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Abstract. We prove existence of a global weak solution for a nematic liquid crystal prob-
lem by means of a penalization method using a simplified Ericksen-Leslie model and a new
compactness property for the gradient of the director field.

1 Introduction

In this Note, we establish the well-posedness in the large of a nematic liquid crystals model (formulated
for instance in [7]) by means of a penalisation argument using a simplified Ericksen-Leslie model with
the Ginzburg-Landau approximation [1, 2].

Let us consider a simplified version of the Ericksen-Leslie model, introduced by Lin in [4] and analysed
by Lin and Liu [5, 6] who used a modified Galerkin approach, and by Shkoller [8] who relied on a
contraction mapping argument coupled with appropriate energy estimates. This model is a modified
Navier-Stokes system that take into account of the liquid crystallinity, coupling with the Ginzburg-
Landau equations. A full version of this Ericksen-Leslie model has been recently studied by Coutand
and Shkoller in [3], where local well-posedness (global for small enough data) is proved. Now, we are
interested in the asymptotic behaviour respect to the penalisation parameter.

The unknowns are the time-dependent divergence-free velocity field u(t,x) and pressure p(t,x) of the
fluid and the director field d(t,x) representing the orientation of the liquid crystals molecules. The fluid
is confined in an open bounded domain Ω ⊂ IRn (n = 2 or 3) with boundary ∂Ω of C2 type.

In the penalised model one verifies the constraint |d| ≤ 1 as consequence of a maximum principle for
the Ginzburg-Landau equation where the approximation

fε(d) = ε−2(|d|2 − 1)d

is considered (ε > 0). Here |d| = |d(t,x)| denotes the punctual Euclidean norm in IRn. This penalisation
function exhibits potential structure, i.e. there exists a potential function

Fε(d) = ε−2(|d|2 − 1)2

such that fε(d) = ∇d(Fε(d)) for all d ∈ IRn.
Accordingly, we consider the penalised model in (0, T )× Ω as follows

|d| ≤ 1, ∂td + u · ∇d + γ(fε(d)−∆d) = 0 (1)
∂tu + u · ∇u− ν∆u +∇p + λ∇ · (∇d¯∇d) = 0 (2)

∇·u = 0 (3)
u|∂Ω = 0, d|∂Ω = h (4)

u|t=0 = u0, d|t=0 = d0 (5)
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Here, u0 and d0 are, respectively, the initial velocity and director fields. In order to obtain the dissipativity
of the model, we shall assume (as in all previous works) time independent (Dirichlet) boundary data for
the director field d, given by h : ∂Ω → IRn. Concerning the coefficients, ν > 0 represents the viscosity of
the fluid, λ > 0 is an elasticity constant, ε > 0 is a penalisation parameter (with respect to the unitary
constraint), and γ > 0 is a relaxation-time constant. We have used the tensorial notation

(∇d¯∇d)ij =
n∑

k=1

∂xi
dk∂xj

dk

In the ε-limit model we will find the restriction |d| = 1 and the Lagrange multiplier associated |∇d|2d.
Indeed, when ε → 0 we will find a limit problem, where it changes (1) by

|d| = 1, ∂td + u · ∇d− γ∆d− γ|∇d|2d = 0. (6)

Let us introduce the following space of functions

H1
h = {d ∈ H1(Ω)n / d = h on ∂Ω}
H = {u ∈ L2(Ω)n / ∇ · u = 0,u · n = 0 on ∂Ω}
V = {u ∈ H1

0 (Ω)n / ∇ · u = 0}.

For simplicity, let us denote L2,H1 instead of L2(Ω)n,H1(Ω)n etc. Our main result is the following

Theorem 1.1 Let T > 0 and Ω ⊂ IRn be an open, bounded and C2 domain. Let us assume u0 ∈ H,
d0 ∈ H1

h and h ∈ H2 such that |d0| = 1 in Ω and |h| = 1 on ∂Ω. Then, there exists a global weak
solution u ∈ L2(0, T ;V)∩L∞(0, T ;H), d ∈ L∞(0, T ;H1

h) of the limit problem (2)-(6) obtained as a limit
of “semi-strong” solutions uε ∈ L2(0, T ;V)∩L∞(0, T ;H), dε ∈ L2(0, T ;H2 ∩H1

h)∩L∞(0, T ;H1
h) of the

coupled Navier-Stokes and Ginzburg-Landau model (1)-(5) as ε goes to zero.

Remark 1 Up to our known, this theorem is the first result of existence of a global in time solution (without
restrictions on the data) of the limit problem (2)-(6). In [7], Prohl proves existence (and uniqueness) of
a local in time strong solution of (2)-(6). On the other hand, Lin and Liu studied in [6] the asymptotic
behaviour of (1)-(5) when ε goes to zero, but the limit of the (strongly) nonlinear terms ∇dε ¯ ∇dε is
only obtained towards a measure valued tensor M . The main contribution in this note is to identify M
with the limit tensor ∇d¯∇d.

Remark 2 Notice that in the ε-limit problem (2)-(6) one loses the H2-regularity for the director field
d, hence although (uε,dε) verifies (1) point-wise a.e. (t,x), their limit (u,d) verifies (6) only in a
distributional sense.

2 ε-approximate solutions and dissipativity

For each ε > 0, let us consider a “semi-strong” solution (uε,dε) of the ε-approximate problem (1)-(5),
that is

uε ∈ L2(0, T ;V) ∩ L∞(0, T ;H), dε ∈ L2(0, T ;H2 ∩H1
h) ∩ L∞(0, T ;H1

h), (7)
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verifying the u-system (2) in the distributional sense and the d-system (1) point-wise a.e. The boundary
conditions are verified in the trace sense. Finally, the initial conditions have classical sense; indeed uε

and dε are time-continuous functions, as consequence of the additional regularity

∂tuε ∈ Lp(0, T ;V′) and ∂tdε ∈ Lp(0, T ;L2) (p = 2 if n = 2 or p = 4/3 if n = 3)

that can be obtained applying the previous regularity (7) to the equations (1) and (2).
The existence of (uε,dε) can be proved ([5]) by means of three main arguments: a semi-galerkin

method (space-discretization of the u-system (2), remaining the d-system (1) in the continuous sense), a
maximum principle for the d-system in order to obtain the constraint |dε| ≤ 1 and the following energy
inequality,

d

dt

(
1
2
‖uε‖2 +

λ

2
‖∇dε‖2 + λ

∫

Ω

Fε(dε)dx
)

+ ν‖∇uε‖2 + λγ‖fε(dε)−∆dε‖2 ≤ 0, (8)

obtained taking respectively λ(fε(dε) −∆dε) and uε as test functions in (1)-(2) and using the equality
∇ · (∇d¯∇d) = ∇(|∇d|2/2) +∇dt∆d. In (8), ‖ · ‖ denotes the L2(Ω)-norm.

3 ε-independent estimates

For simplicity, let us denote L2(H1) instead of L2(0, T ;H1), etc. From the maximum principle in (2)

|dε| ≤ 1 a.e. (t,x).

On the other hand, from the energy inequality (8), one has the following (ε-independent) estimates:

uε is bounded in L∞(H) ∩ L2(V), (9)
dε is bounded in L∞(0, T ;H1

h), (10)
wε := fε(dε)−∆dε is bounded in L2(L2), (11)

Fε(dε) is bounded in L∞(L1). (12)

Moreover, applying estimates (9)-(11) in equations (1)-(2),

∂tuε is bounded in L2(V′) + L∞((W1,r ∩V)′), r > n, (13)
∂tdε is bounded in L2(L2) + Lq(L4/3), q = 4 if n = 2 or q = 8/3 if n = 3. (14)

Finally, (10) implies in particular

Mε := ∇dε ¯∇dε is bounded in L∞(L1). (15)
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4 ε-convergence

From previous estimates (9)-(15) and compactness results of Aubin-Lions type [9], there exists subse-
quences (equally denoted) dε,uε,wε, Mε and their respective limit functions d,u,w,M , such that

uε → u in L∞(H)weak?, L2(V)weak, L2(H) strong
dε → d in L∞(H1)weak?, C(L2) strong,

∂tuε → ∂tu in L2(V′) + L∞((W1,r ∩V)′)weak,

∂tdε → ∂td in L2(L2) + Lp(L4/3) weak,

wε → w in L2(L2) weak,

∇dε ¯∇dε → M in the measure sense.

Consequently, taking limits as ε → 0 and using De Rham’s lemma [10], we arrive at

∂td + u · ∇d + γw = 0 (16)
∂tu + u · ∇u− ν∆u +∇p + λ∇ ·M = 0 (17)

∇·u = 0 (18)
u|∂Ω = 0, d|∂Ω = h (19)

u|t=0 = u0, d|t=0 = d0 (20)

On the other hand, since ε−1(|dε|2 − 1) is bounded in L∞(L2) (using (12)) and dε → d point-wise
a.e. (t,x), one get the unity constraint |d(t,x)| = 1 a.e. (t,x). Therefore, in order to finish the proof of
Theorem 1.1, we have to identify w with −∆d− |∇d|2d and M with ∇d¯∇d.

5 Identification of w = −∆d− |∇d|2d.

The argument of this section is based in the known literature on harmonic functions with values in the
unit sferic surface (see for instance [1, 2] and references therein cited). In particular, we will use the
following result, which is a slightly modification (introducing the convection terms) of Lemma 2.2 in [2]
(see also Lemma 7.1 in [6]):

Lemma 5.1 The following two systems are equivalent:

∂td + u · ∇d− γ∆d = γ|∇d|2d

and
|d| = 1, (∂td + u · ∇d) ∧ d− γ∇ · (∇d ∧ d) = 0. (21)

Since we already have that |d| = 1, it suffices to verify the equation of (21). Indeed, making the vectorial
product of equation (2) by dε, taking into account that fε(dε)∧dε = 0 and −∆dε∧dε = −∇·(∇dε∧dε),
one has

(∂tdε + uε · ∇dε) ∧ dε − γ∇ · (∇dε ∧ dε) = 0. (22)

Making ε → 0, we can deduce (21), using the strong convergences of uε and dε and the weak convergences
of ∂tdε and ∇dε.
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6 Identification of M = ∇d¯∇d.

The key of this proof is to obtain L2-compactness for∇dε, using some ideas of the optimisation framework.
Indeed, since wε = −∆dε + fε(dε), then dε(t) can be viewed as a solution of the optimisation (without
constraints) problem

Jε(dε(t)) = min
d∈H1

h(Ω)
Jε(d)

[
=

∫

Ω

(
1
2
|∇d|2 + Fε(d)−wε(t) · d

)]
.

On the other hand, a.e. t let us define d̃(t) as a solution of the optimisation (with constraints) problem

J(d̃(t)) = min
d∈H1

h(Ω) |d|=1
J(d)

[
=

∫

Ω

(
1
2
|∇d|2 −w(t) · d

)]
.

Obviously, Jε(dε(t)) ≤ Jε(d̃(t)). In particular,

∫ T

0

∫

Ω

(
1
2
|∇dε(t)|2 + Fε(dε(t))−wε(t) · dε(t)

)
≤

∫ T

0

∫

Ω

(
1
2
|∇d̃(t)|2 −wε(t) · d̃(t)

)
. (23)

Taking limit inf as ε → 0 in (23), bounding previously Fε(dε(t)) ≥ 0,

∫ T

0

J(d(t)) ≤ lim inf
ε→0

∫ T

0

∫

Ω

(
1
2
|∇dε(t)|2 −wε(t) · dε(t)

)

≤ lim
ε→0

∫ T

0

∫

Ω

(
1
2
|∇d̃(t)|2 −wε(t) · d̃(t)

)
=

∫ T

0

J(d̃(t)),

hence one has the equality
∫ T

0
J(d(t)) =

∫ T

0
J(d̃(t)) (the opposite inequality is easy to deduce since

|d(t)| = 1). Consequently, all the previous inequalities are equalities, and in particular

∃ lim
ε→0

∫ T

0

∫

Ω

(
1
2
|∇dε(t)|2 −wε(t) · dε(t)

)
=

∫ T

0

J(d(t)) =
∫ T

0

∫

Ω

(
1
2
|∇d(t)|2 −w(t) · d(t)

)

Since ∃ lim
ε→0

∫ T

0

∫
Ω

wε(t)·dε(t) =
∫ T

0

∫
Ω

w(t)·d(t) (using the strong convergence of dε), one has ∃ lim
ε→0

‖∇dε‖2L2(L2) =

‖∇d‖2L2(L2) therefore,
dε → d in L2(H1)−strong.

In particular, taking into account the estimates of ∇dε,

∇dε → ∇d in Lp(Lq)−strong, ∀ p, q : p < ∞, q < 2,

hence we can identify M = ∇d¯∇d.
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