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Abstract
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connections.
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1 Introduction

The α-connections where introduced in the statistical literature in the eight-
ies (see Amari [1] and Barndorff-Nielsen [2]) as a differential geometric tool
for studying parametric models. The idea was to refine the classical concept
of Fisher information, which is a Riemannian metric attached to a statisti-
cal model. Both these geometric objects are defined by means of integrals
over some measure space, making them very hard to analyze by the standard
differential geometric methods.

In [4] the authors consider a set up, based on Lie group theory, in which
it is possible to take advantage of the symmetries and describe the possible
affine connections in homegenous spaces arising as α-connections of the so-
called transformational statistical models. In particular, we were laid to
consider invariant affine connections on symmetric spaces. It was proved in
[4] that only those symmetric spaces whose restricted root system are of type
Al admit such connections which are different from the canonical Riemannian
one. In particular, the non-compact symmetric space SL(n, R)/SO(n) has a
1-parameter family of invariant connections, which at the origin o = SO (n)
is given by

(α)

∇A B = α

(
AB + BA

2
− tr(AB)

n
In

)

Here A, B ∈ s, the subspace of the symmetric matrices with zero trace, which
we identify to the tangent space of SL(n, R)/SO(n) at o and In is the iden-
tity n × n matrix. In [4] some properties of these connections were already
discussed. However, many questions related to their geometry remained un-
solved. The purpose of this article is to develop these properties further.

When α = 1 we denote the connection simply by ∇AB. This is the only
case to be considered, since for general α 6= 0, the computations are similar.
For this connection we describe its geodesics in Section 2. Afterwards, in
Section 3, we prove that the curvature tensor R(A, B, C) and all its covariant
derivatives belong to the subespace spanned by A and B. We apply this fact
to prove the following properties of ∇: (i) the Ricci tensor is zero and (ii) ∇
is not compatibile with any Riemannian metric.

Before starting, it is convenient to fix some notations, remind a few of the
geometry of the symmetric space SL(n, R)/SO(n), more details on the subject
can be seen in [5]. Write M = G/K = SL(n, R)/SO(n), the symmetric space
of the positive definite matrices and sl(n, R) = so (n) ⊕ s, for the Cartan

2



decomposition of the Lie algebra of G given by splitting the tangent space
at the origin of M .

The group G acts transitively in M by g(hK) = (gh)K, and for each
g ∈ G, the map g : M → M defined for g(ξ) = gξ is a diffeomorfism that
satisfies:

(dg)ξ

(
Ã (ξ)

)
= (Ad (g) (A))∼ (gξ) (1)

where

Ã (ξ) =
d

dt
(exp (tA) (ξ)) |t=0

and Ad (g) : sl(n, R) → sl(n, R), g ∈ G, is the adjoint map. Still in relation
to the Lie algebra of G, we know that the roots of sl(n, R) relative at h,
Cartan subalgebra formed for the diagonal matrices of trace zero, are given
by

(λi − λk) (H) = (H, Eii − Ekk) = tr (H (Eii − Ekk)) ,

for each i 6= k, i, k = 1, . . . , n where Eik is the basic n × n matrix whose ik
entry is 1 and all the others are zero.

2 Geodesics

Using a geometric caracterization of the α-connections, made in [4] we shall
obtain here a description of the geodesics for the α-connections in the sym-
metric space M = G/K of positive definite matrices.

The α-connections for a models considered here have ageometric interpre-
tation which were described in [4]. Let S be the vector space of all symmetric
n × n matrices. We have that s = {A ∈ S : trA = 0} is a subspace of codi-
mension one of S, complemented bythe line spanned by the identity 1. The
trace form tr (AB) an inner product on S. With respect to this inner product
the line of scalar matrices is orthogonal to s. We denote by S+ the cone of
the positive semi-definite matrices in S.

There is a natural action of Sl (n, R) on S given by the law

(g, A) 7−→ g · s = gAg∗

where g∗ means transposition of matrix. The induced infinitesimal action of
sl (n, R) on S is given by the derivative

d

dt

(
etXsetX∗

)
|t=0

= Xs + sX.
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Each X ∈ sl (n, R) induces the linear vector field

X̃ (s) = Xs + sX.

If a · 1, a 6= 0 is a scalar matrix in S then its orbit O (a) under Sl (n, R)
is the subset of matrices with determinant an which are positive definite if
a > 0 or negative definite if a < 0. Since g (a · 1) g∗ = a · 1 if and only
if g is an orthogonal matrix, it follows that O (a), a 6= 0, identifies with
the homogeneous space Sl (n, R) /SO (n, R). These orbits have codimension
one in S, and the tangent space Ta1O (a) is the subspace of matrices with
trace zero. Note that the line of scalar matrices complements Ta1O (a) in S.
Similarly, one checks easily that

S = TsO (a) ⊕ [s] (2)

where [s] stands for the line spanned by s ∈ O (a). From this decomposition
we obtain the following connection ∇ on O (a):

(∇XY ) (s) = prs ((dY )s (X (s))) . (3)

Here prs : S → TsO (a) is the projection coming from the decomposition
in (2), and X, Y are vector fields in O (a) with Y viewed as a mapping
Y : O (a) → S so that (dY )s stands for its differential at s. The definition
of ∇ is analogous to the Levi-Civita connection of the Riemannian metric
induced in an immersed submanifold of an Euclidean space. However here
the projection is not orthogonal with respect to tr (AB), since the line [s−1]
is orthogonal to TsO (a) so that prs is orthogonal if and only if s = a · 1.
Each orbit O (a), a 6= 0 is diffeomorphic to Sl (n, R) /SO (n, R). Hence we
have a family of connections ∇a in Sl (n, R) /SO (n, R). It was checked in [4]
that ∇a is a α-connection for each a.

In discussing geodesics we simplify matters and take a = 1. The other
cases follow analogously. Thus we consider the orbit O (1) and put ∇ = ∇1.
Due to invariance its sufficient to find the geodesics going through the origin.
Let s = s (t), det s = 1, be a geodesic of ∇. Then ∇ṡṡ = 0 and therefore
by the above description of ∇ the projection of s̈ is annihilates. This means
that s̈ = es for some constant e. We compute this constant by taking the
second derivative of the equality det s = 1. Using a well knonw formula for
the derivative of the determinat we get

tr
(
s−1ṡ

)
det s = 0,
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hence tr (s−1ṡ) det s = 0. Taking another derivative and using (s−1)
′

=
−s−1ṡs−1, we get

(
−tr

(
s−1ṡs−1ṡ

)
+ tr

(
s−1s̈

))
det s + tr

(
s−1ṡ

)2
det s = 0.

But tr (s−1ṡ) = 0 and det (s) = 1. Hence,

tr
(
s−1s̈

)
= tr

(
s−1ṡs−1ṡ

)
.

Now, s̈ = es, so that tr (s−1s̈) = etr (1) = ne. Therefore, the equation
satisfied by the geodesics through the identity is

s̈ =
tr (s−1ṡs−1ṡ)

n
s (4)

Since this equation looks hard to integrate explicitly we shall give a ge-
ometric description of the trace of the geodesics, and then write down a
reparameterization of them.

Proposition 2.1 The traces of the geodesic of ∇ in S1 are the subsets

S1 ∩ V

where V ⊂ S is a 2-dimensional subespace which has non-empty intersection

with S1.

Proof: We check first that S1∩V is a curve, that is, a 1-dimensional subman-
ifold in case the intersection is not empty. In fact, denote by P the restriction
to V of det. Then P is a polinomial function on V . Take s ∈ S1 ∩V . By the
well known formula for the differencial of det,

dPs (s) = d (det)s (s) = tr
(
ss−1

)
det (s) = n 6= 0.

This shows that every s ∈ S1 ∩ V is a regular point of P . Now, S1 ∩ V is a
connected component of a level set of P . Hence the intersection is indeed a
one-dimensional submanifold.

Next we verify that S1 ∩ V can be entirely parametrized by a curve
s (t) such that its second derivative s̈ is a multiple of s, and hence satisfies
equation (4). For this let ∇̃ de be the connection S1 ∩ V defined analo-
gously to ∇ by projecting onto the tangent space along the line spanned by
s ∈ S1 ∩ V . Note that this is possible because dPs (s) 6= 0, so that the line
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spanned by s is transversal to the tangent space of S1 ∩ V at s. Now, let
s : (α, ω) ∈ R → S1 ∩ V be a geodesic of ∇̃. Then s̈ (t) is a multiple of s (t)
for all t, by definition of ∇̃. Hence, s satisfies (4), so that it is also a geodesic
of ∇. The trace of this geodesic s is the whole S1 ∩ V . In fact, suppose that
limt→ω s (t) = s∞ ∈ S1 ∩ V . Then by the usual argument we can extend s
with a geodesic going through s∞, concluding the proof.

Now, we shall obtain parametrizations of the geodesic curves S1 ∩V . We
restrict attention to those subspaces V containing the identity 1, having in
mind that that the other subspaces are obtained by translation. In fact,
if the 2-dimensional subspace V meets S1, then for some g ∈ Sl (n, R), gV
contains 1, and we can use the equality

g (S1 ∩ V ) = S1 ∩ gV

Thus let V be such that 1 ∈ V and dim V = 2. As before let s be the
subespace of matrices with zero trace. Then there exists A ∈ s such that V
is spanned by {1, A}. If we take conjugation by an element of SO (n, R) we
can assume that A is diagonal, that is,

A = diag{x1, . . . , xn}

with x1 + · · · + xn = 0. In this case S1 ∩ V becomes the subset of diagonal
matrices

diag{tx1 + s, . . . , txn + s}
satisfying

(tx1 + s) · · · (txn + s) = 1, txi + s > 0. (5)

To get a parametrization of this curve note that the matrices

diag{1/n + tx1, . . . , 1/n + txn}, 1/n + txi > 0,

belong to the interior of the simplex

∆ = {(y1, . . . , yn) : y1 + · · · + yn = 1, yi ≥ 0}.

On the other hand, the map (y1, . . . , yn) ∈ int∆

(y1, . . . , yn) ∈ int∆ 7→ 1
n

√
y1 · · · yn

(y1, . . . , yn)
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is a bijection between ∆ and the set of diagonal symmetric matrices with
det = 1. Thus a parametrization of our curve is given by

t 7→ 1
n

√
(1 + tx1) · · · (1 + txn)

(1 + tx1, . . . , 1 + txn) . (6)

Its domain is the largest interval such that 1+ txi > 0 for all i. At this point
we re-order if necessary the basis so that the matrix A = diag (x1, . . . , xn)
satisfies x1 ≥ · · · ≥ xn. In this case x1 > 0 and xn < 0 and the domain of
definition of the above parametrization becomes

(
− 1

x1
,− 1

xn

)
.

Now we use the parametrization (6) to write down some further equations
related to the geodesic of the given curve. Another parametrization of (6)
is obtained by writing t = φ (u). The reparametrization is a geodesic if and
only if the second derivative is a multiple of the curve. Thus we write s (u)
as

s =
1

R
(1 + φx1, . . . , 1 + φxn) ,

where R = n

√
(1 + φx1) · · · (1 + φxn). In order to perform the computations

we write
li = log si

where si, i = 1, . . . , n are the coordinates of s. We have

l′i =
s′i
si

l′′i =
s′′i
si

−
(

s′i
si

)2

. (7)

Now the condition s̈ = cs for s to be a geodesic means that s′′i /si is inde-
pendent of the index i. By the expressions (7) this happens if and only if
l′′i + (l′i)

2 does not depends on i = 1, . . . , n. A straighforward computation
yields:

• li = log (1 + φxi) −
1

n
(log (1 + φx1) + · · · + log (1 + φxn))

• l′i = φ′

(
xi

1 + φxi

− 1

n

(
x1

1 + φx1

+ · · ·+ xn

1 + φxn

))
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• l′′i = φ′′

(
xi

1 + φxi
− 1

n

(
x1

1 + φx1
+ · · · + xn

1 + φxn

))

+ (φ′)
2

(
− x2

i

(1 + φxi)
2 +

1

n

(
x2

1

(1 + φx1)
2 + · · ·+ x2

n

(1 + φxn)2

))

• (l′i)
2 = (φ′)

2





x2
i

(1 + φxi)
2 − 2

n

xi

1 + φxi

(
x1

1 + φx1

+ · · · + xn

1 + φxn

)

+
1

n2

(
x1

1 + φx1
+ · · · + xn

1 + φxn

)2





Looking at these expressions we see that the term of l′′i + (l′i)
2 which

depends explicitly on i is given by

xi

1 + φxi

(

φ′′ − 2 (φ′)
2

n

(
x1

1 + φx1
+ · · · + xn

1 + φxn

))

.

Therefore the re-parametrization φ turns the curve into a geodesic if and
only if it satisfies the second order differential equation

φ′′ =
2 (φ′)

2

n

(
x1

1 + φx1
+ · · ·+ xn

1 + φxn

)
. (8)

Taking logarithms this equation is written as

(log φ′)
′
=

(
2

n
log (1 + φx1) · · · (1 + φxn)

)′

,

Hence (8) is equivalent to

φ′ = ((1 + φx1) · · · (1 + φxn))2/n + c, (9)

where the constant c accounts for the initial condition in the second derivative
in (8). If we choose φ so that φ (0) = 0 and φ′ (0) = 1 we arrive at the equation
for the geodesics.

Proposition 2.2 The geodesics of the connection ∇ =
(1/4)

∇ starting at the

identity matrix 1 in the direction of the matrix

A = diag{x1, . . . , xn} x1 + · · · + xn = 0
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is given by

γ (u) =
1√

φ′ (u)
(1 + φ (u)x1, . . . , 1 + φ (u)xn) .

where φ is the solution of the first order differential equation

φ′ = ((1 + φx1) · · · (1 + φxn))2/n

with φ (0) = 0.

It is convenient to make the following remark about the domain of def-
inition of the first order equation (9): First if some xi = 0 then the i-th
term does not appear, hence we assume that xi 6= 0 for every i. In this case
the equation is not Lipschitz in φ when φ = −1/xi. Therefore, if we take
x1 ≥ · · · ≥ xn the the domain of definition of the equation is (−1/x1,−1/xn),
which is precisely the domain of the original parametrization.

3 The curvature tensor

Given a differentiable manifold M with an affine connection ∇, a tensor of

the type (r, s) is a map

T :χ (M) × · · · × χ (M)︸ ︷︷ ︸
r×

→χ (M) × · · · × χ (M)︸ ︷︷ ︸
s×

that is linear in each component χ (M) considered as module on C∞ (M).
The covariant derivative of T , ∇T is the tensor of type (r + 1, s) defined by

(∇T ) (A1, . . . , Ar) = (∇AT ) (A1, . . . , Ar)

= ∇A (T (A1, . . . , Ar))

=

r∑

i=1

T (A1, . . . ,∇A Ai, . . . , Ar) ,

for A1, . . . , Ar,∈ χ(M). The second covariant derivative of T , ∇2T =
∇ (∇T ), is then a tensor of the type (r + 2, s) given by

(
∇2T

)
(A1, . . . , Ar, B) = (∇B (∇T )) (A1, . . . , Ar) ,
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A1, . . . , Ar, B ∈ χ (M). In general, the m-th covariant derivative , ∇mT , is
inductively defined by ∇

(
∇m−1T

)
.

Now, using the usual formula for the curvature

R(A, B, C) = ∇A∇BC −∇B∇AC −∇[A,B]C, A, B, C ∈ s,

a direct computation yields for R (A, B, C) the following expression

1

n
(tr (AC)B − tr (BC) A + tr ([A, B]C) In)) − [A, B]C

4
− C[A, B]

Note that if we restrict R to the totally geodesic submanifold of the diagonal
matrices of M , then

R(A, B, C) =
1

n
(tr(AC)B − tr(BC)A). (10)

Our next objective it is enough to compute the covariant derivatives of
R in this submanifold, that is, we want to compute ∇mR (A, B, C), for
A, B, C ∈ h. For this we introduce the tensor of the type (r, 0), Tr :
s × · · · × s → C∞(M), defined by

Tr(A1, . . . , Ar) = tr(A1 · · ·Ar).

An easy computation shows that

∇Tr (A1, . . . , Ar+1) = −r Tr+1(A1, . . . , Ar+1) +

1

n

r∑

i=1

(T2 ⊗ Tr−1)
(
Ai, Ar+1, A1, . . . , Âi, Ar

)
.

Also, if we put S (A1, . . . , Ar, Ar+1) = Tr (A1, . . . , Ar) Ar+1, then we get

(∇Tr) (A1, . . . , Ar, Ar+2) Ar+1 = (∇S) (A1, . . . , Ar+1, Ar+2) .

Using these notations we arrive at the following formulas:

• R (A, B, C) =
1

n
(T2 (A, C) B − T2 (B, C) A).

• (∇R)(A, B, C, D) = − 2

n
(T3 (A, C, D) B − T3 (B, C, D) A).
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• −n

6

(
∇2R

)
(A, B, C, D, E) is given by

{(
T4 −

1

3n
U

)
(A, C, D, E)

}
B +

{(
T4 −

1

3n
U

)
(B, C, D, E)

}
A,

where U (A, C, D, E) is the tensor

T2 (A, E)T2 (C, D) + T2 (D, E)T2 (A, C) + T2 (C, E)T2 (A, D)

We can proceed successively and compute the covariant derivatives of
any order. We shall refrain ourselves to develop a general formula for these
derivatives. But it is clear from these formulas that the following statement
holds.

Proposition 3.1 If A and B are zero trace diagonal matrices then the co-

variant derivatives ∇mR belong to the subspace spanned by A and B, for all

m ∈ N, where ∇0R = R.

In the sequel we shall obtain some applications of the formulas obtained
so far.

First let us consider the Ricci tensor. For a general connection this is the
(2, 0)-tensor defined by

Ric(A, B) = tr (C 7→ R(A, B, C)) , A, B, C ∈ χ(M).

In our case if A, B, C ∈ s then the map C 7→ R(A, B, C) is an element of
gl (s), having trace zero. Hence, Ric ≡ 0.

As a second application we ask weather there exists a Riemannian metric
g compatible with the affine connection ∇. Recall that this holds if

Ag (B, C) = g (∇AB, C) + g (B,∇AC) , A, B, C ∈ χ(M).

It is know that for a connection compatible with a given metric, the Lie
algebra of the holonomy group in a point of the manifold is a subalgebra of
so (n) (see [6]). On the other hand, such Lie algebra is spanned by

(∇mR)(A, B, C1, . . . , Cm), A, B, C1, . . . , Cm ∈ χ(M), m = 0, 1, 2, . . .

We shall use these facts to prove that ∇ is not compatible with any metric.
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For this choose A, B, C, D, E ∈ h satisfying tr (BC) = tr (BE) = 0,
DB = A. Then by Proposition 3.1, we have

〈(∇R) (A, B, C, D) , E〉 = 〈(∇R) (A, B, E, D) , C〉.

Equivalently, (∇R) (A, B, C) is a non-zero self-adjoint operator of h. Hence,
it has real eigen-values, showing that this operator cannot belong to so (n).
This is enough to prove that ∇ is not compatible with a Riemannian metric.

We note that by (10)

〈R (A, B, C) , D〉 = 〈C, R (A, B, D)〉,

that is, R (A, B) ∈ so (n), so that we in fact need the covariant derivative of
the curvature.
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