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Abstract. In this paper we explore the latest advances in the theory of ab-
solutely summing multilinear mappings in order to prove new coindence the-

orems. We also show that our results of coincidence can not be improved in
some natural ways.

1. Introduction

It is well known that every continuous scalar valued linear operator between
Banach spaces is absolutely p-summing. It is also easy to check that this re-
sult, in general, is no longer valid for absolutely (p; p, ..., p)-summing multilinear
mappings. However, an unpublished result, due to A. Defant and J. Voigt, sates
that every scalar valued multilinear mapping is absolutely (1; 1, ..., 1)-summing (see
[1],[5]). Several other coincidence theorems for multilinear mappings can be found in
[2],[3],[5],[7],[9],[11]. In Section 3, using the concept of cotype and the Rademacher
functions, we obtain two new results of coincidence. In Section 4, we prove some
multilinear results, sketched in [7],[8], in order to show that our Coincidence The-
orems can not be improved in many natural ways.

2. Preliminaries

Throughout this paper p is a real number not smaller than 1 and E,E1, ..., En, F

are Banach spaces. The scalar field K can be either R or C. The linear space of all
sequences (xj)∞j=1 in E such that

‖(xj)∞j=1‖p = (

∞
∑

j=1

‖xj‖
p)

1

p <∞

will be denoted by lp(E). We will also denote by lwp (E) the linear subspace of lp(E)
composed by the sequences (xj)∞j=1 in E such that (< ϕ, xj >)∞j=1 ∈ lp(K) for every

bounded linear functional ϕ : E → K. We define ‖.‖w,p in lwp (E) by

‖(xj)∞j=1‖w,p := sup
ϕ∈BÉ

(

∞
∑

j=1

|< ϕ, xj >|
p)

1

p .

One can see that ‖.‖p (‖.‖w,p) is a norm in lp(E) (lwp (E)).
Recall that if 2 ≤ q ≤ ∞ and (rj)∞j=1 are the Rademacher functions, E has

cotype q if there exists C ≥ 0 such that, no matter how we choose k ∈ N and
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x1, ..., xk ∈ E,

(

k
∑

j=1

‖xj‖
q)

1

q ≤ C(

1
∫

0

‖

k
∑

j=1

rj(t)xj‖
2dt)

1

2 .

To cover the case q = ∞ we replace (
∑k

j=1 ‖xj‖
q)

1

q by maxj≤n‖xj‖. We will define
the cotype of E by

cotE = inf{2 ≤ q ≤ ∞;E has cotype q}.

The infimum of the constants C is denoted by Cq(E).
Another important concept concerning the local study of Banach spaces, and

broadly used in the study of absolutely summing operators, is the definition of
Lp,λ-spaces, due to Lindenstrauss and Pe lczyński [4]. A Banach space E is said to
be an Lp,λ-space if every finite dimensional subspace E1 of E is contained in a finite
dimensional subspace F of E for which there exists an isomorphism vE1

: F → ldim F
p

with ‖vE1
‖‖v−1

E1
‖ < λ. We say that E is an Lp-space if it is an Lp,λ-space for some

λ > 1.
The definition of absolutely summing polynomials and multilinear mappings we

will work with is a natural generalization of the linear case, due to Alencar and
Matos.

Definition 1. (Alencar-Matos [1]) A continuous multilinear mapping

T : E1 × ...× En → F

is absolutely (p; q1, ..., qn)-summing if

(T (x
(1)
j , ..., x

(n)
j ))∞j=1 ∈ lp(F )

for all (x
(s)
j )∞j=1 ∈ lwqs

(E), s = 1, ..., n. We will write Las(p;q1,...,qn)(E1, ..., En;F ) to

denote the space of all absolutely (p; q1, ..., qn)-summing multilinear mappings from
E1 × ...× En into F.

As in the linear case, we also have a Characterization Theorem:

Theorem 1. (Matos [5]) Let T be an n-linear mapping from E1 × ...×En into F .
The following statements are equivalent:

(1) T is absolutely (p; q1, ..., qn)-summing.
(2)There exists C > 0 such that

(
k
∑

j=1

‖T (x
(1)
j , ..., x

(n)
j )‖p)

1

p ≤ C‖(x
(1)
j )k

j=1‖w,q1
...‖(x

(1)
j )k

j=1‖w,qn
∀k ∈ N

(3)There exists C > 0 such that

(
∞
∑

j=1

‖T (x
(1)
j , ..., x

(n)
j )‖p)

1

p ≤ C‖(x
(1)
j )∞j=1‖w,q1

...‖(x
(1)
j )∞j=1‖w,qn

∀(x
(l)
j )∞j=1 ∈ lwql

(E).

The infimum of the C > 0 for which the last inequality holds defines a norm for the
space of absolutely (p; q1, ..., qn)-summing multilinear mappings. This norm will be
denoted by ‖.‖as(p;q1,...,qn) and Las(p;q1,...,qn)(E1, ..., En;F ) endowed with this norm
is a Banach space.
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3. Coincidence Theorems

The following result generalizes a theorem of C.A. Soares [10] and will play a
fundamental role to achieve our new results of coincidence.

Theorem 2. Let A ∈ L(E1, ..., En;F ). Suppose that there exists K > 0 so that for
any x1 ∈ E1, ...., xr ∈ Er, the s-linear (s = n− r) mapping

Ax1....xr
(xr+1, ..., xn) = A(x1, ..., xn)

is absolutely (1; q1, ..., qs)-summing and besides

‖Ax1....xr
‖as(1;q1,...,qs)

≤ K ‖A‖ ‖x1‖ ... ‖xr‖ .

Then A is absolutely (1; 1, ..., 1, q1, ..., qs)-summing.

Proof: For x
(1)
1 , ..., x

(m)
1 ∈ E1, ...., x

(1)
n , ..., x

(m)
n ∈ En, let us consider ϕj ∈ BF ′

such that

∥

∥

∥A(x
(j)
1 , ..., x(j)

n )
∥

∥

∥ = ϕj(A(x
(j)
1 , ..., x(j)

n )) for every j = 1, ...,m.

Thus, defining by rj(t) the Rademacher functions on [0, 1] and denoting by λ the
Lebesgue measure in I = [0, 1]r,we have

∫

I

m
∑

j=1

(

r
∏

l=1

rj(tl)

)

ϕjA(

m
∑

j1=1

rj1(t1)x
(j1)
1 , ...,

m
∑

jr=1

rjr
(tr)x(jr)

r , x
(j)
r+1, ..., x

(j)
n )dλ

=

m
∑

j,j1,...jr=1

ϕjA(x
(j1)
1 , ..., x(jr)

r , x
(j)
r+1, ..., x

(j)
n )

∫

I

rj(t1)...rj(tr)rj1 (t1)...rjr
(tr)dλ

=

m
∑

j,j1,...jr=1

ϕjA(x
(j1)
1 , ..., x(jr)

r , x
(j)
r+1, ..., x

(j)
n )

1
∫

0

rj(t1)rj1 (t1)dt1...

1
∫

0

rj(tr)rjr
(tr)dtr

=
m
∑

j=1

m
∑

j1=1

...

m
∑

jr=1

ϕjA(x
(j1)
1 , ..., x(jr)

r , x
(j)
r+1, ..., x

(j)
n )δjj1 ...δjjr

=

m
∑

j=1

ϕjA(x
(j)
1 , ..., x(j)

n ) =

m
∑

j=1

∥

∥

∥A(x
(j)
1 , ..., x(j)

n )
∥

∥

∥ = (∗).
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So, for each l = 1, ..., r, assuming zl =
m
∑

j=1

rj(tl)x
(j)
l we obtain

(∗) =

∫

I

m
∑

j=1

(

r
∏

l=1

rj(tl)

)

ϕjA(
m
∑

j1=1

rj1 (t1)x
(j1)
1 , ...,

m
∑

jr=1

rjr
(tr)x(jr)

r , x
(j)
r+1, ..., x

(j)
n )dλ

≤

∫

I

∣

∣

∣

∣

∣

∣

m
∑

j=1

(

r
∏

l=1

rj(tl)

)

ϕjA(
m
∑

j1=1

rj1 (t1)x
(j1)
1 , ...,

m
∑

jr=1

rjr
(tr)x(jr)

r , x
(j)
r+1, ..., x

(j)
n )

∣

∣

∣

∣

∣

∣

dλ

≤

∫

I

m
∑

j=1

∥

∥

∥

∥

∥

∥

A(

m
∑

j1=1

rj1(t1)x
(j1)
1 , ...,

m
∑

jr=1

rjr
(tr)x(jr)

r , x
(j)
r+1, ..., x

(j)
n )

∥

∥

∥

∥

∥

∥

dλ

≤ sup
tl∈[0,1],l=1,...,r

m
∑

j=1

∥

∥

∥

∥

∥

∥

A(

m
∑

j1=1

rj1 (t1)x
(j1)
1 , ...,

m
∑

jr=1

rjr
(tr)x(jr)

r , x
(j)
r+1, ..., x

(j)
n )

∥

∥

∥

∥

∥

∥

≤ sup
tl∈[0,1],l=1,...,r

‖Az1...zr
‖as(1;q1,...,qs)

∥

∥

∥(x
(j)
r+1)m

j=1

∥

∥

∥

w,q1

...
∥

∥

∥(x(j)
n )m

j=1

∥

∥

∥

w,qs

≤ sup
tl∈[0,1],l=1,...,r

K ‖A‖ ‖z1‖ ... ‖zr‖
∥

∥

∥(x
(j)
r+1)m

j=1

∥

∥

∥

w,q1

...
∥

∥

∥(x(j)
n )m

j=1

∥

∥

∥

w,qs

= K ‖A‖ sup
t∈[0,1]





r
∏

l=1

∥

∥

∥

∥

∥

∥

m
∑

j=1

rj(t)x
(j)
l

∥

∥

∥

∥

∥

∥





(

s
∏

l=1

∥

∥

∥(x
(j)
l )m

j=1

∥

∥

∥

w,ql

)

≤ K ‖A‖

(

r
∏

l=1

∥

∥

∥(x
(j)
l )m

j=1

∥

∥

∥

w,1

)(

s
∏

l=1

∥

∥

∥(x
(j)
l )m

j=1

∥

∥

∥

w,ql

)

. Q.E.D.

We have the following straightforward consequence:

Corollary 1. If

L(E1, ..., Em;F ) = Las(1;q1,...,qm)(E1, ..., Em;F )

then, for any Banach spaces Em+1, ..., En, we have

L(E1, ..., En;F ) = Las(1;q1,...,qm,1,...,1)(E1, ..., En;F ).

Note that an particular case of this result is the aforementioned coincidence
result of Defant and Voigt. Another outcome of Theorem 2 is the following:

Corollary 2 (Coincidence Theorem I). If E1,... Ek are L∞-spaces then, for any
choice of Banach spaces Ek+1, ..., En, we have

L(E1, ..., Ek, ..., En; K) = Las(1;q1,....,qn)(E1, ..., Ek, ..., En; K),

where q1 = ... = qk = 2 e qk+1 = .... = qn = 1.

Proof. Immediate consequence of the last Corollary and of a result of Perez [9]
which states that every scalar valued n-linear mapping defined on L∞-spaces is
absolutely (1; 2, ..., 2)-summing.

Corollary 3. If cotF = q <∞ and

L(E1, ..., Es; K) = Las(1;q1,....,qs)(E1, ..., Es; K),

then, for any choice of Banach spaces Es+1, ..., En, we have

L(E1, ..., En;F ) = Las(q;q1,....,qs,1,....,1)(E1, ..., En;F ),
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Proof. Since F has finite cotype q, using the estimates of Theorem 2, we obtain




m
∑

j=1

∥

∥

∥A(x
(j)
1 , ..., x(j)

n )
∥

∥

∥

q





1

q

≤ Cq(F ) sup
ϕ∈BF ′





m
∑

j=1

∣

∣

∣< ϕ,A(x
(j)
1 , ..., x(j)

n ) >
∣

∣

∣





≤ Cq(F ) sup
ϕ∈BF ′

K ‖ϕA‖

(

s
∏

l=1

∥

∥

∥(x
(j)
l )m

j=1

∥

∥

∥

w,ql

)(

n
∏

l=s+1

∥

∥

∥(x
(j)
l )m

j=1

∥

∥

∥

w,1

)

≤ KCq(F ) ‖A‖

(

s
∏

l=1

∥

∥

∥(x
(j)
l )m

j=1

∥

∥

∥

w,ql

)(

n
∏

l=s+1

∥

∥

∥(x
(j)
l )m

j=1

∥

∥

∥

w,1

)

.

Corollary 4 (Coincidence Theorem II). If cotF = q <∞ and E1,..., Ek are L∞-
spaces, then, regardless of the Banach spaces Ek+1, ..., En, we have

L(E1, ..., Ek, ..., En;F ) = Las(q;q1,....,qn)(E1, ..., Ek, ..., En;F ),

where q1 = ... = qk = 2 and qk+1 = .... = qn = 1.

4. Related questions

It is obvious that Corollary 2 is still true if we replace K by any finite dimen-
sional Banach space. A natural questoin is whether Corollary 2 can be improved
for infinite dimesional L∞-spaces, E1, ..., Ek and some infinite dimensional Banach
space in the place of K. Precisely, the question is:

• If E1, ..., Ek are infinite dimensional L∞-spaces, is there some infinite dimen-
sional Banach space F such that

L(E1, ..., Ek, ..., En;F ) = Las(1;q1,....,qn)(E1, ..., Ek, ..., En;F ),

where q1 = ... = qk = 2 and qk+1 = .... = qn = 1, regardless of the Banach
spaces Ek+1, ..., En?

The answer to this question, surprisingly, is no. The proof will be a consequence
of the next result which proof (sketched in [7], [8]), we will give in details, below:

Theorem 3. Let F be an infinite dimensional Banach space and E1, ..., Em denote
infinite dimensional Banach spaces with unconditional Schauder basis. If q is so
that 1

m ≤ q < 2 and Las(q;1,...,1)(E1, ..., Em;F ) = L(E1, ..., Em;F ) we conclude

that for any normalized unconditional Schauder basis {x
(1)
j }∞j=1, ..., {x

(m)
j }∞j=1 for

E1, ..., Em, respectively, the natural mapping

ψ : E1 × ...× Em → l∞ : (

∞
∑

i=1

a
(1)
i x

(1)
i , ...,

∞
∑

i=1

a
(m)
i x

(m)
i ) → (a

(1)
i ...a

(m)
i )∞i=1

is such that ψ(E1 × ...× Em) ⊂ l 2q

2−q
.

Proof. The Open Mapping Theorem yields the existence of K > 0 so that
‖T ‖as(q;1,...,1) ≤ K‖T ‖ for all continuous m-linear mappings T : E1 × ...×Em → F.

By the main Lemma of the well known Dvoretzky-Rogers Theorem (see [4]), for
every n, there exist normalized y1, ..., yn in F such that

‖

n
∑

j=1

λjyj‖ ≤ 2(

n
∑

j=1

| λj |2)1/2.(4.1)
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regardless of the scalars λ1, ..., λn.

For each k = 1, ...,m, consider zk =
∑∞

i=1 a
(k)
i x

(k)
i and for each natural n, let

{µi}
n
i=1be such that

n
∑

j=1

| µj |s= 1 with s = 2
q . Define T : E1 × ...× Em → F by

T (z1, ..., zm) =
n
∑

j=1

∣

∣µj

∣

∣

1

q a
(1)
j ...a

(m)
j yj,

where we chose yj satisfying (4.1).

Since each {x
(k)
j }∞j=1 is an unconditional basis, there exists ρk > 0 such that, for

all zk =
∞
∑

j=1

a
(k)
j x

(k)
j ∈ Ek,

‖

∞
∑

j=1

εja
(k)
j xk

j ‖ ≤ ρk‖

∞
∑

j=1

a
(k)
j xk

j ‖ = ρk‖zk‖ for all εj ∈ {1,−1}.

Hence ‖
r
∑

j=1

εja
(k)
j x

(k)
j ‖ ≤ ρk‖zk‖ for all natural r and any εj = 1 or −1. We thus

have

‖T (z1, ..., zk)‖ = ‖

n
∑

j=1

∣

∣µj

∣

∣

1

q a
(1)
j ...a

(m)
j yj‖ ≤ 2(

n
∑

j=1

∣

∣µj

∣

∣

2

q | a
(1)
j ...a

(m)
j |2)1/2

≤ 2(

n
∑

j=1

| µj |2/q ρ2
1...ρ

2
m)1/2‖z1‖...‖zm‖

≤ 2ρ1...ρm‖z1‖...‖zm‖(

n
∑

j=1

| µj |2/q)1/2

= 2ρ1...ρm‖z1‖...‖zm‖(
n
∑

j=1

| µj |s)1/2

≤ 2ρ1...ρm‖z1‖...‖zm‖.

Then ‖T ‖ ≤ 2ρ1...ρm and ‖T ‖as(q;1,...,1) ≤ 2Kρ1...ρm. Therefore





n
∑

j=1

(

∣

∣µj

∣

∣

1

q

∣

∣

∣a
(1)
j ...a

(m)
j

∣

∣

∣

)q





1/q

=





n
∑

j=1

∥

∥

∥T (a
(1)
j x

(1)
j , ..., a

(m)
j x

(m)
j )

∥

∥

∥

q





1/q

≤ ‖T ‖as(q;1,...,1)

m
∏

k=1

‖(a
(k)
j x

(k)
j )n

j=1‖w,1

= ‖T ‖as(q;1,...,1)

m
∏

k=1

max
εj∈{1,−1}

{‖

n
∑

j=1

εja
(k)
j x

(k)
j ‖}

≤ ‖T ‖as(q;1,...,1)

m
∏

k=1

(ρk‖zk‖)

≤ 2Kρ2
1...ρ

2
m‖z1‖...‖zm‖.
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Recall that the last inequality holds whenever
n
∑

j=1

| µj |s= 1. Hence





n
∑

j=1

(| a
(1)
j ...a

(m)
j |

s
s−1

q)





1/( s
s−1

)

=

∥

∥

∥

∥

(∣

∣

∣a
(1)
j ...a

(m)
j

∣

∣

∣

q)n

j=1

∥

∥

∥

∥

s
s−1

= sup







∣

∣

∣

∣

∣

∣

n
∑

j=1

µj

∣

∣

∣a
(1)
j ...a

(m)
j

∣

∣

∣

q

∣

∣

∣

∣

∣

∣

;

n
∑

j=1

| µj |s= 1







≤ sup







n
∑

j=1

(| µj |
∣

∣

∣a
(1)
j ...a

(m)
j

∣

∣

∣

q

;

n
∑

j=1

| µj |s= 1







and thus

[
n
∑

j=1

(| a
(1)
j ...a

(m)
j |

s
s−1

q)]1/( s
s−1

) ≤ (2Kρ2
1...ρ

2
m‖z1‖...‖zm‖)q.

Finally,

[
n
∑

j=1

(| a
(1)
j ...a

(m)
j |

s
s−1

q)]1/( s
s−1

)q ≤ 2Kρ2
1...ρ

2
m‖z1‖...‖zm‖.

Since s
s−1q = 2q

2−q , and n is arbitrary, the proof is done. Q.E.D.

Corollary 5. Suppose that E1, ..., Ek are infinite dimensional L∞-spaces. If q1 =
... = qk = 2, qk+1 = .... = qn = 1 and

L(E1, ..., Ek, ..., En;F ) = Las(1;q1,....,qn)(E1, ..., Ek, ..., En;F ),

regardless of the Banach spaces Ek+1, ..., En, then dimF <∞.

Proof. By a standard localization argument, it suffices to prove that

L(nc0;F ) 6= Las(1;q1,....,qn)(
nc0;F ),

where q1 = ... = qk = 2 and qk+1 = .... = qn = 1. But Theorem 3 yields that

L(nc0;F ) 6= Las(q;q1,....,qn)(
nc0;F ),

regardless of the q < 2 and q1 = ... = qn ≥ 1. Q.E.D.
Another natutal question is whether our Coincidence Theorem II can be im-

proved to p < q, ie,

• If cotF = q < ∞ and E1,..., Ek are infinite dimensional L∞-spaces, is there
some p < q for which, regardless of the Banach spaces Ek+1, ..., En,

L(E1, ..., Ek, ..., En;F ) = Las(p;q1,....,qn)(E1, ..., Ek, ..., En;F ),

where q1 = ... = qk = 2 and qk+1 = .... = qn = 1?

Again, a result sketched in [7] and [8], similar to Theorem 3, yields, using the
same reasoning, a negative answer to this question.

Theorem 4. If cotF = q < ∞, dim F = dimE1 = ... = dimEm = ∞ and each
Ej has unconditional Schauder basis, then whenever p is such that 1

m ≤ p < q and
Las(p;1,...,1)(E1, ..., Em;F ) = L(E1, ..., Em;F ) we conclude that for any normalized
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unconditional Schauder basis {x
(1)
j }∞j=1, ..., {x

(m)
j }∞j=1 for E1, ..., Em, respectively,

the natural mapping

ψ : E1 × ...× Em → l∞ : (

∞
∑

i=1

a
(1)
i x

(1)
i , ...,

∞
∑

i=1

a
(m)
i x

(m)
i ) → (a

(1)
i ...a

(m)
i )∞i=1

is such that ψ(E1 × ...× Em) ⊂ l pq

q−p
.

Proof. Similar to the proof of Theorem 3. The only difference is that, exploring
cotype we have a finner estimate, due to Maurey and Pisier [6], replacincing the
Dvoretzky Rogers Lemma. We can find y1, ..., yn in F such that ‖yj‖ ≤ 1 and

‖

n
∑

j=1

λjyj‖ ≤ (

n
∑

j=1

| λj |q)1/q.
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