximately in iteration 40.

Finally, under H

02

the maximum likelihood estimators are given by e�

x

= 4:3972; e�

2

=

�0:0270; e�

3

= 0:0386; e�

4

= 0:3188; e�

5

= 0:3230; e�

6

= 0:2228;

e

�

x

= 0:0393;

e

� =

0:0449:

For testing hypothesis H

0

; H

01

and H

02

de�ned in Setion 1, we use Wald, sore and

likelihood ratio statistis.

Hypothesis H

0

is rejeted, sine W

0

= 200:8226 E

0

= 124:7358 and Q

0

= 192:7844.

Hypothesis H

01

, is also rejeted sine W

01

= 151:5859, E

01

= 74:8692 and Q

01

=

103:9554.

Hypotheses H

02

, of equal preisions, is also rejeted sine W

02

= 49:2366,

E

02

= 77:9824 and Q

02

= 94:7256. The general onlusion is that the instruments are

not aurate neither preise. Similar results are obtained in Jaeh (1985).
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6 A simulations study

In this Setion we show a simulation study where estimates of the signi�ane level and

power of the three test statistis under H

0

are presented. Eah Monte Carlo estimation

of the signi�ane level of the tests is based on 1000 independent samples generated

aording to the model de�ned by (1.2) with �

2

= : : : = �

p

= 0 and �

1

= : : : = �

p

= 1,

p = 3; 5 sample sizes n = 25; 50 and 100. The power of the tests were also estimated. In

all ases, the harateristi of interest x

j

was generated aording to the N(0; �

x

), with

�

x

= 0:1; 0:25; 1:0.

Table 2 presents the estimated signi�ane level in perents of the three test statistis

orresponding to the nominal level of 5%. We an observe that the signi�ane level of

the Wald statistis onverges slower to the nominal level, as n inreases, than the other

statistis. The sore test seems to onverge faster to the nominal level, while the two other

statistis overestimate the 5% nominal level for small values of n. It an also be noted

that �

x

seems not to exert great inuene on the signi�ane level of the three statistis.

This was also noted in other simulation studies as an also be noted in Figure 1 whih

presents, for n = 25; 50; 100, with p = 3; 5, estimated umulative frequenies of the three

statistis, for H

0

, with theoretial umulative frequenies orresponding to the hi-square

distribution with eight degrees of freedom that we denote by �

2

8

.

Table 3 presents power estimates for the three test statistis orresponding to model

(1.2) with the parameter values onsidered above. The sore statistis seems to present

similar behavior as the likelihood ratio test while the Wald statistis seems to present a

slightly inferior behavior. No notiiable di�erene seems to be noted as �

x

inrease.

Hene, for the strutural normal Grubbs model, we reomend using the sore statistis

whih presents the best behavior in terms of signi�ane level and power for testing

hypothesis H

0

, H

01

and H

02

. The approximation to the hi-square distribution, even for

small values of n is worth notiing

7 Conluding remarks

The paper presents estimation and hypothesis testing in a strutural normal Grubbs model

frequently onsidering for omparing the eÆieny of instruments used for measuring an

unknown quantity in a group of ommon individual. Parameter estimation is onsidered

via maximum likelihood, by using the EM-algorithm. Hypothesis testing is approahed

by using Wald, sore and likelihood ratio statistis. Simulation studies seem to indiate

that the sore statisti presents the best behavior in terms of nominal level and power.
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Table 2: Estimated signi�ane levels of the three test with nominal level of 5%.

Sample size p = 3 p = 5

x

j

n W E Q W E Q

25 7.6 4.9 7.9 10.5 4.5 7.2

N(0; 0:25) 50 5.2 4.4 5.0 7.1 4.9 6.0

100 6.6 5.4 6.3 7.1 4.9 6.3

25 7.6 4.5 6.9 9.8 4.0 6.0

N(0; 1:0) 50 5.8 4.9 5.6 7.4 4.0 5.8

100 5.8 4.4 5.3 6.3 4.4 5.3

Table 3: Estimated power of the three test for the alternative H

1

: �

2

= 0; �

3

= 0:5; �

1

=

�

2

= 1; �

3

= 1:5, with p = 3.

x

j

N(0; 0:01) N(0; 0:25) N(0; 1:0)

n W E Q W E Q W E Q

25 37.2 36.2 37.5 34.6 35.6 37.4 34.5 32.0 35.6

50 67.1 70.4 66.4 60.8 64.1 64.4 57.6 60.3 60.2

100 94.9 96.5 94.9 91.5 93.0 92.7 90.8 93.1 92.0

200 100 100 100 100 100 100 99.9 99.9 99.9

Appendix I. Information matrix for the unrestrited model

After some algebrai manipulation, the information matrix for the unrestrited models

is given by

I

F

(�) =

0

B

B

�

I

�

x

�

x

I

�

x

�

0 0

I

��

x

I

��

0 0

0 0 I

�

x

�

x

I

�

x

�

0 0 I

��

x

I

��

1

C

C

A

;

where

I

�

x

�

x

= 1

>

p

�

�1

1

p

; I

�

x

�

= 1

>

p

�

�1

I

>

(p)

= I

>

��

x

; I

��

= I

(p)

�

�1

I

>

(p)

;

I

�

x

�

x

= �

1

2�

2

x

�

� 1



�

2

+



�2

�

x

(� 1)1

>

p

D

�1

(�)1

p

;
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Figure 1: Empirial (...) and theoretial ({) distribution of statistis Wald, Sore and

likelihood ratios, respetively for testing H

0

, where a) n = 25 , b) n = 50 and ) n = 100,

with p = 5.
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(�)� 
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�2

1

>

p

D

�1
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�2

(�);

I

��
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1

2

D

�2

(�) +



�2

2

�

x

D

�1

(�)MD

�1

(�)� 

�1

�

x

D

�1

(�)MD

�1

(�)

+2

�2

�

x

D

�2

(�)�MD

�1

(�)� 

�1

�

x

D

�2

(�)�D

�2

(�):

Appendix II. Information matrix for the model with �

1

= 0

The information matrix orresponding to the model onsidered in Setion (4.1.) is

given by
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I

F

(�) =

0

B

B

�

I

�

x

�

x

0 0 0

0 I

��

0 0

0 0 I

�

x

�

x

0

0 0 0 I

  

1

C

C

A

;

where I

�

x

�

x

=

1

�

x

, I

��

= D

�1

( ), I

�

x

�

x

=

1

2�

2

x

and I

  

=

1

2

D

�2

( ):

Appendix III. Information matrix for the model with �

p

= 0

The information matrix orresponding to the model onsidered in Setion (4.2) is

given by

I

F

(�) =

0

B

B

B

B

�

I

�

x

�

x

0 I

�

x

�

p

0 0

0 I

�

�

�

�

I

�

�

�

p

0 0

I

�

p

�

x

I

�

p

�

�

I

�

p

�

p

0 0

0 0 0 I

�

x

�

x

0

0 0 0 0 I

��

1

C

C

C

C

A

;

where I

�

x

�

x

=

1

�

x

; I

�

x

�

p

=

1

�

x

; I

�

�

�

�

= I

(q)

D

�1

(� )I

>

(q)

; I

�

�

�

p

= �I

(q)

D

�1

(� )1

q

; I

�

p

�

p

=



2

�

x

; I

�

x

�

x

=

1

2�

2

x

and I

��

=

1

2

D

�2

(� ):
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