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Abstract

Lyapunov graphs carry dynamical information of gradient-like flows as well as topological

information of its phase space which is taken to be a closed orientable n-manifold. In this article

we will show that an abstract Lyapunov graph L(h0, . . . , hn, κ) in dimension n greater than

two, with cycle number κ, satisfies the Poincaré-Hopf inequalities if and only if it satisfies the

Morse inequalities and the first Betti number γ1 ≥ κ. We also show a continuation theorem

for abstract Lyapunov graphs with the presence of cycles. Finally, a family of Lyapunov

graphs L(h0, . . . , hn, κ) with fixed pre-assigned data (h0, . . . , hn, κ) is associated with the Morse

polytope, Pκ(h0, . . . , hn), determined by the Morse inequalities for the given data.

1 Introduction

Lyapunov graphs were initially introduced by Franks in [10]. We use these graphs as bookkeeping

devices that retain at the same time local and global homological information of the flow and its

phase space, a closed orientable n-manifold M .

Given a continuous flow φt : M →M , on a closed n-manifold M , results of Conley [3] imply the

existence of a continuous Lyapunov function f : M → R associated with the flow with the property
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that it strictly decreases along the orbits outside the chain recurrent set, that is, if x /∈ R then

f(φt(x)) < f(φs(x)) for t > s and is constant on the chain recurrent components of R. We assume

that R is a finite component chain recurrent set where each component Rk is an isolated invariant

set.

Define the following equivalence relation on M : x ∼f y if and only if x and y belong to the

same connected component of a level set of f . We call M/ ∼f a Lyapunov graph. Each vertex vk

represents components Rk of the chain recurrent set R and hence can be labelled with dynamical

invariants. Each edge represents a level set times an interval and hence can be labelled with

topological invariants of the level set.

One can also define an abstract Lyapunov graph in dimension n as a finite, connected, oriented

graph, that has no oriented cycles. Also, each vertex is labelled with a chain recurrent flow on

a compact n-dimensional space and each edge is labelled with topological invariants of a closed

(n − 1)-dimensional manifold. This definition is far too general for our purposes. We will label

the vertex vk of an abstract Lyapunov graph with the dimensions of the Conley homology indices,

dimCHj(Rk) = hj(vk), with j = 0, . . . n. Hence, each vertex is labelled with a list of nonnegative

integers (h0(vk), . . . , hn(vk), κ(vk)), where κ(vk) is the cycle number of the vertex vk, which is a

nonnegative integer weight on vk. An alternative notation is to label the vertex with hj(vk) = nj

whenever nj 6= 0. And κ(vj) = kj whenever kj 6= 0. The latter notation is convenient whenever

(h0(vk), . . . , hn(vk), κ(vk)) has many zero entries. Also, for simplicity we will omit reference to the

vertex vk whenever possible. We choose to label the edges with the Betti numbers of a closed

(n−1)-dimensional manifold, a Betti number vector. A Betti number vector is a list of nonnegative

integers (γ0, γ1, . . . , γn−1, γn), where γn−k = γk, γ0 = γn = 1 and γn/2 is even if n is even1. An

abstract Lyapunov graph of Morse type will be defined subsequently, but basically it is an abstract

Lyapunov graph with each vertex v labelled with a non-degenerate singularity of Morse index j,

i.e., hj(v) = 1, and with all cycle number of vertices equal to zero.

Given an abstract Lyapunov graph L with vertex set V and cycle rank2 κL, we will denote it by

L(h0, . . . , hn, κ), where hj =
∑

vk∈V
hj(vk), and κV =

∑

vk∈V
κ(vk) and κ = κL + κV . We will refer

to κ as the cycle number of the graph. This definition is easily extended to Lyapunov semi-graphs.

It is easy to see that the cycle number of an abstract Lyapunov graph of Morse type is equal to its

cycle rank.

1We relax the condition of γi being even in the case 2i = 0 mod 4 when considering Betti number vectors in the

Morse inequalities.
2The cycle rank of a graph is the maximum number of edges that can be removed without disconnecting the

graph.
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In [1] the Poincaré-Hopf inequalities (2)–(4) with κ = 0 are introduced for flows on isolating

blocks B and their Lyapunov semi-graph3 LB, in order to ensure the continuation of LB to a Morse

type Lyapunov semi-graph. These inequalities involve the Betti numbers of the exiting and entering

boundaries of B. However, in [1] we considered only abstract Lyapunov semi-graphs in dimensions

greater than two with no non-oriented cycles, that is, κ = 0. The dimension two case is much easier

and was completely characterized in [1] with κ ≥ 0.

In this article we will treat Lyapunov graphs in dimensions greater than two in full generality,

that is, we will consider graphs with cycle number κ ≥ 0. In Theorem 1.1 and Theorem 1.2, we

prove more general continuation theorems than the ones in [1].

We say that a Lyapunov graph (resp., a Lyapunov semi-graph) L(h0, . . . , hn, κ) satisfies the

Poincaré-Hopf inequalities if the data (h0, . . . , hn, κ) satisfies the Poincaré-Hopf inequalities (5)–(7)

(resp., (2)–(4)).

Theorem 1.1 Consider an abstract Lyapunov semi-graph LB where the vertex v associated to B

is labelled with (h0(v), . . . , hn(v), κv). It admits continuations to Morse type Lyapunov semi-graphs

with cycle rank greater or equal to κv if and only if it satisfies the Poincaré-Hopf inequalities (2)–(4),

where κv ≤ min{h1 − (e− + h0 − 1), hn−1 − (e+ + hn − 1)}. Moreover, the number of possible

continuations is obtained.

The inequalities (2)–(4) involve the number of exiting, e−, and entering, e+, boundaries of B as

well as their Betti numbers. Theorem 1.1 implies the following theorem.

Theorem 1.2 Consider an abstract Lyapunov graph L(h0, . . . , hn, κ). It admits continuations to

abstract Lyapunov graphs of Morse type with cycle rank greater or equal to κ if and only if it satisfies

the Poincaré-Hopf inequalities (2)–(4) at each vertex, where κ ≤ min{h1−(h0−1), hn−1−(hn−1)}.

Moreover, the number of possible continuations is obtained.

Certain topological invariants of the manifold, as well as invariants of the flow, impose

restrictions on the Lyapunov graph. For instance, in [6] it was shown that the cycle rank κ of a

Lyapunov graph is a lower bound to the Cornea genus4 of the manifold g(M), which in turn is always

less than or equal to the first Betti number of M , κ ≤ g(M) ≤ γ1(M). This generalizes a theorem

3This terminology is used for the first time in this article and formalizes the distinction between a graph and a

dangling graph. See Section 2
4This genus is the maximal number of mutually disjoint, smooth, compact, connected, two-sided codimension one

submanifolds that do not disconnect the smooth closed manifold M . See [4].
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of Franks [10] which asserts that if M is simply connected then κ = 0. Other characterization

theorems of flows on manifolds are made possible by using Lyapunov graphs, see [5], [7], [8], [9].

A more difficult question which has been answered in some cases, is that of the realization of an

abstract Lyapunov graph as a flow on some manifold. If the graph carries enough dynamical and

topological invariants this is possible.

One of the objectives of this paper is a small step in this direction. It is a well known result of

Morse that if an abstract dynamical data list does not satisfy the Morse inequalities for a closed

manifoldM then there is no flow onM with this data. Note that an abstract Lyapunov graph carries

dynamical data but carries no information of the manifold it is realizable on. This means that the

Morse inequalities cannot be used to verify the realizability or not of this dynamical data. However,

note that the Poincaré-Hopf inequalities (5)–(7) are verifiable for the dynamical data of an abstract

Lyapunov graph. We show in Theorem 1.3 that for an abstract Lyapunov graph with κ ≥ 0 the

Poincaré-Hopf inequalities (5)–(7) are necessary and sufficient conditions for the generalized Morse

inequalities (1) to hold for some Betti number vector. As a consequence of this fact, if the graph

does not satisfy the Poincaré-Hopf inequalities, it will not satisfy the Morse inequalities (1) for any

choice of Betti number vector and hence we screen out Lyapunov graphs which cannot be realized

as a continuous flow on any manifold. An abstract Lyapunov graph L(h0, . . . , hn, κ) satisfies the

Morse inequalities and the κ-connectivity inequality γ1 ≥ κ if there exists a Betti number vector

(γ0, . . . , γn) satisfying (1) and γ1 ≥ κ.

Theorem 1.3 Given an abstract Lyapunov graph L(h0, . . . , hn, κ), it satisfies the Poincaré-Hopf

inequalities (5)–(7) if and only if it satisfies the Morse inequalities (1) and the inequality γ1 ≥ κ

for some Betti number vector (γ0, . . . , γn).

Conley in [3] proves that the following generalized Morse inequalities are valid, where γi is the

i-th Betti number of M and hi is the dimension of the i-th Conley homology index as defined
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previously.

γn − γn−1 +− . . .± γ2 ± γ1 ± γ0 = hn − hn−1 +− . . .± h2 ± h1 ± h0 (n)

γn−1 − γn−2 +− . . .± γ2 ± γ1 ± γ0 ≤ hn−1 − hn−2 +− . . .± h2 ± h1 ± h0 (n− 1)
...

...

γj − γj−1 +− . . .± γ2 ± γ1 ± γ0 ≤ hj − hj−1 +− . . .± h2 ± h1 ± h0 (j)

γj−1 − γj−2 +− . . .± γ2 ± γ1 ± γ0 ≤ hj−1 − hj−2 +− . . .± h2 ± h1 ± h0 (j− 1)
...

...

γ2 − γ1 + γ0 ≤ h2 − h1 + h0 (2)

γ1 − γ0 ≤ h1 − h0 (1)

γ0 ≤ h0 (0)

(1)

Once an abstract Lyapunov graph L(h0, . . . , hn, κ) satisfies the Poincaré-Hopf inequalities,

Theorem 1.3 guarantees the existence of a Betti number vector which satisfies the Morse inequalities

(1) and γ1 ≥ κ and vice-versa. A natural problem is to determine all possible Betti number vectors

which satisfy the Morse inequalities and γ1 ≥ κ for the dynamical data (h0, . . . , hn, κ) on L.

Results from network-flow theory used in the proof of the above theorem lead to a method to

construct all Betti number vectors satisfying (1) and γ1 ≥ κ. We also establish that the inequalities

(1), γ1 ≥ κ and the constraints a Betti number vector must satisfy, namely γ0 = γn = 1, γj = γn−j,

for j = 1, . . . , n − 1, γ ≥ 0, define an integral polytope, i.e., a bounded polyhedron with extreme

points. Furthermore, this polytope contains a (componentwise) maximum element and its extreme

points are Betti number vectors. We refer to this polytope as the Morse polytope. We will see

that this is the same as saying that the Morse polytope coincides with the convex hull of the Betti

number vectors. The mentioned construction method establishes a relationship between graphs

in the family of Lyapunov graphs L(h0, . . . , hn, κ) with cycle number κ, with integral elements in

the Morse polytope. These results generalize analogous ones obtained in [2] for the case κ = 0.

Finally, for the family of Lyapunov graphs L(h0, . . . , hn, κ), the associated polytope Pκ(h0, . . . , hn)

is contained in P(h0, . . . , hn), the polytope corresponding to the case κ = 0. Note that if κ = 0,

Pκ(h0, . . . , hn) = P(h0, . . . , hn).

This article is divided in the following sections. Section 2 will briefly introduce explosions and

implosions of abstract Lyapunov graphs in order to define the continuation of a graph. Section 3

will introduce more general Poincaré-Hopf inequalities with parameter κ (2)–(4) for isolating blocks

than the ones obtained in [1] in the case κ = 0 and the more general Poincaré-Hopf inequalities

with parameter κ (5)–(7) for closed manifolds than the ones obtained in [2] in the case κ = 0.
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Section 4 presents the explosion algorithm with cycles which produces a linear hcd
κ -system whose

solution guarantees the continuation results in the presence of cycles. In Section 5, we show that

this hcdκ -system has a solution if and only if the Poincaré-Hopf inequalities with parameter κ for

isolating blocks are satisfied. Hence, we prove a continuation theorem for abstract Lyapunov graphs

in the presence of cycles. In Section 6 we present the reduced hcd
κ -system which has a solution if and

only if the Poincaré-Hopf inequalities with parameter κ for closed manifolds are satisfied. We use

the solutions of the reduced hcdκ -system to establish the sufficiency of the Poincaré-Hopf inequalities

with parameter κ in order for the Morse inequalities and γ1 ≥ κ to hold and lastly, we prove the

necessity. In Section 7 we describe the Morse polytope Pκ(h0, . . . , hn). Also, additional geometric

properties of the polytope are presented.

2 Lyapunov Graphs, Semi-Graphs and Isolating Blocks

There is a natural correspondence between a closed manifold and a Lyapunov graph. In order to

establish a correspondence with the isolating block we need to define a Lyapunov semi-graph. For

this purpose, we need to extend the notion of a directed graph to allow for a distinguished vertex,

which we will denote by ∞.

Given a finite set V we define a directed semi-graph G′ = (V ′, E ′) as a pair of sets V ′ = V ∪{∞},

E ′ ⊂ V ′ × V ′. As usual, we call the elements of V ′ vertices and since we regard the elements of

E ′ as ordered pairs, these are called directed edges. Furthermore the edges of the form (∞, v) and

(v,∞) are called semi-edges (or dangling edges as in [7]). Note that whenever G′ does not contain

semi-edges G′ is a graph in the usual sense. The graphical representation of the graph will have the

semi-edges cut short.

An isolating block N of an isolated invariant set Λ with entering set for the flow N+ and

exiting set for the flow N−, can be associated to a Lyapunov semi-graph LN , consisting of one

vertex labelled with the dimensions of the Conley homology indices of Λ and entering and exiting

labelled semi-edges. The number of incoming (outgoing) edges e+ (e−) correspond to the number

of connected components of N+ (N−). The labels on the edges correspond to the Betti numbers of

the closed codimension one submanifolds N+ and N−.

The following definition is crucial to what follows in this paper. It will classify singularities with

h` = 1 (for Morse flows these correspond to the non-degenerate singularities of Morse index `) by

distinguishing the effect it causes on the level sets N− and N+.

A singularity, respectively a vertex, labelled with h` = 1 is `-d if it has the algebraic effect of
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increasing the `-th Betti number of N+ or respectively, the corresponding β` label on the incoming

edge. A singularity, respectively a vertex labelled with h` = 1 is (` − 1)-c if it has the algebraic

effect of decreasing the (`− 1)-th Betti number of N+ or respectively, the corresponding β`−1 label

on the incoming edge. In the case n = 2i = 0 mod 4, a singularity, respectively a vertex labelled

with hi = 1 is β-i, if all Betti numbers are kept constant. See the corresponding semi-graphs in

Figure 1.

β`−1(N
+) = β − 1

β`−1(N
−) = β

h` = 1h` = 1

β-i(`− 1)-c`-d

h` = 1

β`(N
+) = β + 1

β`(N
−) = β

u uu
?

?

?

?

?

?

Figure 1: The three possible algebraic effects.

An abstract Lyapunov graph of Morse type is an abstract Lyapunov graph that satisfies the

following:

1. every vertex is labelled with hj = 1 for some j = 0, . . . , n and the cycle number of each vertex

equal to zero.

2. the number of incoming edges, e+, and the number of outgoing edges, e−, of a vertex must

satisfy:

(a) if hj = 1 for j 6= 0, 1, n− 1, n then e+ = 1 and e− = 1;

(b) if h1 = 1 then e+ = 1 and 0 < e− ≤ 2; if hn−1 = 1 then e− = 1 and 0 < e+ ≤ 2;

(c) if h0 = 1 then e− = 0 and e+ = 1; if hn = 1 then e+ = 0 and e− = 1.

3. every vertex labelled with h` = 1 must be of type `-d or (` − 1)-c. Furthermore if

n = 2i = 0 mod 4 and hi = 1 then v may be labelled with β-i.
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Inspired by Conley’s idea of continuation of an isolated invariant set to a simpler one, Reineck

in [12] proved a continuation result showing that any isolated invariant set on a manifold can be

continued to an isolated invariant set of a gradient flow. How exactly can this be interpreted in the

Lyapunov graph setting? This was answered in [1] with a continuation theorem for all Lyapunov

graphs in dimension 2 and in dimension n > 2 with κ = 0. A graph which does not admit a

continuation to a Morse type Lyapunov graph cannot be realized as a flow on any manifold.

The notion of vertex explosion is used to define continuation of abstract Lyapunov graphs. Let

v be a vertex on an abstract Lyapunov graph labelled with (h0(v), h1(v) . . . , hn(v), κv). A vertex v

can be exploded if v can be removed and replaced by an abstract Lyapunov graph I of Morse type

with cycle rank greater or equal to κv. The graph I must respect the orientations and labels of the

incoming and outgoing edges of v. In other words, the new graph obtained must be oriented and

with cycle number greater or equal to κv. The incoming (outgoing) edges of v, must be incoming

(outgoing) edges on vertices of I and all labels on the edges must respect the restrictions of the

Morse type vertices. Moreover,

hλ(v) =
k
∑

j=1

hλ(vj), for λ = 1, . . . , n− 1, where vj ∈ I.

An abstract Lyapunov graph L(h0, . . . , hn, κ) admits a continuation to an abstract Lyapunov

graph of Morse type LM if each vertex can be exploded such that LM has cycle rank greater or

equal to κ.

Given an abstract Lyapunov graph L(h0, . . . , hn, κ) with cycle number equal to κ, one can define

a graph implosion of L as an abstract Lyapunov graph LC with:

1. one saddle type vertex ν labelled with (h1(ν), . . . , hn−1(ν), κ) where
∑

v∈V

hλ(v) = hλ(ν),

where V is the set of vertices of L;

2. the vertex ν will have
∑

v∈V hn(v) = e+, incoming edges and will have
∑

v∈V h0(v) = e−

outgoing edges;

3. the incoming edges of ν are outgoing edges of e+ vertices labelled with hn = 1 and the outgoing

edges of ν are incoming edges of e− vertices labelled with h0 = 1;

4. the labels of all the edges satisfy B+
j = B−j = 0, for all j 6= 0, n − 1, and B+

j = B−j = 1, for

j = 0, n− 1.

8



In Section 6 examples are presented.

3 Poincaré-Hopf Inequalities with Connectivity Parameter

κ

3.1 Poincaré-Hopf Inequalities with κ for Isolating Blocks

In [1] we consider the Poincaré-Hopf inequalities (2)–(4), in the case κ = 0 for an isolated invariant

set Λ with isolating block N , with entering set for the flow N+ and exiting set for the flow N−,

under the hypothesis that the flow satisfies the Conley index duality condition on components of

the chain recurrent set. These inequalities were obtained by analysis of long exact sequences of

the index pairs (N,N−) and (N,N+), for Λ and for the isolated invariant set of the reverse flow,

Λ′, where rankHi(N,N
−) = hi, rankHi(N,N

+) = hn−i, rankH0(N
−) = e−, rankH0(N

+) = e+,

rankH0(N) = 1 and rank(Hi(N
±)) = B±i .

We will now consider these inequalities in the presence of a parameter κ for an isolating block N .

Thus, the Poincaré-Hopf inequalities for isolating blocks with this parameter will be the collection
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of the following constraints (2)–(4).
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hi ≥ −(B
+
i−1 −B−i−1) + (B+

i−2 −B−i−2) +− . . .± (B+
2 −B−2 )± (B+

1 −B−1 )

− (hi+2 − hi−1) + (hi+3 − hi−2) +− . . .± (h2i−1 − h2)

±(h2i − h1)± [(h2i+1 − h0) + (e+ − e−)]

hi+1 ≥ −
[

−(B+
i−1 −B−i−1) + (B+

i−2 −B−i−2) +− . . .± (B+
2 −B−2 )± (B+

1 −B−1 )

− (hi+2 − hi−1) + (hi+3 − hi−2) +− . . .± (h2i−1 − h2)

±(h2i − h1)± [(h2i+1 − h0) + (e+ − e−)]]

n = 2i
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±(h2i−2 − h2)± (h2i−1 − h1)± [(h2i − h0) + (e+ − e−)]

hi ≥ −
[
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i−1 −B−i−1) + (B+

i−2 −B−i−2) +− . . .± (B+
2 −B−2 )± (B+

1 −B−1 )

−(hi+1 − hi−1) + (hi+2 − hi−2) +− . . .

±(h2i−2 − h2)± (h2i−1 − h1)± [(h2i − h0) + (e+ − e−)]]
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±(hn−1 − h1)± [(hn − h0) + (e+ − e−)]
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[

−(B+
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j−2 −B−j−2) +− . . .± (B+
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1 −B−1 )

−(hn−(j−1) − hj−1) + (hn−(j−2) − hj−2) +− . . .

±(hn−1 − h1)± [(hn − h0) + (e+ − e−)]]
...

{

h2 ≥ −(B
+
1 −B−1 )− (hn−1 − h1) + (hn − h0) + (e+ − e−)

hn−2 ≥ −
[

−(B+
1 −B−1 )− (hn−1 − h1) + (hn − h0) + (e+ − e−)

]

{

h1 ≥ h0 − 1 + e− + κ

hn−1 ≥ hn − 1 + e+ + κ

(2)
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Furthermore, the Poincaré-Hopf equality must be considered in the odd-dimensional case

n = 2i+ 1:

B+ − B− = e− − e+ +
2i+1
∑

j=0

(−1)jhj (3)

where

B+ =
(−1)i

2
B+

i ±B+
i−1 ± . . .−B+

1

B− =
(−1)i

2
B−i ±B−i−1 ± . . .−B−1

Moreover, in the even dimensional case n = 2 mod 4, the condition that

hi −
i−1
∑

j=1

(−1)j+1(B+
j −B−j )−

i−1
∑

j=0

(−1)j(h2i−j − hj) + (e− − e+) be even (4)

must be imposed.

3.2 Poincaré-Hopf Inequalities for Closed Manifolds

In [2] we consider a particular case of the Poincaré-Hopf inequalities for isolating blocks (2)–(4),

which are the Poincaré-Hopf inequalities for closed manifolds (5)–(7). Given a Lyapunov graph

L(h0, . . . , hn, κ) with cycle number equal to κ, the implosion LC of L(h0, . . . , hn, κ) is a graph

with only one saddle vertex ν labelled with (0, h1, . . . , hn−1, 0, κ) and has the following properties:

e+ = hn, e
− = h0, B

−
j = B+

j = 0. By substituting the information of the vertex ν of LC in

the Poincaré-Hopf inequalities for isolating blocks (2)–(4), the Poincaré-Hopf inequalities for closed
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manifolds (5)–(7) are obtained.













































































































n = 2i+ 1
{

−hi ≤ (hi+2 − hi−1)− (hi+3 − hi−2) +− . . .± (h2i − h1)± (h2i+1 − h0) ≤ hi+1

n = 2i
{

−hi ≤ (hi+1 − hi−1)− (hi+2 − hi−2) +− . . .± (h2i−2 − h2)± (h2i − h0) ≤ hi

(i)











































−hj ≤ (hn−(j−1) − hj−1)− (hn−(j−2) − hj−2) +− . . .± (hn−1 − h1)± (hn − h0) ≤ hn−j (j)
...

−h2 ≤ (hn−1 − h1)− (hn − h0) ≤ hn−2 (2)

{

h1 ≥ h0 − 1 + κ

hn−1 ≥ hn − 1 + κ
(1)

(5)

In the case n = 2i+ 1 we have
2i+1
∑

j=0

(−1)jhj = 0 (6)

and in the case n = 2i = 2 mod 4 we have the additional contraint that

hi −
i−1
∑

j=0

(−1)j(h2i−j − hj) be even. (7)

4 Explosion Algorithm in the Presence of Cycles

In this section we will generalize the continuation theorem for abstract Lyapunov graphs in [1] by

inserting a new step in the explosion algorithm permitting the presence of cycles in the graph. This

expanded algorithm will be expressed in terms of a linear system hcd
κ as was done in [1] where κ = 0.

4.1 STEP 1 - Explosion to a saddle type vertex with parameter κ

A vertex on an abstract Lyapunov graph labelled with (h0, h1, . . . , hn, κ) is a repeller vertex if it has

indegree zero and hn > 0 (respectively, is an attractor vertex if it has outdegree zero and h0 > 0).

Otherwise, a vertex with positive indegree and outdegree is a generalized saddle vertex. A particular

12
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...

...

. . .

. . .

(hn = 0, hn−1 − (hn − 1), hn−2, . . .

h2, h1 − (h0 − 1), h0 = 0, κ)

hn = 1 hn = 1

h0 = 1 h0 = 1

h1=1 G−0

hn−1 = 1 G+
0

Figure 2: Generalized saddle vertex and its partial explosion.

case of this occurs when the vertex is labelled with (h0 = 0, h1, . . . , hn = 0, κ) and will be called

a saddle vertex. Our explosion algorithm consists of initially performing a partial explosion on a

vertex which reduces it to a saddle type vertex.

Given a generalized saddle vertex or a repeller (respectively attractor) vertex labelled with

(h0, h1, . . . , hn, κ), a partial explosion will be done in order to obtain a saddle vertex labelled with

(0, h1, . . . , hn−1, 0, κ).

1. G+
0 is formed with hn vertices labelled with hn = 1 and hn− 1 vertices labelled with hn−1 = 1

of the type (n− 1)-d and has one outgoing edge which connects to v.

2. G−0 is formed with h0 vertices labelled with h0 = 1 and h0− 1 vertices labelled with h1 = 1 of

the type 0-c and has one incoming edge which comes from v.

This explosion is possible if the last two inequalities in (2) are satisfied. There is no need to be

concerned with the labels on the edges since these type of vertices only alter β0 and dually βn−1

which remains equal to one on every edge.

4.2 STEP 2 - Explosion of a saddle type vertex in the presence of cycles

In STEP 1, a partial explosion of v to a saddle type vertex was done. In this step we continue to

denote the partially exploded vertex by v.

13
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. . .

(hn = 0, hn−1 − (hn − 1), hn−2, . . .

h2, h1 − (h0 − 1), h0 = 0, κ)

hn = 1 hn = 1

h0 = 1 h0 = 1

h1=1 G−0

hn−1 = 1 G+
0

Figure 3: Repeller vertex and its partial explosion.

Now v is a saddle type vertex labelled vertex with (0, h1, h2, . . . , hn−1, 0, κ) and incoming edges

labelled with ((β+
0 , . . . , β

+
n−1)i)

e+

i=1 and outgoing edges labelled with ((β−0 , . . . , β
−
n−1)i)

e−

i=1, where i

denotes the edge. Let B+
j =

∑e+

i=1(β
+
j )i and B

−
j =

∑e−

i=1(β
−
j )i. See Figure 4. Observe that B−0 = e−

e B+
0 = e+.
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¡
¡
¡
¡
¡
¡¡

•

@
@@R

¡
¡¡ª

@
@@R

¡
¡¡ª

(0, h1, . . . , hn−1, 0, κ)

(β+
0 , . . . , β

+
n−1)1 (β+

0 , . . . , β
+
n−1)e+

(β−0 , . . . , β
−
n−1)1 (β−0 , . . . , β

−
n−1)e−

Figure 4: Vertex to be exploded.

Schematically the algorithm which explodes a saddle vertex has four basic parts:

1. adjusting the incident edges −→ defines G+ and G−;

2. inserting cycles;

3. the linear explosion without middle dimensions −→ defines G+∪
⋃̀

j=1

L+
j and G−∪

⋃̀

j=1

L−j where

` < mid-dimension;

14



4. middle dimension explosion −→ consider n odd, n = 0 mod 4, n = 2 mod 4.

4.2.1 Adjusting the incident edges

In this step we wish to define G+ and G−.

Choose e−−1 vertices labelled with h1 = 1 of type 0-c. This is possible by the last inequality in

(2). By choosing this number of vertices labelled with 1-singularities, G− is formed with e− outgoing

edges and one incoming edge. Singularities of type 0-c do not alter the βi with 0 < i < n − 1.

This type of singularity decreases β0 and by duality βn−1. Hence, the incoming edge of G− has

B−0 = B−n−1 = 1 and B−j =
∑e−

i=1(β
−
j )i with j = {1, . . . , n− 2}. See Figure 6.

Similarly, the graph G+ is formed by choosing e+ − 1 vertices labelled with hn−1 = 1 of type

n− 1-d.

4.2.2 The insertion of cycles

An elementary cycle is a pair of (hc1, h
d
n−1) with one edge labelled with (1, 0, . . . , 0, 1) and the other

edge labelled with (1, β1, . . . , βn−2, 1). See Figure 5.

0-c h1 = 1

(n− 1)-d hn−1 = 1

(1, 0, . . . , 0, 1) (1, β1, . . . , βn−2, 1)

Figure 5: (hc1, h
d
n−1) pair

Without loss of generality, attach to G−, κ elementary cycles where (1, β1, . . . , βn−2, 1) =

(1, B−1 , . . . , B
−
n−2, 1). Of course this attachment can also be done to G+. It is clear that once κ

cycles are inserted the number of vertices labelled with h1 = 1 of type 0-c is greater or equal to κ.

Similarly, the number of vertices labelled with hn−1 = 1 of type n− 1-d is greater or equal to κ.

Hence all together we have inserted hc1 = κ + e− − 1 vertices labelled with h1 = 1 of type 0-c.

Similarly, we have inserted hdn−1 = κ + e+ − 1 vertices labelled with hn−1 = 1 of type (n − 1)-d.

This is possible due to the last two inequalities in (2), which asserts that for this saddle vertex v

15



(h0 = hn = 0):

{

h1 ≥ −1 + e− + κ

hn−1 ≥ −1 + e+ + κ
(8)

However more cycles can appear in the explosion.

The last cycle inserted has incoming edge labelled with (1, B−1 , B
−
2 , . . . , B

−
mid, . . . , B

−
n−2, 1).

¡
¡

¡¡

¡
¡ª
@
@
@@

@
@R

@
@
@@

@
@R

•

•

...

0-c h1 = 1

0-c h1 = 1

G−

(1, B−1 , . . . , B
−
n−2, 1)

(n− 1)-d hn−1

0-c h1

...

(n− 1)-d hn−1

0-c h1

Figure 6: Outgoing edges exploded and cycles inserted.

4.2.3 The linear explosion without middle dimensions (Step 1, ..., Step `)

This is done by an induction argument. For more details see [1].

Assume that the adjustments of Bj for j < ` and by duality Bn−j−1 for j < ` have been made

in increasing order for j. Hence, several linear graphs have been added to G+ forming at this point
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a graph G+ ∪

`−1
⋃

i=1

L+
i whose outgoing edge is labelled with

(1, B1, . . . , B`−1, B
+
` , . . . , B

+
mid, . . . , B

+
n−`−1, Bn−`, . . . , Bn−2, 1).

Similarly, several linear graphs have been added toG− forming at this point a linear graphG−∪
`−1
⋃

i=1

L−i

whose incoming edge is labelled with

(1, B1, . . . , B`−1, B
−
` , . . . , B

−
mid, . . . , B

−
n−`−1, Bn−`, . . . , Bn−2, 1).

See Figure 7 for the case ` = 1.

G− ∪ L−1

?

··
·

··
·

?
··
·

•

•

•

•

(1, B−1 , . . . , B
−
n−2, 1)

1-d h1 = 1

1-d h1 = 1

1-c h2 = 1

1-c h2 = 1

(1, B1, B
−
2 , . . . , B

−
n−3, Bn−2, 1)

G+ ∪ L+
1

?

··
·

··
·

··
·

•

•

•

•

(1, B1, B
+
2 , . . . , B

+
n−3, Bn−2, 1)

(n− 2)-d hn−2 = 1

(n− 2)-d hn−2 = 1

(n− 2)-c hn−1 = 1

(n− 2)-c hn−1 = 1

Figure 7: Linear explosion: L− and L+.

In order to adjust B` and by duality Bn−`−1 add to the graph above L−` formed with hd` vertices

h` = 1 of type `-d, and hc`+1 vertices h`+1 = 1 of type `-c forming G−∪
⋃̀

i=1

L−i . Similarly, the insertion

of hcn−` vertices hn−` = 1 of type (n − ` − 1)-c and the insertion of hd
n−`−1 vertices hn−`−1 = 1 of

type (n− `− 1)-d will form G+ ∪
⋃̀

i=1

L+
i .

Since the insertion of any other type of vertex will not alter the `-th and the (n− `−1)-th Betti

number it is necessary that

B` = B−` + hd` − hc`+1 = B+
` − hdn−`−1 + hcn−`. (9)
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The labels of B` and Bn−`−1 for 0 < ` < mid have all been adjusted. It remains to adjust the

middle dimensional labels. This is done in the next step.

4.2.4 Middle dimensional explosion

At this point the adjustments of the labels at the middle dimensions must be made. It is necessary

to consider the case when n− 1 is odd and there are two middle dimensional labels. If n = 2i the

vertices inserted, alter the labels as in (9) with ` = i. In the case n = 0 mod 4 the presence of the

βi vertices does not alter this equation.

If n − 1 is even, there is only one middle dimensional label B n−1
2

and in this case the insertion

of the vertices alters the labels as in,

Bi = B−i + 2hdi = B+
i + 2hci+1. (10)

4.2.5 hcdκ -Systems

Hence, all these adjustments are recorded in the following hcd
κ -systems which describes the explosion

of a saddle vertex labelled with (h0 = 0, h1, . . . , hn−1, hn = 0, κ). Hence, these linear systems

of equations must be solved for (hc1, h
d
1, . . . , βi, . . . , h

c
2i, h

d
2i−1, κ) in order for the saddle explosion

algorithm to work.

n = 2i+ 1



















































e− − 1− hc1 + κ = 0

{hj = hcj + hdj , j = 1, . . . , 2i

e+ − 1− hd2i + κ = 0






















−(B+
1 −B−1 ) + hd1 − hc2 − hc2i + hd2i−1 = 0

−(B+
2 −B−2 ) + hd2 − hc3 − hc2i−1 + hd2i−2 = 0

...
−(B+

i −B
−
i )

2
+ hdi − hci+1 = 0

(11)

or

n = 2i



















































e− − 1− hc1 + κ = 0

{hj = hcj + hdj + βi, j = 1, . . . , 2i− 1, βi = 0 if j 6= i and 2i 6= 0 mod 4

e+ − 1− hd2i−1 + κ = 0






















−(B+
1 −B−1 ) + hd1 − hc2 − hc2i−1 + hd2i−2 = 0

−(B+
2 −B−2 ) + hd2 − hc3 − hc2i−2 + hd2i−3 = 0

...

−(B+
i−1 −B−i−1) + hdi−1 − hci − hci+1 + hdi = 0

(12)
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5 Continuation Results in the Presence of Cycles

The explosion algorithm will provide an intermediate step for the proof of Theorem 1.1.

Proposition 5.1 establishes that the existence of a continuation is equivalent to the existence of

a nonnegative integral solution of the hcdκ -system. Then in Proposition 5.2 it is shown that the hcd
κ -

system admits a nonnegative integral solution if and only if so do the Poincaré-Hopf inequalities.

Proposition 5.1 A saddle vertex v labelled with (0, h1, . . . , hn−1, 0, κ) can be exploded to a

Lyapunov semi-graph of Morse type with cycle rank greater than or equal to κ, and κ ≤ min{h1 −

(e−−1), hn−1− (e+−1)}, if and only if the appropriate hcd
κ -system, (11) or (12), has a nonnegative

integral solution (hc1, h
d
1, . . . , h

c
n−1, h

d
n−1).

Proof: This follows directly from the fact that the steps in the saddle explosion algorithm are

described by the hcdκ -systems.

In order to use results already established in [1], we reproduce in (13), (14), the generic forms

of the linear system considered therein:

n = 2i+ 1



















































hc1 = b0

{hcj + hdj = bj, j = 1, . . . , 2i

hd2i = b2i+1






















hd1 − hc2 − hc2i + hd2i−1 = δ1

hd2 − hc3 − hc2i−1 + hd2i−2 = δ2
...

hdi − hci+1 = δi

(13)

or

n = 2i



















































hc1 = b0

{hcj + hdj + βi = bj, j = 1, . . . , 2i− 1, βi = 0 if j 6= i and 2i 6= 0 mod 4

hd2i−1 = b2i






















hd1 − hc2 − hc2i−1 + hd2i−2 = δ1

hd2 − hc3 − hc2i−2 + hd2i−3 = δ2
...

hdi−1 − hci − hci+1 + hdi = δi−1

(14)
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Systems (11) and (12) are special cases of (13) and (14), respectively, which may be obtained with

the following substitutions:

n = 2i+ 1































b0 = −1 + e− + κ

bj = hj, for j = 1, . . . , 2i

b2i+1 = −1 + e+ + κ

δj = B+
j −B−j , for j = 1, . . . , i− 1

δi = (B+
i −B−i )/2

(15)

n = 2i



















b0 = −1 + e− + κ

bj = hj, for j = 1, . . . , 2i− 1

b2i = −1 + e+ + κ

δj = B+
j −B−j , for j = 1, . . . , i− 1.

(16)

It was shown in [1] that system (13) may be recast as a network-flow problem by a suitable

change of sign of half of the equations. The hcd variables are interpreted as flows on the arcs of the

network and each equation may be read as “flow in − flow out = node constant”. The networks

corresponding to the case n = 2i+1 are depicted in Figures 8 and 9 , with the node constant shown

inside the node. In the planar embedding adopted in this picture, the zig-zag shape of the digraph

component of the network resembles the lateral structure of a clotheshorse. Arcs corresponding to

flow variables (hc1, h
d
1, h

c
2, h

d
2, . . . , h

c
2i, h

d
2i), in this order, form an Eulerian nonoriented path covering

the whole digraph.

When n = 2i + 1 and i is even, the network is slightly different, see the rightmost cycle in

the network of Figure 9. Both networks contain a chain of i − 1 cycles of length four and the

arc sequence associated with (hc1, h
d
1, h

c
2i, h

d
2i) forms a nonoriented path that is adjacent to the first

cycle. The arcs in the j-th cycle are associated with variables hd
j+1, h

c
2i−j, h

d
2i−j and hcj+1, and the

orientation of the first two arcs is opposite to the orientation of the last two, with respect to an

arbitrary orientation of the cycle.

The set of equations (14) may be recast as a network-flow problem with additional restrictions.

Figure 10 gives the “network” for the even case n = 0 mod 4. Quotes around the word network

for the even cases are needed on account of the flows corresponding to the downward dangling arcs

on the right, which must be equal. If we fix the value of hd
i we obtain a regular network-flow.

Figure 11 depicts the “network” corresponding to the case n = 2 mod 4. Again the problem is

not a pure network-flow problem, although it is close enough to a network-flow problem to facilitate

the necessary adaptations of the general theory and methods to this special case. Therefore, to

simplify the discussion, we will refer to all problems as network-flow problems, calling attention to
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Figure 8: Network for the case n = 2i+ 1, i odd.
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Figure 9: Network for n = 2i+ 1, i even.
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the special considerations the even cases require when need arises.
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Figure 10: Network for the case n = 2i = 0 mod 4.
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Figure 11: Network for the case n = 2i = 2 mod 4.

The general solution of system (13) (or (14)) is the sum of a particular solution and a solution

of the homogeneous version of the system, that is, a solution that satisfies the condition “flow in =

flow out” at every node. The former one is called a flow and, the latter one, a circulation. Numerical

examples are given in Subsection 7.1, see Figure 19. Thus the set of circulations is a linear subspace,

the null space of the coefficient matrix of the linear system. Rockafellar [13] showed that a vector

of a linear space is the sum of elementary vectors of this space. An elementary vector of a subspace

is a vector of this subspace with minimal support. It is well known that the elementary circulations

are those whose supports correspond to simple cycles of the network.
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Therefore the elementary solutions of (13) and (14) are easy enough to determine. In the odd

and even cases there is an elementary circulation associated with each cycle. In the even cases there

is an additional elementary circulation, associated with the rightmost flows of the networks depicted

in Figures 10 and 11. In the case n = 2i = 0 mod 4 (resp., n = 2i = 2 mod 4), this additional

circulation has (hci , β
i, hdi ) = (1,−2, 1) (resp., (hci , h

d
i ) = (1, 1)) and remaining components equal to

zero. Finally, if we remove one arc from each cycle (and set hd
i (resp., hci) to zero in the n = 2i = 0

mod 4 (resp., n = 2i = 2 mod 4) case), the remaining arcs form a tree. The columns of the

coefficient matrix of the hcdκ -system associated with the remaining arcs (unknowns) are linearly

independent and thus this subsystem has a unique solution, if it has a solution (this submatrix

has more rows than columns). A solution of a linear system whose support correspond to linearly

independent columns of the coefficient matrix of the system is called a basic solution. Geometrically,

the nonnegative basic solutions correspond to extreme points, or vertices, of the polyhedron defined

by the flow balance equations and nonnegativity constraints. Basic (tree) solutions of system (13)

(or (14)) are easy to calculate: start at the leaves of the tree (nodes with only one incident arc) and

work your way in. In algebraic parlance, this is equivalent to permutating the rows and columns of

the associated submatrix to make it lower triangular and then solve the corresponding system by

back substitution.

Proposition 5.2 The hcdκ -systems (11) and (12) have nonnegative integral solutions if and only if

the Poincaré-Hopf inequalities (2), (3) and (4), for isolating blocks are satisfied. Moreover, the set

of all solutions to the hcdκ -system may be obtained from a single basic solution and the elementary

circulations of the network.

Proof: The trick to show the equivalence between the network-flow problems and the Poincaré-Hop

inequalities in [1] was to split the network-flow problem into a set of i, in the odd n case, or i+ 1,

in the other case, independent smaller network-flow problems. The first step taken was to split

the problem in two. This was done by eliminating from the system the variables hc
1, h

d
1, h

c
n−1 and

hdn−1, whose values are easily determined from the system. In network terms, this is equivalent to

splitting the network in two, as depicted in Figure 12.

Four variables in (13), or (14), are uniquely determined:



















−hc1 = −b0

hc1 + hd1 = b1

−hcn−1 − hdn−1 = −bn−1

hdn−1 = bn

⇒



















hc1 = b0

hd1 = b1 − b0

hdn−1 = bn

hcn−1 = bn−1 − bn

(17)
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Figure 12: Splitting the problem in two.

The network on the left of Figure 12 contains the four equations from (13), or (14), shown

above, plus the redundant (by definition of η1) equation hcn−1 − hd1 = −η1. Substituting the values

determined above in the only equation of (13), or (14), that contains some of the four variables hc
1,

hd1, h
c
n−1 and hdn−1, we obtain

hd1 − hc2 − hcn−1 + hdn−2 = δ1

⇓

hc2 − hdn−2 = −δ1 + η1,

which is precisely the equation associated with the leftmost node in the network on the right in

Figure 12. Since the rest of the network is a copy of the original network, all the remaining equations

are dutifully represented therein. Therefore the original network-flow problem was successfully split

into two independent network-flow problems.

The same splitting can be done at each of the nodes in the intermediate row of the network, the

nodes with degree 4. Figure 13 gives the next three splittings. Notice that δ̃j gives the cumulative

sum of node constants for node with constant ±δj in the original network and all nodes on its left.

That is,

δ̃j =

j
∑

k=0

((−1)k+1bk + (−1)kbn−k) +

j
∑

k=1

(−1)kδk, for j = 1, . . . , i− 1. (18)

Thus all node constants of the independent networks produced with the splittings may be expressed

in terms of the originals constants.
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Figure 13: Further splitting.

Figure 14 gives the last splitting for all cases. Notice that the splitting of networks corresponding

to the case n = 2i+1 produce only two types of networks: the path-network on the left of Figure 12

and the cycle-network, a typical instance of which is depicted in Figure 15, whose digraph component

is a 4-length nonoriented cycle. On the other hand, the splitting of networks corresponding to the

case n = 2i produce three types of networks, two of them coincide with the ones obtained in the

former case, but the last is not altogether a network since it contains the troublesome downward

dangling arcs, see Figure 14.

The problem of determining whether (13) (or (14)) has a nonnegative integral solution reduces

to asserting whether each of the independent linear systems produced with the splitting has one.

This task is now straightforward, given the simple structure of the independent linear systems.

The first linear system, corresponding to the path-network, is the easiest, since it has a unique

solution. Taking into account that b and δ are nonnegative integral vectors, the unique solution,

given in (17), is trivially integral. Thus the solution will be nonnegative and integral if and only if

the following inequalities are satisfied:

b0 ≥ 0

b1 ≥ b0

bn ≥ 0

bn−1 ≥ bn.

(19)
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Figure 14: Last independent problems.
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It was shown in [1] that the linear system corresponding to the cycle-network of Figure 15 has

a nonnegative integral solution if and only if the following conditions hold:

− θ + α + d+ ξ = 0 (20)

d

θ

≥

≥

−α

α
(21)

Furthermore, the general solution (particular solution plus multiple of circulation) to this linear

system is (x, y, z, w) = (α, θ−α, d, 0)+m(1,−1,−1, 1). Notice that (20) is satisfied by construction

for all networks produced by the splitting, except the last one obtained in the decomposition of the

original network for n = 2i + 1. Thus for n = 2i + 1, one condition in the set of necessary and

sufficient conditions for the existence of nonnegative integral solutions of (13) is

0 = δ̃i−1 + (−1)i+1bi + (−1)ibi+1 + (−1)iδi

=
i−1
∑

k=0

((−1)k+1bk + (−1)kbn−k) +
i−1
∑

k=1

(−1)kδk + (−1)i+1bi + (−1)ibi+1 + (−1)iδi

=
i
∑

k=0

((−1)k+1bk + (−1)kbn−k) +
i
∑

k=1

(−1)kδk. (22)

Substituting the values of b and δ given by (15) in equation (22) we obtain the Poincaré equality

(3), which must be satisfied in the n = 2i+ 1 case.
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Figure 15: Generic instance of cycle-network.

If n = 2i = 0 mod 4, then it was shown in [1] that the last linear system, which involves hc
i , h

d
i

and βi (see Figure 14), as a nonnegative integral solution if and only if the following inequalities

hold:
bi ≥ −δ̃i−1

bi ≥ δ̃i−1

(23)

The general solution to this system is (hci , β
i, hdi ) = (δ̃i−1, bi − δ̃i−1, 0) +m(1,−2, 1).
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In the case n = 2i = 2 mod 4, the last system has the unique solution (hc
i , h

d
i ) = ((bi −

δ̃i−1)/2, (bi + δ̃i−1)/2), which is nonnegative and integral if and only if

bi − δ̃i−1 is even (24)

bi

bi

≥

≥

−δ̃i−1

δ̃i−1.
(25)

Notice that we have the means to construct solutions to all subsystems, and hence, to the original

system. We simply need to collect all particular solutions in one vector and add multiples of the

various elementary circulations, one for each cycle.

Finally, substituting (15) (or (16) in the appropriate conditions, from the ones obtained, namely

(19), (19), (21), (20), (23), (24) and (25), we conclude that the hcd
κ -system has a solution if and

only if the Poincaré-Hopf inequalities (2)–(4) hold.

Proof of Theorem 1.1.

Given a vertex v labelled with (h0, h1, . . . , hn, κ) we can perform a partial explosion to a vertex

v of saddle type labelled with (0, h1, . . . , hn−1, 0, κ) since the last two inequalities in (2) are satisfied.

It is easy to see that the vertex v continues to satisfy the Poincaré-Hopf inequalities. By Proposition

5.1 v can be exploded to semi-graphs of Morse type, if and only if the hcd
κ -system has nonnegative

integer solution. By Proposition 5.2 the hcd
κ -system has nonnegative integer solution if and only if

the Poincaré-Hopf inequalities are satisfied. Hence, LB admits continuations to abstracts Lyapunov

semi-graphs of Morse type if and only if the Poincaré-Hopf inequalities are satisfied.

Also, note that the Poincaré-Hopf inequalities assert that

κ ≤ h1 − h0 + 1− e−

κ ≤ hn−1 − hn + 1− e+

Since κ = κv + κL and in this case κ = κv and κL = 0 we have that

κv ≤ min{h1 − (e− + h0 − 1), hn−1 − (e+ + hn − 1)}.

The number of continuations, i.e., the number of nonnegative integral flows, has been calculated

in [1] for κ = 0. From Proposition 5.2, this number is the number of admissible multiples of

elementary circulations of the network. Since the values of hc
1, h

d
1, h

c
2i and hd2i are uniquely

determined, this is the number of nonnegative integral flows of the smaller network obtained
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after the elimination of these four variables from the system of equations (13) or (14). It is

straightforward to verify that this elimination will result in the same subnetwork, regardless of

the value of κ. Thus the total number of continuations is just the number of possible values of κ

(1 +min{h1− (e−+ h0− 1), hn−1− (e+ + hn− 1)}) times the number of continuations for κ = 0.

Proof of Theorem 1.2:

By the definition of continuation we have that L(h0, . . . , hn, κ) can be continued to an abstract

Lyapunov graph of Morse type if each vertex can be exploded. Since, by hypothesis L(h0, . . . , hn, κ)

satisfies the Poincaré-Hopf inequalities at each vertex then by Theorem 1.1 each vertex admits

continuations to abstract Lyapunov semi-graphs of Morse type. Hence, L(h0, . . . , hn, κ) can be

continued to an abstract Lyapunov graph of Morse type.

Moreover, Theorem 1.1 asserts that κv ≤ min{h1 − (e− + h0 − 1), hn−1 − (e+ + hn − 1)}.

Let V be the vertex set of L and V its cardinality. Similarly, let E be the edge set of L and E

its cardinality. By definition κ = κV + κL where κV =
∑

vk∈V
κ(vk) and κL is the cycle rank of L.

Recall that κL − 1 = E − V . Hence,

κV ≤
∑

vk∈V
min{h1(vk)− (e−(vk) + h0(vk)− 1), hn−1(vk)− (e+(vk) + hn(vk)− 1)}

≤ min{h1 − h0 − E + V , hn−1 − hn − E + V}

= min{h1 − h0 − κL + 1, hn−1 − hn − κL + 1}

= min{h1 − h0 + 1, hn−1 − hn + 1} − κL

where hj =
∑

vk∈V
hj(vk) and

∑

vk∈V
(1− e−(vk)) = V − E .

Therefore, κ = κV + κL ≤ min{h1 − h0 + 1, hn−1 − hn + 1}.

The number of continuations is merely the product of the number of continuations at each vertex

as in Theorem 1.1.

Given L(h0, . . . , hn, κ) satisfying the Poincaré-Hopf inequalities at each vertex (2)–(4), the set of

all possible continuations determines the family L(h0, . . . , hn, κ) = ∪j≥κL(h0, . . . , hn, j) of Lyapunov

graphs L(h0, . . . , hn, j), κ ≤ j ≤ min{h1 − (h0 − 1), hn−1 − (hn − 1)}.

6 Morse Inequality Results

In this section we will prove Theorem 1.3.

As was shown in the previous section every abstract Lyapunov graph L(h0, . . . , hn, κ) that

satisfies the Poincaré-Hopf inequalities at each vertex (2)–(4) can be continued to some graph in
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the family L(h0, . . . , hn, κ) of Lyapunov graphs L(h0, . . . , hn, j), κ ≤ j ≤ min{h1 − (h0 − 1),

hn−1 − (hn − 1)}.

Also, by setting B−j = B+
j , e

− = h0 and e+ = hn we obtain the particularized versions (26) and

(27) of systems (11) and (12). Hence, Corollary 6.1 follows directly from Proposition 5.2.

Corollary 6.1 The systems below have a nonnegative integral solution (hc
1 h

d
1, . . . , h

c
n−1 h

d
n−1) if and

only if the Poincaré-Hopf inequalities for closed manifolds (5)–(7) are satisfied.

n = 2i+ 1



















































h0 − 1− hc1 + κ = 0

{hj = hcj + hdj , j = 1, . . . , 2i

hn − 1− hd2i + κ = 0






















hd1 − hc2 − hc2i + hd2i−1 = 0

hd2 − hc3 − hc2i−1 + hd2i−2 = 0
...

hdi − hci+1 = 0

(26)

n = 2i



















































h0 − 1− hc1 + κ = 0

{hj = hcj + hdj + βi, j = 1, . . . , 2i− 1, βi = 0 if j 6= i and 2i 6= 0 mod 4

hn − 1− hd2i−1 + κ = 0






















hd1 − hc2 − hc2i−1 + hd2i−2 = 0

hd2 − hc3 − hc2i−2 + hd2i−3 = 0
...

hdi−1 − hci − hci+1 + hdi = 0

(27)

Hence, it follows that:

Corollary 6.2 Given an abstract Lyapunov graph L(h0, . . . , hn, κ), it admits continuations to

abstract Lyapunov graphs of Morse type with cycle rank greater or equal to κ if and only if it

satisfies the Poincaré-Hopf inequalities (5)–(7), where κ ≤ min{h1 − (h0 − 1), hn−1 − (hn − 1)}.

We will refer systems (26), (27) above as reduced hcd
κ -systems.

It is worthwhile to stress that the constructive proof of the equivalence between the existence of

nonnegative integral solutions to the reduced hcd
κ -systems and the feasibility of the Poincaré-Hopf

inequalities (5)–(7) also provided the means to construct all solutions of the reduced hcd
κ -systems,

a fact which will be explored in Section 7.
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The proof that the Poincaré-Hopf inequalities imply the Morse inequalities is also constructive.

We will provide formulas to produce a Betti number vector (γ0, . . . , γn) that satisfies the Morse

inequalities from a certain basic solution of the (appropriate) reduced hcd-system.

First we consider the case n = 2i + 1. Let hcd be the complementary solution of the reduced

hcdκ -system (26)

hcjh
d
2i+1−j = 0, for j = 2, . . . , i. (28)

This follows from the fact that if (x̂, ŷ, ẑ, ŵ) is a nonnegative integral solution of the cycle network-

flow problem depicted in Figure 15, then (x′, y′, z′, w′) = (x̂, ŷ, ẑ, ŵ)−min{x,w}(−1, 1, 1,−1) is yet

another nonnegative integral solution, satisfying x′ w′ = 0. Thus, given an arbitrary nonnegative

integral solution hcd we may transform it into a nonnegative integral solution satisfying (28) by

summing appropriate multiples of elementary circulations. Observe that this new solution is a

basic solution.

Now suppose n = 2i = 0 mod 4. Without loss of generality we may consider a nonnegative

integral solution of the reduced hcdκ -system (27) that satisfies (28). The argument for 2 ≤ j ≤ i− 1

is the same as before. Now if (ĥci , β̂
i, ĥdi ) is a nonnegative integral solution of the last independent

problem depicted in Figure 14, then (h̃ci , β̃
i, h̃di ) = (ĥci , β̂

i, ĥdi ) + min{ĥci , ĥ
d
i }(−1, 2,−1) is another

solution of this subproblem that satisfies (28).

In order to tackle the case n = 2i = 2 mod 4, we introduce the auxiliary system below.

n = 2i = 2 mod 4



















































h0 − 1− hc1 + κ = 0

{hj = hcj + hdj + δ, j = 1, . . . , 2i− 1, δ = 0 if j 6= i

hn − 1− hd2i−1 + κ = 0






















hd1 − hc2 − hc2i−1 + hd2i−2 = 0

hd2 − hc3 − hc2i−2 + hd2i−3 = 0
...

hdi−1 − hci − hci+1 + hdi = 0

(29)

If (27) has a nonnegative integral solution (hc
1, h

d
1, . . . , h

c
i , h

d
i , . . . , h

c
2i, h

d
2i), then (29) has the solution

(hc1, h
d
1, . . . , h

c
i , 0, h

d
i , . . . , h

c
2i, h

d
2i) (simply let δ = 0). The advantage of introducing (29) is that now

we have room to transform a given nonnegative integral solution (hc
1, h

d
1, . . . , h

c
i , 0, h

d
i , . . . , h

c
2i, h

d
2i)

of (29) into one that satisfies (28) much in the same way as we did in the case n = 2i = 0 mod 4.

Given these basic solutions it can be shown that the formulas below define Betti number vectors
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(γ0, . . . , γn) that satisfy the Morse inequalities.

n = 2i + 1

γ0 = γ2i+1 = 1

γj =







































hd1 − hc2 + κ, if j = 1

hdj − hcj+1, if 2 ≤ j < i

hdi , if j = i

hci+1, if j = i+ 1

−hdj−1 + hcj, if i+ 2 ≤ j ≤ 2i− 1

−hd2i−1 + hc2i + κ, if j = 2i

(30)

n = 2i

γ0 = γ2i = 1

γj =







































hd1 − hc2 + κ, if j = 1

hdj − hcj+1, if 2 ≤ j ≤ i− 1

βi, if j = i and 2i = 0 mod 4

δ, if j = i and 2i = 2 mod 4

−hdj−1 + hcj, if i+ 1 ≤ j ≤ 2i− 2

−hd2i−2 + hc2i−1 + κ, if j = 2i− 1

(31)

The only role of the complementarity condition (28) is to ensure nonnegativity of the γ defined

above. Other solutions of the reduced hcdκ -systems lead to Betti number vectors that satisfy the

Morse inequalities and duality conditions but may have negative components. These Betti number

vectors will not be considered in this context.

Given Corollary 6.1, the sufficiency part of Theorem 1.3 is established by the following

proposition, which was proven in [2] for κ = 0.

Proposition 6.1 If the reduced hcdκ -system has a nonnegative integral solution, then there exists a

nonnegative integral Betti number vector (γ0, . . . , γn) that satisfies the Morse inequalities (1) and

the inequality γ1 ≥ κ.

Proof:

Case n = 2i + 1.

By definition (30), γ is clearly integral. Equations hd
j − hcj+1 − hc2i+1−j + hd2i−j = 0 in (26), for

j = 1, . . . , i−1, imply γj = γ2i+1−j , for j = 1 . . . , i−1, i+2, . . . , 2i. Likewise, equation hd
i −h

c
i+1 = 0

in (26) implies γi = γi+1. Therefore the vector γ given by (30) satisfies conditions γj = γ2i+1−j , for

j = 0, . . . , 2i+ 1.
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In order to show that γ ≥ 0 it suffices to show that γj or γ2i+1−j , for 1 ≤ j ≤ i−1, is nonnegative,

since γj = γ2i+1−j , for j = 0, . . . , 2i+ 1, γi = γi+1 = hdi ≥ 0 and γ0 = γ2i+1 = 1. The definition of γ

and (28) imply this, since

hcj+1h
d
2i−j = 0 ⇒











hcj+1 = 0⇒ γ2i+1−j = γj = hdj − hcj+1 = hdj ≥ 0

or

hd2i−j = 0⇒ γj = γ2i+1−j = −h
d
2i−j + hc2i+1−j = hc2i+1−j ≥ 0

for 2 ≤ j ≤ i− 1

and

hc2h
d
2i−1 = 0 ⇒











hc2 = 0⇒ γ2i = γ1 = hd1 − hc2 + κ = hd1 + κ ≥ κ ≥ 0

or

hd2i−1 = 0⇒ γ1 = γ2i = −h
d
2i−1 + hc2i + κ = hc2i + κ ≥ κ ≥ 0

for 2 ≤ j ≤ i− 1.

Given that hj = hcj + hdj , j = 1, . . . , 2i, we have that:

2i+1
∑

j=0

(−1)j+1hj = −h0 + hc1 +
2i−1
∑

j=1

(−1)j+1(hdj − hcj+1)− hd2i + h2i+1

= −1 + κ+
2i−1
∑

j=1

(−1)j+1(hdj − hcj+1)− κ+ 1

= −γ0 + hd1 − hc2 + κ+
i−1
∑

j=2

(−1)j+1(hdj − hcj+1)

+(−1)i+1hdi − (−1)i+1hci+1

+
2i−2
∑

j=i+1

(−1)j+1(hdj − hcj+1) + hd2i−1 − hc2i − κ+ γ2i+1

= −γ0 + γ1 +
i−1
∑

j=2

(−1)j+1γj + (−1)i+1γi + (−1)i+2γi+1

+
2i−2
∑

j=i+1

(−1)j+1(−γj+1) + (−1)2i+1γ2i + γ2i+1

=
2i+1
∑

j=0

(−1)j+1γj.

Hence we have proved the top Morse equality.
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Similarly, it can be shown that

∑̀

j=0

(−1)j+1hj = −h0 + hc1 +
`−1
∑

j=1

(−1)j+1(hdj − hcj+1) + (−1)`+1hd`

= −h0 + hc1 +
∑̀

j=1

(−1)j+1(hdj − hcj+1) + (−1)`+1hc`+1.

The above equations imply that

∑̀

j=0

(−1)j+1hj =



















































∑̀

j=0

(−1)j+1γj + (−1)`+1hd` , if i+ 1 ≤ ` ≤ 2i

i
∑

j=0

(−1)j+1γj, if ` = i

∑̀

j=0

(−1)j+1γj + (−1)`+1hc`+1, if 1 ≤ ` ≤ i− 1.

(32)

Thus, invoking the nonnegativity of (hc1, h
d
1, . . . , h

c
2i, h

d
2i), we obtain all but the last of the remaining

Morse inequalities from (32).

By the reduced hcd(κ)-system we have that h0 = hc1 − (κ − 1). Since γ0 = 1, this implies that

h0 = hc1 − κ+ γ0. Since h
c
1 ≥ κ it follows that h0 ≥ γ0, thus establishing the last Morse inequality.

Case n = 2i.

This case is similar to the odd-dimensional case. Integrality and nonnegativity follow from the

integrality and nonnegativity of the hcd solution and the complementarity condition. Regarding

the satisfaction of the Morse inequalities, details will be given for the case 2i = 0 mod 4. The

arguments may be easily adapted for the case 2i = 2 mod 4 simply be replacing β i with δ.
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Summing the first 2i+ 1 equations of (27) we have

2i
∑

j=0

(−1)j+1hj = −h0 + hc1 +
2i−2
∑

j=1

(−1)j+1(hdj − hcj+1) + (−1)i+1βi + hd2i−1 − h2i

= −1 + κ+
2i−2
∑

j=1

(−1)j+1(hdj − hcj+1) + (−1)i+1βi + κ− 1

= −γ0 + hd1 − hc2 + κ+
i−1
∑

j=2

(−1)j+1(hdj − hcj+1) + (−1)i+1βi

+
2i−3
∑

j=i

(−1)j+1(hdj − hcj+1)− hd2i−2 + hc2i−1 + κ− γ2i

= −γ0 + γ1 +
i−1
∑

j=2

(−1)j+1γj + (−1)i+1γi

+
2i−2
∑

j=i

(−1)j+1(−γj+1) + γ2i−1 − γ2i

=
2i
∑

j=0

(−1)j+1γj.

Hence we have proved the top Morse equality.

The next equations are obtained analogously:

∑̀

j=0

(−1)j+1hj =























−h0 + hc1 +
`−1
∑

j=1

(−1)j+1(hdj − hcj+1) + (−1)i+1βi + (−1)`+1hd` , if i ≤ ` ≤ 2i− 1

−h0 + hc1 +
∑̀

j=1

(−1)j+1(hdj − hcj+1) + (−1)`+1hc`+1, if 1 ≤ ` < i

=



























∑̀

j=0

(−1)j+1γj + (−1)`+1hd` , if i ≤ ` ≤ 2i− 1

∑̀

j=0

(−1)j+1γj + (−1)`+1hc`+1, if 1 ≤ ` ≤ i− 1.

(33)

The nonnegativity of (hc1, h
d
1, . . . , h

c
2i, h

d
2i) implies all but the last of the remaining Morse inequalities.

The last inequality is established exactly as in the n = 2i+ 1 case.

We now prove the necessity of the Poincaré-Hopf inequalities in Theorem 1.3 in order for the

Morse inequalities to hold.
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Conclusion of the proof of Theorem 1.3:

By inequality (1) of (1) we have that

h1 ≥ γ1 − γ0 + h0.

Using the fact that γ1 ≥ κ we have

h1 ≥ κ− 1 + h0.

By Conley duality on the indices we have that and using the fact that γn−1 ≥ κ we have

hn−1 ≥ κ− 1 + hn,

and therefore we obtain inequalities (1) of (5).

For j = 2, ..., i, follow the procedure described bellow. From inequality (j) of (1) we have that

hj ≥ γj − γj−1 +− . . .± γ2 ± γ1 ± γ0 + hj−1 − hj−2 +− . . .± h2 ± h1 ± h0

≥ −γj−1 +− . . .± γ2 ± γ1 ± γ0 + hj−1 − hj−2 +− . . .± h2 ± h1 ± h0.

Hence,

hj + γj−1 − γj−2 −+ . . .± γ2 ± γ1 ± γ0 ≥ hj−1 − hj−2 +− . . .± h2 ± h1 ± h0 (34)

Also it follows from the dual Morse inequalities that

γj−1 − γj−2 +− . . .± γ2 ± γ1 ± γ0 ≤ hn−(j−1) − hn−(j−2) +− . . .± hn−2 ± hn−1 ± hn (35)

Substituting (35) in (34) we have that

hj + hn−(j−1) − hn−(j−2) +− . . .± hn−2 ± hn−1 ± hn ≥ hj−1 − hj−2 +− . . .± h2 ± h1 ± h0

⇒ hj ≥ −(hn−(j−1) − hj−1) + (hn−(j−2) − hj−2)−+ . . .± (hn−1 − h1)± (hn − h0)

Multiplying by (-1) we have that

−hj ≤ (hn−(j−1) − hj−1)− (hn−(j−2) − hj−2) +− . . .± (hn−1 − h1)± (hn − h0) (36)

Using Conley duality on the indices we have that

−hj ≤ (hn−(j−1) − hj−1)− (hn−(j−2) − hj−2) +− . . .± (hn−1 − h1)± (hn − h0) (37)
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Finally multiplying by (-1) and using the duality of the Conley index, hj = hn−j, we have that

hn−j ≥ (hn−(j−1) − hj−1)− (hn−(j−2) − hj−2) +− . . .± (hn−1 − h1)± (hn − h0) (38)

Hence we obtain the inequalities (j) of (5) with j = 2, . . . , i− 1.

In order to obtain the inequalities in mid-dimensions the procedure is analogous. However, one

must observe that if n = 2i we have that n− i = i and hence hi is dual to itself. If n = 2i+ 1 the

dual of hi is hi+1.

We now present an example in Figure 16 of an abstract Lyapunov graph in dimension 7, that

may possibly represent a flow on a 7-dimensional manifold M . If this is the case, recall that each

edge of the graph represents a closed connected 6-dimensional manifold N cross an interval and

hence it need only be labelled with the Betti numbers (β1, β2, β3) of the manifold N . In Figure

16 the abstract Lyapunov graph L(h0, h1, . . . , h7, κ) = L(2, 4, 1, 2, 1, 1, 4, 1, κ = 2) is presented. In

theory, each vertex v should be labelled with (h0(v), h1(v), . . . , h7(v), κv). However, if this vector

contains many zeros, e.g., (0, 1, 0, 0, 0, 0, 0, 0, κ = 0) we adote the alternative notation h1 = 1 as

was mentioned in the introduction. Whenever the vertex is labelled with hj = 1, j 6= 0, 7, we also

specify if the vertex is j-disconnecting, j-d, or (j − 1)-connecting, (j − 1)-c.

¡
¡¡
¡¡ª@

@@
@@R

?

?

?
•

•

•

•

•

• •

v
(0, 0, 0)

(0, 0, 0)

(0, 0, 0)(0, 0, 0)

(0, 0, 0)(0, 0, 0)

(0, 0, 0)

(0, 2, 1, 2, 1, 1, 3, 0, κv = 1)

h0 = 1 h0 = 1

0-c h1 = 1

6-d h6 = 1

0-c h1 = 1

h7 = 1

Figure 16: Abstract Lyapunov graph L(2, 4, 1, 2, 1, 1, 4, 1, κ = 2)

In Figure 17 we present a couple of possible continuations of L(2, 4, 1, 2, 1, 1, 4, 1, κ = 2) which

belongs to the family L(2, 4, 1, 2, 1, 1, 4, 1, κ = 2). Note that any graph in L(2, 4, 1, 2, 1, 1, 4, 1, κ = 2)

must have cycle number 2 ≤≤ min{h1− (h0− 1), h6− (h7− 1)} = 3. Recall that κ is related to the

first Betti number γ1 of the manifold M by the inequality γ1 ≥ κ.
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h0 = 1 h0 = 1

0-c h1 = 1

6-d h6 = 1

0-c h1 = 1

6-d h6 = 1

0-c h1 = 1

1-d h1 = 1

2-d h2 = 1

2-c h3 = 1

3-d h3 = 1

3-c h4 = 1

5-d h5 = 1

5-c h6 = 1

5-c h6 = 1

h7 = 1

(0, 0, 0)

(0, 0, 0)

(0, 0, 0)

(0, 0, 0)

(0, 0, 0)

(1, 0, 0)

(1, 1, 0)

(1, 0, 0)

(1, 0, 2)

(1, 0, 0)

(2, 0, 0)

(1, 0, 0)

(0, 0, 0)

(0, 0, 0) (0, 0, 0)

(0, 0, 0)

(0, 0, 0)
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• •h0 = 1 h0 = 1

0-c h1 = 1

6-d h6 = 1

0-c h1 = 1

6-d h6 = 1

0-c h1 = 1

6-d h6 = 1

0-c h1 = 1

2-d h2 = 1

3-c h3 = 1

3-d h3 = 1

3-c h4 = 1

5-d h5 = 1

5-c h6 = 1

h7 = 1

(0, 0, 0)

(0, 0, 0)

(0, 0, 0)

(0, 0, 0)

(0, 0, 0)

(0, 0, 0)

(0, 0, 0)

(0, 1, 0)

(0, 0, 0)

(0, 0, 2)

(0, 0, 0)

(1, 0, 0)

(0, 0, 0)

(0, 0, 0) (0, 0, 0)

(0, 0, 0)

(0, 0, 0)

(0, 0, 0)

Figure 17: Graphs in the family L(2, 4, 1, 2, 1, 1, 4, 1, κ = 2).
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Finally, in Figure 18 we present the implosion of the leftmost graph in Figure 17

L(2, 4, 1, 2, 1, 1, 4, 1, κ = 2).
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ν

(0, 0, 0)(0, 0, 0)

(0, 0, 0)

(0, 4, 1, 2, 1, 1, 4, 0, κν = 2)

h0 = 1 h0 = 1

h7 = 1

Figure 18: Implosion of L(2, 4, 1, 2, 1, 1, 4, 1, κ = 2).

7 Morse Polytope

Consider a fixed pre-assigned index data set (h0, h1, . . . , hn) and let κ be an integer in the interval

[0,min{h1−(h0−1), hn−1−(hn−1)}]. The allowance of cycles adds the extra inequality γ1 ≥ κ to the

set of Morse inequalities. This larger set of inequalities, plus the boundary constraints γ0 = γn = 1,

the duality constraints γj = γn−j, for j = 0, . . . , n, and the nonnegative constraints γ ≥ 0, define

a polyhedron Pκ(h0, . . . , hn), which for simplicity we refer to as Pκ, in Rn+1, which will be the

subject of this section. This polyhedron is in fact a polytope, that is, a bounded polyhedron, since

0 ≤ γ ≤ hj (upper bound is implied by inequalities (j) and (j − 1) of (1)), for 1 ≤ j ≤ n − 1.

Much will be inherited from the study of the Morse polytope done in [2], since the addition of the

inequality γ ≥ κ will lead to minor modifications of the polytope.

The sets of nonnegative solutions to the reduced hcd
κ -system (special cases of (11) or (12)) also

constitutes a polytope. It is remarkable that both polytopes, Pκ and the one determined by the

hcd-system, have integral vertices, and that there is a relationship (though not 1-to-1) between the

integral elements in each polytope.
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7.1 Case n odd

The study of Pκ may be significantly simplified by considering the reduced polytope P r
κ, obtained

by eliminating γ0, γi+1, . . . , γ2i+1, using the boundary and duality equations. These conditions

imply that
2i+1−k
∑

j=0

(−1)j+1γj = −1 +

min{k−1,2i+1−k}
∑

j=1

(−1)j+1γj.

Therefore, Pr
κ is the set of γr ∈ Ri that satisfies

0 =
2i+1
∑

j=0

(−1)j+1hj, 0 ≤ h0 − 1, 0 ≤ h2i+1 − 1

min{k−1,2i+1−k}
∑

j=1

(−1)j+1γj ≤ 1 +
2i+1−k
∑

j=0

(−1)j+1hj, for 2 ≤ k ≤ 2i, k even

min{k−1,2i+1−k}
∑

j=1

(−1)j+1γj ≥ 1 +
2i+1−k
∑

j=0

(−1)j+1hj, for 2 ≤ k ≤ 2i, k odd

γr ≥ 0

γ1 ≥ κ.

(39)

Clearly, there is a 1-to-1 relationship between γr = (γ1, γ2, . . . , γi) in P
r
κ and γ = (γ0, γ1, . . . , γ2i+1)

in Pκ.

The following proposition extends the result obtained in [2] for κ = 0.

Proposition 7.1 The polytope Pr
κ given by (39) satisfies the following properties:

1. The vertices of Pr
κ are integral.

2. Each vertex of Pr
κ belongs to one of the faces: Ft = {γ ∈ Pr

κ |
∑i

j=1(−1)
j+1γj =

1 +
∑i

j=1(−1)
j+1hj} or F0 = {γ ∈ Pr

κ | γi = 0}.

3. If γ̃r ∈ Ft, then (γ̃1, . . . , γ̃i−1, 0) ∈ F0, that is, F0 is the projection of Ft on the plane γi = 0.

4. Each (integral) γr in Ft corresponds to an (integral) nonnegative hcd satisfying (26).

5. If κ ≥ κ′ then Pκ ⊆ Pκ′.

Proof:
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1. In [2] it was shown that the matrix of coefficients corresponding to all, except the last,

inequalities in (39) is totally unimodular. Now the row of coefficients corresponding to the

last inequality is (1, 0, . . . , 0). Appending such a row to a totally unimodular matrix preserves

this property. Since the right-hand-side is obviously integral, the vertices of P r
κ are integral.

2. The proof for the corresponding proposition in [2] may be applied verbatim here.

3. Only two inequalities in (39) contain γi: γi ≥ 0 and (−1)i+1
∑i

j=1(−1)
j+1γj ≤ (−1)i+1(1 +

∑i
j=0(−1)

j+1hj) (the inequality obtained when k = i+ 1). The latter one is equivalent to

(−1)i+1(−1)i+1γi = γi ≤ (−1)i+1

(

1− h0 + h1

i
∑

j=2

(−1)j+1(hj − γj)

)

.

For γ̃r ∈ Ft the above inequality is tight, that is,

γ̃i = ũ = (−1)i+1

(

1− h0 + h1

i
∑

j=2

(−1)j+1(hj − γ̃j)

)

.

Therefore (γ̃1, . . . , γ̃i−1, ξ) ∈ P
r
κ for 0 ≤ ξ ≤ ũ.

4. Given an (integral) γr in Ft, consider its natural extension γ in Pκ, that is, let γ0 = γ2i+1 = 1

and γ2i+1−` = γ`, for 1 ≤ ` ≤ i. The proof of Proposition 3.2 in [2] may be easily adapted to

show that the hcd vector defined below is a nonnegative (integral) solution to (26):

hd2i = −

2i
∑

j=0

(−1)j+1(hj − γj) + κ,

hd2i+1−` = (−1)`
2i+1−`
∑

j=0

(−1)j+1(hj − γj), for 2 ≤ ` ≤ i

hc2i+2−` = (−1)`
2i+1−`
∑

j=0

(−1)j+1(hj − γj), for i+ 2 ≤ ` ≤ 2i

hc1 = h0 − γ0 + κ,

hd1 = γ1 + hc2 − κ,

hd` = γ` + hc`+1, for 2 ≤ ` ≤ i− 1

hc` = γ` + hd`−1, for i+ 2 ≤ ` ≤ 2i− 1

hc2i = γ2i + hd2i−1 − κ,

hdi = γi

hci+1 = γi+1.
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5. This fact is trivial, since the inequality γ1 ≥ κ implies γ1 ≥ κ′ when κ ≥ κ′.

Proposition 7.1 thus implies that Pκ is the convex hull of nonnegative Betti number vectors that

satisfy the Morse inequalities and the inequality γ1 ≥ κ. Suppose there exist nonnegative integral

solutions of (26). Let h̄cd be the nonnegative integral solution of the reduced hcd
0 -system that satisfies

the complementarity conditions (28). Let γ̄ be the Betti number vector in Pκ constructed from h̄cd

using (30).

Proposition 7.2 Suppose the reduced hcdκ -system (26) admits nonnegative solutions. The P r
κ may

be rewritten as

Pr
κ = {0 ≤ γr ∈ Ri | γ1 ≥ κ, and (−1)k+1

k
∑

j=0

(−1)j+1γj ≤ (−1)k+1

k
∑

j=0

(−1)j+1γ̄j, for 1 ≤ k ≤ i}.

Furthermore, γ̄ is the maximum vector of P r
κ, componentwise.

Proof: This proposition was proved in [2] for κ = 0, so the first assertion is trivially true, since

Pr
κ = Pr

0 ∩ {0 ≤ γr ∈ Ri | γ1 ≥ κ}. Now notice that if h̄cd is the solution of the reduced hcd0 -system,

then h̄cd(κ) given by

h̄c1(κ) = h̄c1 + κ,

h̄d1(κ) = h̄d1 − κ = h1 − (h0 − 1)− κ,

h̄cj(κ) = h̄cj, for 2 ≤ j ≤ 2i− 1

h̄dj (κ) = h̄dj , for 2 ≤ j ≤ 2i− 1

h̄c2i(κ) = h̄c2i − κ = h2i − (h2i+1 − 1)− κ,

h̄d2i(κ) = h̄d2i + κ.

is a nonnegative integral solution of the reduced hcd
κ -system, for integral κ in [0,min{h1 − (h0 −

1), h2i− (h2i+1−1)}]. Furthermore, its corresponding Betti number vector given by (30) is the same

γ̄. Therefore γ̄r ∈ Pr
κ for κ in [0,min{h1 − (h0 − 1), h2i − (h2i+1 − 1)}]. Since Pr

κ1
⊃ Pr

κ2
if κ1 ≤ κ2,

and γ̄r belongs to Pr
κ, for all κ in [0,min{h1 − (h0 − 1), h2i − (h2i+1 − 1)}], we conclude that γ̄r is

the maximum vector of Pr
κ, for all κ in [0,min{h1 − (h0 − 1), h2i − (h2i+1 − 1)}].

The various facts established so far are illustrated in the next example. Notice that P r
κ is also

the convex hull of Ft∪F0. Additionally, since F0 is the projection of Ft and all elements in Ft may

be obtained from solutions of the reduced hcdκ -system, we have means, albeit indirect, of obtaining

all elements in Pr
κ from the hcd vectors.
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Example Let n = 2i + 1 = 7 and (h0, . . . , h7) = (1, 5, 11, 10, 5, 3, 4, 3). The solution of the

reduced hcd0 -system that satisfies (28) is h̄cd = (0, 5, 3, 8, 5, 5, 5, 0, 3, 0, 2, 2), and the elementary

circulations are circ1 = (0, 0, 1,−1, 0, 0, 0, 0,−1, 1, 0, 0) and circ2 = (0, 0, 0, 0, 1,−1,−1, 1, 0, 0, 0, 0),

corresponding to cycles 1 and 2 depicted in Figure 19. The maximum element of P0 is γ̄ =

(1, 2, 3, 5, 5, 3, 2, 1). Thus, Proposition 7.2 implies the polytope P r
κ is given by the inequalities

γ1 ≤ 2

γ1 − γ2 ≥ −1

γ1 − γ2 + γ3 ≤ 4

γ1 ≥ κ

γ1, γ2, γ3 ≥ 0

cycle 1 cycle 2µ´
¶³

@
@@R

µ´
¶³

µ´
¶³¡¡¡ª

µ´
¶³
µ´
¶³

@
@@R

µ´
¶³

µ´
¶³¡¡¡ª

µ´
¶³

@
@@R

¡
¡¡ª

@
@@R

¡
¡¡ª

@
@@R

¡
¡¡ª

@
@@I

¡
¡¡µ

µ´
¶³

µ´
¶³

µ´
¶³

µ´
¶³

µ´
¶³

0

5

2

−4 −11

3

−5

10

0 0 0

0

2

5

2 3

0

8

3

0

5

5

5

Figure 19: Solution h̃cd of example.

In this case κmay assume the values 0, 1 and 2. Figure 20 depicts the three polytopes, delineating

their edges and emphasizing their integral elements. The relationship between two γr’s in Ft and

their corresponding hcd’s may be obtained by the basic ones given in the following table.

γ̂r − γ̃r ĥcd − h̃cd

(−1,−1, 0) circ1

(0,−1,−1) circ2

Thus the reduced hcd0 system solution correponding to γ̂r = (1, 2, 5) = γ̄r + (−1,−1, 0) is

hcd = h̄cd + circ1 = (0, 5, 4, 7, 5, 5, 5, 0, 2, 1, 2, 2). Likewise, if γ̂r = (1, 1, 4) = γ̄r + (−1,−2,−1) =

γ̄r + (−1,−1, 0) + (0,−1,−1), then hcd = h̄cd + circ1 + circ2 = (0, 5, 4, 7, 6, 4, 4, 1, 2, 1, 2, 2).
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γ1

γ2

γ3

(a) Pr
0 and its integral elements.

γ1

γ2

γ3

(b) Pr
1 and its integral elements.

γ1

γ2

γ3

(c) Pr
2 and its integral elements.

Figure 20: Polytopes Pr
κ.
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Out of curiosity we depict in Figure 21 all the integral γr’s that are generated from integral

solutions not necessarily nonnegative to the reduced hcd
κ -system. Since the flow in cycle 1 may

vary from 0 to 3 and in cycle 2 from 0 to 5, there are 24 nonnegative integral flows that solve

the said system. As expected, these γr’s satisfy the Morse inequalities (in fact, they belong to

{γr ∈ R3 | γ1 − γ2 + γ3 = 4}), but are not necessarily nonnegative.

Figure 21: Extended face Ft produced by circulation.

7.2 Case n even

Initially, let n = 2i, where i ≥ 2 is even, and suppose the pre-assigned index data set (h0, . . . , h2i) is

such that
∑2i

j=0(−1)
jhj is even. In this case we the duality conditions to eliminate γi+1, . . . , γ2i−1,

the boundary conditions to eliminate γ0 and γ2i, and the first equation in (1) to eliminate γi from

the system of inequalities that defines Pκ. As before, the resulting system of inequalities (40) in

(γ1, . . . , γi−1) defines a polytope Pr
κ whose elements are in an 1-to-1 relationship with the elements
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of Pκ. Details of the deduction of (40) are provided in [2].

0 ≥ 1− h2i

k
∑

j=1

(−1)j+1γj























≤

≥

1 +
2i
∑

j=2i−k

(−1)j+1hj, if 1 ≤ k ≤ i− 1, k odd

1 +
2i
∑

j=2i−k

(−1)j+1hj, if 1 ≤ k ≤ i− 1, k even

(−1)i
i−1
∑

j=1

(−1)j+1γj ≥ (−1)i

(

1 +
1

2

2i
∑

j=0

(−1)j+1hj

)

(40)

2i−k
∑

j=1

(−1)j+1γj























≤

≥

1 +
2i−k
∑

j=0

(−1)j+1hj, if i+ 1 ≤ k ≤ 2i− 1, k odd

1 +
2i−k
∑

j=0

(−1)j+1hj, if i+ 1 ≤ k ≤ 2i− 1, k even

0 ≥ 1− h0

γj ≥ 0, for 1 ≤ j ≤ i− 1

γ1 ≥ κ.

The following proposition was shown in [2] for the case κ = 0.

Proposition 7.3 The polytope Pr
κ defined by (40) has integral vertices and each (integral) γr in

the polytope corresponds to an (integral) nonnegative hcd satisfying (27). Each vertex of Pr
κ belongs

to one of three faces:

Ft =

{

γ ∈ Pr
κ |

i−1
∑

j=1

(−1)j+1γj = 1 +min

{

2i
∑

j=i+1

(−1)j+1hj,

i−1
∑

j=0

(−1)j+1hj

}}

Fb =

{

γ ∈ Pr
κ |

i−1
∑

j=1

(−1)j+1γj = 1 +
1

2

2i
∑

j=0

(−1)j+1hj

}

F0 = {γr ∈ Pr
κ | γi−1 = 0}.

Proof: The proof in [2] may be easily adpated to encompass the κ 6= 0 case, as done for Proposition

7.1.

The inequalities defining Pr
κ may be greatly simplified if we resort to the use of γ̄, the Betti

number vector in Pκ corresponding to the solution h̄cd of the reduced hcdκ -system that satisfies the
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complementarity conditions (28). The next proposition is thus the analogous to Proposition 7.2 for

the n = 0 mod 4 case.

Proposition 7.4 Suppose (27) has a nonnegative solution. The polytope P r
κ may be recast as

Pr
κ =



































0 ≤ γr

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(−1)k+1

k
∑

j=0

(−1)j+1γj ≤ (−1)k+1

k
∑

j=0

(−1)j+1γ̃j, for 1 ≤ k ≤ i− 1

i−1
∑

j=0

(−1)j+1γj ≥
1

2

2i
∑

j=0

(−1)j+1hj

γ1 ≥ κ



































(41)

Furthermore, γ̄r) is the maximum vector in Pr
κ, componentwise.

Proof: The adpatation of the proof of the corresponding proposition in [2] may be adapted as done

in the proof of Proposition 7.2.

Analogous developments, i.e., reduction in the number of variables and versions of Propositions

7.3 and 7.4 may be obtained for the case n = 2 mod 4 in a straightforward way.

We conclude this section with the remark that the family L(h0, . . . , hn, κ) is associated to Pr
κ.

This association is established by the fact that any graph in L(h0, . . . , hn, κ) has a fixed data set

which determines Pr
κ. Although every graph in L(h0, . . . , hn, κ) satisfies the Morse inequalities for

any Betti number vector in Pr
κ it is an open problem if these graphs can be realized as flows on

manifolds with these Betti numbers.

What we do know is that for a given continuation, L(h0, h
c
1, h

d
1, . . . , h

c
n−1, h

d
n−1, hn, κ), of the graph

L(h0, h1, . . . , hn−1, hn, κ) there is a correspondence with an integral element v on the extended face

Ft of P(h0, . . . , hn) as in Figure 21. In fact, it is the data in L(h0, h
c
1, h

d
1, . . . , h

c
n−1, h

d
n−1, hn, κ)

which defines the coordinates of the Betti number vector which determines v. Also, there is no

topological interpretation for those graphs L(h0, h
c
1, h

d
1, . . . , h

c
n−1, h

d
n−1, hn, κ) which determine Betti

number vectors not in the nonnegative orthant.
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