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Abstract

Let T be a right chain ring with nonzero maximal ideal J . In this paper we

study rings R such that J ⊆ R ⊆ T and determine conditions for R to be right

distributive (right Bezout).

1. Introduction

Let R be a ring and M be a right R-module. Recall that M is said to be a

distributive module if the lattice of submodules of M is distributive, that is if the

distributive law A ∩ (B + C) = (A ∩ B) + (A ∩ C) holds for all submodules A,B,C

of M . Recall also that M is said to be a Bezout module if every finitely generated

submodule of M is cyclic.

A ring R is called a right distributive ring if R is a distributive right module over

itself. Similarly, R is called a right Bezout ring if R is a Bezout right module over itself.

The classes of right distributive rings and right Bezout rings are incomparable. Recall

that a ring R is said to be a right chain ring if the set of right ideals of R is linearly

ordered by inclusion. Right chain rings form an important class of rings contained in

both these classes.

In [FP], the authors studied a right distributive ring R obtained as pullback of a

right chain ring T with maximal ideal J and a right distributive domain D ⊆ T/J , such

that the left skew field of fractions of D does exist and is equal T/J . As a consequence,

the ring R is a subring of T and contains the maximal ideal J of T , which is a completely

prime ideal and a left waist of R. The converse is also proved under the additional

assumption that R is a prime right distributive ring. Thus it is natural to study this

situation in general.

Let T be a right chain ring with maximal ideal J and R a ring such that J ⊆ R ⊆ T .

We determine conditions under which the ring R is right distributive (right Bezout).

We will see that in this way we are studying right distributive (Bezout) rings with

left waists contained in local rings. The main result of the paper shows that several

conditions are equivalent, for example: the ring R is a right distributive (right Bezout)
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ring containig a nonzero completely prime ideal which is a left waists if and only if R

is a right distributive (right Bezout) ring and there exists a local ring T with maximal

ideal J such that 0 6= J ⊆ R ⊆ T if and only if there exists a right chain ring T with

maximal ideal J such that 0 6= J ⊆ R ⊆ T and T/J is a distributive (Bezout) right

R/J-module. Thus we obtain an extension of the main results in [FP].

Finally, we also prove some results on waists, extending known results for right

distributive rings and which are new for right Bezout rings.

Throughout the paper all rings have an identity, and subrings have the same iden-

tity. If R is a ring and L is a subset of R, then the right annihilator of L in R is

denoted by rR(L). The right annihilator of an element a ∈ R is denoted simply by

rR(a). To denote that L is a left ideal of R we write L <l R. The Jacobson radical of

R is denoted by J(R).

2. Waists

Let R be a ring. Recall that a left waist of R is a proper left ideal L of R such that

L is comparable, with respect to inclusion, with all left ideals of R (cf [AGR]), i.e.,

L 6= R and for every L1 <l R either L1 ⊆ L or L ⊆ L1. Right waists of R are defined

similarly. Obviously, a proper left ideal L of R is a left waist if and only if L ⊆ Ra for

every a ∈ R \ L. Moreover, every left waist L of R is contained in any maximal left

ideal of R, and thus L ⊆ J(R).

It is clear that the sum of a family of left waists of a ring R is a left waist. Thus

for every ring R there exists the largest left waist of R.

In the paper we concentrate mainly on such left waists of a ring R that are com-

pletely prime ideals of R. Recall that a left ideal L of R is completely prime if for every

a, b ∈ R, ab ∈ L implies either a ∈ L or b ∈ L. Let us note that if L is a completely

prime left ideal of R which is a left waist, then L = La for every a ∈ R \ L (see [MP,

p. 467]).

Let R be a ring and L a left ideal of R. Let Pl(L) = {a ∈ R | as ∈ L for some s ∈
R \ L}. Moreover, for s ∈ R we put

(L : s) = {a ∈ R | as ∈ L}.

It easy to see that (L : s) is a left ideal of R and for every a, b ∈ R, ab ∈ Pl(L) implies

either a ∈ Pl(L) or b ∈ Pl(L).

Lemma 1. Let R be a ring and L a left waist of R such that rR(L) ⊆ L. Then

(i) L + (L : s) is a left waist of R for every s ∈ R \ L.

(ii) Pl(L) is a completely prime ideal and a left waist of R containing L.

Proof. (i) Let s ∈ R \ L. If (L : s) ⊆ L, then L + (L : s) = L is a left waist of R.

Thus we assume L ⊆ (L : s), and we have to show that L + (L : s) = (L : s) is a left

waist of R. Since s 6∈ L, it follows that 1 6∈ (L : s) and thus (L : s) is a proper left

ideal of R. To show that (L : s) is comparable with every left ideal of R assume that

a ∈ (L : s) and b 6∈ (L : s). Then as ∈ L and bs 6∈ L, and thus as ∈ L ⊆ Rbs. Hence
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as = rbs for some r ∈ R, and so (a − rb)s = 0. If L ⊆ R(a − rb), then Ls = 0 and we

get s ∈ rR(L) ⊆ L, a contradiction. Thus a − rb ∈ L, which gives a ∈ L + Rb. Since

by assumption L ⊆ (L : s), it follows that b 6∈ L. Hence L ⊆ Rb and consequently

a ∈ L + Rb ⊆ Rb, which shows that (L : s) is a left waist of R.

(ii) Obviously, Pl(L) =
⋃

s∈R\L(L : s) =
⋃

s∈R\L(L + (L : s)), since L = (L : 1) is

a left waist of R. Now (i) implies that Pl(L) is a left waist of R. Moreover, from the

definition of Pl(L) it follows that Pl(L) is a completely prime left ideal of R. Since

Pl(L) is a left waist of R, we get Pl(L) ⊆ J(R) and thus [FT, Lemma 2.5] implies that

Pl(L) is a completely prime ideal of R. ✷

In [TZ, Example 4.5] a distributive ring R was constructed with no completely

prime ideal inside the Jacobson radical J(R) and with a waist L which is a nonzero

prime ideal of R. This example shows that in Proposition 1 the condition rR(L) ⊆ L

cannot be omitted.

Theorem 2. For any ring R, the following conditions are equivalent:

(i) R contains a left waist L such that rR(L) ⊆ L.

(ii) The largest left waist of R is a nonzero completely prime ideal of R.

(iii) R contains a nonzero left waist which is a completely prime ideal of R.

Proof. (i) ⇒ (ii) Assume that R contains a left waist L such that rR(L) ⊆ L and

let Q be the largest left waist of R. Then L ⊆ Q and thus rR(Q) ⊆ rR(L) ⊆ L ⊆ Q.

Now Lemma 1(ii) implies that Q = Pl(Q) is a completely prime ideal of R. Since

rR(Q) ⊆ Q 6= R, it follows that Q is a nonzero ideal of R.

(ii) ⇒ (iii) This implication is obvious.

(iii) ⇒ (i) Let Q be a nonzero left waist of R which is a completely prime ideal of

R. Suppose that rR(Q) 6⊆ Q. Then there exists a ∈ rR(Q) \ Q. Since a 6∈ Q, it follows

that Q = Qa = 0, a contradiction. Thus Q is a left waist of R such that rR(Q) ⊆ Q.✷

3. Distributive and Bezout subrings of local rings

In this section we study right distributive rings and right Bezout rings which are

subrings of a local ring T and contain the Jacobson radical of T . At the end of the

section we present examples (Example 10 and Example 11) showing that these classes

of rings are incomparable.

Recall that a ring T is local if T has a unique maximal left ideal, or, equivalently,

if T has a unique maximal right ideal. In this case the maximal right (left) ideal of

T coincides with the Jacobson radical J(T ) of T . In the rest of this paper we put

J = J(T ). If T is local, then T \ J coincides with the set of invertible elements of T .

Proposition 3. Let T be a local ring. If R is a subring of T such that J ⊆ R, then

J is a completely prime ideal of R which is a left and right waist of R.

Proof. Obviously J is a completely prime ideal of R. Now let a ∈ R \ J , so an

invertible element of T and J = Ja = aJ follows. Since J ⊆ R, we get J ⊆ Ra and

J ⊆ aR. Hence J is a left and right waist of R. ✷
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In the proof of the next lemma we will need the following well known characteriza-

tions of distributive modules and Bezout modules (see [T], p. 33, 34).

Proposition 4. Let R be a ring and M a right R-module. Then

(i) M is distributive if and only if for every m,n ∈ M there exist x, y, a, b ∈ R such

that x + y = 1,mx = na, ny = mb.

(ii) M is Bezout if and only if for every m,n ∈ M there exist c, d, e, f ∈ R such

that m(1 − ce) = nde, n(1 − df) = mcf . ✷

Let R be a ring and Q be a completely prime ideal of R. A ring T is called a right

localization of R at Q if R is a subring of T , every element of the set S = R \ Q is

invertible in T and every element of T has the form rs−1, where r ∈ R and s ∈ S. It

is well known that if rR(s) = 0 for every s ∈ S, then a right localization of R at Q

exists if and only if S is a right Ore subset of R, that is if for every r ∈ R and s ∈ S,

rS ∩ sR 6= Ø. If R is a domain and S = R \ 0 is a right Ore subset of R, then we

say that R is a right Ore domain. In this case the right localization T of R at 0 is a

division ring; we call it the right skew field of fractions of R. Obviously, all the above

notions have their left-side counterparts.

Lemma 5. Let T be a local ring with J 6= 0 and R a subring of T such that J ⊆ R.

If R is either right distributive or right Bezout, then T is a right localization of R at J

and T is a right chain ring.

Proof. Using Proposition 4 it is easy to verify that a right localization of a right

distributive (right Bezout) ring is a right distributive (right Bezout) ring. Moreover, it

is well known that local right distributive rings as well as local right Bezout rings are

right chain rings (see [BBT, Proposition 1.3]). Thus to end the proof it is enough to

show that T is a right localization of R at J .

Let t be an arbitrary element of T . Obviously, to prove that T is a right localization

of R at J it is enough to show that there exists s ∈ R \ J such that ts ∈ R.

We begin with the case when R is a right distributive ring. By assumption there

exists an element j ∈ J \ 0. Since j, jt ∈ J ⊆ R, Proposition 4(i) implies that there

exist x, y, a, b ∈ R with x + y = 1, jx = jta, jty = jb. Since j(x − ta) = j(ty − b) = 0

and j 6= 0, it follows that x − ta, ty − b ∈ J ⊆ R. In particular, ta ∈ R and ty ∈ R. If

a ∈ J and y ∈ J , then ta ∈ J and x = 1 − y 6∈ J , and so x − ta 6∈ J , a contradiction.

Thus either a 6∈ J or y 6∈ J , which shows that ts ∈ R for some s ∈ R \ J .

Suppose now that R is a right Bezout ring. As above, for j ∈ J \ 0 we have j, jt ∈
J ⊆ R, and Proposition 4(ii) implies that there exist c, d, e, f ∈ R with j(1−ce) = jtde

and jt(1 − df) = jcf . Since j(1 − ce − tde) = j(t(1 − df) − cf) = 0 and j 6= 0, we get

(1) 1 − ce − tde ∈ J and t(1 − df) − cf ∈ J,

and thus tde ∈ R and t(1 − df) ∈ R. If e ∈ J , then (1) implies that 1 ∈ J , a

contradiction. Hence e ∈ R \ J . If d ∈ R \ J , then de ∈ R \ J and tde ∈ R. If d ∈ J ,

then 1 − df ∈ R \ J and t(1 − df) ∈ R. From the above it follows that there exists

s ∈ R \ J such that ts ∈ R. ✷
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Lemma 6. Let T be a right chain ring and R a subring of T such that J ⊆ R. If

I1, I2 are incomparable right ideals of R (i.e., I1 6⊆ I2 and I2 6⊆ I1), then there exists

a ∈ R \ 0 such that aJ ⊆ I1 ⊆ aT and aJ ⊆ I2 ⊆ aT .

Proof. Since I1, I2 are incomparable right ideals of R, there exist a ∈ I1 \ I2 and

b ∈ I2 \ I1. Since

(2) bJ ⊆ bR ⊆ I2 and aJ ⊆ aR ⊆ I1,

we get that a 6∈ bJ and b 6∈ aJ . Since T is a right chain ring, it follows that bJ ⊆ aJ

and aJ ⊆ bJ . Hence aJ = bJ and consequently aT = bT . Now (2) implies that aJ ⊆ I1

and aJ ⊆ I2. Suppose that I1 6⊆ aT . Then I1T 6⊆ aT and so b ∈ bT = aT ⊆ I1J ⊆
I1R ⊆ I1, a contradiction. Thus I1 ⊆ aT . Similar arguments show that I2 ⊆ aT . ✷

Proposition 7. Let T be a right chain ring with J 6= 0 and R a subring of T such

that J ⊆ R. Then

(i) R is a right distributive ring if and only if T/J is a distributive right R/J-

module.

(ii) R is a right Bezout ring if and only if T/J is a Bezout right R/J-module.

Proof. In the proof of both parts of the proposition we will apply the observation

that for every nonzero a ∈ T the map ϕ : T/J → aT/aJ , ϕ(t + J) = at + aJ , is an

isomorphism of right R/J-modules. To verify this is enough to show that kerϕ = 0.

But this is obvious, since at ∈ aJ and t 6∈ J gives a ∈ aJ , and consequently a = 0.

(i) Suppose that R is a right distributive ring. By assumption there exists an

element j ∈ J \ 0. Since jT is a right ideal of R, jT is a distributive right R-module

and jJ is a submodule of jT . Thus jT/jJ is a distributive right R/J-module. As we

have shown above, the module jT/jJ is isomorphic to T/J . Hence T/J is a distributive

right R/J-module.

Suppose now that T/J is a distributive right R/J-module. Let I1, I2, I3 be right

ideals of R. If one of them is contained in other, then obviously I1, I2, I3 satisfy the

distributive law I1 ∩ (I2 + I3) = (I1 ∩ I2) + (I1 ∩ I3). Thus we assume that I1, I2, I3

are incomparable right ideals of R. By Lemma 6 there exist a, b ∈ R \ 0 such that

aJ ⊆ I1, I2 ⊆ aT and bJ ⊆ I1, I3 ⊆ bT . Suppose that aT 6= bT . Since T is a right

chain ring it follows that either aT ⊆ bJ or bT ⊆ aJ . Therefore we get I1 ⊆ I3 or

I1 ⊆ I2, a contradiction. Thus aT = bT and consequently aJ ⊆ I1, I2, I3 ⊆ aT . Hence

I1/aJ, I2/aJ, I3/aJ are submodules of the right R/J-module aT/aJ . But the module

aT/aJ ≃ T/J is distributive and so I1, I2, I3 satisfy the distributive law.

(ii) Suppose that R is a right Bezout ring. Then analogously as in the first part of

the proof of (i) it can be shown that T/J is a Bezout right R/J-module.

Suppose now that T/J is a Bezout right R/J-module. Let r1, r2 ∈ R. We will show

that r1R+r2R is a principal right ideal of R. If r1R ⊆ r2R or r2R ⊆ r1R, we are done.

Thus we assume that r1R, r2R are incomparable right ideals of R. By Lemma 6 there

exists a ∈ R \ 0 such that aJ ⊆ r1R, r2R ⊆ aT . As we have noted earlier, the right

R/J-module aT/aJ is isomorphic to the Bezout right R/J-module T/J . Thus the

submodule r1R/aJ + r2R/aJ = (r1R + r2R)/aJ of aT/aJ is generated by an element
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b + aJ . Now it is easy to verify that r1R + r2R = bR, which ends the proof. ✷

Lemma 8. Let R be a ring and T a left localization of R at a completely prime

ideal Q of R. Then

(i) ([S, Proposition 3.3]) If R is a right distributive ring, then T is a distributive

right R-module.

(ii) If R is a right Bezout ring, then T is a Bezout right R-module.

Proof. We need only prove (ii). Let t1 = s−1r1, t2 = s−1r2 be arbitrary elements

of T . There exist c, d, e, f ∈ R such that r1(1 − ce) = r2de, r2(1 − df) = r1cf . Hence

t1(1 − ce) = t2de and t2(1 − df) = t1cf , and thus T is a Bezout right R-module. ✷

Immediately from Proposition 7 and Lemma 8 we get the following

Corollary 9. Let T be a right chain ring. Assume that R is a subring of T such

that J ⊆ R, R/J is a left Ore domain and T/J is the left skew field of fractions of

R/J . Then

(i) ([FP, Theorem 2.1]) R is a right distributive ring if and only if R/J is a right

distributive ring.

(ii) R is a right Bezout ring if and only if R/J is a right Bezout ring. ✷

The following example shows that a right Bezout ring R contained in a right chain

ring T and containing J need not be right distributive.

Example 10. Let B = H[x] be the polynomial ring in one variable over the ring

of Hamilton’s real quaternions H. Since H is a division ring, every one-sided ideal of

B is principal and therefore B is a left and right Bezout domain. Moreover, since H is

not a commutative ring, B is not a right distributive ring (see [T, p. 218]).

Let C be the left skew field of fractions of B and let T = C[[t]], the ring of power

series over C. Then T is a right chain ring and J = J(T ) = tT . Moreover, R = B + tT

is a subring of T and J ⊆ R. Since R/J ∼= B is a left Ore domain and T/J ∼= C is a

left skew field of fractions of B, we can apply Corollary 9. It follows that the ring R is

right Bezout but not right distributive. ✷

The next example shows that a right distributive ring R contained in a right chain

ring T and containing J need not be right Bezout, even in the commutative case.

Example 11. Let D = Z[
√
−5 ]. Since D is the ring of algebraic integers of the

field Q(
√
−5 ), D is a Dedekind domain and consequently D is a distributive domain.

Since the ideal of D generated by 2 and 1 +
√
−5 is not principal (see [M, p. 132]), D

is not a Bezout ring.

Let C = Q(
√
−5 ) and T = C[[t]]. Then T is a commutative chain ring and

R = D + tT is a subring of T such that J ⊆ R. As in Example 10 one can show that

the ring R is distributive but R is not a Bezout ring. ✷

4. Distributive and Bezout rings with waists
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Lemma 12. Suppose that R is either a right distributive ring or R is a right Bezout

ring. Let Q be a completely prime ideal of R such that Q ⊆ J(R). Then Q is a right

waist of R. If furthermore Q is a left waist of R and R is semiprime, then there exists

the right localization of R at Q.

Proof. Q is a right waist of R by [S, Proposition 2.1] if R is right distributive. The

same was proved in [MT, Proof of Corollary 9] if R is right Bezout. We include here

a proof of this fact: Let a ∈ Q and b 6∈ Q. Then aR + bR = cR, for some c ∈ R.

Hence there exist a1, b1, x, y ∈ R such that a = ca1, b = cb1 and c = ax + by. Thus

c 6∈ Q since b 6∈ Q. Also c(1 − a1x − b1y) = 0 ∈ Q and ca1 = a ∈ Q, consequently

1−a1x− b1y ∈ Q ⊆ J(R) and a1 ∈ Q ⊆ J(R). Therefore 1− b1y ∈ J(R) and it follows

that b1y is invertible in R. Then a = ca1 = cb1y(b1y)−1a1 = by(b1y)−1a1 ∈ bR, which

shows that Q is a right waist or R.

Using Proposition 4 it can be proved analogously as in [T, p. 67] that S = R \Q is

a right Ore subset of R.

Suppose that Q is also a left waist of R. To end the proof it is enough to show that

for every s ∈ R \ Q, rR(s) = 0. Let a ∈ rR(s), i.e., sa = 0. Then sa ∈ Q and Q is

a completely prime ideal of R, consequently a ∈ Q. Since Q is a left waist of R and

s 6∈ Q, we get Q = Qs. Hence (RaR)2 = RaRaR ⊆ QaR = QsaR = 0. Since R is

semiprime, it follows that a = 0 and thus rR(s) = 0. ✷

Theorem 13. For any semiprime ring R, the following conditions are equivalent:

(i) R is a right distributive (right Bezout) ring with a nonzero left waist L such that

rR(L) ⊆ L.

(ii) R is a right distributive (right Bezout) ring and the largest left waist of R is a

nonzero completely prime ideal of R.

(iii) R is a right distributive (right Bezout) ring with a nonzero left waist which is

a completely prime ideal of R.

(iv) R is a right distributive (right Bezout) subring of a local ring T such that

0 6= J ⊆ R.

(v) R is a right distributive (right Bezout) subring of a right chain ring T such that

0 6= J ⊆ R.

(vi) R is a subring of a right chain ring T such that 0 6= J ⊆ R and T/J is a

distributive (Bezout) right R/J-module.

Proof. The conditions (i), (ii) and (iii) are equivalent by Theorem 2.

(iii) ⇒ (iv) Let R be a semiprime right distributive (right Bezout) ring and Q be

a nonzero completely prime ideal of R which is a left waist. Then Q ⊆ J(R) and

consequently, by Lemma 12, there exists a right localization T of R at Q. Obviously,

T is a local ring and J = J(T ) = {qs−1|q ∈ Q, s ∈ R \ Q}. To end the proof of the

implication it is enough to show that J ⊆ R. Let j = qs−1 ∈ J . Since Q is a left waist

of R and s ∈ R \ Q, it follows that q ∈ Q ⊆ Rs and so j ∈ R.

(iv) ⇒ (v) This implication is a consequence of Lemma 5.

(v) ⇔ (vi) These conditions are equivalent by Proposition 7.

(v) ⇒ (iii) This implication is a consequence of Proposition 3. ✷
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If R is a ring and I is a right ideal of R, then analogously as in Section 2 we put

Pr(I) = {a ∈ R | sa ∈ I for some s ∈ R \ I}. Moreover, we denote the set Pr(0) by

Nr(R). Obviously Nr(R) is the set of right zero-divisors of R.

Lemma 14. Let R be a ring which is either right distributive or right Bezout. If I

is a proper right ideal of R such that Pr(I) ⊆ J(R), then I is a right waist of R.

Proof. The result is already known if R is a right distributive ring ([FT, Corollary

3.8]). Thus we assume that R is right Bezout and Pr(I) ⊆ J(R). Take a 6∈ I and

b ∈ I. By Proposition 4(ii) there exist c, d, e, f ∈ R such that a(1 − ce) = bde and

b(1 − df) = acf . If df 6∈ J(R), then f 6∈ J(R) and from acf ∈ I we get ac ∈ I. Thus

c ∈ Pr(I) ⊆ J(R) and so 1 − ce is invertible in R. Hence a ∈ bR ⊆ I, a contradiction.

Therefore we have df ∈ J(R) and consequently 1 − df is invertible in R. This gives

b ∈ aR and the proof is complete. ✷

In the next proposition we point out a condition under which the inclusion Pr(I) ⊆
J(R) holds for every right waist I of R. The proposition is a generalization of [FS,

Proposition 4.4].

Proposition 15. Let R be a ring such that Nr(R) ⊆ J(R). If I is a right waist of

R, then Pr(I) ⊆ J(R).

Proof. Assume that I is a right waists and take a ∈ Pr(I)\J(R). Then there exists

s 6∈ I with sa ∈ I. Hence I ⊆ sR and we have I = sB, where B = {x ∈ R | sx ∈ I}.

Since a 6∈ J(R) and B is a right ideal of R, there exists a maximal right ideal M of

R such that B 6⊆ M . Thus either I ⊂ sM or sM ⊆ I. The last possibility implies

that M ⊂ B, thus B = R and we get the contradiction s ∈ I. So we must have

sB = I ⊆ sM . Take any b ∈ B. There exists c ∈ M with sb = sc. Thus s(b − c) = 0

and so b − c ∈ J(R). It follows that b ∈ M , i.e, B ⊆ M , again a contradiction. ✷

Corollary 16. Suppose that T is a local ring and R is a subring of T containing

J which is either right distributive or right Bezout. Then a proper right ideal I of R is

a right waist if and only if Pr(I) ⊆ J(R).

Proof. Obviously Nr(R) ⊆ J . Moreover, by Proposition 3 we have J ⊆ J(R).

Hence Nr(R) ⊆ J(R) and we can apply Proposition 15. The rest is a consequence of

Lemma 14. ✷

Let I be a right ideal of R and S a multiplicative subset of R. The S-saturation of

I in R is defined as

IS−1 = {x ∈ R | xs ∈ I for some s ∈ S}.

The right ideal I is said to be S-saturated if IS−1 = I (cf [TZ]).

We conclude this paper with the following more precise result in case the Jacobson

radical of R is equal to J .

Proposition 17. Suppose that T is a local ring and R is a subring of T containing
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J and such that J(R) = J . If R is either right distributive or right Bezout, then for

every proper right ideal I of R the following conditions are equivalent:

(i) Pr(I) ⊆ J(R).

(ii) I is a right waist of R.

(iii) I is S-saturated, where S = R \ J(R).

(iv) I is a right ideal of T .

Proof. The conditions (i) and (ii) are equivalent by Corollary 16.

(i) ⇒ (iii) Let a ∈ IS−1. Then as ∈ I for some s ∈ R \ J(R). By (i) we have

s 6∈ Pr(I) and thus a ∈ I. Hence IS−1 ⊆ I. Since obviously I ⊆ IS−1, we get (iii).

(iii) ⇒ (iv) We can assume I 6= 0. Since I 6= R, (iii) implies I ⊆ J(R), and in

particular J 6= 0. Let a ∈ I and t ∈ T . From Lemma 5 we get t = rs−1 for some

r ∈ R, s ∈ R \ J(R). Since s 6∈ J(R), Proposition 3 implies that J(R) ⊆ Rs and

thus ar = bs for some b ∈ R. Since ar ∈ I, b ∈ IS−1 and so b ∈ I by (iii). Hence

at = ars−1 = b ∈ I.

(iv) ⇒ (i) Assume that s ∈ Pr(I). Then as ∈ I for some a ∈ R \ I. If s 6∈ J(R),

then s−1 ∈ T and hence a ∈ I, a contradiction. ✷
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