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Abstrat

Let X be an homogeneous spae and let E be an UMD Banah

spae with a normalized unonditional basis (e

j

)

j�1

. Given an opera-

tor T from L

1



(X) in L

1

(X), we onsider the vetor-valued extension

e

T of T given by

e

T (

P

j

f

j

e

j

) =

P

j

T (f

j

)e

j

. We prove a weighted inte-

gral inequality for the vetor-valued extension of the Hardy-Littlewood

maximal operator and a weighted Fe�erman-Stein inequality between

the vetor-valued extensions of the Hardy-Littlewood and the sharp

maximal operators, in the ontext of Orliz spaes. We give suÆ-

ient onditions on the kernel of a singular integral operator to have

the boundedness of the vetor-valued extension of this operator on

L

p

(X;Wd�;E) for 1 < p < 1 and for a weight W in the Muken-

houpt's lass A

p

(X). Appliations to singular integral operators on

the unit sphere S

n

and on a �nite produt of loal �elds IK

n

are given.

The versions of all these results for vetor-valued extensions of oper-

ators of funtions de�ned in a homogeneous spae X and with values

in an UMD Banah lattie are also given.

1 Introdution

The UMD property for Banah spaes plays a entral role in the develop-

ment of Vetor-Valued Fourier Analysis. In spite of having been extensively

studied (see e.g. [4, 2, 3, 19, 18, 10℄), we point out that all the maximal
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operators and singular integral operators onsidered in these studies, are for

funtions de�ned in the eulidian spae IR

n

or in the torus T

n

.

J. Bourgain extended in [2℄ a result of vetor-valued singular

integral operators due to Benedek, Caldern and Panzone, to the ontext

of UMD Banah spaes. The main goal of this paper is to prove a weighted

extension of the result of Bourgain for vetor-valued singular integral opera-

tors of funtions de�ned in a homogeneous spae X (Theorem 1.4).

In Setion 2 we study weighted integral estimates for vetor-valued

extensions of maximal operators from Martingale Theory in the ontext of

Orliz spaes, whih we apply in the proofs of Theorems 1.1 and 1.2 given in

Setion 3.

C. Fe�erman and E. M. Stein introdued in [7℄ a tehnique to study

the Hardy-Littlewood maximal operator. The dyadi deomposition of IR

n

is used as a fundamental tool in this tehnique. The idea is to obtain an

integral estimate for the dyadi maximal operator and then, by a transferene

method, to obtain an integral estimate for the Hardy-Littlewood maximal

operator. This tehnique was applied to study integral estimates for vetor-

valued extensions of this operator (see e.g. [7, 2, 25℄) and to study weighted

integral estimates for others maximal operators (see e.g. [21, 22, 26℄).

In Setion 3 we apply the tehnique by Fe�erman and Stein for

homogeneous spaes and we prove a weighted integral inequality for a vetor-

valued extension of the Hardy-Littlewood maximal operator (Theorem 1.1)

and a weighted Fe�erman-Stein inequality between vetor-valued extensions

of the Hardy-Littlewood and the sharp maximal operators (Theorem 1.2), in

the ontext of Orliz spaes.

In Setion 4 we study singular integral operators. The proofs of

Theorems 1.3, Theorem 1.4 and Corollary 1.1 are in Setion 4.

In this setion we give the statements of the main results of this

paper.

Corollaries 1.1 and 1.2 are appliations to vetor-valued singular

integral operators of funtions de�ned in the unit sphere S

n

and in a �nite

produt of loal �elds IK

n

, respetively.

In Theorems 1.5, 1.6 and 1.7 we onsider vetor-valued extensions

of operators for funtions de�ned in a homogeneous spae X and with values

in a UMD Banah lattie.

Let G be a loally ompat Hausdor� topologial group with unit

element e, H a ompat subgroup of G and � : G! G=H the anonial map.

Let dg denote a left Haar measure on G, whih we assume to be normalized
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in the ase of G to be ompat. If A is a Borel subset of G, we will denote

by jAj the Haar measure of A. The homogeneous spae X = G=H is the

set of all left osets �(g) = gH; g 2 G, provided with the quotient topology.

The Haar measure dg indues a measure � on the Borel �-�eld on X. For

f 2 L

1

(X),

Z

X

f(x)d�(x) =

Z

G

f Æ �(g)dg:

The measure � on X is invariable on the ation of G, that is, if f 2 L

1

(X),

g 2 G and R

g

f(x) = f(g

�1

x), then

Z

X

f(x)d�(x) =

Z

X

R

g

f(x)d�(x):

A quasi-distane on X is a map d : X �X ! [0;1) satisfying:

(i) d(x; y) = 0 if and only if x = y;

(ii) d(x; y) = d(y; x) for all x; y 2 X;

(iii) d(gx; gy) = d(x; y) for all g 2 G; x; y 2 X;

(iv) there exists a onstant � � 1 suh that, for all x; y; z 2 X,

d(x; y) � �[d(x; z) + d(z; y)℄;

(v) the balls B(x; `) = fy 2 X : d(x; y) < `g; x 2 X; ` > 0, are relatively

ompat and measurable, and the balls B(11; `); ` > 0, form a basis of

neighborhoods of 11 = �(e);

(vi) (doubling ondition) there exists a onstant A � 1 suh that, for all

` > 0 and x 2 X,

�(B(x; 2`)) � A�(B(x; `)):

Given a quasi-distane d on X, there exists a distane � on X and

a positive real number  suh that d is equivalent to �



(see [16℄). Therefore

the family of d-balls is equivalent to the family of �



-balls and �



-balls are

open sets. We an show that �(B(x; `)) > 0 for x 2 X, ` > 0, and that X is

separable.

In this paper X will denote a homogeneous spae provided with a

quasi-distane d.
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Given a Banah spae E with norm k � k and a positive loally inte-

grable funtionW onX, we denote by L

p

(X;Wd�;E) or L

p

E

(W ); 1 � p <1,

the Bohner-Lebesgue spae onsisting of all E-valued (strongly) measurable

funtions f de�ned in X suh that

kfk

L

p

E

(W )

=

�

Z

X

kf(x)k

p

W (x)d�(x)

�

1=p

<1:

We write L

p

E

(W ) = L

p

(W ) when E = IR and L

p

E

(W ) = L

p

E

(X) = L

p

E

when

W = 1.

Throughout this paper (exept in Theorems 1.5, 1.6 and 1.7) E will

denote a Banah spae with the UMD property (for the de�nition see e.g.

[4, 2, 3, 19℄) and with a normalized unonditional basis (e

j

)

j�1

, and � will

denote a non-dereasing ontinuous funtion on [0;1) with �(0) = 0 and

satisfying the 4

2

-ondition, that is, there exists a onstant  > 0 suh that

�(2�) � �(�); � > 0: (1.1)

We put �(1) = lim

�!1

�(�).

Let W be a positive loally integrable funtion on X and let 1 <

p <1. If there exists a onstant C suh that

 

1

�(B)

Z

B

Wd�

! 

1

�(B)

Z

B

W

�1=(p�1)

d�

!

(p�1)

� C; (1.2)

for all ball B = B(x; `), ` > 0, x 2 X, we say that W is a weight in the

Mukenhoupt's lass A

p

(X). If W 2 A

p

(X), we denote by C(p;W ) the

smallest onstant C that satis�es (1.2). The lass A

1

(X) is de�ned as the

union of the lasses A

p

(X), for 1 < p <1.

Let f be a real-valued loally integrable funtion on X. The Hardy-

Littlewood maximal operator M and the sharp maximal operator M

℄

are

de�ned at f respetively by

Mf(x) = sup

B

1

�(B)

Z

B

jf(y)jd�(y)

and

M

℄

f(x) = sup

B

1

�(B)

Z

B

jf(y)� f

B

jd�(y);

where

f

B

=

1

�(B)

Z

B

f(y)d�;
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and where the supremum is taken over all balls B, suh that x 2 B.

The following theorem extends results for the Hardy-Littlewoodmax-

imal operator given in [2, 25℄.

Theorem 1.1 Let W 2 A

1

(X) and suppose that � is a onvex funtion.

Then there exists a onstant C, depending only on E, �, X and W suh

that,

Z

X

�

0

�

sup

k�1

k

k

X

j=1

Mf

j

(x)e

j

k

1

A

W (x)d�(x) � C

Z

X

� (M(kfk)(x))W (x)d�(x);

(1.3)

for all f =

P

j

f

j

e

j

2 L

1

E

. Moreover, if 1 < p < 1; W 2 A

p

(X) and

f 2 L

p

E

(W ), then

P

j

Mf

j

e

j

onverges in L

p

E

(W ) to a funtion

f

Mf and the

operator

f

M is bounded on L

p

E

(W ).

There is an intimate relation between the Hardy-Littlewood maxi-

mal operator and the sharp maximal operator. This relation is ontained in

the inequality kMfk

p

� CkM

℄

fk

p

, f 2 L

p

0

(IR

n

), 0 < p

0

� p < 1. This

inequality is known as the Fe�erman-Stein inequality and it was proved in

[8℄. A weighted extension of this inequality and an unweighted extension

for funtions de�ned in a spae of homogeneous type (in partiular in a ho-

mogeneous spae) are well known. The following theorem gives a weighted

vetor-valued extension of the Fe�erman-Stein inequality for funtions de-

�ned in a homogeneous spae X.

Theorem 1.2 Let W 2 A

1

(X) and suppose that � is a onvex funtion.

Then there exists a onstant C, depending only on E, �, X and

W suh that, for all f =

P

j

f

j

e

j

2 [

p>1

L

p

E

,

Z

X

�

0

�

k

1

X

j=1

Mf

j

(x)e

j

k

1

A

W (x)d�(x) � C

Z

X

�

0

�

k

1

X

j=1

M

℄

f

j

(x)e

j

k

1

A

W (x)d�(x):

(1.4)

We say that a linear operator T de�ned in L

1



(X) and with values

in the spae of all measurable funtions, is a singular integral operator if the

following onditions hold:
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(i) T has a bounded extension on L

r

(X) for some r; 1 < r � 1;

(ii) there exists a kernel K 2 L

1

lo

(X �X n4), 4 = f(x; x) : x 2 Xg, suh

that

Tf(x) =

Z

X

K(x; y)f(y)d�(y);

for all f 2 L

1



(X) and almost all x 62 supp f .

Let T be a singular integral operator with a kernel K. We say that

K satis�es the ondition (H

1

) if

jK(x; y)�K(x; 11)j � C

d(y; 11)

d(x; 11)�(B(11; d(x; 11))

whenever d(x; 11) > 2d(y; 11), 11 = �(e). If K

0

(x; y) = K(y; x) satis�es (H

1

)

we say that K satis�es (H

0

1

).

The following theorem is proved in Setion 4.

Theorem 1.3 Let 1 < p < 1, W 2 A

p

(X) and let (T

j

)

j�1

be a sequene

of operators from L

p

(W ) in L

p

(W ) suh that, for every r > 1, there exists a

onstant C

r

suh that

M

℄

(T

j

f)(x) � C

r

M

r

f(x); f 2 L

1



(X); j � 1: (1.5)

Then for all f =

P

j

f

j

e

j

2 L

p

E

(W ) we have that

P

j

T

j

f

j

e

j

onverges in

L

p

E

(W ) and there exists a positive onstant C

p

suh that

k

1

X

j=1

T

j

f

j

e

j

k

L

p

E

(W )

� C

p

k

1

X

j=1

f

j

e

j

k

L

p

E

(W )

: (1.6)

It is easy to see that the ondition (H

1

) for the kernelK of a singular

integral operator implies the Hrmander's ondition (H

1

):

Z

d(x;11)>2d(y;11)

jK(x; y)�K(x; 11)jd�(x) � C <1:

The Hormander's ondition was studied by R. R. Coifman and G. Weiss [6℄,

by A. Kor�anyi and S. V�agi [14℄ and by B. Bordin and D. L. Fernandez [1℄.

It was proved that, if the kernel K satis�es (H

1

) and (H

0

1

) then the singular

integral operator is bounded on L

p

(X) for 1 < p < 1. The next result

follows immediately from Lemma 4.2 in Setion 4 and Theorem 1.3.
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Theorem 1.4 Let 1 < p < 1, W 2 A

p

(X) and let T be a singular in-

tegral operator. Assume that the kernel K of T satis�es (H

1

), (H

0

1

) and

K(gx; gy) = K(x; y) for all x; y 2 X, g 2 G. Then for all f =

P

j

f

j

e

j

2

L

p

E

(W ) we have that

P

j

Tf

j

e

j

onverges in L

p

E

(W ) and there exists a positive

onstant C

p

suh that

k

1

X

j=1

Tf

j

e

j

k

L

p

E

(W )

� C

p

k

1

X

j=1

f

j

e

j

k

L

p

E

(W )

: (1.7)

The Theorem 1.4 for the eulidian spae IR

n

and W = 1 was proved

by Bourgain [2℄ and it was also studied in [19℄. For W = 1 and E = l

q

,

1 < q < 1 but for more general spaes X (spaes of homogeneous type) it

was proved in [1, 20℄. The Theorem 1.3 for X = IR

n

and W = 1 was proved

in [19℄.

Let us onsider the unit sphere S

n

= fx 2 IR

n+1

: jxj = 1g provided

with the Lebesgue measure d� and with the eulidian distane d(x; y) =

jx � yj and let 11 = (1; 0; : : : ; 0). A kernel K 2 L

1

lo

(S

n

� S

n

n 4) satis�es

the ondition (H

1

) if there exists a onstant C suh that for x; y 2 S

n

with

jx� 11j > 2jy � 11j we have

jK(x; y)�K(x; 11)j � C

jy � 11j

jx� 11j

n+1

:

For 0 � r � 1, i; j 2 f1; 2; :::; n + 1g and x; y 2 S

n

(x 6= y for r = 1), we

de�ne the kernels s

r

, t

r

, K

r

i;j

and K by

s

r

(x; y) =

2

!

n

y � (y � x)x

jy � rxj

n+1

;

t

r

(x; y) =

n� 2

2r

Z

r

0

s

%

(x; y)d%;

K

r

i;j

(x; y) =

x

i

y

j

� x

j

y

i

jy � rxj

n+1

and

K(x; y) = �

Z

1

0

P

r

(x; y)dr;

where P

r

(x; y) denote the Poisson kernel

P

r

(x; y) =

1

!

n

1� r

2

jy � rxj

n+1

:
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Let q

r

= s

r

+ t

r

; 0 � r � 1. For f 2 L

1

(S

n

) we de�ne the operators R

r

, R

r

i;j

and �, 0 � r � 1 and i; j 2 f1; 2; :::; n+ 1g, by

R

r

f(x) =

Z

S

n

q

r

(x; y)f(y)d�(y);

R

r

i;j

f(x) =

Z

S

n

K

r

i;j

(x; y)f(y)d�(y);

�f(x) =

Z

S

n

K(x; y)f(y)d�(y);

with x 2 S

n

if 0 � r < 1 and x 62 supp f if r = 1.

The operator R = R

1

is alled the Riesz transform on S

n

and it

was proved in Kor�anyi-V�agi [14, p. 636℄ that: lim

r!1

R

r

f = Rf there exists

a.e. and in L

p

(S

n

), 1 < p < 1; the operators R

r

are uniformly bounded

on L

p

(S

n

), and q

r

(gx; gy) = q

r

(x; y) for all x; y 2 S

n

, g 2 SO(n + 1).

The operators R

r

i;j

were onsidered in Coifman-Weiss [6, p. 76℄. They are

uniformly bounded on L

2

(S

n

) and K

r

i;j

(gx; gy) = K

r

i;j

(x; y) for all x; y 2 S

n

,

g 2 SO(n + 1). The operator � was studied in Levine [15, p. 508℄ where it

was proved that: it is bounded on L

p

(S

n

) for 1 � p � 1; if Y

k

is a spherial

harmoni of degree k then �Y

k

= �Y

k

=(k + 1), and K(gx; gy) = K(x; y) for

all x; y 2 S

n

, g 2 SO(n+ 1).

In Setion 4 we prove the following result.

Corollary 1.1 Let 1 < p <1, W 2 A

p

(S

n

) and T 2 fR

r

; R

r

i;j

;� : 0 � r �

1; 1 � i; j � n+ 1g. Then there exists a onstant C

p

suh that,

k

1

X

j=1

Tf

j

e

j

k

L

p

E

(W )

� C

p

k

1

X

j=1

f

j

e

j

k

L

p

E

(W )

; (1.8)

for all f =

P

j

f

j

e

j

2 L

p

(S

n

;Wd�;E).

A loal �eld is any loally ompat, non-disrete and totally dison-

neted �eld. Let IK be a �xed loal �eld and dx be a Haar measure of the

additive group IK

+

of IK. The measure of a measurable set A of IK with

respet to dx we denote by jAj. Let m be the modular funtion for IK

+

,

that is, m(�)jAj = j�Aj for � 2 IK and A � IK measurable. We also denote

jxj = m(x). The sets

ID = fx 2 IK : jxj � 1g and IB = fx 2 IK : jxj < 1g
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are the ring of integers of IK and the unique maximal ideal of ID, respetively.

Let q = p



(p prime) be the order of the �nite �eld ID=IB and let � be a �xed

element of maximum absolute value of IB. The Haar measure dx is normalized

suh that jIDj = 1 and thus j�j = jIBj = q

�1

.

A loal �eld IK has a natural sequene of partitions by balls satisfying

the onditions (i) and (ii) of Lemma 3.1 in Setion 3, when we onsider the

distane d(x; y) = jx � yj. It follows from this remark that the Theorems

1.1 and 1.2 hold without the hypothesis of � being a onvex funtion. The

extension of these results for a �nite produt of loal �elds is an immediate

onsequene of a M. H. Taibleson's theorem (see [23, p. 548-549℄).

A kernel K 2 L

1

lo

(IK

n

� IK

n

n 4) satis�es the ondition (H

1

) if for

x; y 2 IK

n

with jxj > jyj we have

jK(x; y)�K(x; 0)j � C

jyj

jxj

n+1

:

Let !(x) be a funtion de�ned on IK

n

and satisfying:

!(x) = !(�

j

x); j integer; x 2 IK

n

;

Z

jxj=1

!(x)dx = 0;

j!(x� �

j

y)� !(x)j � Cq

�j

; j � 1; jxj = jyj = 1:

Then the kernel 	(x; y) = 	(x� y) where

	(x) =

!(x)

jxj

n

; x 2 IK

n

n f0g;

satis�es (H

1

) and (H

0

1

). For f 2 L

1

(IK

n

) and x 2 IK

n

; x 62 supp f we

de�ne

Uf(x) =

Z

IK

n

	(x� y)f(y)dy:

The operator U was studied in Phillips-Taibleson [17℄ and it was proved that

U is bounded on L

p

(IK

n

) for 1 < p <1. Therefore the next orollary follows

from Theorem 1.4.

Corollary 1.2 Let 1 < p <1, W 2 A

p

(IK

n

). Then there exists a onstant

C

p

suh that,

k

1

X

j=1

Uf

j

e

j

k

L

p

E

(W )

� C

p

k

1

X

j=1

f

j

e

j

k

L

p

E

(W )

; (1.9)

for all f =

P

j

f

j

e

j

2 L

p

(IK

n

;Wdy;E).
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Now let E be an UMD Banah lattie of real-valued measurable

funtions on a �-�nite measure spae (Y;B; �). The absolute value of h 2 E

is given by jhj(y) = jh(y)j, y 2 Y . We identify a funtion f 2 L

p

E

(W )

with a funtion de�ned in the produt X � Y setting f(x)(y) = f(x; y). We

denote by L

p

(W ) 
 E the set of all vetor-valued funtions f of the type

f =

P

k

j=1

a

j

f

j

, for a

j

2 E, f

j

2 L

p

(W ) and for a integer k, k � 1. This set

is a dense subspae of L

p

E

(W ) for 1 � p < 1 and any weight W . Given an

operator T in L

p

(W ), we de�ne its extension T in L

p

(W )
E (see Rubio de

Frania [18℄) in the following form:

Tf(x; y) = T (f(�; y))(x); (x; y) 2 X � Y:

A haraterization of UMD Banah lattie in terms of the extensionM of the

Hardy-Littlewood maximal operator, when X = IR

n

, was given by Bourgain

[2℄ (see also [18℄). The Bourgain's haraterization says that E has the UMD

property, if and only if, M is bounded on L

p

E

(IR

n

) and on L

p

0

E

0

(IR

n

) for some

p, 1 < p < 1, where p

0

is the onjugate exponent of p and X

0

is the dual

spae of E. The maximal operator M and others maximal operators of the

same type were studied in [10, 12, 11℄, for X = IR

n

. In [10℄ are given new

haraterizations of UMD Banah lattie in terms of maximal operators.

In Setion 2 we onsider the maximal operators Nf = f

�

and

N

℄

f = f

℄

frommartingale theory and their vetorial extensions

f

N(

P

j

f

j

e

j

) =

P

j

f

�

j

e

j

,

f

N

℄

(

P

j

f

j

e

j

) =

P

j

f

℄

j

e

j

. The analogous of Theorem 2.4 in Setion

2 for the operator N was proved in [25℄. By the same way we an prove

the analogous of Theorem 2.7 for the operators N and N

℄

. Proeeding as in

Setion 3, we an apply the inequalities obtained for N and N

℄

and prove

the following theorems.

Theorem 1.5 Let W 2 A

1

(X) and suppose that � is a onvex funtion.

Then there exists a onstant C, depending only on E, �, X and W suh

that, for all f 2 L

1

(W )
 E,

Z

X

�

�

kMf(x)k

�

W (x)d�(x) � C

Z

X

� (M(kfk)(x))W (x)d�(x): (1.10)

Theorem 1.6 Let W 2 A

1

(X) and suppose that � is a onvex funtion.

Then there exists a onstant C, depending only on E, �, X and

W suh that, for all f 2 L

1

(W )
 E,

Z

X

�

�

kMf(x)k

�

W (x)d�(x) � C

Z

X

�

�

kM

℄

f(x)k

�

W (x)d�(x): (1.11)

10



If �(t) = t

p

, 1 < p < 1, then we an extend the operators M and

M

℄

by a limit proess to all L

p

E

(W ) and the above theorems will hold for

these extensions. Proeeding as in Setion 4 we an apply Theorems 1.5 and

1.6 and prove the following analogous of the Theorem 1.4 for Banah lattie.

Theorem 1.7 Let 1 < p < 1, W 2 A

p

(X) and let T be a singular in-

tegral operator. Assume that the kernel K of T satis�es (H

1

), (H

0

1

) and

K(gx; gy) = K(x; y) for all x; y 2 X, g 2 G. Then there exists a positive

onstant C

p

suh that, for all f 2 L

p

(W )
 E we have that

kTfk

L

p

E

(W )

� C

p

kfk

L

p

E

(W )

: (1.12)

Moreover, the operator T an be ontinuously extended to all L

p

E

(W ) and the

above inequality holds for its extension and for all f 2 L

p

E

(W ).

Applying Theorem 1.7 we obtain the analogous of Corollaries 1.1

and 1.2 for the ase of UMD Banah lattie.

2 Maximal Operators in Martingale Theory

Let (
;F ; IP ) be a probability spae and for eah k = 0; 1; 2; ::: let A

k

be a partition of 
 by elements of F satisfying: IP (Q) > 0 for all Q 2 A

k

;

the �-�eld F is generated by the union A = [

1

k=0

A

k

; the partition A

k+1

is

a re�nement of A

k

, that is, for eah Q 2 A

k

, there exists an integer n

Q

� 1

and Q

1

; :::; Q

n

Q

2 A

k+1

suh that Q = Q

1

[ ::: [ Q

n

Q

. We will denote by

F

k

the �-�eld generated by A

k

and we will always assume that the sequene

(A

k

)

k�0

is regular with respet to IP , that is, there exists an absolute onstant

� � 1 suh that

IP (Q

1

) � �IP (Q

2

); (2.1)

for all Q

1

2 A

k

and Q

2

2 A

k+1

with Q

2

� Q

1

; k � 0.

Given a E-valued integrable funtion f : 
 7! E we will also de-

note by f the martingale (f

k

)

k�0

where f

k

= E[f jF

k

℄ is the onditional

expetation of the funtion f with respet to the �-�eld F

k

. A stopping

time is a funtion T : 
 ! f0; 1; :::;1g suh that fT � kg 2 F

k

for all

k � 0. For a stopping time T we denote by F

T

the �-�eld of all sets A 2 F

suh that A \ fT � kg 2 F

k

, for all k � 0. The martingale transform \f

11



stopped at T" is de�ned by f

T

= (f

T

k

)

k�0

; f

T

k

(!) = f

T (!)^k

(!) and we write

f

T

(!) = f

T (!)

(!). We an show that

E[I(A)ff � f

T

g jF

k

℄ = I(A)(f

k

� f

T

k

) (2.2)

for all integrable funtions f : 
 ! E, all stopping times T , all k � 0 and

all A 2 F

T

, where I(A) is the indiator funtion of the set A.

For a real-valued integrable funtion f we de�ne the maximal fun-

tions

f

�

(x) = sup

k�0

jf

k

(x)j = sup

x2Q

Q2A

1

IP (Q)

�

�

�

�

Z

Q

fdIP

�

�

�

�

;

f

℄

(x) = sup

k�0

E[jf � f

k

j jF

k

℄(x) = sup

x2Q

Q2A

1

IP (Q)

Z

Q

jf � f

Q

jdIP

where

f

Q

=

1

IP (Q)

Z

Q

fdIP:

For an integer n � 0 we de�ne f

�

n

= (f

n

)

�

; f

℄

n

= (f

n

)

℄

.

It is well known (see [9℄) that

kf

�

k

p

� C

p

kf

℄

k

p

; 1 < p <1; f 2 L

p

(
;F ; IP ): (2.3)

We an prove (2.3) using the method known as the Calder�on-Zygmund de-

omposition (see [8, Theorem 5, p. 153℄), replaing the dyadi ubes of IR

n

by the elements of A.

Given a positive integrable funtion W on 
, we denote by L

p

E

(W )

or L

p

(
;F ;WdIP ;E), 1 � p <1, the Bohner-Lebesgue spae onsisting of

all E-valued (strongly) measurable funtions f de�ned in 
 suh that

kfk

L

p

E

(W )

=

�

Z




kf(!)k

p

W (!)dIP (!)

�

1=p

<1:

We write L

p

E

(W ) = L

p

(W ) when E = IR and L

p

E

(W ) = L

p

E

(
) = L

p

E

when

W = 1.

Let W be a positive integrable funtion on 
 and let 1 < p <1. If

there exists a onstant C suh that

 

1

IP (Q)

Z

Q

WdIP

! 

1

IP (Q)

Z

Q

W

�1=(p�1)

dIP

!

(p�1)

� C; (2.4)
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for all Q 2 A, we say that W is a weight in the lass A

p

(A). The lass

A

1

(A) is de�ned as the union of the lasses A

p

(A) for 1 < p <1.

Let U be an operator on L

1

E

suh that, for eah f 2 L

1

E

it assoiates

a nonnegative proess (U

k

f)

k�0

with U

0

f = 0 and U

k

f F

k

-measurable, k � 0.

For a stopping time T we denote by U

�

T

the maximal operator de�ned by

U

�

T

f(!) = sup

k�T (!)

U

k

f(!):

We write U

�

f = U

�

1

f .

Theorem 2.1 ([24℄) Let W 2 A

1

(A) and let U and V be two operators on

L

1

E

as above. Suppose that

U

�

T^S

f = U

�

T

f

S

; V

�

T^S

f = V

�

T

f

S

for all stopping times T and S and all f 2 L

1

E

. If there exists a onstant C

suh that

E[fU

�

k

f � U

�

T^k

fg

2

jF

T

℄ � CE[fV

�

k

fg

2

jF

T

℄

for all k � 1, all stopping times T and for all f 2 L

1

E

, then there exists a

onstant C suh that

Z




�(U

�

f)WdIP � C

Z




�(V

�

f)WdIP;

for all f 2 L

1

E

. The onstant C depends only on W; �;� and E, where � is

the onstant in (2.1).

Theorem 2.2 ([25℄) Let U and V be two operators suh that, for eah real-

valued integrable funtion on 
 they assoiate nonnegative F-measurable

funtions. Suppose that for any Z 2 A

1

(A) there exists a onstant C

Z

,

depending only on Z, suh that

Z




U(h)ZdIP � C

Z

Z




V (h)ZdIP ;

for all h 2 [

1

k=0

L

1

(
;F

k

; IP ). Then for all 1 < p <1, there exists a onstant

C

p

suh that

k

1

X

j=1

Uf

j

e

j

k

L

p

E

� C

p

k

1

X

j=1

V f

j

e

j

k

L

p

E

for all f =

P

j

f

j

e

j

2 [

1

k=0

L

p

(
;F

k

; IP ;E).
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Theorem 2.3 ([13℄) Let W be a positive integrable funtion and let 1 <

p <1. Then W 2 A

p

(A) if and only if the operator f 7! f

�

is bounded on

L

p

(W ).

Theorem 2.4 ([25℄) Let W 2 A

1

(A). Then there exists a onstant C,

depending only on E;� and W , suh that, for all f =

P

j

f

j

e

j

2 L

1

E

,

Z




�

0

�

sup

k�1

k

k

X

j=1

f

�

j

e

j

k

1

A

WdIP � C

Z




�(kfk

�

)WdIP: (2.5)

Lemma 2.1 There exists an absolute onstant C suh that, for all stopping

times T , all f 2 L

1

(
;F ; IP ) and all integers n � 0,

E[f(f � f

T

)

�

n

g

2

jF

T

℄ � CE[f(f � f

T

)

℄

n

g

2

jF

T

℄: (2.6)

Proof. Let us �x T; f; n and A 2 F

T

and let us onsider the martingale

g = (g

k

)

k�0

, g

k

= E[I(A)ff

n

� f

T^n

g jF

k

℄. From (2.2) it follows that

g

k

= I(A)(f

n

k

� f

T^n

k

)

and hene

g

�

n

= I(A)(f � f

T

)

�

n

(2.7)

and

jg

n

� g

k

j = I(A)j(f � f

T

)

n

� (f � f

T

)

k

j; 1 � k � n:

Sine A \ fT � kg 2 F

k

we have that

E[jg

n

� g

k

j jF

k

℄ = E[I(A \ fT � kg)j(f � f

T

)

n

� (f � f

T

)

k

j jF

k

℄

+ E[I(A \ fT > kg)j(f � f

T

)

n

� (f � f

T

)

k

j jF

k

℄

= I(A)E[j(f � f

T

)

n

� (f � f

T

)

k

j jF

k

℄

and hene

g

℄

n

= I(A)(f � f

T

)

℄

n

: (2.8)

Then from (2.7), (2.8) and (2.3) for p = 2 we obtain

Z

A

f(f � f

T

)

�

n

g

2

dIP = kg

�

n

k

2

� Ckg

℄

n

k

2

= C

Z

A

f(f � f

T

)

℄

n

g

2

dIP:

Sine the above inequality is true for all A 2 F

T

, we obtain (2.6).
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Theorem 2.5 If W 2 A

1

(A) then there exists a onstant C suh that

Z




�(f

�

)WdIP � C

Z




�(f

℄

)WdIP (2.9)

for all f 2 L

1

(
;F ; IP ). The onstant C depends only on W; � and �, where

� is the onstant in (2.1).

Proof. Let us �x f 2 L

1

, a stopping time T and an integer n � 0. Sine

g 7! g

�

and g 7! g

℄

are sublinear then

0 � f

�

n

� f

�

T^n

� (f � f

T

)

�

n

(2.10)

and

(f � f

T

)

℄

n

� f

℄

n

+ f

℄

T^n

� 2f

℄

n

: (2.11)

Therefore by (2.6)

E[ff

�

n

� f

�

T^n

g

2

jF

T

℄ � E[f(f � f

T

)

�

n

g

2

jF

T

℄

� CE[f(f � f

T

)

℄

n

g

2

jF

T

℄

� 4CE[ff

℄

n

g

2

jF

T

℄:

It is easy to see that f

�

T^S

= (f

S

)

�

T

and f

℄

T^S

= (f

S

)

℄

T

for all stopping times

T and S. Then applying Theorem 2.1 we obtain (2.9).

Theorem 2.6 Let 1 < p < 1. If f =

P

j

f

j

e

j

2 L

p

E

then

P

j

f

�

j

e

j

and

P

j

f

℄

j

e

j

onverge in L

p

E

and

k

1

X

j=1

f

�

j

e

j

k

L

p

E

� C

p

k

1

X

j=1

f

℄

j

e

j

k

L

p

E

(2.12)

where C

p

is a onstant depending only on p; � and E.

Proof. Let �(t) = t and Z 2 A

1

(A). Then by Theorem 2.5 there exists a

onstant C

Z

suh that

Z




f

�

ZdIP � C

Z

Z




f

℄

ZdIP;

for all f 2 L

1

(
;F ; IP ). Therefore, from Theorem 2.2 there exists a on-

stant C

p

depending only on p; � and E suh that (2.12) is true for all f 2

[

1

k=0

L

p

(
;F

k

; IP ;E).
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It follows by Theorem 2.4 for �(t) = t

p

and W = 1 and by Theorem

2.3 that the operator

f

N(

P

j

f

j

e

j

) =

P

j

f

�

j

e

j

is well de�ned and is bounded

on L

p

E

. Sine f

℄

j

� 2f

�

j

, then the operator

f

N

℄

(

P

j

f

j

e

j

) =

P

j

f

℄

j

e

j

is also well

de�ned and is bounded on L

p

E

. But

S

1

k=0

L

p

(
;F

k

; IP ;E) is dense in L

p

E

and

hene we obtain (2.12) for all f 2 L

p

E

.

Theorem 2.7 Let W 2 A

1

(A). Then there exists a onstant C, depending

only on W; �;� and E suh that, for all f =

P

j

f

j

e

j

2 [

p>1

L

p

E

,

Z




�(k

1

X

j=1

f

�

j

e

j

k)WdIP � C

Z




�(k

1

X

j=1

f

℄

j

e

j

k)WdIP: (2.13)

Proof. We observe thatE is a Banah lattie with absolute value j

P

j

x

j

e

j

j =

P

j

jx

j

je

j

.

Let 1 < p < 1 and f =

P

j

f

j

e

j

2 L

p

E

. By the proof of Theorem

2.6,

f

Nf =

P

j

f

�

j

e

j

and

f

N

℄

f =

P

j

f

℄

j

e

j

are well de�ned as funtions in

L

p

E

. We de�ne Uf = k

f

Nfk, V f = k

f

N

℄

fk and U

n

f = U(E[f jF

n

℄); V

n

f =

V (E[f jF

n

℄). Sine (U

n

f)

n�0

is an inreasing sequene and U

n

f ! Uf in L

p

when n ! 1, then it follows that U

�

f = sup

n�0

U

n

f = Uf . By the same

way V

�

f = V f .

If T is a stopping time, we obtain from the inequality (2.12) for p = 2,

as in the proof of Lemma 2.1, that there exists a onstant C independent of

f; T and n, suh that

E[U

2

n

(f � f

T

) jF

T

℄ � CE[V

2

n

(f � f

T

) jF

T

℄:

>From the inequalities (2.10) and (2.11) we obtain

jU

n

f � U

T^n

f j � U

n

(f � f

T

);

V

n

(f � f

T

) � 2V

n

f

and hene

E[fU

n

f � U

T^n

fg

2

jF

T

℄ � 4CE[V

2

n

f jF

T

℄:

Now, sine (f

j

)

�

T^S

= (f

S

j

)

�

T

and (f

j

)

℄

T^S

= (f

S

j

)

℄

T

, then it follows that

U

T^S

f = U

T

f

S

and V

T^S

f = V

T

f

S

for all stopping times T and S. Therefore

we an apply Theorem 2.1 and to obtain (2.13).
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3 Maximal Operators on Homogeneous Spaes

Lemma 3.1 ([22℄, Lemma 3.21, p. 852) Let b be a positive integer and let

� = 8�

5

. Then for eah integer k, �b � k � b, there exist an enumerable

Borel partition A

b

k

of X and a positive onstant C depending only on X, suh

that:

(i) for all Q 2 A

b

k

;�b � k � b, there exists x

Q

2 Q suh that B(x

Q

; �

k

) �

Q � B(x

Q

; �

k+1

) and �(B(x

Q

; �

k+1

)) � C�(Q);

(ii) if �b � k < b, Q

1

2 A

b

k+1

, Q

2

2 A

b

k

and Q

1

\ Q

2

6= ;, then Q

2

� Q

1

,

and 0 < �(Q

1

) � C�(Q

2

).

For a real-valued loally integrable funtion f on X we de�ne

M

b

d

f(x) = sup

x2Q

Q2A

b

1

�(Q)

Z

Q

jf(y)jd�(y);

M

b;℄

d

f(x) = sup

x2Q

Q2A

b

1

�(Q)

Z

Q

jf(y)� f

Q

jd�(y);

M

b

f(x) = sup

B

1

�(B)

Z

B

jf(y)jd�(y);

and

M

b;℄

f(x) = sup

B

1

�(B)

Z

B

jf(y)� f

B

jd�(y);

where the supremum is taken over all balls B = B(a; r), suh that x 2 B

and �

�b�1

� r < �

b

, and A

b

=

S

�b�k�b

A

b

k

.

Lemma 3.2 Let W 2 A

1

(A

b

). Then there exists a onstant C, depending

only on E, �, X and W , suh that, for all f =

P

j

f

j

e

j

2 L

1

E

,

Z

X

�

0

�

sup

k�1

k

k

X

j=1

M

b

d

f

j

(x)e

j

k

1

A

W (x)d�(x) � C

Z

X

�

�

M

b

d

(kfk)(x)

�

W (x)d�(x):

(3.1)

Proof. Let A

b

b

= fQ

b

i

: i 2 I

b

g, I

b

� IN, and onsider the probability

measure �

b

i

on the Borel subsets of Q

b

i

given by �

b

i

(A) = �(A)=�(Q

b

i

). Given
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f =

P

j

f

j

e

j

2 L

1

E

we have that M

b

d

f

j

(x) =

�

jf

j

j

jQ

b

i

�

�

(x), for x 2 Q

b

i

, and

hene by Lemma 3.1(ii) and Theorem 2.4,

Z

X

�

0

�

sup

k�1

k

k

X

j=1

M

b

d

f

j

(x)e

j

k

1

A

W (x)d�(x)

=

X

i2I

b

�(Q

b

i

)

Z

Q

b

i

�

0

�

sup

k�1

k

k

X

j=1

�

jf

j

j

jQ

b

i

�

�

(x)e

j

k

1

A

W

jQ

b

i

(x)d�

b

i

(x)

� C

Z

X

�

�

M

b

d

(kfk)(x)

�

W (x)d�(x):

Lemma 3.3 Let W 2 A

1

(A

b

). Then there exists a onstant C, depending

only on E, �, X and W , suh that, for all f =

P

j

f

j

e

j

2

S

p>1

L

p

E

,

Z

X

�

0

�

k

1

X

j=1

M

b

d

f

j

(x)e

j

k

1

A

W (x)d�(x)

� C

Z

X

�

0

�

k

1

X

j=1

M

b;℄

d

f

j

(x)e

j

k

1

A

W (x)d�(x): (3.2)

Proof. Let us onsider �

b

i

, i 2 I

b

, as in the proof of Theorem 3.1. Given

f =

P

j

f

j

e

j

2

S

p>1

L

p

E

we have that M

b

d

f

j

(x) =

�

jf

j

j

jQ

b

i

�

�

(x), for x 2 Q

b

i

,

and M

b;℄

d

(jf

j

j)(x) � 2M

b;℄

d

f

j

(x), for x 2 X. Therefore by Lemma 3.1(ii) and

Theorem 2.7,

Z

X

�

0

�

k

1

X

j=1

M

b

d

f

j

(x)e

j

k

1

A

W (x)d�(x)

=

X

i2I

b

�(Q

b

i

)

Z

Q

b

i

�

0

�

k

1

X

j=1

�

jf

j

j

jQ

b

i

�

�

(x)e

j

k

1

A

W

jQ

b

i

(x)d�

b

i

(x)

� C

X

i2I

b

�(Q

b

i

)

Z

Q

b

i

�

0

�

k

1

X

j=1

�

jf

j

j

jQ

b

i

�

℄

(x)e

j

k

1

A

W

jQ

b

i

(x)d�

b

i

(x)

= C

Z

X

�

0

�

k

1

X

j=1

M

b;℄

d

(jf

j

j)(x)e

j

k

1

A

W (x)d�(x)

� C

0

Z

X

�

0

�

k

1

X

j=1

M

b;℄

d

f

j

(x)e

j

k

1

A

W (x)d�(x):
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Lemma 3.4 Let C be the onstant in Lemma 3.1. Then, for all 1 < p � 1,

all real-valued loally integrable funtion f

and x 2 X, we have

A

p

(X) � A

p

(A

b

); (3.3)

M

b

d

f(x) � CM

b

f(x); (3.4)

M

b;℄

d

f(x) � 2CM

b;℄

f(x): (3.5)

Proof. Let 1 < p <1,W 2 A

p

(X), Q 2 A

b

k

, �b � k � b and x 2 Q. By

Lemma 3.1(i) there exist x

Q

2 Q and C > 0 suh that Q � B = B(x

Q

; �

k+1

)

and �(B) � C�(Q). Therefore it follows by (1.2) that

 

1

�(Q)

Z

Q

Wd�

! 

1

�(Q)

Z

Q

W

�1=(p�1)

d�

!

p�1

� C

p

C(p;W ):

Now for a real-valued loally integrable funtion f we have that

1

�(Q)

Z

Q

jf(y)jd�(y) �

C

�(B)

Z

B

jf(y)jd�(y)

and

1

�(Q)

Z

Q

jf(y)� f

Q

jd�(y) �

1

�(Q)

Z

Q

jf(y)� f

B

jd�(y) + jf

B

� f

Q

j

�

2C

�(B)

Z

B

jf(y)� f

B

jd�(y)

� 2CM

℄

f(x):

Thus we obtain (3.3), (3.4) and (3.5).

The following lemma is the analogous of a result by R. Wheeden [26℄

for the frational maximal operator and for X with a group struture.

Lemma 3.5 Let b be a positive integer. Then there exists a onstant C,

depending only on X, suh that, for all real-valued loally integrable funtion

f on X and all x 2 B(11; �

b

), 11 = �(e), we have

M

b

f(x) �

C

jG

b

j

Z

G

b

M

b;g

d

f(x)dg; (3.6)

where

G

b

= fg 2 G : d(g11; 11) < �

b+3

g

and M

b;g

d

f(x) = R

g

�1

M

b

d

R

g

f(x), g 2 G, x 2 X.
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Proof. First we observe that jG

b

j = �(B(11; �

b+3

)) > 0. Let us �x

x 2 B(11; �

b

). From the de�nition of M

b

f(x), there exists a ball B = B(a; r)

suh that x 2 B, �

�b�1

� r < �

b

and

M

b

f(x) �

2

�(B)

Z

B

jf(y)jd�(y): (3.7)

Let �b � k � b suh that �

k�1

� r < �

k

. We denote by 
 the set


 =

n

g 2 G

b

: there exists Q 2 A

b

k+1

suh that B � g

�1

Q

o

:

Given g 2 
, let Q 2 A

b

k+1

suh that B � g

�1

Q. By Lemma 3.1(i) there

exists x

Q

2 Q suh that B(x

Q

; �

k+1

) � Q � B(x

Q

; �

k+2

) and hene g

�1

Q �

B(g

�1

x

Q

; �

k+2

). If s is the integer suh that 2

s�1

< �

3

� 2

s

, then by the

doubling ondition we have �(B(g

�1

x

Q

; �

k+2

)) � A

s

�(B) and thus

1

�(B)

Z

B

jf(y)jd�(y) �

A

s

�(g

�1

Q)

Z

g

�1

Q

jf(y)jd�(y):

Therefore from (3.7) we get

M

b

f(x) � 2A

s

M

b;g

d

f(x); g 2 
:

Now suppose that there exists a positive onstant � suh that j
j � �jG

b

j for

all positive integers b. Then integrating both sides of the above inequality

with respet to the Haar measure dg and on 
, we get (3.6) for C = 2A

s

�

�1

.

We will prove that there exists a positive onstant �, depending only

on X, suh that j
j � �jG

b

j. Given y 2 X we denote by g

y

an element in G

suh that y = g

y

11.

Let z 2 g

x

Q

G

k�3

g

�1

x

. Then zx 2 B(x

Q

; �

k

) and hene for y 2 B,

d(zy; x

Q

) � �(d(zy; zx) + d(zx; x

Q

))

� �[�(d(y; a) + d(a; x)) + �

k

℄

� �

k+1

:

Therefore y 2 z

�1

Q and hene

B � z

�1

Q; z 2 g

x

Q

G

k�3

g

�1

x

: (3.8)

Let us denote by � the set

� =

n

Q 2 A

b

k+1

: Q \B(x; �

b+2

) 6= ;

o

:
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Fix Q 2 � and let u 2 Q \ B(x; �

b+2

), g 2 g

x

Q

G

k�3

. Then g11 2 B(x

Q

; �

k

)

and

d(g11; 11) � �(d(g11; x

Q

) + d(x

Q

; 11))

� �[�

k

+ �(d(x

Q

; u) + d(u; 11))℄

� �f�

k

+ �[�

k+2

+ �(d(u; x) + d(x; 11))℄g

� 4�

3

�

b+2

and hene

d(gg

�1

x

11; 11) � �(d(g

x

g

�1

11; g

x

11) + d(x; 11))

� �(d(g11; 11) + �

b

)

< �

b+3

:

Thus g 2 G

b

g

x

and hene

g

x

Q

G

k�3

g

�1

x

� G

b

; Q 2 �:

Therefore from (3.8)

[

Q2�

g

x

Q

G

k�3

g

�1

x

� 
: (3.9)

If Q;Q

0

2 A

b

k+1

and Q 6= Q

0

then B(x

Q

; �

k

) \ B(x

Q

0

; �

k

) = ; and hene

g

x

Q

G

k�3

g

�1

x

\ g

x

Q

0

G

k�3

g

�1

x

= ;:

Then, sine G is unimodular (see [14, p. 578℄), it follows by (3.9) and by the

doubling ondition that

j
j � j

[

Q2�

g

x

Q

G

k�3

g

�1

x

j

=

X

Q2�

jg

x

Q

G

k�3

j

�

X

Q2�

A

�s

�(B(x

Q

; �

k+2

))

� A

�s

�

0

�

\

Q2�

Q

1

A

� A

�s

�(B(x; �

b+2

))

� A

�2s

jG

b

j:
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Proof of Theorem 1.1: Let us denote by C the greatest onstant among

the onstants C in (3.1), (3.4) and (3.6), and let s be the integer satisfying

2

s�1

< C � 2

s

. Let f =

P

k

j=1

f

j

e

j

2 L

1

E

. Sine W 2 A

1

(X), we an

hoose 1 < p < 1 suh that W 2 A

p

(X). Then, it follows by (1.2) that

R

g

W 2 A

p

(X) and C(p; R

g

W ) = C(p;W ) for all g 2 G. Therefore by (1.1),

(3.1), (3.3), (3.4), (3.6), by Jensen's inequality and Fubini's theorem we have

that,

Z

B(11;�

b

)

�

0

�

k

k

X

j=1

M

b

f

j

(x)e

j

k

1

A

W (x)d�(x)

�

Z

B(11;�

b

)

�

0

�

C

jG

b

j

Z

G

b

k

k

X

j=1

M

b;g

d

f

j

(x)e

j

kdg

1

A

W (x)d�(x)

� sup

g2G

b



s

Z

X

�

0

�

k

k

X

j=1

M

b

d

(R

g

f

j

)(y)e

j

k

1

A

R

g

W (y)d�(y)

� sup

g2G

b



s

C

Z

X

�

�

M

b

d

(kR

g

fk)(y)

�

R

g

W (y)d�(y)

� sup

g2G

b



2s

C

Z

X

�

�

M

b

(kR

g

fk)(gx)

�

W (x)d�(x)

� 

2s

C

Z

X

� (M(kfk)(x))W (x)d�(x);

sine M(kR

g

fk)(gx) = M(kfk)(x). Now, let f =

P

1

j=1

f

j

e

j

and f

k

=

P

k

j=1

f

j

e

j

; k � 1. Sine the above inequality is true for all f

k

; k � 1, it

follows by the Monotone Convergene Theorem that

Z

B(11;�

b

)

�

0

�

sup

k�1

k

k

X

j=1

M

b

f

j

(x)e

j

k

1

A

W (x)d�(x)

� 

2s

C

Z

X

�

�

M

b

(kfk)(x)

�

W (x)d�(x):

Letting b!1 on both sides of the above inequality we obtain (1.3).

Finally, let 1 < p <1; �(t) = t

p

; W 2 A

p

(X) and f =

P

1

j=1

f

j

e

j

2

L

p

E

(W ) \ L

1

E

. By (1.3) and sine the operator M is bounded on L

p

(W ) (see

[5℄),

k

`+m

X

j=`

Mf

j

e

j

k

L

p

E

(W )

� C

1=p

kM(k

`+m

X

j=`

f

j

e

j

k)k

L

p

IR

(W )
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� C

0

k

`+m

X

j=`

f

j

e

j

k

L

p

E

(W )

:

>From the above inequality we an onlude that

P

1

j=1

Mf

j

e

j

onverges in

L

p

E

(W ) to a funtion

f

Mf and

k

f

Mfk

L

p

E

(W )

� C

0

kfk

L

p

E

(W )

:

Now let f =

P

j

f

j

e

j

2 L

p

E

(W ) suh that f

j

� 0, for all j � 1. For eah j,

let (f

k

j

)

k2IN

be a sequene of simple funtions suh that 0 � f

k

j

" f

j

a.e.,

k ! 1. Then Mf

k

j

" Mf

j

and for f

k

=

P

j

f

k

j

e

j

2 L

p

E

(W ) \ L

1

E

we have

f

Mf

k

"

f

Mf a.e. Then

k

f

Mfk

L

p

E

(W )

= lim

k!1

k

f

Mf

k

k

L

p

E

(W )

� lim

k!1

C

0

kf

k

k

L

p

E

(W )

= C

0

kfk

L

p

E

(W )

:

Proof of Theorem 1.2: It follows by Theorem 1.1 that the operator

f

M(

P

j

f

j

e

j

) =

P

j

Mf

j

e

j

is well de�ned and is bounded on L

p

E

. SineM

℄

f

j

�

2Mf

j

, then the operator

f

M

℄

(

P

j

f

j

e

j

) =

P

j

M

℄

f

j

e

j

is also well de�ned and

is bounded on L

p

E

.

Let us denote by C the greatest onstant among the onstants C

in (3.1), (3.5) and (3.6), and let s be the integer satisfying 2

s�1

< C � 2

s

.

Sine W 2 A

1

(X), we an hoose 1 < p <1 suh that W 2 A

p

(X). Then,

it follows by (1.2) that R

g

W 2 A

p

(X) and C(p; R

g

W ) = C(p;W ) for all

g 2 G. Therefore by (1.1), (3.2), (3.3), (3.5), (3.6), by Jensen's inequality

and Fubini's theorem we have that,

Z

B(11;�

b

)

�

0

�

k

1

X

j=1

M

b

f

j

(x)e

j

k

1

A

W (x)d�(x)

�

Z

B(11;�

b

)

�

0

�

C

jG

b

j

Z

G

b

k

1

X

j=1

M

b;g

d

f

j

(x)e

j

kdg

1

A

W (x)d�(x)

� sup

g2G

b



s

Z

X

�

0

�

k

1

X

j=1

M

b

d

(R

g

f

j

)(y)e

j

k

1

A

R

g

W (y)d�(y)

� sup

g2G

b



s

C

Z

X

�

0

�

k

1

X

j=1

M

b;℄

d

(R

g

f

j

)(y)e

j

k

1

A

R

g

W (y)d�(y)
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� sup

g2G

b



2s+1

C

Z

X

�

0

�

k

1

X

j=1

M

b;℄

(R

g

f

j

)(gx)e

j

k

1

A

W (x)d�(x)

� 

2s+1

C

Z

X

�

0

�

k

1

X

j=1

M

℄

f

j

(x)e

j

k

1

A

W (x)d�(x);

sine M

℄

(R

g

f

j

)(gx) =M

℄

f

j

(x). Letting b!1 we obtain (1.4).

4 Singular Integral Operators

In the proof of the following lemma we use the potential-type onstru-

tion by Bourgain [2℄.

Lemma 4.1 Let 1 < p < 1 and W 2 A

p

(X). Then there exist positive

onstants C

p

and r, r > 1, depending only on p, W , X and E, suh that

k

1

X

j=1

M

r

f

j

e

j

k

L

p

E

(W )

� C

p

k

1

X

j=1

f

j

e

j

k

L

p

E

(W )

; (4.1)

for all f =

P

j

f

j

e

j

2 L

p

E

(W ), where M

r

g = (M(jgj

r

))

1=r

.

Proof. Let 1 < p < 1, W 2 A

p

(X), �(t) = t

p

, let C be the onstant in

(1.3) and let g =

P

j

g

j

e

j

2 L

p

E

(W ). For eah j � 1 we de�ne

 

j

=

1

X

i=0

(2C

1=p

)

�i

M

(i)

g

j

;

where M

(i)

g

j

is de�ned indutively by M

(0)

g

j

= jg

j

j, M

(i+1)

g

j

=M(M

(i)

g

j

).

We have that

M 

j

� 2C

1=p

 

j

and hene the weights  

j

; j � 1, are by de�nition, uniformly in the lass

A

1

(X). It follows by the Reverse H�older's Inequality (see Calder�on [5℄) that

there exist positive onstants C

0

and r, r > 1, depending only on p and C,

suh that

 

1

�(B)

Z

B

 

r

j

d�

!

1=r

�

C

0

�(B)

Z

B

 

j

d�
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for all balls B and all j � 1. Therefore

M

r

g

j

(x) �M

r

 

j

(x) � C

0

M 

j

(x) � 2C

1=p

C

0

 

j

(x):

But by Theorem 1.1,

k

1

X

j=1

 

j

e

j

k

L

p

E

(W )

�

1

X

i=0

(2C

1=p

)

�i

k

1

X

j=1

M

(i)

g

j

e

j

k

L

p

E

(W )

� 2kgk

L

p

E

(W )

and hene

k

1

X

j=1

M

r

g

j

e

j

k

L

p

E

(W )

� 2C

1=p

C

0

k

1

X

j=1

 

j

e

j

k

L

p

E

(W )

� 4C

1=p

C

0

kgk

L

p

E

(W )

:

Lemma 4.2 Let T be a singular integral operator bounded on L

r

(X) for

some r, 1 < r < 1. Assume that the kernel K of T satis�es (H

0

1

) and

K(gx; gy) = K(x; y) for all x; y 2 X and g 2 G. Then there exists a

onstant C

r

suh that

M

℄

(Tf)(x) � C

r

M

r

f(x); f 2 L

1



(X):

Proof. Let us �x x

0

2 X, ` > 0 and let B = B(x

0

; `), B

2

= B(x

0

; 2`). For

f 2 L

1



(X) we set g = f�

B

2

; h = f � g. Sine T is bounded on L

r

(X), then

for all z 2 B,

1

�(B)

Z

B

jTg(x)� (Tg)

B

jd�(x) �

2

�(B)

Z

B

jTg(x)jd�(x)

� C

r

 

1

�(B)

Z

B

2

jg(x)j

r

d�(x)

!

1=r

� C

r

A

1=r

M

r

g(z):

Now let x 2 B, g 2 G suh that gx

0

= 11, �x = gx and

S

j

(�x) =

n

t : 2

j

d(�x; 11) < d(t; 11) � 2

j+1

d(�x; 11)

o

:
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Then by the (H

0

1

) ondition, for all z 2 B,

jTh(x)� Th(x

0

)j

�

Z

XnB

2

jK(x; y)�K(x

0

; y)j jh(y)jd�(y)

�

Z

d(t;11)>2d(�x;11)

jK

0

(t; �x)�K

0

(t; 11)j jR

g

h(t)jd�(t)

� C

1

X

j=1

Z

S

j

(�x)

d(�x; 11)

d(t; 11)�(B(11; d(t; 11)))

jR

g

h(t)jd�(t)

� AC

1

X

j=1

2

�j

�(B(x

0

; 2

j+1

d(x; x

0

)))

Z

gB(x

0

;2

j+1

d(x;x

0

))

jR

g

h(t)jd�(t)

= AC

1

X

1�j<1

2

j

d(x;x

0

)>`

2

�j

�(B(x

0

; 2

j+1

d(x; x

0

)))

Z

B(x

0

;2

j+1

d(x;x

0

))

jh(y)jd�(y)

� ACM

r

h(z)

and hene

1

�(B)

Z

B

jTh(x)� (Th)

B

jd�(x) �

2

�(B)

Z

B

jTh(x)� Th(x

0

)jd�(x)

� 2ACM

r

h(z):

Thus for all z 2 X

M

℄

(Tf)(z)

� sup

B3z

1

�(B)

Z

B

jTg(x)� (Tg)

B

jd�(x) + sup

B3z

1

�(B)

Z

B

jTh(x)� (Th)

B

jd�(x)

� C

0

r

M

r

f(z):

Proof of Theorem 1.3: Let us �x 1 < p < 1, W 2 A

p

(X) and let r

and C

p

be the onstants in Lemma 4.1. Then it follows by (1.4) for �(t) = t

p

,

by (1.5) and (4.1) that, for all f =

P

j

f

j

e

j

, f

j

2 L

1



(X) for j � 1, and all

positive integers ` and m,

k

`+m

X

j=`

T

j

f

j

e

j

k

L

p

E

(W )

� k

`+m

X

j=`

M(T

j

f

j

)e

j

k

L

p

E

(W )

� C

1=p

k

`+m

X

j=`

M

℄

(T

j

f

j

)e

j

k

L

p

E

(W )
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� C

1=p

C

r

k

`+m

X

j=`

M

r

f

j

e

j

k

L

p

E

(W )

� C

1=p

C

r

C

p

k

`+m

X

j=`

f

j

e

j

k

L

p

E

(W )

:

The above inequality implies that the sequene of partial sums of the series

P

j

T

j

f

j

e

j

is a Cauhy sequene in L

p

E

(W ) and hene it onverges in L

p

E

(W ).

Putting ` = 1 and letting m!1 on both sides of this inequality we obtain

(1.6).

Proof of Corollary 1.1: For all 0 � r � 1 and all x; y 2 S

n

,

jy � (y � x)xj � 2jy � xj; (4.2)

jy � 11� [(y � 11) � x℄xj � 2jy � 11j; (4.3)

j(x � 11)11� (x � y)yj � 2jy � 11j; (4.4)

jy � xj � 2jy � rxj (4.5)

and for all 0 � r � 1 and all x; y 2 S

n

suh that jx� 11j > 2jy � 11j,

1

2

j11� rxj < jy � rxj < 2j11� rxj; (4.6)

1

2

jx� r11j < jx� ryj < 2jx� r11j: (4.7)

Now �x 0 � r � 1 and x; y 2 S

n

suh that jx� 11j > 2jy� 11j. Then by (4.6)

j j11� rxj

n+1

� jy � rxj

n+1

j

� (j11� rxj

n

+ j11� rxj

n�1

jy � rxj+ � � �+ jy � rxj

n

)

� Cjy � 11j j11� rxj

n

and hene by (4.2), (4.3), (4.5) and (4.6) we obtain

js

r

(x; y)� s

r

(x; 11)j �

2

!

n

jy � (y � x)xj

j j11� rxj

n+1

� jy � rxj

n+1

j

jy � rxj

n+1

j11� rxj

n+1

+

2

!

n

jy � 11� [(y � 11) � x℄xj

j11� rxj

n+1

� C

1

jy � 11j

jx� 11j

n+1

;
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jt

r

(x; y)� t

r

(x; 11)j �

n� 2

2r

Z

r

0

js

%

(x; y)� s

%

(x; 11)jd%

=

(n� 2)C

1

2

jy � 11j

jx� 11j

n+1

;

jK

r

i;j

(x; y)�K

r

i;j

(x; 11)j � jx

i

y

j

� x

j

y

i

j

j j11� rxj

n+1

� jy � rxj

n+1

j

jy � rxj

n+1

j11� rxj

n+1

+ jx

i

(y

j

� 11

j

)� x

j

(y

i

� 11

i

)j

1

j11� rxj

n+1

� C

2

jy � 11j

jx� 11j

n+1

:

Sine j11� rxj � 1� r,

jP

r

(x; y)� P

r

(x; 11)j �

1� r

2

!

n

j j11� rxj

n+1

� jy � rxj

n+1

j

jy � rxj

n+1

j11� rxj

n+1

� C

3

jy � 11j

jx� 11j

n+1

and hene

jK(x; y)�K(x; 11)j � C

3

jy � 11j

jx� 11j

n+1

:

Therefore the kernels s

r

, t

r

, K

r

i;j

and K satisfy the ondition (H

1

) uniformly

for all 0 � r � 1; i; j 2 f1; 2; :::; n+ 1g . By the same way we an use (4.2),

(4.4), (4.5) and (4.7) to show that s

r

, t

r

, K

r

i;j

and K satisfy (H

0

1

) uniformly

for all r; i; j. The onlusion of this orollary follows from the remark given

above of the statement of Corollary 1.1 and from Theorem 1.4.
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