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Abstract

We show some analytical properties of SDDE including a closed
formula for a strong solution of ẋ(t) = x(t − 1) ◦ dBt with an initial
adapted process ϕt in the delay interval [−1, 0]. SDDE’s on a manifold
M depend intrinsically on a connection ∇. The main geometric result
in this article concerns the horizontal lift of solutions of SDDE on a
manifold M to an SDDE in the frame bundle BM , hence the lifted
equation should come together with the prolonged horizontal connec-
tion ∇H on BM .
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1 Introduction

For many different intrinsic reasons, most of systems, not to say all of them,
react retarded with respect to an input. In this context we mean delays
of nanoseconds in electronic systems, delays of few minutes in biochemical
processes and even delays of years in gravitational systems. Hence, this fact
alone is enough to show the importance of delay differential equations as an
appropriate mathematical model for these systems. Many relevant mathe-
matical contributions appeared in the last couple of decades, among many
others, we remark the book of J. Hale [5] and the work of S. Mohammed and
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contributors [8], [9], [7] (and references therein), whose stochastic approach
is closer to our interest in this paper.

To illustrate with a simple example in a space with elementary geometry,
consider the following exponential delay equation in the real line:

ẋ(t) = x(t − 1), (1)

with initial condition u : [−1, 0] → R in the delayed interval [−1, 0], where
u ∈ L1([−1, 0]). The solution is not expected to be C1: it would require
that u(−1) = u̇(0). Note that, in fact, even the continuity of the solution
in the integers (multiple of the delay r = 1 in this case) is not a necessary
condition for a certain function x(t) be a solution of equation (1) with initial
function u. In this sense, the set of (initial) conditions which determines
uniquely a certain solution must include conditions for the sequence x(n),
n = 0, 1, 2, . . . of values in the integers. In this paper, most of time, we shall
look for continuous solutions in the integers.

To find solutions of equation (1), instead of considering the more intricate
and difficult approach of integrating in time:

x(t) = x(0) +

∫ t−1

0
x(s) ds,

one can divide the equation into intervals of the same length of the delay
r = 1. Assume for instance that the initial function in the delayed interval
is constant u(t) ≡ 1, for t ∈ [−1, 0]. To obtain a continuous solution, one
immediately finds that if t ∈ [0, 1] then x(t) = 1 + t, for t in [1, 2] one
computes x(t) = t2/2 − t + 3/2, and so on. By induction, one sees that if
t ∈ [n − 1, n] then x(t) is a polynomial on t of degree n. A nice and nested
formula for these polynomials reads:

x(t) =
n∑

k=0

(t − k + 1)k

k!
for t ∈ (n − 1, n]. (2)

See e.g. Driver and Driver [3].
Delay equations in differentiable manifolds involve a parallel transport

in order to map vectors from a tangent spaces to another (in the above
example in R one uses the parallel transport induced by the canonical flat
connection). Hence, in this richer geometrical context, delay equations de-
pends strongly on a chosen connection. Let M be a differentiable manifold,
X a vector field of M , ∇ a connection on M and α : [−1, 0] → M an initial
continuous trajectory. The solution of a delay equation on M (with retard
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r = 1, say), when it exists, is a curve γ(t) such that the derivative γ̇(t) equals
the parallel transport of X(γ(t − 1)) along γ from Tγ(t−1)M to Tγ(t)M , for
t ≥ 0. In, symbols:

dγ

dt
(t) = P∇

t,t−1(γ)(X(γ(t − 1)))

γ(t) = α(t) for all t ∈ [−1, 0]

where P∇
t,s(γ) : Tγ(s)M → Tγ(t)M is the parallel transport along γ induced

by ∇.
Horizontal processes in the frame bundle BM of a manifold M is a basic

concept in stochastic geometry and stochastic dynamical systems, e.g. par-
allel transport, development, anti-development, horizontal Brownian motion
and others, they are all constructed based on horizontal processes. The main
question we address in this article is the following: is the horizontal lift of a
stochastic differential delay equation (SDDE) a SDDE in BM as well? As
we said before, once a SDDE depends on the connection in the manifold,
this question carries intrinsically another one: the lifted SDDE in BM (if
exists at all!) is taken with respect to which (prolonged) connection in BM?

The article is organized as follows: in the next section we deal with
some extensions of well known results for deterministic systems to stochastic
systems in the real line. In section 3 we present the main geometric results
of this paper, in particular we prove that the horizontal lift of a solution
of the delay equations in M with connection ∇ corresponds to a solution
of a delay equation on BM where the parallel transport in BM is done
with respect to the horizontal prolonged connection ∇H . Moreover we show
that, surprisingly, this delay equation in BM can be substituted to another
stochastic equation (without delay) but the integration is performed with
respect to a different semimartingale. Finally, in the appendix we explore
further the formulas presented in section 2 to get formulas for left invariant
delay equations in Lie groups with flat connection.

2 Stochastic delay equation in the real line

Consider the following stochastic delay exponential equation:

du(t) = u(t − 1) ◦ dBt (3)

It is well known that in this case, the Stratonovich and Itô equations coin-
cide, see e.g. S. Mohammed [9].
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Assume that the initial condition u(t) = 1 for t ∈ [−1, 0]. Like in
the deterministic case, one can divide the equation into intervals of the
same length of the delay r = 1. We shall denote by u(t) the corresponding
continuous solution. Next proposition presents a formula for this unique
(strong) solution in terms of polynomials of Brownian motions.

Proposition 2.1 The unique strong continuous solution u(t) of the stochas-
tic delay exponential equation (3) is given by:

u(t) =
n∑

k=0

(B(t−k+1))
k

k!
for t ∈ (n − 1, n].

Proof:

Continuity is obvious. By Itô formula we have that

Bk
(t−k+1) = k

∫ (t−k+1)

0
Bk−1

s ◦ dBs.

So, by definition:

u(t) = 1 +
n∑

k=1

1

(k − 1)!

∫ (t−k+1)

0
Bk−1

s ◦ dBs.

Hence:

du(t) =

(
n∑

k=1

Bk−1
(t−k+1)

(k − 1)!

)
◦ dBt.

= u(t − 1) ◦ dBt

Uniqueness follows by construction and the requirement of continuity at the
integers.

¤

Like in the deterministic case (Driver and Driver [3]), the study of the
constant initial condition u(t) = 1 in t ∈ [−1, 0] is not only interesting by
itself, but, above all, it helps on finding solutions for general initial process
(ϕ)t∈[−1,0] by variation of parameters. We shall denote by u(j)(t) the transla-

tions by j, j = 1, 2, . . . of the stochastic exponential solution u(t) (= u(0)(t)),
precisely, u(j)(t) is a solution of equation (3) with

u(j)(t) =





0 for t ∈ [−1, j − 1)
1 for t ∈ [j − 1, j]
n−j∑

k=0

(B(t−k+1) − Bj)
k

k!
for t ≥ j, with t ∈ (n − 1, n];
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Note that the unique point of discontinuity of u(j)(t) is at t = j − 1. Next
proposition provides a variation of parameter formula for the continuous
solution x(t) given an initial process (ϕ)t∈[−1,0].

Proposition 2.2 The unique continuous (strong) solution x(t) of equation
(3) given an initial process (ϕ)t∈[−1,0] which is Ft+1–adapted is

x(t) = u(1)(t)ϕ(0)

+
n−1∑

k=1

u(k+1)(t)

∫ k

k−1

∫ sk−1

k−2
. . .

∫ s3−1

1

∫ s2−1

0
ϕ(s1−1) ◦ dBs1 . . . ◦ dBsk

+

∫ t

n−1

∫ sn−1

n−2
. . .

∫ s2−1

0
ϕ(s1−1) ◦ dBs1 . . . ◦ dBsn

,

for t ∈ (n − 1, n]. (4)

Proof:

The continuity follows easily from the fact the all the summands are
continuous in the interval (n − 1, n]. Moreover, since each u(j)(t), j =
1, 2, . . . , n are solutions of the delay equation (3) and u(n)(t) is constant in
the interval (n − 1, n] then the Stratonovich differential

dx(t) = u(1)(t − 1)ϕ0 ◦ dBt

+

n−2∑

k=1

u(k+1)(t − 1)

(∫ k

k−1
. . .

∫ s3−1

1

∫ s2−1

0
ϕ(s1−1) ◦ dBs1 . . . ◦ dBsk

)
◦ dBt

+

∫ t−1

n−2
. . .

∫ s2−1

0
ϕ(s1−1) ◦ dBs1 . . . ◦ dBt.

= x(t − 1) ◦ dBt

¤

The following is a well expected result:

Corollary 2.3 If the initial condition ϕ is deterministic, then the solution
x(t) ∈ Hn for t ∈ (n − 1, n] where Hnis the n–th Wiener chaos.

Proof: The first summand in formula (4) is a product of an (n− k)–degree
polynomial of Brownian motion times

∫

[0,k]k
f(s1, . . . , sk) ◦ dBs1 . . . ◦ dBsk

5



where f : [0, k]k → R is given by

f(s1, . . . , sk) =

ϕ(s1 − 1) · 1[0,s2−1](s1) · 1[1,s3−1](s2) . . . 1[k−2,sk−1](sk − 1) · 1[k−1,k](sk).

If ϕ 6= 0, the above integral is in Hk (see, e.g. Nualart [11]), hence, the
product is in Hn. For the second summand the argument is analogous.

¤

Corollary 2.4 The continuous solution x(t) is linear with respect to the
initial function ϕ in the delayed interval [−1, 0].

Proof:

It follows immediately from formula (4).
¤

We remark that the linearity above refers a.s. to fixed f, g ∈ C([−1, 0])
and λ ∈ R. For almost all ω the corresponding linear operator is not con-
tinuous, cf. Mohammed [9, Cor. III.3.1].

2.1 A remark on a weak solution

A weak solution of the SDDE (3) can be nicely written in terms of a non-
delay stochastic integral when one observes the following trivial change of
variables:

Lemma 2.1 Let x(t) be an Ft adapted process. Then for a, b ≥ 1

∫ b

a

x(t − 1) dBt =

∫ b−1

a−1
x(t) dB̃t

where B̃t is the Brownian motion Bt − B1.

Proof: The result follows trivially when one uses the limit in probability of
the Riemann sum in the integrals.

¤

Using the above formula, a weak solution can be written, for t ≥ 1:

x(t) = x1 +

∫ t−1

0
x(t) ◦ dB̃t.
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3 Delay Equations in Manifolds

We start this section defining formally a SDDE on a differentiable manifold
M endowed with a connection ∇. Let A1, . . . , Am be vector fields in M
and (Ω,F , (Ft)t≥0,P) be a complete filtered probability space satisfying the
usual conditions. Let (Mt)t≥0 be a R

m-semimartingale adapted to (Ft)t≥0,
we suppose that M0 = 0. Finally, let (αt) be a deterministic trajectory in
M . We consider a Stratonovich SDDE on the manifold M :

dxt =

m∑

k=1

P∇
t,t−1(x)(Ak(xt−1)) ◦ dMk

t , (5)

xt = αt for t ∈ [−1, 0].

The theory of SDDE is a particular case of the theory of stochastic
functional differential equations (see [7], [8], [9]).

A stochastic process φt on M adapted to the filtration (Ft)t≥0 is called a
local solution of the (5) if for all t ∈ [−1, 0], φt = αt, there exists a stopping
time T > 0 such that for all t ≤ T and for any F ∈ C∞(M):

F (φt) = F (φ0) +
m∑

k=1

∫ t

0
P∇

r,r−1(φ)(Ak(φr−1))F (φr) ◦ dMk
r

In this section we prove that the horizontal lift of a solution of equation (5)
is a solution of the following SDDE on BM :

dxt =
m∑

k=1

P∇H

t,t−1(x)(AH
k (xt−1)) ◦ dMk

t , (6)

xt = αH
p t for t ∈ [−1, 0],

where p ∈ π−1(α(0)), αH
p is the horizontal lift of α such that αH

p 0 = p , AH
k

is the horizontal lift of Ak for k = 0, 1, . . . , m and the connection ∇H is the
horizontal lift of ∇.

We begin by recalling some fundamental facts on differential geometry,
we indicate e.g. Bishop and Crittenden [1], Cordero et al. [2] or Kobayashi
and Nomizu [6]. Let M be a differentiable manifold, BM the frame bundle
of M consists of all linear isomorphism p : R

n → TxM for some x ∈ M ,
with projection π(p) = x. The fibre bundle BM is a principal bundle over
M with structure group GL(n, R) and Lie algebra denoted by Gl(n, R).

Let α : I → M be a curve in M . The horizontal lift of α to BM , can be
written as the composition

αH
p := P∇

t,0(α) ◦ p (7)
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where P∇
t,s(α) : Tα(s)M → Tα(t)M is the parallel transport along the curve

α. A connection ∇ on M determines a decomposition of each tangent space
TpBM into the direct sum of the vertical subspace VpBM = Ker(π∗(p))
and the horizontal subspace HpBM of the tangent at p of horizontal lifts
of curves in M . This decomposition naturally defines the horizontal lift
of v ∈ TxM at p ∈ BM (π(p) = x) as the unique tangent vector vH ∈
HpBM such that π∗(p)vH = v. Let {e1, . . . , ed} be the standard basis
of R

n, the standard vector fields {E[e1], . . . , E[en]} in BM are the unique
horizontal fields such that π∗(p)E[ei](p) = p(ei) for every p ∈ BM . The
distribution {Hp : p ∈ BM} is the span of the standard vector fields E[ei].
Let A ∈ Gl(n, R), A∗(p) = p∗(Id)A where p is considered as the application
p : GL(n, R) → BM , p(g) = p ◦ g. Obviously, A∗(p) is a vertical vector.
Let {Ei,j : 1 ≤ i, j ≤ n} be the standard basis of Gl(n, R), the distribution
{VpBM : p ∈ BM} is the span of the vertical vector fields E∗

i,j . We observed
that {E[ei], E

∗
i,j : 1 ≤ i, j ≤ n} parallelizes BM .

There are many ways of extending the connection ∇ of M to BM . We
are interested in the horizontal lift ∇H , see e.g. Cordero et al. [2, Chap.
6]. In order to simplify the exposition, from here on, we assumed that the
connections are torsion free. The horizontal lift ∇H is defined as the unique
connection on BM which satisfies:

∇H
A∗B∗ = (AB)∗

∇H
A∗XH = 0

∇H
XH A∗ = 0

∇H
XH Y H = (∇XY )H

We have the following commutative property of the parallel transport in
BM with respect to the parallel transport in M :

Proposition 3.1 Let ∇ be a connection on M , ∇H its horizontal lift to
BM and α a curve in BM . Then, for any v ∈ Tπ◦α(0)M we have that

P∇H

0,t (α)(vH) = (P∇
0,t(π ◦ α)(v))H

Proof:

See Cordero et al. [2, Prop. 6.2.21].
¤

Now, we present a fundamental lemma for the next results of this section.

8



Lemma 3.1 Let γ be a solution of the deterministic delay differential equa-
tion

dx

dt
(t) = P∇

t,t−1(x)(X(x(t − 1)))

x(t) = α(t) for t ∈ [−1, 0].

where ∇ is a connection on M , X a vector field in M and α : [−1, 0] → M
a differentiable curve. Then the horizontal lift γH

p is a solution of

dx

dt
(t) = P∇H

t,t−1(x)(XH(x(t − 1)))

x(t) = αH
p (t) for t ∈ [−1, 0].

Proof:

We apply Proposition 3.1 to γH
p and X(γ(t − 1)), thus:

dγH
p

dt
(t) = (

dγ

dt
(t))H

= (P∇
t,t−1(γ)(X(γ(t − 1)))H

= P∇H

t,t−1(γ
H
p )(XH(γH

p (t − 1)))

and obviously γH
p (t) = αH

p (t) for t ∈ [−1, 0].
¤

The deterministic result of last lemma extends to stochastic systems as
well:

Proposition 3.2 Let γ be a solution of the SDDE (5) on M with connection
∇. Then γH

p is solution of the SDDE (6) on BM with connection ∇H .

Proof:

Apply the above lemma and the transfer principle (see e.g. Emery [4]).
¤

Our second main result in this section shows that, surprisingly, the hor-
izontal lift of γ which was written as a solution of a delay equation, can
also be written as a solution of a stochastic equation without delay, but the
integration here is taken with respect to another semimartingale. This SDE
(without delay) is going to be written in the following canonical form:

dxt =
d∑

i=1

E[ei](xt) ◦ dN i
t , (8)
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where Nt is the R
d-semimartingale

∫ t

0 θ ◦ dxH
p t and θ is the canonical 1-form

on BM defined by θ(p) = p−1π∗(p) (see Shigekawa [12]). Note that the
global fields of frames E[v] (where v ∈ R

n and E[v] = v1E[e1]+. . .+vnE[en]),
are parallel for ∇H along horizontal curves.

Proposition 3.3 Let γ be a curve in M , and v ∈ R
n. Then

P∇H

t,0 (γH
p )(E[v](γH

p (0))) = E[v](γH
p (t))

Proof:

Again, by Proposition 3.1, formula (7) and definition:

P∇H

t,0 (γH
p )(E[v](γH

p (0))) = (P∇
t,0(γ)(π∗(p)(E[v](γ(0)))))H

= (P∇
t,0(γ)(p(v)))H

= (γH
p (t)(v))H

= E[v](γH
p (t)).

¤

Corollary 3.4 Let γ be a solution of the SDDE (5) on M with connection
∇. Then γH

p is solution of the SDE (8) on BM .

Proof:

It follows immediately form the fact that the canonical vector fields E[ei]
are invariant for parallel transport along γH

p .
¤

Appendix: Delay equations in Lie groups

In this appendix we explore further applications of the general form of
the (strong) solutions given in Section 2 to get explicit formulas for solutions
of delay equations in Lie groups. Consider for example the following SDDE
in GL(n, R):

dg(t) = A g(t − 1) dt + g(t − 1)B ◦ dWt (9)

with initial condition, say, g(t) = g0, for t ∈ [−1, 0], where A and B are
n × n-matrices, This equation corresponds to a delay equation in the Lie
group GL(n, R) which involves vectors fields which are right invariant (A(·),
in the deterministic part) and left invariant ((·)B, in the diffusion part), en-
dowed with the flat connection. By representation, a delay equation in any
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Lie group involving right and/or left invariant vector fields can be written
in this matrix form. We remark that applications of this kind of linear de-
lay stochastic equations are particularly interesting in mathematical biology
once most of biological transition of phases depends naturally on a certain
delay, see e.g. Murray [10]. Next proposition presents some formulas for
(strong) solutions of equations of this kind.

Proposition 3.5 Given the initial condition g(t) = g0 for t ∈ [−1, 0], the
(strong) solutions of the SDDE’s:

1. dg(t) = A g(t) dt + g(t − 1)B ◦ dWt;

2. dg(t) = A g(t − 1) dt + g(t − 1)B ◦ dWt;

3. dg(t) = A g(t) dt + B g(t − 1) ◦ dWt;

4. dg(t) = A g(t − 1) dt + B g(t − 1) ◦ dWt,

are given, respectively, by:

1. g(t) = eAt g0

(∑n
k=0

(BW(t−k+1))
k

k!

)
;

2. g(t) =
(∑n

k=0
Ak (t−k+1)k

k!

)
· g0 ·

(∑n
k=0

Bk(W(t−k+1))
k

k!

)
;

3. g(t) = eAt g0

(∑n
k=0

(BW(t−k+1))
k

k!

)
, whenever A commutes with B;

4. g(t) =

(∑n
k=0

AB(t−k+1)W k

(t−k+1)

k!

)
· g0, whenever A commutes with B.

Proof:

Straightforward from Itô’s formula.
¤
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