
1

Computational Comparison of Alternative Strategies

with Interior Point Methods for Network Piecewise Linear Programs

Fernando A. S. Marins – FEG – UNESP – Brazil – fmarins@feg.unesp.br

Clovis Perin – IMECC – UNICAMP – Brazil – clovis@ime.unicamp.br

Margarida Mello – IMECC – UNICAMP – Brazil – margar id@ime.unicamp.br

Resumo

A abordagem usual de solução de um problema de fluxo em rede linear por partes é a sua

transformação em um problema equivalente de fluxo em rede linear. Nesta transformação, uma rede

linear por partes com n nós e m arcos, cada um com j

�
 intervalos para cada parte linear da função de

custo associada ao arco j, tem uma rede linear associada com n nós e
�

 = ∑ =

m

1j j

�
 arcos. Métodos de

pontos interiores têm se apresentado muito bem na resolução de problemas de fluxo em redes lineares.

Nós mostramos que é vantajoso construir um método de pontos interiores especializado para resolver

problemas em redes lineares por partes diretamente, ao invés de aplicar uma versão genérica no

problema linear equivalente. Dois algoritmos foram implementados e testados: um utilizando o passo

preditor-corretor e o outro sem utili zar o passo corretor. Comparações entre diferentes estratégias

alternativas (inicialização e critério de parada) são reali zadas para efeito de testes computacionais

2

Computational Comparison of Alternative Strategies

with Interior Point Methods for Network Piecewise Linear Programs

Fernando A. S. Marins – FEG – UNESP – Brazil – fmarins@feg.unesp.br

Clovis Perin – IMECC – UNICAMP – Brazil – clovis@ime.unicamp.br

Margarida Mello – IMECC – UNICAMP – Brazil – margar id@ime.unicamp.br

Abstract

The usual approach to solving a piecewise linear network flow problem is to transform it into an

equivalent linear one. In this transformation, a piecewise network with n nodes and m arcs, each with

j

�
 intervals to each linear piece of the cost function associated to arc j, has an equivalent linear one

with n nodes and
�

 = ∑ =

m

1j j

�
 arcs. Interior point methods have been proved successful in the solution

of linear network flow problems. We show that is advantageous to construct a customized interior point

method to solve piecewise linear network problems directly, instead of applying its generic version to

the equivalent linear problem. Two algorithms were implemented and tested: one using predictor-

corrector and the other without the corrector step. Comparison between alternative strategies

(initialization and stopping criteria) is done by means of several computational tests.

Keywords: Piecewise linear network, primal – dual interior point method, predictor – corrector,

computational tests.

1. Introduction

An important area of Mathematical Programming is the Piecewise Linear Programming, which

is related with the optimization of a separable convex piecewise linear objective function. In this paper,

it is given a special attention to a sub-area known as Piecewise Linear Network Programming, which

3

has relevant application in the real world, like in: power systems, pipeline networks, transportation,

communication networks, water management and stochastic network flow problems. In [2] the authors

investigated the relative performance of specialized algorithms for piecewise linear network problems:

(Strongly Feasible) Primal Simplex, Dual Simplex, Out-of-kilter and (Strongly Polynomial) Cost-

Scaling algorithms.

We gave sequence to the research related in [6]. In that paper, the implementation of an

adaptation of an interior point method for piecewise linear flow problems was described. That

implementation is now modified, incorporating improvements proposed by [5], specifically in what

concerns with the utilization of a predictor-corrector scheme. It must be said that the usual

implementation of the predictor-corrector method, as described in [5], utili ze the Cholesky’s

Decomposition, as for example in [1,4]. In our implementation, however, we solve the linear systems,

associated to predictor-corrector method, by a conjugated gradient method, which takes advantage of

the problem’s incidence matrix, as proposed by [7] and shown in [6].

This paper is organized as follows. The algorithms are presented in next section, their

implementations are the object of section 3, and the computational tests are related and commentated in

section 4. The Tables and Figures are in the Appendix at the end of the paper.

2. Algorithms

The piecewise linear network flow problem is defined by

Min{ f(x) such that Ax = b, x ≥ 0},

where A is a n x m - incidence matrix of a network with n nodes and m arcs, b is the n-vector of

demand in the nodes, x is the m-vector of the flows in the arcs (to be determined), and f(x) =

()jm
1j x∑ = jf is a separable convex piecewise linear function. The convex piecewise linear functions fj

can be specified by the pair of
�

-vectors c and d where
�

 = ∑ =

m

1j j

�
 is the total number of intervals,

and j

�
 is the number of intervals of fj.

This problem can be transformed into a linear network flow problem (see [3]) defined by:

{ }0s,xd,sx b,A such that xcmin ' ≥=+=

In this case, the n x
�

- matrix A is obtained from the matrix A by repeating its columns as

many times as are the intervals of the associated arcs. We are supposing that this same procedure is

also made in vector x transforming it in the vector x . The associated dual problem is given by

4

{ }0 w ,z ,cwzyA such that wdybmax ''' ≥=+−−

and the complementary slack conditions are expressed by

,0W Sand 0 ZX 1 1 ==

where W, Z, S, X are diagonal matrixes with the elements of w,z, s, x , respectively, and 1 is the

vector of 1’s.

Two versions of interior point methods were studied: the usual primal-dual (pure predictor) and

the primal-dual with predictor-corrector.

As described in [6], the usual primal-dual interior point method is initialized from w,zy, ,s ,x ,

such that w,z, s, x > 0 and at each iteration a search direction w
�

,z,y
�

,s
�

,x
�

∆ is obtained, as a

function of a centering parameter µ, and according to the equations below that reflect the primal

feasibil ity, the dual feasibil ity, and the complementary slackness conditions when µ = 0:

wSs
�

W w
�

S

zX
�

 x
�

Z z
�

X

)1 (w zy - A c - w -
�

z
���

A

s - x d - s
�

 x
� xAb - xA

''

 - 1

 - 1

µ=+
=+

+=+

=+
=∆

The usual primal-dual interior point method can be described as it follows:

let w,zy, ,s ,x , such that w,z, s, x > 0

while (stopping criteria is not satisfied) do

update µ

obtain w
�

,z,y
�

,s
�

,x
�

∆

find α such that () 0 w,
�

z,
�

s,
�

x
�

)w,z, s, x(>α+

update () () ()w,
�

z,
����

s,
�

x
�

�

 w,z,y,s,xw,z,y,s,x +←

On the other hand, in the primal-dual interior point method with predictor-corrector both

systems (1) and (2) have the same coeff icient matrix on the left hand side:

w
�

S
�

wSs
�

W w
�

S

z
�

X
�

zX
�

 x
�

Z z
�

X

)2 (w zy - A c - w -
�

z
���

A

s - x d - s
�

 x
� xAb - xA

''

 - - 1

 - - 1

µ=+
=+

+=+

=+
=∆

where w,s,z,x δδδδ correspond to the solution of the system (1).

5

The ()w,z,s,x ∆∆∆∆ vector is the solution of (1) for the pure predictor algorithm and it is the

solution of (2) for the algorithm with predictor-corrector. The α parameter is obtain by a usual ratio test

for the pure predictor algorithm and by means a special scheme, as described in [1, 5] for the predictor-

corrector algorithm.

We utili zed the strategy of solving each one of the above predictor and corrector systems of

equations by means a Conjugated Gradient Method applied to n x n – symmetric positive definite

system (SPD). The matrix associated to that system is implicitly used when we traverse all the arcs of

problem’s network. These symmetric positive definite systems are solved with the conjugated gradient

method with diagonal preconditioning for the six first iterations of the primal-dual method and with the

preconditioning of the spanning tree in the subsequent iterations.

The stopping criteria adopted are: (1) maximum number of iterations exceeded; (2) quasi--

complementary solutions found (0 ws zx '' ≈+), (3) inferior limit value for the primal objective

function exceeded; and (4) superior limit value for the dual objective function exceeded.

3- Implementation

The C++ language was used in the implementation of the algorithms. Four pairs of programs

associated with different versions of the interior point method were implemented and tested; four of

them for linear network and another four for piecewise linear network. One pair (FL9, FP9) is the usual

pure predictor which solves only one symmetric positive definite system in each iteration of the primal-

dual method, and three pairs (FL0- FP0, FL1-FP1, FL2-FP2) are of the predictor-corrector kind, those

solve two symmetric positive definite systems in each iteration of the primal-dual method.

The corrector system is built in a way that its solution is search direction of the iterate; in that

way, we apply a conjugated gradient method using the predictor system’s solution as a starting solution

for the corrector system.

The starting solution of the predictor system is the null solution, and the starting solution of the

corrector system is the final solution of the first system for two pairs of implemented programs (FL0-

FP0 and FL1-FP1), and is the null solution for one pair (FL2, FP2) of implemented programs.

The stopping criterion for the conjugated gradient method always uses a tolerance εp or εc for

the relative error of the current solution in the predictor or corrector systems, respectively. In short, the

implemented programs are:�
 FL9 – pure predictor for the linear network with a εp = 10-8;

6

�
 FL0 – predictor-corrector for the linear network with εp = εc = 10-8, uses the predictor system’s final

solution as the corrector system’s starting equation;�
 FL1 – predictor-corrector for the linear network with εp = 10-6 and εc = 10-8; uses the predictor

system’s final solution as the corrector system’s starting solution;�
 FL2 – predictor-corrector for the linear network with εp = εc = 10-8; uses the null solution to start

the corrector system;�
 FP9 – pure predictor for the piecewise linear networks with εp = 10-8;�
 FP0 – predictor-corrector for the piecewise linear networks with εp = εc = 10-8 , uses the predictor

system’s final solution as the corrector system’s starting equation;�
 FP1 – predictor-corrector for the piecewise linear networks with εp = 10-6 and εc = 10-8 , uses the

predictor system’s final solution as the corrector system’s starting equation;�
 FP2 – predictor-corrector for the piecewise linear networks with εp = εc = 10-8; uses the null

solution to start the corrector system.

The memory space required by these implemented programs to store the network data, the

current solutions, the conjugated gradient’s solutions and other auxiliary variables can be summarized

in:�
 FL9 - 13 n-vectors and 16

�
-vectors;�

 FL0, FL1, FL2 - 15 n-vectors and 19
�

-vectors;�
 FP9 - 13 n-vectors, 4 m-vectors and 13

�
-vectors;�

 FP0, FP1, FP2 - 15 n-vectors, 4 m-vectors and 16
�

-vectors.

The tolerances used in the implementation were: 10-8 (complementary test), -10-8 (inferior limit

of the primal objective function) e 10-8 (superior limit of the dual objective function).

4- Computational Tests

The algorithms were tested using a Pentium III 500 MHz, with 392 Mb of RAM memory, using

connected network problems randomly generated with up to 100,000 nodes, 1,000,000 arcs and

1,000,000 mill ion intervals.

The generated networks correspond to modified transportation problems. To the bipartite

digraph’s structure with equal number of supply and demand nodes, a directed cycle containing all

supply nodes and other cycle containing all demand nodes were added, with the purpose to increase the

probability of obtaining feasible generated problems. All the nodes of the generated network have the

7

same degree. The supply/demand, the cost coeff icients and the arc’s capacities were generated from a

uniform distribution.

The CPU time (in seconds), the primal-dual method’s number of iterations and the conjugated

gradient’s total number of iterations executed by each implemented algorithm for the generated

networks (five networks generated with the same parameters and associated with five different seeds)

are in Tables shown in the Appendix.

4.1. Initial Instances

First of all , relatively small problems were tested varying the parameters given to the generator,

in order to seek to define directions for this study. The parameters involved are the interval for the

supply/demand in the nodes, the interval for the cost coeff icients, the interval for the arc’s capacities,

and the total number of nodes, of arcs and of intervals . The most promising data is presented in the

Table 2 with supply/demand, cost and capacities randomly generated within a uniform distribution in

the interval (0,100).

Table 3, shows the CPU times obtained with the nine problems groups, which were solved with

the eight implemented programs versions. These data are also presented in Figure 1 (FLO, FL1, FL2,

FP0, FP1 e FP2) and in Figure 2 (FL9, FL0, FP9 and FP0).

It can be established the superior performance of the specialized versions for piecewise linear

networks. In each one of the two predictor-corrector classes, the type 1 versions (FP1, FL1) are slightly

superior to the rest (see Figure 1). In Figure 2, it can observed that the predictor-corrector FP0 version

shows to be better than almost all the other examples, with the exception of the G9 group (FL0, FP0

implementations) where it is beaten by the pure-predictor FP9 version.

4.2. Varying the number of intervals

Table 4 presents the CPU times obtained with the eight implemented algorithms to solve

generated instances with 10,000 nodes, 35,000 arcs and the number of intervals varying from 70,000 up

to 1,050,000. These data establish a superior performance of the specialized versions for piecewise

linear networks. Besides that, FP9 performs better than almost all the other instances (see Figures 3 and

4).

8

4.3. Varying the number of arcs

Table 5 shows the CPU times obtained with the eight implemented programs in problems

generated with 10,000 nodes and the varying the number of arcs from 20,000 up to 160,000. These data

confirm a superior performance of the piecewise linear network specialized versions. Besides that, FP9

showed the best performance among almost all the other programs (see Figures 5 and 6).

4.4. Varying the number of nodes

Table 6 shows the CPU times obtained with the eight implemented algorithms in generated

instances with 50,000 arcs, 25,000 intervals and varying the number of nodes between 5,000 and

20,000. These data establi sh a superior performance of piecewise linear network specialized version. In

these tests, the predictor-corrector versions, specially FP1 showed a superior behavior among all the

other versions (see Figures 7 and 8).

4.4. Varying the basic network

Table 7 shows the CPU times obtained with the eight implemented algorithms in generated

instances with seven arcs per node and five intervals per arc whose number of nodes varying between

5,000 and 40,000. These data establish a superior performance of piecewise linear network specialized

versions. In these tests, the predictor-corrector versions, specially FP1 showed a superior behavior

among all the other versions (see Figures 9 and 10).

5. Final Considerations

The performed experiments also considered the total iteration’s number associated with primal-

dual method (see Table 8) and the total iteration’s number associated with the conjugate gradient

method with diagonal preconditioning and with the maximum generating tree preconditioning (see

Table 9).

In a general way, the iteration’s number of the usual primal-dual method version (or pure-

predictor) was at least 50%, at most three times for some instances, superior to the iteration’s number

of the primal-dual method with predictor-corrector.

9

Besides this, it was verified that for bigger networks is better to use the diagonal

preconditioning beyond the six initial iterations, as it was performed in general during the

computational experiments related here.

Among the predictor-corrector versions, there was not a significant difference in the iteration’s

number of the primal-dual methods. Other types of variation in the structure and in the network

coefficients were tested; however, the presented results were considered as the most interesting ones.

Summarizing, the pure-predictor version seems to have a better behavior only when the network

has a large number of arcs or intervals in comparison to the number of nodes.

References

[1] J. Czyzyk, S. Mehrotra, M. Wagner and S. J. Wright, PCx user guide, Technical Report

OTC 96/01. Optimization Technology Center, 1997.

[2] K. Darby-Dowman, F. A. S. Marins, E. L. F. Senne, C. Perin and A. Machado, Algorithms

for network piecewise linear programs: a comparative study, European Journal of Operational

Research 97 (1997), 183-199.

[3] J. K. Ho, Relationships among linear formulations of separable convex piecewise linear

programs, Mathematical Programming Study 24 (1985), 126-140.

[4] M. Kojima, N. Megiddo and S. Mizuno, A Primal-Dual Infeasible-Interior Point Algorithm

for Linear Programming, Mathematical Programming 61 (1993), 263-280.

[5] S. Mehrotra, On the implementation of a primal-dual interior point method, SIAM Journal

on Optimization 2 (1989), 575-601.

[6] C. Perin, M. P. Mello and F. A. S. Marins, An Implementation of Interior Point Method for

Piecewise Linear Networks, Tendências em Matemática Aplicada e Computacional 1 (2000), No. 2,

431-442 (paper written in Portuguese and published by Brazil ian Society of Computational and

Applied Mathematics).

[7] M. Resende and G. Veiga, An efficient implementation of a network interior point method,

Technical Report, AT&T Bell Laboratories, Murray Hil l, NJ, USA, 1992.

Acknowledgements

To CNPq and FUNDUNESP for financial support.

10

APPENDIX

Program Symbol Line
FL9 • dotted
FL0 ° dotted

FL1 	 dotted

FL2

dotted
FP9 • full
FP0 ° full

FP1 	 full

FP2

full
Table 1. Graphic Conventions

Group Nodes Arcs Intervals
G1 10 ,000 20,000 40,000
G2 10 ,000 20,000 100,000
G3 10 ,000 20,000 160,000
G4 10 ,000 35,000 70,000
G4 10 ,000 35,000 105,000
G6 10 ,000 35,000 280,000
G7 10 ,000 50,000 100,000
G8 10 ,000 50,000 250,000
G9 10 ,000 50,000 400,000
Table 2. Groups of Initial Instances

11

Figure 1. CPU Times for the Predictor-Corrector Versions

Groups G1 G2 G3 G4 G5 G6 G7 G8 G9
Nodes(103) 10 10 10 10 10 10 10 10 10
Arcs (103) 20 20 20 35 35 35 50 50 50
Inter.(103) 40 100 160 70 105 280 100 250 400

FL9 988 859 772 913 674 636 857 649 775
FL0 175 295 468 301 655 1014 447 1002 1576
FL1 169 280 447 291 640 980 432 980 1613
FL2 186 313 502 322 721 1085 479 1097 1740
FP9 846 637 513 744 456 369 670 409 398
FP0 125 168 205 200 281 358 284 425 533
FP1 120 154 186 192 258 318 256 367 478
FP2 130 165 197 202 274 338 281 398 498

Table 3. CPU seconds of the Initial Instances

12

Figure 2. CPU Seconds for FL9, FL0, FP9, FP0

intervals 70,000 175,000 280,000 525,000 1,050,000
FL9 913 674 636 877 1806
FL0 301 655 1014 1784 4125
FL1 291 640 980 1918 4390
FL2 322 721 1085 1995 4640
FP9 744 456 369 382 529
FP0 200 281 358 461 702
FP1 192 258 318 457 687
FP2 202 274 338 446 705

Table 4. CPU Seconds for different number of Intervals

13

Figure 3. CPU Seconds for different number of Intervals

arcs 20,000 35,000 50,000 85,000 160,000
FL9 859 674 649 913 1970
FL0 305 697 1077 2179 5389
FL1 280 640 980 1997 4978
FL2 313 721 1097 2259 5746
FP9 637 456 409 485 878
FP0 161 271 398 736 1587
FP1 154 258 367 675 1471
FP2 165 274 398 746 1647

Table 5. CPU Seconds for different number of Arcs

14

Figure 4. CPU Seconds for different number of Intervals

nodes 5,000 10,000 125,000 20,000
FL9 334 649 970 3120
FL0 798 1077 1171 1450
FL1 737 980 1090 1339
FL2 832 1097 1200 1496
FP9 165 409 650 2371
FP0 248 398 472 735
FP1 236 367 442 695
FP2 249 398 480 739

Table 6. CPU Seconds for different number of Nodes

15

Figure 5. CPU Seconds for different number of Arcs

nodes 5,000 10,000 20,000 30,000 40,000
arcs 35,000 70,000 140,000 210,000 280,000

Intervals 175,000 350,000 700,000 1,050,000 1,400,000
FL9 183 674 2470 5815 11006
FL0 211 697 2512 5340 10021
FL1 193 640 2301 5015 9382
FL2 216 721 2553 5602 10562
FP9 115 456 1747 4227 8337
FP0 78 271 996 2219 4082
FP1 73 258 959 2183 3971
FP2 79 274 1010 2242 4132

Table 7. CPU Seconds for Networks of different sizes

16

Figure 6. CPU Seconds for different number of Arcs

Groups G1 G2 G3 G4 G5 G6 G7 G8 G9
FL9 188 142 110 149 88 66 123 69 61
FL0 25 28 30 29 34 37 32 38 42
FL1 25 27 30 29 35 38 33 38 43
FL2 25 28 30 30 35 37 32 39 43
FP9 189 142 110 149 88 66 123 69 61
FP0 25 27 30 29 33 37 32 38 42
FP1 24 27 30 29 33 37 32 38 43
FP2 25 28 30 29 34 37 32 38 43

Table 8. Iterations of the Primal Dual

17

Figure 7. CPU Seconds for different number of Nodes

Groups G1 G2 G3 G4 G5 G6 G7 G8 G9
FL9 11828 7780 6190 8665 5236 4224 7397 4323 4274
FL0 3917 5350 7390 5494 9341 11109 6791 11183 13350
FL1 3408 4675 6476 4797 8312 9853 6000 9910 12364
FL2 4147 5545 7626 5664 9745 11344 6993 11448 13683
FP9 10905 6952 5465 8335 4945 3947 7240 4144 4036
FP0 3159 4313 5385 4711 6691 8361 5969 8899 10671
FP1 2787 3780 4701 4141 5883 7331 5220 7708 9901
FP2 3341 4474 5536 4878 6868 8493 6167 8989 10852

Table 9. Total Iterations of the Conjugate Gradient

18

Figure 8. CPU Seconds for different number of Nodes

19

Figure 9. CPU Seconds for Networks of different sizes

20

Figure 10. CPU Seconds for Networks of different sizes

