
1

Computational Comparison of Alternative Strategies

with Interior Point Methods for Network Piecewise Linear Programs

Fernando A. S. Marins – FEG – UNESP – Brazil – fmarins@feg.unesp.br

Clovis Perin – IMECC – UNICAMP – Brazil – clovis@ime.unicamp.br

Margarida Mello – IMECC – UNICAMP – Brazil – margar id@ime.unicamp.br

Resumo

A abordagem usual  de solução de um problema de fluxo em rede linear por partes é a sua

transformação em um problema equivalente de fluxo em rede linear. Nesta transformação, uma rede

linear por partes com n nós e m arcos, cada um com j

�
 intervalos para cada parte linear da função de

custo associada ao arco j, tem uma rede linear associada com n nós e 
�

 = ∑ =

m

1j j

�
 arcos. Métodos de

pontos interiores têm se apresentado muito bem na resolução de problemas de fluxo em redes lineares.

Nós mostramos que é vantajoso construir um método de pontos interiores especializado para resolver

problemas em redes lineares por partes diretamente, ao invés de aplicar uma versão genérica no

problema linear equivalente. Dois algoritmos foram implementados e testados: um utilizando o passo

preditor-corretor e o outro sem utili zar o passo corretor. Comparações entre diferentes estratégias

alternativas (inicialização e critério de parada) são reali zadas para efeito de testes computacionais
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Abstract

The usual approach to solving a piecewise linear network flow problem is to transform it into an

equivalent linear one. In this transformation, a piecewise network with n nodes and m arcs, each with

j

�
 intervals to each linear piece of the cost function associated to arc j, has an equivalent linear one

with n nodes and 
�

 = ∑ =

m

1j j

�
 arcs. Interior point methods have been proved successful in the solution

of linear network flow problems. We show that is advantageous to construct a customized interior point

method to solve piecewise linear network problems directly, instead of applying its generic version to

the equivalent linear problem. Two algorithms were implemented and tested: one using predictor-

corrector and the other without the corrector step. Comparison between alternative strategies

(initialization and stopping criteria) is done by means of several computational tests.

Keywords: Piecewise linear network, primal – dual interior point method, predictor – corrector,

computational tests.

1. Introduction

An important area of Mathematical Programming is the Piecewise Linear Programming, which

is related with the optimization of a separable convex piecewise linear objective function. In this paper,

it is given a special attention to a sub-area known as Piecewise Linear Network Programming, which
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has relevant application in the real world, like in: power systems, pipeline networks, transportation,

communication networks, water management and stochastic network flow problems. In [2] the authors

investigated the relative performance of specialized algorithms for piecewise linear network problems:

(Strongly Feasible) Primal Simplex, Dual Simplex, Out-of-kilter and (Strongly Polynomial) Cost-

Scaling algorithms.

We gave sequence to the research related in [6]. In that paper, the implementation of an

adaptation of an interior point method for piecewise linear flow problems was described. That

implementation is now modified, incorporating improvements proposed by [5], specifically in what

concerns with the utilization of a predictor-corrector scheme. It must be said that the usual

implementation of the predictor-corrector method, as described in [5], utili ze the Cholesky’s

Decomposition, as for example in [1,4]. In our implementation, however, we solve the linear systems,

associated to predictor-corrector method, by a conjugated gradient method, which takes advantage of

the problem’s incidence matrix, as proposed by [7] and shown in [6].

This paper is organized as follows. The algorithms are presented in next section, their

implementations are the object of section 3, and the computational tests are related and commentated in

section 4. The Tables and Figures are in the Appendix at the end of the paper.

2. Algorithms

The piecewise linear network flow problem is defined by

Min{ f(x) such that Ax = b, x ≥ 0},

where A is a n x m - incidence matrix of a network with n nodes and m arcs, b is the n-vector of

demand in the nodes, x is the m-vector of the flows in the arcs (to be determined), and f(x) =

( )jm
1j x∑ = jf  is a separable convex piecewise linear function. The convex piecewise linear functions fj

can be specified by the pair of 
�

-vectors c and d where 
�

 = ∑ =

m

1j j

�
 is the total number of intervals,

and j

�
 is the number of intervals of fj.

This problem can be transformed into a linear network flow problem (see [3]) defined by:

{ }0s,xd,sx b,A   such  that   xcmin ' ≥=+=

In this case, the n x 
�

- matrix A  is obtained from the matrix A by repeating its columns as

many times as are the intervals of the associated arcs. We are supposing that this same procedure is

also made in vector x transforming it in the vector x . The associated dual problem is given by
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{ }0  w ,z ,cwzyA  such  that   wdybmax ''' ≥=+−−

and the complementary slack conditions are expressed by

,0W Sand 0 ZX   1        1  ==

where W, Z, S, X  are diagonal matrixes with the elements of w,z, s, x , respectively, and 1 is the

vector of 1’s.

Two versions of interior point methods were studied: the usual primal-dual (pure predictor) and

the primal-dual with predictor-corrector.

As described in [6], the usual primal-dual interior point method is initialized from w,zy, ,s ,x ,

such that w,z, s, x  > 0 and at each iteration a search direction w
�

,z,y
�

,s
�

,x
�

∆  is obtained, as a

function of a centering parameter µ, and according to the equations below that reflect the primal

feasibil ity, the dual feasibil ity, and the complementary slackness conditions when µ = 0:

wSs
�

W  w
�

S

zX 
�

 x
�

Z  z
�

X

)1 (w  zy - A c -  w - 
�

z 
���

A

s - x d -  s 
�

 x
� xAb - xA
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 - 1        

 - 1        
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=+
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=∆

The usual primal-dual interior point method can be described as it follows:

let  w,zy, ,s ,x , such that w,z, s, x  > 0

while (stopping criteria is not satisfied) do

update µ

obtain w
�

,z,y
�

,s
�

,x
�

∆

find α such that ( ) 0   w,
�

z,
�

s,
�

x
�

)w,z, s, x( >α+  

update  ( ) ( ) ( )w,
�

z,
����

s,
�

x
�

 
�

 w,z,y,s,xw,z,y,s,x +← 

On the other hand, in the primal-dual interior point method with predictor-corrector both

systems (1) and (2) have the same coeff icient matrix on the left hand side:

w
�

S
�

wSs
�

W  w
�

S

z
�

X
�

zX 
�

 x
�

Z  z
�

X

)2 (w  zy - A c -  w - 
�

z 
���

A

s - x d -  s 
�

 x
� xAb - xA

''

 -  - 1        

 -  - 1        

                       

             

                       

µ=+
=+

+=+

=+
=∆

where w,s,z,x δδδδ correspond to the solution of the system (1).
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The ( )w,z,s,x ∆∆∆∆  vector is the solution of (1) for the pure predictor algorithm and it is the

solution of (2) for the algorithm with predictor-corrector. The α parameter is obtain by a usual ratio test

for the pure predictor algorithm and by means a special scheme, as described in [1, 5] for the predictor-

corrector algorithm.

We utili zed the strategy of solving each one of the above predictor and corrector systems of

equations by means a Conjugated Gradient Method applied to n x n – symmetric positive definite

system (SPD). The matrix associated to that system is implicitly used when we traverse all the arcs of

problem’s network. These symmetric positive definite systems are solved with the conjugated gradient

method with diagonal preconditioning for the six first iterations of the primal-dual method and with the

preconditioning of the spanning tree in the subsequent iterations.

The stopping criteria adopted are: (1) maximum number of iterations exceeded; (2) quasi--

complementary solutions found ( 0  ws  zx '' ≈+ ), (3) inferior limit value for the primal objective

function exceeded; and (4) superior limit value for the dual objective function exceeded.

3- Implementation

The C++ language was used in the implementation of the algorithms. Four pairs of programs

associated with different versions of the interior point method were implemented and tested; four of

them for linear network and another four for piecewise linear network. One pair (FL9, FP9) is the usual

pure predictor which solves only one symmetric positive definite system in each iteration of the primal-

dual method, and three pairs (FL0- FP0, FL1-FP1, FL2-FP2) are of the predictor-corrector kind, those

solve two symmetric positive definite systems in each iteration of the primal-dual method.

The corrector system is built in a way that its solution is search direction of the iterate; in that

way, we apply a conjugated gradient method using the predictor system’s solution as a starting solution

for the corrector system.

The starting solution of the predictor system is the null solution, and the starting solution of the

corrector system is the final solution of the first system for two pairs of implemented programs (FL0-

FP0 and FL1-FP1), and is the null solution for one pair (FL2, FP2) of implemented programs.

The stopping criterion for the conjugated gradient method always uses a tolerance εp or εc for

the relative error of the current solution in the predictor or corrector systems, respectively. In short, the

implemented programs are:�
 FL9 – pure predictor for the linear network with a εp = 10-8;
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�
 FL0 – predictor-corrector for the linear network with εp = εc = 10-8, uses the predictor system’s final

solution as the corrector system’s starting equation;�
 FL1 – predictor-corrector for the linear network with εp = 10-6 and εc = 10-8; uses the predictor

system’s final solution as the corrector system’s starting solution;�
 FL2 – predictor-corrector for the linear network with εp = εc = 10-8; uses the null solution to start

the corrector system;�
 FP9 – pure predictor for the piecewise linear networks with εp = 10-8;�
 FP0 – predictor-corrector for the piecewise linear networks with εp  = εc  = 10-8 , uses the predictor

system’s final solution as the corrector system’s starting equation;�
 FP1 – predictor-corrector for the piecewise linear networks with εp  = 10-6 and εc  = 10-8 , uses the

predictor system’s final solution as the corrector system’s starting equation;�
 FP2 – predictor-corrector for the piecewise linear networks with εp = εc = 10-8; uses the null

solution to start the corrector system.

The memory space required by these implemented programs to store the network data, the

current solutions, the conjugated gradient’s solutions and other auxiliary variables can be summarized

in:�
 FL9 - 13 n-vectors and 16 

�
-vectors;�

 FL0, FL1, FL2 - 15 n-vectors and 19 
�

-vectors;�
 FP9 - 13 n-vectors, 4 m-vectors and 13 

�
-vectors;�

 FP0, FP1, FP2 - 15 n-vectors, 4 m-vectors and 16 
�

-vectors.

The tolerances used in the implementation were: 10-8 (complementary test), -10-8 (inferior limit

of the primal objective function) e 10-8 (superior limit of the dual objective function).

4- Computational Tests

The algorithms were tested using a Pentium III 500 MHz, with 392 Mb of RAM memory, using

connected network problems randomly generated with up to 100,000 nodes, 1,000,000 arcs and

1,000,000 mill ion intervals.

The generated networks correspond to modified transportation problems. To the bipartite

digraph’s structure with equal number of supply and demand nodes, a directed cycle containing all

supply nodes and other cycle containing all demand nodes were added, with the purpose to increase the

probability of obtaining feasible generated problems. All the nodes of the generated network have the
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same degree. The supply/demand, the cost coeff icients and the arc’s capacities were generated from a

uniform distribution.

The CPU time (in seconds), the primal-dual method’s number of iterations and the conjugated

gradient’s total number of iterations executed by each implemented algorithm for the generated

networks (five networks generated with the same parameters and associated with five different seeds)

are in Tables shown in the Appendix.

4.1. Initial Instances

First of all , relatively small problems were tested varying the parameters given to the generator,

in order to seek to define directions for this study. The parameters involved are the interval for the

supply/demand in the nodes, the interval for the cost coeff icients, the interval for the arc’s capacities,

and the total number of nodes, of arcs and of intervals . The most promising data is presented in the

Table 2 with supply/demand, cost and capacities randomly generated within a uniform distribution in

the interval (0,100).

Table 3, shows the CPU times obtained with the nine problems groups, which were solved with

the eight implemented programs versions. These data are also presented in Figure 1 (FLO, FL1, FL2,

FP0, FP1 e FP2) and in Figure 2 (FL9, FL0, FP9 and FP0).

It can be established the superior performance of the specialized versions for piecewise linear

networks. In each one of the two predictor-corrector classes, the type 1 versions (FP1, FL1) are slightly

superior to the rest (see Figure 1). In Figure 2, it can observed that the predictor-corrector FP0 version

shows to be better than almost all the other examples, with the exception of the G9 group (FL0, FP0

implementations) where it is beaten by the pure-predictor FP9 version.

4.2. Varying the number of intervals

Table 4 presents the CPU times obtained with the eight implemented algorithms to solve

generated instances with 10,000 nodes, 35,000 arcs and the number of intervals varying from 70,000 up

to 1,050,000. These data establish a superior performance of the specialized versions for piecewise

linear networks. Besides that, FP9 performs better than almost all the other instances (see Figures 3 and

4).
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4.3. Varying the number of arcs

Table 5 shows the CPU times obtained with the eight implemented programs in problems

generated with 10,000 nodes and the varying the number of arcs from 20,000 up to 160,000. These data

confirm a superior performance of the piecewise linear network specialized versions. Besides that, FP9

showed the best performance among almost all the other programs (see Figures 5 and 6).

4.4. Varying the number of nodes

Table 6 shows the CPU times obtained with the eight implemented algorithms in generated

instances with 50,000 arcs, 25,000 intervals and varying  the number of nodes between 5,000 and

20,000. These data establi sh a superior performance of piecewise linear network specialized version. In

these tests, the predictor-corrector versions, specially FP1 showed a superior behavior among all the

other versions (see Figures 7 and 8).

4.4. Varying the basic network

Table 7 shows the CPU times obtained with the eight implemented algorithms in generated

instances with seven arcs per node and five intervals per arc whose number of nodes varying between

5,000 and 40,000. These data establish a superior performance of piecewise linear network specialized

versions. In these tests, the predictor-corrector versions, specially FP1 showed a superior behavior

among all the other versions (see Figures 9 and 10).

5. Final Considerations

The performed experiments also considered the total iteration’s number associated with primal-

dual method (see Table 8) and the total iteration’s number associated with the conjugate gradient

method with diagonal preconditioning and with the maximum generating tree preconditioning (see

Table 9).

In a general way, the iteration’s number of the usual primal-dual method version (or pure-

predictor) was at least 50%, at most three times for some instances, superior to the iteration’s number

of the primal-dual method with predictor-corrector.
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Besides this, it was verified that for bigger networks is better to use the diagonal

preconditioning beyond the six initial iterations, as it was performed in general during the

computational experiments related here.

Among the predictor-corrector versions, there was not a significant difference in the iteration’s

number of the primal-dual methods. Other types of variation in the structure and in the network

coefficients were tested; however, the presented results were considered as the most interesting ones.

Summarizing, the pure-predictor version seems to have a better behavior only when the network

has a large number of arcs or intervals in comparison to the number of nodes.
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APPENDIX

Program Symbol Line
FL9 • dotted
FL0 ° dotted

FL1 	 dotted

FL2



dotted
FP9 • full
FP0 ° full

FP1 	 full

FP2



full
Table 1. Graphic Conventions

Group Nodes Arcs Intervals
G1 10 ,000 20,000 40,000
G2 10 ,000 20,000 100,000
G3 10 ,000 20,000 160,000
G4 10 ,000 35,000 70,000
G4 10 ,000 35,000 105,000
G6 10 ,000 35,000 280,000
G7 10 ,000 50,000 100,000
G8 10 ,000 50,000 250,000
G9 10 ,000 50,000 400,000
Table 2. Groups of Initial Instances
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Figure 1. CPU Times for the Predictor-Corrector Versions

Groups  G1   G2   G3   G4   G5   G6   G7   G8   G9
Nodes(103) 10 10 10 10 10 10 10 10 10
Arcs (103) 20 20 20 35 35 35 50 50 50
Inter.(103) 40 100 160 70 105 280 100 250 400

FL9  988  859  772  913  674   636  857   649   775
FL0  175  295  468  301  655  1014  447  1002  1576
FL1  169  280  447  291  640   980  432   980  1613
FL2  186  313  502  322  721  1085  479  1097  1740
FP9  846  637  513  744  456   369  670   409 398
FP0  125  168  205  200  281   358  284   425   533
FP1 120 154 186 192 258 318 256 367   478
FP2  130  165  197  202  274   338  281   398   498

Table 3. CPU seconds of the Initial Instances



12

Figure 2. CPU Seconds for FL9, FL0, FP9, FP0

intervals 70,000 175,000 280,000 525,000 1,050,000
FL9  913  674   636   877  1806
FL0  301  655  1014  1784  4125
FL1  291  640   980  1918  4390
FL2  322  721  1085  1995  4640
FP9  744  456   369  382  529
FP0  200  281   358   461   702
FP1  192  258  318   457   687
FP2  202  274   338   446   705

Table 4. CPU Seconds for different number of Intervals
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Figure 3. CPU Seconds for different number of Intervals

arcs  20,000  35,000  50,000  85,000  160,000
FL9  859  674  649  913  1970
FL0  305  697  1077  2179  5389
FL1  280  640  980  1997  4978
FL2  313  721  1097  2259  5746
FP9  637  456  409  485  878
FP0  161  271  398  736  1587
FP1  154  258  367  675  1471
FP2  165  274  398  746  1647

Table 5. CPU Seconds for different number of Arcs
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Figure 4. CPU Seconds for different number of Intervals

nodes  5,000 10,000  125,000  20,000
FL9  334  649  970  3120
FL0  798  1077  1171  1450
FL1  737  980  1090  1339
FL2  832  1097  1200  1496
FP9  165  409  650  2371
FP0  248  398  472  735
FP1  236  367  442  695
FP2  249  398  480  739

Table 6. CPU Seconds for different number of Nodes
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Figure 5. CPU Seconds for different number of Arcs

nodes  5,000  10,000  20,000  30,000  40,000
arcs  35,000  70,000  140,000  210,000  280,000

Intervals  175,000  350,000  700,000  1,050,000  1,400,000
FL9  183  674  2470  5815  11006
FL0  211  697  2512  5340  10021
FL1  193  640  2301  5015  9382
FL2  216  721  2553  5602  10562
FP9  115  456  1747  4227  8337
FP0  78  271  996  2219  4082
FP1  73  258  959  2183  3971
FP2  79  274  1010  2242  4132

Table 7. CPU Seconds for Networks of different sizes
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Figure 6. CPU Seconds for different number of Arcs

Groups  G1   G2   G3   G4   G5   G6   G7   G8   G9
FL9  188  142  110  149  88   66   123   69   61
FL0  25   28   30   29   34   37    32   38   42
FL1  25   27   30   29   35   38    33   38   43
FL2  25   28   30   30   35   37    32   39   43
FP9  189  142  110  149  88   66   123   69   61
FP0  25   27   30   29   33   37    32   38   42
FP1  24   27   30   29   33   37    32   38   43
FP2  25   28   30   29   34   37    32   38   43

Table 8. Iterations of the Primal Dual
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Figure 7. CPU Seconds for different number of Nodes

Groups  G1   G2   G3   G4   G5   G6   G7   G8   G9
FL9  11828  7780  6190  8665 5236 4224 7397 4323  4274
FL0  3917  5350  7390  5494 9341 11109 6791 11183  13350
FL1  3408  4675  6476  4797 8312 9853 6000 9910  12364
FL2  4147  5545  7626  5664 9745 11344 6993 11448  13683
FP9  10905  6952  5465  8335 4945 3947 7240 4144  4036
FP0  3159  4313  5385  4711 6691 8361 5969 8899  10671
FP1  2787  3780  4701  4141 5883 7331 5220 7708  9901
FP2  3341  4474  5536  4878 6868 8493 6167 8989  10852

Table 9. Total Iterations of the Conjugate Gradient
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Figure 8. CPU Seconds for different number of Nodes
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Figure 9. CPU Seconds for Networks of different sizes
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Figure 10. CPU Seconds for Networks of different sizes


