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Abstract. In this paper we prove two results regarding the large-time behavior of vortex dynamics

in the full plane. In the first result we show that the total integral of vorticity is confined in a region

of diameter growing at most like the square-root of time. In the second result we show that if a

dynamic rescaling of the absolute value of vorticity with spatial scale growing linearly with time

converges weakly, then it must converge to a discrete sum of Dirac masses. This last result extends

in scope a previous result by the authors, valid for nonnegative initial vorticity on a half-plane.
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1. Introduction

Let ω0 be a compactly supported function in Lp(R2), with p > 2, and let ω = ω(x, t)
be the vorticity associated to a weak solution of the incompressible two-dimensional Euler
equations in the full plane, with initial vorticity ω0. In vorticity form, the Euler equations
may be written as an active scalar transport equation:

{
ωt + (K ∗ ω) · ∇ω = 0,
ω(x, 0) = ω0,

(1.1)

with K the Biot-Savart vector kernel for the full plane, given by

K(x) = K(x1, x2) =
1

2π|x|2
(−x2, x1) =

x⊥

2π|x|2
(1.2)

We are interested in obtaining information on the behavior of the solution ω(·, t) as
t → ∞, particularly with regards to the spatial distribution of the vorticity. We consider
a self-similar rescaling of vorticity of the form:

ω̃(x, t) ≡ t2αω(tαx, t),
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with α ∈ (0, 1]. This scaling preserves the integral of vorticity and its L1 norm. The large
time behavior of ω̃ carries information on the distribution of vorticity, focusing on a certain
asymptotic scale determined by the parameter α. The purpose of this note is to prove two
results. The first result is that, for any initial data ω0, we have ω̃ ⇀ mδ0, where m =

∫
ω0

and δ0 is the dirac measure at the origin. The second result is a generalization of a previous
result by the authors. The main result in [4] can be reformulated as stating that, if: (i) the
initial vorticity ω0 is odd with respect to the horizontal axis, (ii) its restriction to the upper
half-plane has a distinguished sign and (iii) α = 1, then the hypothesis that |ω̃(x, t)| ⇀ µ,
where µ is a measure (which must be supported in {|x1| ≤ M}×{x2 = 0} for confinement
reasons), implies that µ must consist of an at most countable sum of Dirac masses whose
supports may only accumulate at the origin. Our second result in this article is to remove
conditions (i) and (ii) on ω0, keeping the same conclusion.

In 1994, C. Marchioro proved that the solution ω = ω(x, t) of equation (1.1) with an
initial vorticity bounded and nonnegative, with support contained in a disk of radius R0 > 0
centered at the origin, has support contained in a disk of radius (Ra

0 + bt)1/a, with a = 3,
for some constant b > 0, see [7]. This first result in confinement of vorticity has been
improved and extended in several ways. The exponent 1/a has been improved to 1/4+
by P. Serfati, see [12] and independently by Iftimie, Sideris and Gamblin, see [5]. Other
extensions and improvements include unbounded initial vorticity [6, 2], flows in exterior
domains [8], slightly viscous flows [9] and axisymmetric flows, [10, 11]. Confinement results
basically control the rate at which vorticity is spreading. The present work is an attempt to
go beyond controlling this rate, actually describing the way in which vorticity is spreading.

If the initial vorticity does not have a distinguished sign, the best confinement one may
expect in general is at the rate a = 1, see [5]. In fact, [5] contains the construction of an
example of smooth. compactly supported vorticity for which the support grows precisely
in a linear fashion. This means that the self-similar scale of interest is α = 1, and the time
asymptotic behavior of |ω̃| is what would give a reasonably complete description of the
vorticity scattering in this case.

The remainder of this article is divided into three sections. In the first section we discuss
the result on the asymptotic behavior of ω̃. The second section contains the result on |ω̃|
and the third section contains comments and conclusions.

2. Confinement of the net vorticity

Let ω0 ∈ Lp
c(R

2), for some p > 2 and consider ω = ω(x, t) a solution of (1.1) with initial
data ω0. Our basic problem is to describe the spatial distribution of the vorticity ω(·, t)
for large t. For α ∈ (0, 1] we introduce the rescaled vorticity:

Wα = Wα(x, t) ≡ t2αω(tαx, t).

Clearly, if ω0 is single-signed, the known results on confinement tell us that, for any α > 1/4,
the support of Wα is contained in a disk centered at the origin whose radius vanishes as
t → ∞. What happens when the vorticity is allowed to change sign?
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Let Uα ≡ K ∗ Wα, with K given by (1.2). It is a straightforward calculation to verify
that Wα and Uα satisfy the equation

∂Wα

∂t
−

α

t
div (xWα) +

1

t2α
div (UαWα) = 0.(2.1)

We are now ready to state and prove our first result.

Theorem 2.1. Let α > 1/2 and set m =
∫

ω0(x) dx. Then Wα(·, t) ⇀ mδ0 weak-∗ in

BM(R2) as t → ∞.

Proof. We will begin by considering the linear part of the evolution equation (2.1) with
initial condition at t = 1:





∂f

∂t
−

α

t
div (xf) = 0

f(x, 1) = g(x).

The solution f is given by the (multiplicative) semigroup f(x, t) = St[g](x) ≡ t2αg(tαx),
interpreted in the sense of distributions. We then write (2.1) as an inhomogeneous version
of this linear equation, with source term given by

h(x, t) ≡ −
1

t2α
div (UαWα).

With this we can write the solution Wα of (2.1), with initial data Wα(x, 1) = ω(x, 1) ≡ g(x),
using Duhamel’s formula:

Wα(x, t) = St[g](x) +

∫ t

1

St/s[h](x, s) ds.(2.2)

(In the integral above the semigroup is acting in the spatial variable only.) Of course (2.2)
must be interpreted in the sense of distributions. We now turn to the analysis of each term
in (2.2). Let ϕ ∈ C∞

c (R2). We then have:

∫

R2

ϕ(x)Wα(x, t) dx =

∫

R2

ϕ
( y

tα

)
g(y) dy +

∫ t

1

∫

R2

ϕ

(
sαy

tα

)
h(y, s) dy ds ≡ I1 + I2.

First note that, as t → ∞,

I1 →

(∫

R2

g(y) dy

)
ϕ(0),

by the Lebesgue Dominated Convergence Theorem. Next, recall that the total integral of
vorticity is conserved and hence the proof will be concluded once we establish that I2 → 0.
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We compute directly, integrating by parts and using the relation between Uα and Wα:

I2 = −

∫ t

1

∫

R2

ϕ

(
sαy

tα

)
1

s2α
div (UαWα)(y, s) dy ds

=

∫ t

1

∫

R2

1

sαtα
∇ϕ

(
sαy

tα

)
· (UαWα)(y, s) dy ds

=

∫ t

1

1

sαtα

∫

R2

∫

R2

∇ϕ

(
sαy

tα

)
· K(y − z)Wα(z, s)Wα(y, s) dz dy ds.

We now use the antisymmetry of the Biot-Savart kernel K to obtain:

I2 =
1

2

∫ t

1

1

sαtα

∫

R2

∫

R2

Hϕ(s, t, z, y)Wα(z, s)Wα(y, s) dz dy ds,

where

Hϕ(s, t, z, y) ≡

(
∇ϕ

(
sαy

tα

)
−∇ϕ

(
sαz

tα

))
· K(y − z).

Let us observe that

|Hϕ| ≤
sα

tα
‖D2ϕ‖L∞|y − z||K(y − z)| ≤ C(ϕ)

sα

tα
.

Hence we arrive finally at

|I2| ≤ C(ϕ)

(∫

R2

|ω0|

)2
t − 1

t2α
,

which clearly converges to 0 as t → ∞ as long as 2α > 1. This concludes the proof.

Remark 2.1. This result does not say anything new if the initial vorticity has a distin-
guished sign. As we mentioned in the introduction, if the vorticity has a distinguished
sign, the support of vorticity is contained in a ball whose radius grows like O(tα), with
1/4 < α. From that, Theorem 2.1 follows immediately.

Remark 2.2. What new information is contained in the conclusion of Theorem 2.1? Imag-
ine that we are given initial vorticity ω0 = ω+

0 − ω−
0 , which are the positive and negative

parts of the initial vorticity. Let ω = ω+ − ω− be the solution of 2D Euler with initial
vorticity ω0. Due to the nature of vortex dynamics, both ω+ and ω− are time-dependent
rearrangements of ω+

0 and ω−
0 respectively, and hence their integrals, which we may call

m+ and m−, are constant in time. One consequence of Theorem 2.1 is that the integral
of vorticity in a ball of radius tα converges to m+ − m−, for any α > 1/2. This is weak
confinement of the imbalance between the positive and negative parts of vorticity in a ball
of sublinear radius. This is consistent with the conjectural picture that the only way for
the support of vorticity to grow fast is through the shedding of vortex pairs.
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3. Vortex scattering

The aim of this section is to prove the following theorem.

Theorem 3.1. Suppose that the initial vorticity ω0 ∈ Lp
c(R

2), p > 2 is such that the

absolute value of the rescaled vorticity | ω̃(y, t)| = t2|ω(ty, t)| converges weakly to some

measure µ as t → ∞. Then µ must be of the form:

µ =

∞∑

i=1

mi δαi

where:

(a) αi 6= αj if i 6= j and αi → 0 as i → ∞;

(b) the masses mi are nonnegative and verify
∑∞

i=1 mi = ‖ω0‖L1;

(c) for all i, |αi| ∈ [0, M ], where M = ‖u‖L∞([0,∞)×R2);

(d) there exists a constant D > 0, depending solely on p, such that, for all i with mi 6= 0
we have

|αi| ≤ D‖ω0‖
p′

2

Lp m
1− p′

2

i .

Remark 3.1. In the statement above, the masses mi are allowed to vanish only to include
the case when the limit measure contains a finite number of Diracs. For notational con-
venience, in the case when there are only a finite number of Dirac masses, we artificially
added a countable number of Dirac masses with zero masses and positions converging to
0.

To prove Theorem 3.1 we first note that since ω is transported by the velocity u, so is
|ω|:

∂t|ω|+ div(u|ω|) = 0

so that the equation for the absolute value of the rescaled vorticity is

∂t| ω̃(y, t)| −
1

t
div

[
y| ω̃(y, t)|

]
+

1

t2
div

[
ũ(y, t)| ω̃(y, t)|

]
= 0,

where ũ(y, t) denotes the rescaled velocity ũ(y, t) = tu(ty, t).
Let us take the product with a test function ϕ ∈ C1(R2) and integrate in space:

∂t

∫
| ω̃(y, t)|ϕ(y) dy = −

1

t

∫
| ω̃(y, t)| y · ∇ϕ(y) dy +

1

t2

∫
| ω̃(y, t)| ũ(y, t) · ∇ϕ(y) dy.

(3.1)

We now recall the following argument that was used in [4]. The left-hand side of (3.1),
when integrated from 0 to t, is uniformly bounded in t. By the hypothesis we know that

lim
t→∞

∫
| ω̃(y, t)| y · ∇ϕ(y) dy =

〈
yµ,∇ϕ

〉

so that the integral from 0 to t of the first term on the right-hand side of (3.1) will behave
in general like

〈
yµ,∇ϕ

〉
log t. As for the third term, it is not difficult to see that it is
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O(1/t). The dominant part of the third term must balance the logarithmic blow-up in
time of the second term. This argument implies as in [4, Lemma 3.3] that the following
inequality must hold:

lim sup
t→∞

(1

t

∫
| ω̃(y, t)| ũ(y, t) · ∇ϕ(y) dy

)
≥

〈
yµ,∇ϕ

〉
.(3.2)

On the other hand, it was also proved in [4, Proposition 3.1] a key estimate that in our
case reads

lim sup
t→∞

∣∣∣
1

t

∫
| ω̃(y, t)| ũ(y, t) · ∇ϕ(y) dy

∣∣∣ ≤ D‖ω0‖
p′

2

Lp

∞∑

i=1

m
2− p′

2

i |∇ϕ(αi)|(3.3)

where
∑∞

i=1 miδαi
is the discrete part of the measure µ. The proof of [4, Proposition

3.1] valid in the case of the half-plane carries over to the case of the full plane with
straightforward modifications. Indeed, that proof only uses the following estimate relating
the rescaled velocity to the rescaled vorticity

|ũ(x, t)| ≤

∫
C

|x − y|
| ω̃(y, t)| dy.

This estimate trivially holds in the case of the full space, too.
We now deduce from (3.2) and (3.3) that

〈
yµ,∇ϕ

〉
≤ D‖ω0‖

p′

2

Lp

∞∑

i=1

m
2− p′

2

i |∇ϕ(αi)|.

Writing the same relation with ϕ replaced by −ϕ we finally get

|
〈
yµ,∇ϕ

〉
| ≤ D‖ω0‖

p′

2

Lp

∞∑

i=1

m
2− p′

2

i |∇ϕ(αi)|.(3.4)

It is a simple matter to deduce from (3.4) that

|αi| ≤ D‖ω0‖
p′

2

Lpm
1− p′

2

i .(3.5)

Indeed, let us fix i0 ∈ N and choose ϕ ∈ C∞
0 (R2) such that ∇ϕ(0) = αi0 . Define next

ϕε(x) = εϕ
(x−αi0

ε

)
and use it as test function in (3.4) to obtain

∣∣〈yµ,∇ϕ
(y − αi0

ε

)〉∣∣ ≤ D‖ω0‖
p′

2

Lp

∞∑

i=1

m
2− p′

2

i

∣∣∇ϕ
(αi − αi0

ε

)∣∣.(3.6)

By the dominated convergence theorem the right-hand side converges to D‖ω0‖
p′

2

Lpm
2− p′

2

i0
|αi0 |

as ε → 0. As for the left-hand side, we write

〈
yµ,∇ϕ

(y − αi0

ε

)〉
= αi0

〈
µ,∇ϕ

(y − αi0

ε

)〉
+

〈
µ, (y − αi0)∇ϕ

(y − αi0

ε

)〉
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and we notice that

(y − αi0)∇ϕ
(y − αi0

ε

)
→ 0 in L∞ strongly

and

∇ϕ
(y − αi0

ε

)
⇀ αi0χ{αi0

} in L∞ weak ∗

as ε → 0 so that
〈
yµ,∇ϕ

(y − αi0

ε

)〉
→ |αi0 |

2mi0 as ε → 0.

Taking the limit ε → 0 in (3.6) now yields (3.5).

We just proved part (d) of Theorem 3.1. Part (a) also follows at once by remarking that
we have mi → 0 so, by (3.5), αi → 0 as i → ∞ too. Part (c) is a trivial consequence of the
fact that the support of the vorticity is transported by the flow of u. Finally, part (b) is a
direct consequence of the nonnegativity of the measure µ and also from the conservation
of the L1 norm of | ω̃|.

We now go to the last part of the argument, i.e. the proof that the continuous part of
the measure µ vanishes.

Let D be a strip of the form D = {c ≤ ay1 + ay2 ≤ d} disjoint of the set A ≡
{0}

⋃
i≥1{αi}. We prove that the measure µ must necessarily vanish in the interior of

such a strip. First, since 0 6= D we have that cd > 0. We assume without loss of
generality that c, d > 0. Let [c′, d′] a subinterval of (c, d) and choose a smooth function
h ∈ C∞(R) such that h′ ∈ C∞

0 (c, d), h′ ≥ 0 and h′(s) = 1/s for all s ∈ [c′, d′]. Choose
now ϕ(y1, y2) = h(ay1 + by2) as test function in (3.4). Since supp ϕ ⊂ D we have that
supp ϕ∩A = which implies in turn that the right-hand side of (3.4) vanishes for this choice
of test function. Therefore the left-hand side must vanish too:

0 =
〈
yµ,∇

(
h(ay1 + by2)

)〉
=

〈
µ, (ay1 + by2)h

′(ay1 + by2)
〉
.(3.7)

The function y 7→ (ay1 + by2)h
′(ay1 + by2) is nonnegative and equal to 1 on the strip

{c′ ≤ ay1 + by2 ≤ d′}. Since the measure µ is nonnegative too, we deduce from (3.7) that µ
vanishes on the strip {c′ ≤ ay1 + by2 ≤ d′}. And since [c′, d′] was an arbitrary subinterval
of (c, d) we finally deduce that µ vanishes in the interior of the strip D.

In order to conclude the proof of Theorem 3.1, we only need to show that the measure
µ vanishes in the neighborhood of each point of Ac. Let y0 ∈ Ac. Since the only possible
accumulation point of the set A is 0, there exists a line {ay1 + by2 = c} passing through
y0 and which does not cross A. A continuity argument using again that the points αi can
only accumulate at {0} shows that there exists a strip {c− ε ≤ ay1 + by2 ≤ c + ε} disjoint
of A. But we proved that the measure µ must vanish on such a strip. This implies that µ
vanishes in the neighborhood of y0 and this completes the proof of Theorem 3.1.
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