
Gradings on the algebra of upper triangular
matrices and their graded identities

Plamen Koshlukov∗

IMECC, UNICAMP, Cx. P. 6065

13083-970 Campinas, SP, Brazil
e-mail plamen@ime.unicamp.br

Angela Valenti†

Dipartimento di Matematica e Aplicazioni
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Introduction

Graded polynomial identities play an important role in the structure theory
of PI algebras. Very many properties of the ideals of identities are described
in the language of graded identities and graded algebras, see for example
[6, 17]. That was why the graded identities became an object of independent
interest. It turned out that graded identities can be successfully applied to
various difficult problems in the theory of PI algebras. Let us recall some
of the keystone results concerning graded polynomial identities. Let G be a
finite abelian group and let A be a G-graded algebra. Then A is PI algebra
if and only if its 0-component is PI, see [2, 11]. It was soon discovered
that one may consider the graded identities satisfied by an algebra as an
“approximation” of the ordinary ones. It is well known that the multilinear
identities satisfied by an algebra determine its identities when the algebra is
considered over a field of characteristic 0. So it makes sense to study graded
multilinear identities, their cocharacters, codimensions, and so on. These
have been extensively studied, see for example [2, 7, 8, 9, 10, 14, 15], and [3]
and its bibliography.

An important task in PI theory is describing the graded identities satisfied
by a given algebra. Since matrix algebras are very important their graded
identities are of significant interest. In [13] the Z2-graded identities of the
matrix algebra of order two, M2(K) over a field of characteristic 0, were
described. Furthermore a finite basis of these identities was explicitly given,
and the cocharacter of the corresponding graded T-ideal was computed. Let
E denote the infinite dimensional Grassmann (or exterior) algebra over K
and M1,1(E) the algebra of 2× 2 matrices over E whose entries on the main
diagonal are even (i.e. central) elements of E, while the entries on the second
diagonal are odd elements of E.

Recall that in [13] also bases of the graded identities satisfied by the
algebras M1,1(E) and E ⊗ E were obtained, and as a consequence, it was
shown that in characteristic 0, these two algebras are PI-equivalent (that is
they satisfy the same polynomial identities). This result is well known and
it is part of the classification of the T-prime algebras given by Kemer, see
[17]. The original proof uses heavily structure theory of PI algebras; later an
alternative proof was given by Regev [23]. The proof of the PI equivalence
of M1,1(E) and E ⊗ E in [13] is much more elementary than the other two.
Further in this direction, in [19] the results of Di Vincenzo [13] were extended
to algebras over infinite fields of characteristic 6= 2, and a third, elementary
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proof of the PI equivalence of M1,1(E) and E ⊗ E in characteristic 0, was
given. We only note that in positive characteristic these two algebras are not
PI equivalent.

We recall that graded identities were one of the most important tools in
Kemer’s positive solution of the famous Specht problem (see [17]). Graded
identities, together with other kinds of “weaker” identities are indispensable
means in the study of polynomial identities. These may include weak iden-
tities, see [22], and [18] for more recent bibliography, and/or trace identities,
see for example [21, 22], identities with involution, and so on.

An interesting and quite important problem is describing the graded iden-
tities satisfied by a given algebra. Surely matrix algebras and related algebras
are of great interest in PI theory, that is why a lot of work has been done in
investigating graded identities in such algebras. Thus for example, in [25, 26],
Vasilovsky described the Zn and the Z-graded identities of the matrix alge-
bra Mn(K) of order n over a field of characteristic 0. Later the result of
Vasilovsky about the Zn-graded identities was established over infinite fields,
see [1]. In [20] the Zn-graded identities of the algebra UTn(K) of n×n upper
triangular matrices were described over any infinite field. In all of the above
cases, the respective gradings are the natural ones.

Now let G be a finite abelian group. For the algebra Mn(K) of n ×
n matrices there are two important classes of G-gradings: the elementary
gradings and the fine gradings. In fact in [5] it was proved that if K is an
algebraically closed field, every G-grading on Mn(K) is a tensor product of
an elementary and a fine grading.

For the algebra UTn(K), it was proved in [27] that if one further assumes
that char K = 0 then every G-grading is elementary.

Motivated by this result, in this paper we study the elementary gradings
on the algebra UTn(K) of n × n upper triangular matrices over an infinite
field. We describe these gradings by means of the graded identities that they
satisfy. We start with the Z2-gradings in order to outline the main ideas of
the proofs, and then we proceed briefly with the G-graded identities. Note
that in the latter case only the notation is much more complicated compared
to the former case.

3



1 Preliminaries

We consider associative algebras only. All algebras, vector spaces etc., are
over a fixed infinite field K. Denote by UTn = UTn(K) the algebra of n × n
upper triangular matrices over K. If G is a multiplicative group then a G-
grading on an associative algebra is a decomposition of A as a direct sum of
vector subspaces A = ⊕g∈GAg such that AgAh ⊆ Agh for every g, h ∈ G. The
vector space Ag is the g-th homogeneous component in the grading, A1 is
the neutral (or identity) component. One defines analogously graded vector
spaces (no multiplication, only direct sum decomposition). A possible Zn-
grading of the algebra UTn = UTn(K) is the following. Let Zn = 〈g〉, gn = 1,
so that Zn = {1, g, g2, . . . , gn−1} and let (UTn)gk be the span of all matrix
units eij with j − i = k. Here eij is the matrix whose (i, j)-th entry equals 1
and all other entries equal 0. Recall that the graded identities for this specific
grading on UTn were described in [20]. When n = 2 and K is of characteristic
0, the above is the only Z2-grading allowed. A detailed description of the
Z2-graded identities of UT2(K) and their numerical invariants were given in
[24].

Let V be an n-dimensional vector space with a basis v1, v2, . . . , vn, and
let g̃ = (g1, g2, . . . , gn) ∈ Gn be an n-tuple of elements of G. Then V is
G-graded if we set vi to be of homogeneous degree gi, deg vi = gi, i = 1, 2,
. . . , n. This grading induces one on the algebra of linear transformations on
V . So the matrix algebra Mn(K) is G-graded and furthermore the matrix
units are homogeneous of degrees deg(eij) = g−1

i gj for all i and j. The
induced grading on Mn(K) is called elementary. One can give an alternative
definition of the elementary gradings on Mn(K).

Theorem 1 ([12]) Let G be a group and let Mn(K) be G-graded. The grad-
ing is elementary if and only if all matrix units eij are homogeneous. ♦

Now we recall the notion of G-graded polynomial identity. Let X = ∪Xg

be a union of the disjoint countable sets Xg = {xg1, xg2, . . .}. The free asso-
ciative algebra K(X) freely generated over K by X is equipped in a natural
way with a structure of G-graded algebra. Namely the homogeneous degree
deg(xgi) = g for every xgi ∈ Xg, and then one extends this grading to the
monomials on X. Hence deg(xg1i1xg2i2 . . . xgrir) = g1g2 . . . gr. So K(X) is
the free G-graded algebra freely generated by X. In some instances we shall
use symbols like xg to indicate a variable in K(X) of homogeneous degree
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g, or still other letters like y and z for Z2-gradings. In such occasions y
with or without lower index stands for 1-variable and z for −1-variable. Let
f(xg1i1 , xg2i2 , . . . , xgrir) ∈ K(X) be a polynomial. If A = ⊕Ag is a G-graded
algebra then f is a G-graded polynomial identity (or simply a G-graded iden-
tity) for A if f(ag1

, ag2
, . . . , agr

) = 0 in A for every homogeneous substitution
agt

∈ Ag. The ideal TG(A) = IdG(A) of all graded identities in K(X) is
closed under all G-graded (or homogeneous) endomorphisms of K(X); such
ideals are called G-graded T-ideals. When the grading is explicitly given we
shall simply write Id(A) for the ideal of the G-graded identities of A. One
defines the notions of variety of G-graded algebras, relatively free G-graded
algebra, and so on, in analogy with the case of ordinary polynomial identities.
Moreover as in the case of ordinary polynomial identities, it can be shown
that over an infinite field, every G-graded T-ideal is generated as such by its
multihomogeneous polynomials.

The following elementary fact will be used frequently (and without men-
tioning). It seems to us it is some kind of folklore, that is why we do not
give credit for it.

Lemma 2 Let the G-grading on UTn(K) be elementary. Then all idem-
potent matrix units eii belong to the homogeneous 1-component. The same
is true for the matrix algebra Mn(K) as well. Hence the identity matrix I
belongs to the 1-component.

Proof . It suffices to observe that eiieij = eij for every i and j. If g and
h ∈ G are the respective homogeneous components of the grading on UTn

then gh = h and g = 1. ♦
We recall that this need not be the case if the grading on Mn(K) is not

elementary, see for examples [12].
Let A be a unitary algebra over an infinite field K. It is well known that

the polynomial identities of A are determined by its proper (or commutator)
identities. Let L(X) be the free Lie algebra freely generated by the set X.
One may assume that L(X) ⊆ K(X) as vector spaces, and that L(X) is the
Lie subalgebra of K(X) that is generated by X under commuting instead of
the usual multiplication in K(X). Let L′(X) = L(X)2 = [L(X), L(X)] be
the (Lie) ideal in L(X) ⊂ K(X). Then the above fact can be restated in
the following way. If B(X) is the associative subalgebra of K(X) generated
by 1 and by L′(X) then every T-ideal T in K(X) is generated as T-ideal by
T ∩B(X). When one considers graded polynomial identities, a modification
of this fact holds. Namely we have the following proposition.
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Proposition 3 Let K be an infinite field and let T be the ideal of graded
identities for the G-graded algebra A. Suppose that 1 ∈ A belongs to the
neutral homogeneous component in the grading of A. Then T is generated as
an ideal of graded identities by its elements such that every neutral variable
participates in commutators only.

Proof . See [16], pp. 42–44 for the proof of the ungraded version of the
proposition. ♦

We shall write [a, b] = ab − ba for the commutator of a and b, and we
assume that the commutators are left-normed. This means that [a, b, c] =
[[a, b], c] and so on.

2 G-graded identities for UTn(K)

Throughout this section we shall assume that G is an arbitrary group and
K is an infinite field. We shall also assume that UTn is equipped with an
elementary G-grading induced by the n-tuple g̃ = (g1, g2, . . . , gn) ∈ Gn of
(not necessarily distinct) elements of G. Notice that we may always assume
that g1 = 1. In fact, it is easy to check that the two n-tuples (g1, g2, . . . , gn)
and (1, g−1

1 g2, . . . , g
−1
1 gn) give rise to the same grading on UTn. Hence we

shall always assume, as we may, that in the n-tuple inducing the grading
g1 = 1.

We start with the following general fact that holds for any group G and
for any field K.

Lemma 4 Suppose that g̃ = (g1, g2, . . . , gn) ∈ Gn and let h1, h2, . . . , hm

be the distinct elements of G that appear in g̃. Suppose that for i = 1, 2,
. . . , m, hi appears ai times. Then there is an isomorphism of K-algebras
(UTn)1

∼= UTa1
⊕ UTa2

⊕ · · · ⊕ UTam
.

Proof . Let 1 < k1 < k2 < · · · < kai
be the positions in the sequence of g that

are equal to hi: gk1
= gk2

= . . . = gkai
. Then g−1

kp
gkq

= h−1
i hi = 1 ∈ G hence

the matrix units ekpkq
∈ (UTn)1 are homogeneous for all 1 ≤ p ≤ q ≤ ai. Set

Ahi

1 to be the K-span of the matrix units ekpkq
for 1 ≤ p ≤ q ≤ ai. Then

obviously Ahi

1
∼= UTai

as algebras and therefore (UTn)1
∼= Ah1

1 ⊕ Ah2

1 ⊕ · · · ⊕
Ahm

1 . Thus we have the algebra isomorphism (UTn)1
∼= UTa1

⊕ UTa2
⊕ · · · ⊕

UTam
. Observe that the sum is direct since the hi are distinct elements of

G. ♦
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Let us establish another result that holds in the generic case i.e., for any
group and any field.

Proposition 5 Every elementary G-grading on UTn is uniquely determined
by the homogeneous degrees of the elements in the first row of a matrix of
UTn.

Proof . Let UTn = ⊕g∈GAg, and let e1r ∈ Agr
. We have that all eii belong to

A1, the neutral component. Suppose that eij ∈ Ag for some g ∈ G and i < j.
Then since e1ieij = e1j we get that gig = gj and hence g = g−1

i gj is uniquely
determined. ♦

Later on we shall establish a convenient algorithm for recovering the grad-
ing given only the grading on the first row, in the case when G is cyclic.

Lemma 6 Suppose that the elementary grading on UTn is induced by g̃ =
(g1, g2, . . . , gn) ∈ Gn where the elements g1, g2, . . . , gn are pairwise distinct.
If dimK(UTn)gi

= n − 1 for some i, 2 ≤ i ≤ n, then the grading is induced
by (1, g2, g

2
2, . . . , g

n−1
2 ).

Proof . Fix some p, 1 ≤ p ≤ n. Then among the matrix units epp, ep,p+1, . . . ,
epn at most one is of homogeneous degree gi. The same holds if one considers
the matrix units e1p, e2p, . . . , epp. Set UTn = A. Since dim Agi

= n − 1 it
follows that Agi

is the span of the matrix units e12, e23, . . . , en−1,n. Therefore
g2 = g−1

2 g3 = g−1
3 g4 = . . . = g−1

n−1gn and hence g3 = g2
2, g4 = g3g

−1
2 g3 = g3

2,
. . . , gn = gn−1g

−1
n−2gn−1 = gn−1

2 by an obvious induction. ♦

Corollary 7 If the elementary grading on UTn is not induced by an n-tuple
(1, h, h2, . . . , hn−1), h ∈ G, then dim(UTn)gi

≤ n − 2 for all i ≥ 2. ♦

3 Gradings on UTn by cyclic groups

In this section we study in detail the graded identities satisfied by UTn in
case G is a cyclic group.

Lemma 8 Let G = 〈g〉 be the cyclic group of order n and suppose that
g̃ = (gi1, gi2, . . . , gin) induces an elementary G-grading on UTn, where the
elements gi1, gi2, . . . , gin are all distinct. If for some k, dimK(UTn)gik = 1

then the grading is induced by (1, gi2, g2i2, . . . , g(n−1)i2).
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Proof . The grading is elementary one, hence e1r belongs to the homogeneous
component indexed by g−i1gir . This says that the matrix units e1j , j = 1, 2,
. . . , n, belong to (pairwise) different homogeneous components; the same is
true for the matrix units ein, i = 1, 2, . . . , n. It follows that ik = in. The
homogeneous degrees of the matrix units e23, e24, . . . , e2n are respectively
gi3−i2, gi4−i2 , . . . , gin−i2 , and these must be different from gin. Therefore
ir − i2 6≡ in (mod n) for all r ≥ 3. Now observe that (i1, i2, . . . , in) is a
permutation of (1, 2, . . . , n) and i2+in 6≡ i2 (mod n) since in 6≡ 0 (mod n).
In this way we conclude that i2 + in ≡ i1 ≡ 0 (mod n) and in ≡ −i2
(mod n).

Repeating the same argument for the matrix units e3r, we obtain that
ir − i3 6≡ in ≡ −i2 (mod n), r ≥ 4. It follows that i3− i2 is not congruent to
either ir, r ≥ 4. So it remains that i3 − i2 ≡ 0, i2, i3 (mod n). Since neither
of i2 and i3 is congruent to 0 (mod n) we have that i3 ≡ 2i2 (mod n).
In a similar manner one goes on by induction and shows that ir ≡ (r − 1)i2
(mod n) for all r. ♦

Now we turn our attention to the case when G is cyclic of order two. We
write G = {1,−1}, and the corresponding gradings are called 2-gradings.
In this case we shall use the letters yi for the variables in K(X) whose
homogeneous degree is 1, and zi for the variables of homogeneous degree −1.

We start with an algorithm that describes the grading given the one on
the first row.

Lemma 9 Let a ∈ UTn. If the elements of the i-th row are graded by εii =
1, εi,i+1, . . . , εin respectively, then the elements of the i + 1-st row are graded
by

εi+1,i+1 = 1, εi,i+1εi+1,i+2, εi,i+1εi+1,i+3, . . . , εi,i+1εi+1,n,

respectively. In other words, the grading on the i+1-st row is exactly the same
as that on the corresponding entries in the i-th row when ei,i+1 ∈ (UTn)1, and
it is the opposite when ei,i+1 ∈ (UTn)−1. Here opposite means that we multiply
by −1 the grading on the i-th row.

Proof . The proof is straightforward consequence of Proposition 5. ♦

Lemma 10 Let g̃ = (g1, . . . , gk1
, gk1+1, . . . , gk2

, . . . , gkt+1, . . . , gkt+1
) ∈ Gn

where g1 = . . . = gk1
= 1, gk1+1 = . . . = gk2

= −1, gk2+1 = . . . = gk3
= 1, etc.

Then, in the corresponding grading of UTn, z1z2 . . . zt+1 = 0 is a 2-graded
identity but z1z2 . . . zt = 0 is not.
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Proof . We have that g−1
ki−1+1gki+1 = −1 for all i = 1, 2, . . . , t (we put k0 = 0).

Hence the matrix units eki−1+1,ki+1 are of homogeneous degree −1 for every
i, and their product

e1,k1+1ek1+1,k2+1 . . . ekt−1+1,kt+1 6= 0

in UTn. This shows that z1z2 . . . zt = 0 is not a graded identity for UTn with
the respective 2-grading.

In order to prove that z1z2 . . . zt+1 = 0 is a 2-graded identity we observe
that eij ∈ A−1 if and only if g−1

i gj = −1 i.e. gigj = −1. Consider a
product of matrix units ei1,i2ei2,i3 . . . eit,it+1

eit+1,it+2
all belonging to A−1. Then

i1 < i2 < . . . < it+1 < it+2, and girgir+1
= −1 for all r. So gir belongs to some

of the groups of consecutive 1’s or -1’s, gir+1
belongs to another group of -1’s,

respectively 1’s. But we have t + 1 such groups. Therefore such product
should be identically 0, and this proves the statement of the lemma. ♦

Lemma 11 Let g̃ = (1, 1, . . . , 1,−1,−1, . . . ,−1) where the first k entries
are 1’s and the last n−k are −1’s. Consider the elementary grading on UTn

induced by g̃. If k > n − k then
1. The ideal Id(UTn, g̃) of 2-graded identities for UTn is generated by

z1z2, [y1y2] . . . [y2k−1, y2k], z[y1, y2] . . . [y2(n−k)−1, y2(n−k)].

2. A linear basis for the proper polynomials in the relatively free graded
algebra K(X)/Id(UTn, g) consists of the polynomials

[yi1,1, yi2,1, . . . , yip,1] . . . [yi1,r, . . . , yipr ,r]z[yj1,1, . . . , yjp,1] . . . [yj1,s, . . . , yjps ,s]

where 0 ≤ r ≤ k − 1, 0 ≤ s ≤ n − k − 1, and

[yi1,1, yi2,1, . . . , yit1 ,1] . . . [yi1,r, . . . , yitr ,r]

for 0 ≤ r ≤ k − 1. For both types of polynomials we require that the commu-
tators [yp1

, yp2
, . . . , ypq

] satisfy the inequalities p1 > p2 ≤ p3 ≤ . . . ≤ pq.

Proof . Set I the graded ideal generated by the three graded identities of
item (1). Then any nonzero homogeneous element of the quotient K(X)/I
is of one of the following two types:

yi1 . . . yitzyj1 . . . yjv
+ I, yi1 . . . yit + I.
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Since yi1 . . . yitzyj1 . . . yjv
6∈ I it follows that yi1 . . . yit does not belong to the

graded ideal generated by [y1, y2] . . . [y2k−1, y2k]. Therefore by yi1 . . . yit can
be written as a linear combination of products of at most k−1 commutators
in K(X)/I (see for example [16], Chapter 5.2. Analogously zyj1 . . . yjv

is
not in the graded T-ideal generated by z[y1, y2] . . . [y2(n−k)−1, y2(n−k)] and it
must be a linear combination of products of at most n− k − 1 commutators
multiplied on the left hand side by z. Therefore the given monomials do span
the relatively free graded algebra. They are linearly independent modulo
Id(UTn, g̃) due to the same reasoning as in [16], pp. 52–55. Thus the proof
of the lemma is completed. ♦

The proofs of the following three lemmas are quite similar to the one
above and that is why we omit them.

Lemma 12 Let g̃ = (1, 1, . . . , 1,−1,−1, . . . ,−1) and let UTn be graded by
the elementary grading induced by g. Suppose that in g̃ there are k entries 1
and n − k entries −1, and that k < n − k. Then

1. The ideal Id(UTn, g̃) is generated by the polynomials

z1z2, [y1, y2] . . . [y2(n−k)−1, y2(n−k)], [y2(n−k)−1, y2(n−k)]z.

2. A basis for the vector space of the proper polynomials in the relatively
free graded algebra K(X)/Id(UTn, g̃) consists of the polynomials

[yi1,1, yi2,1 . . . , yit1 ,1] . . . [yi1,r, yi2,r . . . , yitr ,r], 1 ≤ r ≤ n − k − 1,

and the polynomials

[yi1,1, yi2,1 . . . , yip1
,1] . . . [yi1,r, yi2,r . . . , yipr ,r]z×

×[yj1,1, yj2,1 . . . , yjq1
,1] . . . [yj1,s, yj2,s . . . , yjqs ,s]

for 0 ≤ r ≤ n − k − 1, 0 ≤ s ≤ k − 1, with the same restrictions on the
variables y in the commutators as in the preceding lemma. ♦

Lemma 13 Let g̃ = (1, 1, . . . , 1,−1,−1, . . . ,−1) with k entries 1 and k en-
tries −1, 2k = n. Then:

1. The ideal Id(UTn, g̃) is generated by

z1z2, [y1, y2] . . . [y2k−1, y2k].
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2. A basis for the vector space of the proper polynomials in the relatively
free graded algebra consists of the following polynomials:

[yi1,1, yi2,1 . . . , yit1 ,1] . . . [yi1,r, yi2,r . . . , yitr ,r], 1 ≤ r ≤ k − 1,

and also the polynomials

[yi1,1, yi2,1 . . . , yip1
,1] . . . [yi1,r, yi2,r . . . , yipr ,r]z×

×[yj1,1, yj2,1 . . . , yjq1
,1] . . . [yj1,s, yj2,s . . . , yjqs ,s]

for 0 ≤ r ≤ k − 1, 0 ≤ s ≤ k − 1, with the same restrictions on the variables
y in the commutators as in the preceding two lemmas. ♦

Lemma 14 Let g̃ = (1,−1, 1,−1, 1,−1 . . .). Then the ideal Id(UTn, g̃) is
generated by

[y1, y2] . . . [yt−1, yt], fj = wj
0z1w

j
1z2 . . . ztw

j
t+1

where t = [(n + 1)/2] (the integer part), and wj
i are monomials of the type

[y1, y2] . . . [y2i−1, y2i]; the monomials wj
0 and wj

t+1 may be empty, and the total
degree of every fj equals n. ♦

Observe that in the last lemma one has [A1A1] = A−1A−1, hence the
above identities can be deduced from z1z2 . . . zn = 0. In general one has only
the inclusion A−1A1 ⊆ A1A1.

Now we deal with the generic case. Suppose that the elementary 2-grading
on UTn is induced by g̃ = ε = (ε1, ε2, . . . , εn) where εi = ±1 ∈ Z2 and
ε1 = 1. Then the matrix unit eij is of homogeneous degree εiεj, for every
1 ≤ i ≤ j ≤ n. Consider the set of all finite non decreasing sequences
whose terms are positive integers in [1, n]. If a = (a1, a2, . . . , at, at+1) is such
a sequence then one can form the staircase of the following matrix units:
s(a) = (ea1,a2

, ea2,a3
, . . . , eat−1,at

, eat,at+1
). Since their product is ea1,at+1

it
is nonzero. Let us consider the sequence ε(a) = (εa1

, εa2
, . . . , εat+1

). Then
eak ,ak+1

is of homogeneous degree εak
εak+1

. This observation justifies our next
definition.

We call a sequence (εi1 , εi2, . . . , εit+1
), t ≥ 1, admissible if it can be ob-

tained as ε(a) for some sequence a as above. Let m = xi1xi2 . . . xit be a
monomial in the free 2-graded algebra K(X), xij = yij or zij . We call it ad-
missible if the homogeneous degree of the variable xij is εijεij+1

for all j = 1,
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2, . . . , t. Therefore the signs + and − alternate in the monomial m exactly
in the same way as in the sequence (ε1ε2, ε2ε3, . . . , εt−2εt−1, εtεt+1). Let us
denote the monomial m by m(ε). If m = m(ε) is an admissible monomial,
(εi1, εi2, . . . , εit+1

), then an admissible substitution in m(ε) is the substitution
where the first variable is replaced by ei1i2, the second by ei2i3 and so on.

Proposition 15 The multilinear monomial m(ε) is not a graded identity for
UTn if and only if the sequence ε is admissible.

Proof . Suppose first that m(ε) is not a graded identity for UTn. There exist
homogeneous elements a1, a2, . . . , at ∈ UTn such that m(a1, a2, . . . , at) 6= 0
in UTn. Write every ai as a linear combination of the matrix units (which are
homogeneous), and then expand all products. At least one of the summands
will be nonzero. Hence we can choose ai among the matrix units. If ak = eik,jk

then ik ≤ jk and jk = ik+1 for all k. Therefore we can choose the matrix
units ei1,i2, ei2,i3, . . . , eit−1,it, eit,it+1

such that the evaluation of m on them is
nonzero. Now taking into account that the homogeneous degree of eij equals
that of e1ie1j we get that the sequence (εi1 , εi2, . . . , εit, εit+1

) is admissible
since it is a subsequence of the sequence (ε1 = 1, ε2, . . . , εn).

Now let the sequence ε be admissible. Then as above we form the re-
spective admissible monomial that evaluates on some matrix unit hence is
nonzero on UTn. ♦

Theorem 16 There are 2n−1 different elementary 2-gradings on the algebra
UTn. Two different gradings satisfy different graded polynomial identities.

Proof . The first statement is straightforward since there are 2n−1 different
sequences (ε1, ε2, . . . , εn) of ±1 and with ε1 = 1. In order to prove the second
statement we observe that for any grading g̃ the sequence (ε1, ε2, . . . , εn) = g̃
is admissible. It follows that the corresponding admissible monomial mg̃ =
x1x2 . . . xn−1 is a product of n − 1 homogeneous variables xi, (xi = yi or
zi), with homogeneous degree εiεi+1, i = 1, 2, . . . , n − 1. Hence xi = yi

or zi according as εiεi+1 = 1 or −1, respectively. Let mg̃ the polynomial
obtained from mg̃ by substituting any variables of homogeneous degree 1 with
a commutator of two variables of homogeneous degree 1. So, if εiεi+1 = 1
then we substitute xi = yi with yi = [yi, yn−1+i]. It follows that mg̃ is
a polynomial in the variables yi and zj of degree n − 1. Moreover these
variables can be evaluated on matrix units ep,q with p < q. Since the elements
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of the staircase e12, e23, . . . , en−1,n have the same homogeneous degree as the
variables x1, x2, . . . , xn−1, respectively, it follows that mg̃ is not an identity
for the grading g.

If g̃′ is a different grading then the admissible monomials mg̃ and mg̃′

corresponding to the sequences g̃, g̃′ will be different. Then mg̃ is a graded
identity for the grading g′ and mg̃′ is a graded identity for the grading g. ♦

Corollary 17 There are 2n−1 nonisomorphic elementary 2-gradings on UTn.

Proof . Isomorphic gradings satisfy the same graded identities. ♦
Instead of describing bases of the graded identities for the different grad-

ings we describe the corresponding relatively free algebras (assuming that
the field K is infinite).

Theorem 18 Let g̃ be an elementary 2-grading on UTn. Then the admissible
monomials form a basis of the vector space of all multilinear polynomials in
the relatively free graded algebra.

Proof . The admissible monomials span the multilinear component of the
relatively free algebra. We show that the admissible monomials are linearly
independent. Suppose on the contrary that α1m1 + α2m2 + · · · + αkmk = 0
is a graded identity for UTn with the elementary grading induced by some
g. Here all αi ∈ K are nonzero scalars, and mi are different admissible
monomials of the same multidegree. Let m1 = xi1xi2 . . . xit where xij = yij

or zij . Then one makes an admissible substitution (with respect to m1) in
order to obtain nonzero element in UTn. But the same substitution will
vanish the rest of the monomials since they differ from m1. Hence α1 = 0, a
contradiction.

Remark 19 The last theorem describes completely the relatively free graded
algebra in the case when charK = 0.

Remark 20 In order to describe the graded identities satisfied by given ele-
mentary grading on UTn one considers the nonadmissible monomials. It is
rather straightforward to show that one may choose a basis of the identities
among such monomials. Furthermore one may consider multilinear mono-
mials only. The last observation is justified by the fact that no variable z
(i.e. odd variable) can participate twice in a monomial, and if some vari-
able y participates k times in a monomial m then m = m1y

km2 for some
monomials m1 and m2.
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Remark 21 The last several assertions dealt with 2-gradings on UTn. But
their proofs do not depend on the specific group Z2. Therefore one modifies
the assertions accordingly and gets the same results for elementary gradings
by any group G. Thus if G is of order m then there will be mn−1 different
(nonisomorphic) elementary G-gradings on UTn. Two different such gradings
will satisfy different graded identities, and so on. In the same manner as
above one shows that the relatively free graded algebras admit linear bases
consisting of the admissible monomials.
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