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Abstra
t

Let X be an homogeneous spa
e and let E be an UMD Bana
h

spa
e with a normalized un
onditional basis (e

j

)

j�1

. Given an opera-

tor T from L

1




(X) in L

1

(X), we 
onsider the ve
tor-valued extension

e

T of T given by

e

T (

P

j

f

j

e

j

) =

P

j

T (f

j

)e

j

. We prove a weighted inte-

gral inequality for the ve
tor-valued extension of the Hardy-Littlewood

maximal operator and a weighted Fe�erman-Stein inequality between

the ve
tor-valued extensions of the Hardy-Littlewood and the sharp

maximal operators, in the 
ontext of Orli
z spa
es. We give suÆ-


ient 
onditions on the kernel of a singular integral operator to have

the boundedness of the ve
tor-valued extension of this operator on

L

p

(X;Wd�;E) for 1 < p < 1 and for a weight W in the Mu
ken-

houpt's 
lass A

p

(X). Appli
ations to singular integral operators on

the unit sphere S

n

and on a �nite produ
t of lo
al �elds IK

n

are given.

The versions of all these results for ve
tor-valued extensions of oper-

ators of fun
tions de�ned in a homogeneous spa
e X and with values

in an UMD Bana
h latti
e are also given.

1 Introdu
tion

The UMD property for Bana
h spa
es plays a 
entral role in the develop-

ment of Ve
tor-Valued Fourier Analysis. In spite of having been extensively

studied (see e.g. [4, 2, 3, 19, 18, 10℄), we point out that all the maximal
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operators and singular integral operators 
onsidered in these studies, are for

fun
tions de�ned in the eu
lidian spa
e IR

n

or in the torus T

n

.

J. Bourgain extended in [2℄ a result of ve
tor-valued singular

integral operators due to Benedek, Caldern and Panzone, to the 
ontext

of UMD Bana
h spa
es. The main goal of this paper is to prove a weighted

extension of the result of Bourgain for ve
tor-valued singular integral opera-

tors of fun
tions de�ned in a homogeneous spa
e X (Theorem 1.4).

In Se
tion 2 we study weighted integral estimates for ve
tor-valued

extensions of maximal operators from Martingale Theory in the 
ontext of

Orli
z spa
es, whi
h we apply in the proofs of Theorems 1.1 and 1.2 given in

Se
tion 3.

C. Fe�erman and E. M. Stein introdu
ed in [7℄ a te
hnique to study

the Hardy-Littlewood maximal operator. The dyadi
 de
omposition of IR

n

is used as a fundamental tool in this te
hnique. The idea is to obtain an

integral estimate for the dyadi
 maximal operator and then, by a transferen
e

method, to obtain an integral estimate for the Hardy-Littlewood maximal

operator. This te
hnique was applied to study integral estimates for ve
tor-

valued extensions of this operator (see e.g. [7, 2, 25℄) and to study weighted

integral estimates for others maximal operators (see e.g. [21, 22, 26℄).

In Se
tion 3 we apply the te
hnique by Fe�erman and Stein for

homogeneous spa
es and we prove a weighted integral inequality for a ve
tor-

valued extension of the Hardy-Littlewood maximal operator (Theorem 1.1)

and a weighted Fe�erman-Stein inequality between ve
tor-valued extensions

of the Hardy-Littlewood and the sharp maximal operators (Theorem 1.2), in

the 
ontext of Orli
z spa
es.

In Se
tion 4 we study singular integral operators. The proofs of

Theorems 1.3, Theorem 1.4 and Corollary 1.1 are in Se
tion 4.

In this se
tion we give the statements of the main results of this

paper.

Corollaries 1.1 and 1.2 are appli
ations to ve
tor-valued singular

integral operators of fun
tions de�ned in the unit sphere S

n

and in a �nite

produ
t of lo
al �elds IK

n

, respe
tively.

In Theorems 1.5, 1.6 and 1.7 we 
onsider ve
tor-valued extensions

of operators for fun
tions de�ned in a homogeneous spa
e X and with values

in a UMD Bana
h latti
e.

Let G be a lo
ally 
ompa
t Hausdor� topologi
al group with unit

element e, H a 
ompa
t subgroup of G and � : G! G=H the 
anoni
al map.

Let dg denote a left Haar measure on G, whi
h we assume to be normalized

2



in the 
ase of G to be 
ompa
t. If A is a Borel subset of G, we will denote

by jAj the Haar measure of A. The homogeneous spa
e X = G=H is the

set of all left 
osets �(g) = gH; g 2 G, provided with the quotient topology.

The Haar measure dg indu
es a measure � on the Borel �-�eld on X. For

f 2 L

1

(X),

Z

X

f(x)d�(x) =

Z

G

f Æ �(g)dg:

The measure � on X is invariable on the a
tion of G, that is, if f 2 L

1

(X),

g 2 G and R

g

f(x) = f(g

�1

x), then

Z

X

f(x)d�(x) =

Z

X

R

g

f(x)d�(x):

A quasi-distan
e on X is a map d : X �X ! [0;1) satisfying:

(i) d(x; y) = 0 if and only if x = y;

(ii) d(x; y) = d(y; x) for all x; y 2 X;

(iii) d(gx; gy) = d(x; y) for all g 2 G; x; y 2 X;

(iv) there exists a 
onstant � � 1 su
h that, for all x; y; z 2 X,

d(x; y) � �[d(x; z) + d(z; y)℄;

(v) the balls B(x; `) = fy 2 X : d(x; y) < `g; x 2 X; ` > 0, are relatively


ompa
t and measurable, and the balls B(11; `); ` > 0, form a basis of

neighborhoods of 11 = �(e);

(vi) (doubling 
ondition) there exists a 
onstant A � 1 su
h that, for all

` > 0 and x 2 X,

�(B(x; 2`)) � A�(B(x; `)):

Given a quasi-distan
e d on X, there exists a distan
e � on X and

a positive real number 
 su
h that d is equivalent to �




(see [16℄). Therefore

the family of d-balls is equivalent to the family of �




-balls and �




-balls are

open sets. We 
an show that �(B(x; `)) > 0 for x 2 X, ` > 0, and that X is

separable.

In this paper X will denote a homogeneous spa
e provided with a

quasi-distan
e d.
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Given a Bana
h spa
e E with norm k � k and a positive lo
ally inte-

grable fun
tionW onX, we denote by L

p

(X;Wd�;E) or L

p

E

(W ); 1 � p <1,

the Bo
hner-Lebesgue spa
e 
onsisting of all E-valued (strongly) measurable

fun
tions f de�ned in X su
h that

kfk

L

p

E

(W )

=

�

Z

X

kf(x)k

p

W (x)d�(x)

�

1=p

<1:

We write L

p

E

(W ) = L

p

(W ) when E = IR and L

p

E

(W ) = L

p

E

(X) = L

p

E

when

W = 1.

Throughout this paper (ex
ept in Theorems 1.5, 1.6 and 1.7) E will

denote a Bana
h spa
e with the UMD property (for the de�nition see e.g.

[4, 2, 3, 19℄) and with a normalized un
onditional basis (e

j

)

j�1

, and � will

denote a non-de
reasing 
ontinuous fun
tion on [0;1) with �(0) = 0 and

satisfying the 4

2

-
ondition, that is, there exists a 
onstant 
 > 0 su
h that

�(2�) � 
�(�); � > 0: (1.1)

We put �(1) = lim

�!1

�(�).

Let W be a positive lo
ally integrable fun
tion on X and let 1 <

p <1. If there exists a 
onstant C su
h that

 

1

�(B)

Z

B

Wd�

! 

1

�(B)

Z

B

W

�1=(p�1)

d�

!

(p�1)

� C; (1.2)

for all ball B = B(x; `), ` > 0, x 2 X, we say that W is a weight in the

Mu
kenhoupt's 
lass A

p

(X). If W 2 A

p

(X), we denote by C(p;W ) the

smallest 
onstant C that satis�es (1.2). The 
lass A

1

(X) is de�ned as the

union of the 
lasses A

p

(X), for 1 < p <1.

Let f be a real-valued lo
ally integrable fun
tion on X. The Hardy-

Littlewood maximal operator M and the sharp maximal operator M

℄

are

de�ned at f respe
tively by

Mf(x) = sup

B

1

�(B)

Z

B

jf(y)jd�(y)

and

M

℄

f(x) = sup

B

1

�(B)

Z

B

jf(y)� f

B

jd�(y);

where

f

B

=

1

�(B)

Z

B

f(y)d�;
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and where the supremum is taken over all balls B, su
h that x 2 B.

The following theorem extends results for the Hardy-Littlewoodmax-

imal operator given in [2, 25℄.

Theorem 1.1 Let W 2 A

1

(X) and suppose that � is a 
onvex fun
tion.

Then there exists a 
onstant C, depending only on E, �, X and W su
h

that,

Z

X

�

0

�

sup

k�1

k

k

X

j=1

Mf

j

(x)e

j

k

1

A

W (x)d�(x) � C

Z

X

� (M(kfk)(x))W (x)d�(x);

(1.3)

for all f =

P

j

f

j

e

j

2 L

1

E

. Moreover, if 1 < p < 1; W 2 A

p

(X) and

f 2 L

p

E

(W ), then

P

j

Mf

j

e

j


onverges in L

p

E

(W ) to a fun
tion

f

Mf and the

operator

f

M is bounded on L

p

E

(W ).

There is an intimate relation between the Hardy-Littlewood maxi-

mal operator and the sharp maximal operator. This relation is 
ontained in

the inequality kMfk

p

� CkM

℄

fk

p

, f 2 L

p

0

(IR

n

), 0 < p

0

� p < 1. This

inequality is known as the Fe�erman-Stein inequality and it was proved in

[8℄. A weighted extension of this inequality and an unweighted extension

for fun
tions de�ned in a spa
e of homogeneous type (in parti
ular in a ho-

mogeneous spa
e) are well known. The following theorem gives a weighted

ve
tor-valued extension of the Fe�erman-Stein inequality for fun
tions de-

�ned in a homogeneous spa
e X.

Theorem 1.2 Let W 2 A

1

(X) and suppose that � is a 
onvex fun
tion.

Then there exists a 
onstant C, depending only on E, �, X and

W su
h that, for all f =

P

j

f

j

e

j

2 [

p>1

L

p

E

,

Z

X

�

0

�

k

1

X

j=1

Mf

j

(x)e

j

k

1

A

W (x)d�(x) � C

Z

X

�

0

�

k

1

X

j=1

M

℄

f

j

(x)e

j

k

1

A

W (x)d�(x):

(1.4)

We say that a linear operator T de�ned in L

1




(X) and with values

in the spa
e of all measurable fun
tions, is a singular integral operator if the

following 
onditions hold:
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(i) T has a bounded extension on L

r

(X) for some r; 1 < r � 1;

(ii) there exists a kernel K 2 L

1

lo


(X �X n4), 4 = f(x; x) : x 2 Xg, su
h

that

Tf(x) =

Z

X

K(x; y)f(y)d�(y);

for all f 2 L

1




(X) and almost all x 62 supp f .

Let T be a singular integral operator with a kernel K. We say that

K satis�es the 
ondition (H

1

) if

jK(x; y)�K(x; 11)j � C

d(y; 11)

d(x; 11)�(B(11; d(x; 11))

whenever d(x; 11) > 2d(y; 11), 11 = �(e). If K

0

(x; y) = K(y; x) satis�es (H

1

)

we say that K satis�es (H

0

1

).

The following theorem is proved in Se
tion 4.

Theorem 1.3 Let 1 < p < 1, W 2 A

p

(X) and let (T

j

)

j�1

be a sequen
e

of operators from L

p

(W ) in L

p

(W ) su
h that, for every r > 1, there exists a


onstant C

r

su
h that

M

℄

(T

j

f)(x) � C

r

M

r

f(x); f 2 L

1




(X); j � 1: (1.5)

Then for all f =

P

j

f

j

e

j

2 L

p

E

(W ) we have that

P

j

T

j

f

j

e

j


onverges in

L

p

E

(W ) and there exists a positive 
onstant C

p

su
h that

k

1

X

j=1

T

j

f

j

e

j

k

L

p

E

(W )

� C

p

k

1

X

j=1

f

j

e

j

k

L

p

E

(W )

: (1.6)

It is easy to see that the 
ondition (H

1

) for the kernelK of a singular

integral operator implies the Hrmander's 
ondition (H

1

):

Z

d(x;11)>2d(y;11)

jK(x; y)�K(x; 11)jd�(x) � C <1:

The Hormander's 
ondition was studied by R. R. Coifman and G. Weiss [6℄,

by A. Kor�anyi and S. V�agi [14℄ and by B. Bordin and D. L. Fernandez [1℄.

It was proved that, if the kernel K satis�es (H

1

) and (H

0

1

) then the singular

integral operator is bounded on L

p

(X) for 1 < p < 1. The next result

follows immediately from Lemma 4.2 in Se
tion 4 and Theorem 1.3.
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Theorem 1.4 Let 1 < p < 1, W 2 A

p

(X) and let T be a singular in-

tegral operator. Assume that the kernel K of T satis�es (H

1

), (H

0

1

) and

K(gx; gy) = K(x; y) for all x; y 2 X, g 2 G. Then for all f =

P

j

f

j

e

j

2

L

p

E

(W ) we have that

P

j

Tf

j

e

j


onverges in L

p

E

(W ) and there exists a positive


onstant C

p

su
h that

k

1

X

j=1

Tf

j

e

j

k

L

p

E

(W )

� C

p

k

1

X

j=1

f

j

e

j

k

L

p

E

(W )

: (1.7)

The Theorem 1.4 for the eu
lidian spa
e IR

n

and W = 1 was proved

by Bourgain [2℄ and it was also studied in [19℄. For W = 1 and E = l

q

,

1 < q < 1 but for more general spa
es X (spa
es of homogeneous type) it

was proved in [1, 20℄. The Theorem 1.3 for X = IR

n

and W = 1 was proved

in [19℄.

Let us 
onsider the unit sphere S

n

= fx 2 IR

n+1

: jxj = 1g provided

with the Lebesgue measure d� and with the eu
lidian distan
e d(x; y) =

jx � yj and let 11 = (1; 0; : : : ; 0). A kernel K 2 L

1

lo


(S

n

� S

n

n 4) satis�es

the 
ondition (H

1

) if there exists a 
onstant C su
h that for x; y 2 S

n

with

jx� 11j > 2jy � 11j we have

jK(x; y)�K(x; 11)j � C

jy � 11j

jx� 11j

n+1

:

For 0 � r � 1, i; j 2 f1; 2; :::; n + 1g and x; y 2 S

n

(x 6= y for r = 1), we

de�ne the kernels s

r

, t

r

, K

r

i;j

and K by

s

r

(x; y) =

2

!

n

y � (y � x)x

jy � rxj

n+1

;

t

r

(x; y) =

n� 2

2r

Z

r

0

s

%

(x; y)d%;

K

r

i;j

(x; y) =

x

i

y

j

� x

j

y

i

jy � rxj

n+1

and

K(x; y) = �

Z

1

0

P

r

(x; y)dr;

where P

r

(x; y) denote the Poisson kernel

P

r

(x; y) =

1

!

n

1� r

2

jy � rxj

n+1

:
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Let q

r

= s

r

+ t

r

; 0 � r � 1. For f 2 L

1

(S

n

) we de�ne the operators R

r

, R

r

i;j

and �, 0 � r � 1 and i; j 2 f1; 2; :::; n+ 1g, by

R

r

f(x) =

Z

S

n

q

r

(x; y)f(y)d�(y);

R

r

i;j

f(x) =

Z

S

n

K

r

i;j

(x; y)f(y)d�(y);

�f(x) =

Z

S

n

K(x; y)f(y)d�(y);

with x 2 S

n

if 0 � r < 1 and x 62 supp f if r = 1.

The operator R = R

1

is 
alled the Riesz transform on S

n

and it

was proved in Kor�anyi-V�agi [14, p. 636℄ that: lim

r!1

R

r

f = Rf there exists

a.e. and in L

p

(S

n

), 1 < p < 1; the operators R

r

are uniformly bounded

on L

p

(S

n

), and q

r

(gx; gy) = q

r

(x; y) for all x; y 2 S

n

, g 2 SO(n + 1).

The operators R

r

i;j

were 
onsidered in Coifman-Weiss [6, p. 76℄. They are

uniformly bounded on L

2

(S

n

) and K

r

i;j

(gx; gy) = K

r

i;j

(x; y) for all x; y 2 S

n

,

g 2 SO(n + 1). The operator � was studied in Levine [15, p. 508℄ where it

was proved that: it is bounded on L

p

(S

n

) for 1 � p � 1; if Y

k

is a spheri
al

harmoni
 of degree k then �Y

k

= �Y

k

=(k + 1), and K(gx; gy) = K(x; y) for

all x; y 2 S

n

, g 2 SO(n+ 1).

In Se
tion 4 we prove the following result.

Corollary 1.1 Let 1 < p <1, W 2 A

p

(S

n

) and T 2 fR

r

; R

r

i;j

;� : 0 � r �

1; 1 � i; j � n+ 1g. Then there exists a 
onstant C

p

su
h that,

k

1

X

j=1

Tf

j

e

j

k

L

p

E

(W )

� C

p

k

1

X

j=1

f

j

e

j

k

L

p

E

(W )

; (1.8)

for all f =

P

j

f

j

e

j

2 L

p

(S

n

;Wd�;E).

A lo
al �eld is any lo
ally 
ompa
t, non-dis
rete and totally dis
on-

ne
ted �eld. Let IK be a �xed lo
al �eld and dx be a Haar measure of the

additive group IK

+

of IK. The measure of a measurable set A of IK with

respe
t to dx we denote by jAj. Let m be the modular fun
tion for IK

+

,

that is, m(�)jAj = j�Aj for � 2 IK and A � IK measurable. We also denote

jxj = m(x). The sets

ID = fx 2 IK : jxj � 1g and IB = fx 2 IK : jxj < 1g
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are the ring of integers of IK and the unique maximal ideal of ID, respe
tively.

Let q = p




(p prime) be the order of the �nite �eld ID=IB and let � be a �xed

element of maximum absolute value of IB. The Haar measure dx is normalized

su
h that jIDj = 1 and thus j�j = jIBj = q

�1

.

A lo
al �eld IK has a natural sequen
e of partitions by balls satisfying

the 
onditions (i) and (ii) of Lemma 3.1 in Se
tion 3, when we 
onsider the

distan
e d(x; y) = jx � yj. It follows from this remark that the Theorems

1.1 and 1.2 hold without the hypothesis of � being a 
onvex fun
tion. The

extension of these results for a �nite produ
t of lo
al �elds is an immediate


onsequen
e of a M. H. Taibleson's theorem (see [23, p. 548-549℄).

A kernel K 2 L

1

lo


(IK

n

� IK

n

n 4) satis�es the 
ondition (H

1

) if for

x; y 2 IK

n

with jxj > jyj we have

jK(x; y)�K(x; 0)j � C

jyj

jxj

n+1

:

Let !(x) be a fun
tion de�ned on IK

n

and satisfying:

!(x) = !(�

j

x); j integer; x 2 IK

n

;

Z

jxj=1

!(x)dx = 0;

j!(x� �

j

y)� !(x)j � Cq

�j

; j � 1; jxj = jyj = 1:

Then the kernel 	(x; y) = 	(x� y) where

	(x) =

!(x)

jxj

n

; x 2 IK

n

n f0g;

satis�es (H

1

) and (H

0

1

). For f 2 L

1

(IK

n

) and x 2 IK

n

; x 62 supp f we

de�ne

Uf(x) =

Z

IK

n

	(x� y)f(y)dy:

The operator U was studied in Phillips-Taibleson [17℄ and it was proved that

U is bounded on L

p

(IK

n

) for 1 < p <1. Therefore the next 
orollary follows

from Theorem 1.4.

Corollary 1.2 Let 1 < p <1, W 2 A

p

(IK

n

). Then there exists a 
onstant

C

p

su
h that,

k

1

X

j=1

Uf

j

e

j

k

L

p

E

(W )

� C

p

k

1

X

j=1

f

j

e

j

k

L

p

E

(W )

; (1.9)

for all f =

P

j

f

j

e

j

2 L

p

(IK

n

;Wdy;E).
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Now let E be an UMD Bana
h latti
e of real-valued measurable

fun
tions on a �-�nite measure spa
e (Y;B; �). The absolute value of h 2 E

is given by jhj(y) = jh(y)j, y 2 Y . We identify a fun
tion f 2 L

p

E

(W )

with a fun
tion de�ned in the produ
t X � Y setting f(x)(y) = f(x; y). We

denote by L

p

(W ) 
 E the set of all ve
tor-valued fun
tions f of the type

f =

P

k

j=1

a

j

f

j

, for a

j

2 E, f

j

2 L

p

(W ) and for a integer k, k � 1. This set

is a dense subspa
e of L

p

E

(W ) for 1 � p < 1 and any weight W . Given an

operator T in L

p

(W ), we de�ne its extension T in L

p

(W )
E (see Rubio de

Fran
ia [18℄) in the following form:

Tf(x; y) = T (f(�; y))(x); (x; y) 2 X � Y:

A 
hara
terization of UMD Bana
h latti
e in terms of the extensionM of the

Hardy-Littlewood maximal operator, when X = IR

n

, was given by Bourgain

[2℄ (see also [18℄). The Bourgain's 
hara
terization says that E has the UMD

property, if and only if, M is bounded on L

p

E

(IR

n

) and on L

p

0

E

0

(IR

n

) for some

p, 1 < p < 1, where p

0

is the 
onjugate exponent of p and X

0

is the dual

spa
e of E. The maximal operator M and others maximal operators of the

same type were studied in [10, 12, 11℄, for X = IR

n

. In [10℄ are given new


hara
terizations of UMD Bana
h latti
e in terms of maximal operators.

In Se
tion 2 we 
onsider the maximal operators Nf = f

�

and

N

℄

f = f

℄

frommartingale theory and their ve
torial extensions

f

N(

P

j

f

j

e

j

) =

P

j

f

�

j

e

j

,

f

N

℄

(

P

j

f

j

e

j

) =

P

j

f

℄

j

e

j

. The analogous of Theorem 2.4 in Se
tion

2 for the operator N was proved in [25℄. By the same way we 
an prove

the analogous of Theorem 2.7 for the operators N and N

℄

. Pro
eeding as in

Se
tion 3, we 
an apply the inequalities obtained for N and N

℄

and prove

the following theorems.

Theorem 1.5 Let W 2 A

1

(X) and suppose that � is a 
onvex fun
tion.

Then there exists a 
onstant C, depending only on E, �, X and W su
h

that, for all f 2 L

1

(W )
 E,

Z

X

�

�

kMf(x)k

�

W (x)d�(x) � C

Z

X

� (M(kfk)(x))W (x)d�(x): (1.10)

Theorem 1.6 Let W 2 A

1

(X) and suppose that � is a 
onvex fun
tion.

Then there exists a 
onstant C, depending only on E, �, X and

W su
h that, for all f 2 L

1

(W )
 E,

Z

X

�

�

kMf(x)k

�

W (x)d�(x) � C

Z

X

�

�

kM

℄

f(x)k

�

W (x)d�(x): (1.11)

10



If �(t) = t

p

, 1 < p < 1, then we 
an extend the operators M and

M

℄

by a limit pro
ess to all L

p

E

(W ) and the above theorems will hold for

these extensions. Pro
eeding as in Se
tion 4 we 
an apply Theorems 1.5 and

1.6 and prove the following analogous of the Theorem 1.4 for Bana
h latti
e.

Theorem 1.7 Let 1 < p < 1, W 2 A

p

(X) and let T be a singular in-

tegral operator. Assume that the kernel K of T satis�es (H

1

), (H

0

1

) and

K(gx; gy) = K(x; y) for all x; y 2 X, g 2 G. Then there exists a positive


onstant C

p

su
h that, for all f 2 L

p

(W )
 E we have that

kTfk

L

p

E

(W )

� C

p

kfk

L

p

E

(W )

: (1.12)

Moreover, the operator T 
an be 
ontinuously extended to all L

p

E

(W ) and the

above inequality holds for its extension and for all f 2 L

p

E

(W ).

Applying Theorem 1.7 we obtain the analogous of Corollaries 1.1

and 1.2 for the 
ase of UMD Bana
h latti
e.

2 Maximal Operators in Martingale Theory

Let (
;F ; IP ) be a probability spa
e and for ea
h k = 0; 1; 2; ::: let A

k

be a partition of 
 by elements of F satisfying: IP (Q) > 0 for all Q 2 A

k

;

the �-�eld F is generated by the union A = [

1

k=0

A

k

; the partition A

k+1

is

a re�nement of A

k

, that is, for ea
h Q 2 A

k

, there exists an integer n

Q

� 1

and Q

1

; :::; Q

n

Q

2 A

k+1

su
h that Q = Q

1

[ ::: [ Q

n

Q

. We will denote by

F

k

the �-�eld generated by A

k

and we will always assume that the sequen
e

(A

k

)

k�0

is regular with respe
t to IP , that is, there exists an absolute 
onstant

� � 1 su
h that

IP (Q

1

) � �IP (Q

2

); (2.1)

for all Q

1

2 A

k

and Q

2

2 A

k+1

with Q

2

� Q

1

; k � 0.

Given a E-valued integrable fun
tion f : 
 7! E we will also de-

note by f the martingale (f

k

)

k�0

where f

k

= E[f jF

k

℄ is the 
onditional

expe
tation of the fun
tion f with respe
t to the �-�eld F

k

. A stopping

time is a fun
tion T : 
 ! f0; 1; :::;1g su
h that fT � kg 2 F

k

for all

k � 0. For a stopping time T we denote by F

T

the �-�eld of all sets A 2 F

su
h that A \ fT � kg 2 F

k

, for all k � 0. The martingale transform \f

11



stopped at T" is de�ned by f

T

= (f

T

k

)

k�0

; f

T

k

(!) = f

T (!)^k

(!) and we write

f

T

(!) = f

T (!)

(!). We 
an show that

E[I(A)ff � f

T

g jF

k

℄ = I(A)(f

k

� f

T

k

) (2.2)

for all integrable fun
tions f : 
 ! E, all stopping times T , all k � 0 and

all A 2 F

T

, where I(A) is the indi
ator fun
tion of the set A.

For a real-valued integrable fun
tion f we de�ne the maximal fun
-

tions

f

�

(x) = sup

k�0

jf

k

(x)j = sup

x2Q

Q2A

1

IP (Q)

�

�

�

�

Z

Q

fdIP

�

�

�

�

;

f

℄

(x) = sup

k�0

E[jf � f

k

j jF

k

℄(x) = sup

x2Q

Q2A

1

IP (Q)

Z

Q

jf � f

Q

jdIP

where

f

Q

=

1

IP (Q)

Z

Q

fdIP:

For an integer n � 0 we de�ne f

�

n

= (f

n

)

�

; f

℄

n

= (f

n

)

℄

.

It is well known (see [9℄) that

kf

�

k

p

� C

p

kf

℄

k

p

; 1 < p <1; f 2 L

p

(
;F ; IP ): (2.3)

We 
an prove (2.3) using the method known as the Calder�on-Zygmund de-


omposition (see [8, Theorem 5, p. 153℄), repla
ing the dyadi
 
ubes of IR

n

by the elements of A.

Given a positive integrable fun
tion W on 
, we denote by L

p

E

(W )

or L

p

(
;F ;WdIP ;E), 1 � p <1, the Bo
hner-Lebesgue spa
e 
onsisting of

all E-valued (strongly) measurable fun
tions f de�ned in 
 su
h that

kfk

L

p

E

(W )

=

�

Z




kf(!)k

p

W (!)dIP (!)

�

1=p

<1:

We write L

p

E

(W ) = L

p

(W ) when E = IR and L

p

E

(W ) = L

p

E

(
) = L

p

E

when

W = 1.

Let W be a positive integrable fun
tion on 
 and let 1 < p <1. If

there exists a 
onstant C su
h that

 

1

IP (Q)

Z

Q

WdIP

! 

1

IP (Q)

Z

Q

W

�1=(p�1)

dIP

!

(p�1)

� C; (2.4)
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for all Q 2 A, we say that W is a weight in the 
lass A

p

(A). The 
lass

A

1

(A) is de�ned as the union of the 
lasses A

p

(A) for 1 < p <1.

Let U be an operator on L

1

E

su
h that, for ea
h f 2 L

1

E

it asso
iates

a nonnegative pro
ess (U

k

f)

k�0

with U

0

f = 0 and U

k

f F

k

-measurable, k � 0.

For a stopping time T we denote by U

�

T

the maximal operator de�ned by

U

�

T

f(!) = sup

k�T (!)

U

k

f(!):

We write U

�

f = U

�

1

f .

Theorem 2.1 ([24℄) Let W 2 A

1

(A) and let U and V be two operators on

L

1

E

as above. Suppose that

U

�

T^S

f = U

�

T

f

S

; V

�

T^S

f = V

�

T

f

S

for all stopping times T and S and all f 2 L

1

E

. If there exists a 
onstant C

su
h that

E[fU

�

k

f � U

�

T^k

fg

2

jF

T

℄ � CE[fV

�

k

fg

2

jF

T

℄

for all k � 1, all stopping times T and for all f 2 L

1

E

, then there exists a


onstant C su
h that

Z




�(U

�

f)WdIP � C

Z




�(V

�

f)WdIP;

for all f 2 L

1

E

. The 
onstant C depends only on W; �;� and E, where � is

the 
onstant in (2.1).

Theorem 2.2 ([25℄) Let U and V be two operators su
h that, for ea
h real-

valued integrable fun
tion on 
 they asso
iate nonnegative F-measurable

fun
tions. Suppose that for any Z 2 A

1

(A) there exists a 
onstant C

Z

,

depending only on Z, su
h that

Z




U(h)ZdIP � C

Z

Z




V (h)ZdIP ;

for all h 2 [

1

k=0

L

1

(
;F

k

; IP ). Then for all 1 < p <1, there exists a 
onstant

C

p

su
h that

k

1

X

j=1

Uf

j

e

j

k

L

p

E

� C

p

k

1

X

j=1

V f

j

e

j

k

L

p

E

for all f =

P

j

f

j

e

j

2 [

1

k=0

L

p

(
;F

k

; IP ;E).
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Theorem 2.3 ([13℄) Let W be a positive integrable fun
tion and let 1 <

p <1. Then W 2 A

p

(A) if and only if the operator f 7! f

�

is bounded on

L

p

(W ).

Theorem 2.4 ([25℄) Let W 2 A

1

(A). Then there exists a 
onstant C,

depending only on E;� and W , su
h that, for all f =

P

j

f

j

e

j

2 L

1

E

,

Z




�

0

�

sup

k�1

k

k

X

j=1

f

�

j

e

j

k

1

A

WdIP � C

Z




�(kfk

�

)WdIP: (2.5)

Lemma 2.1 There exists an absolute 
onstant C su
h that, for all stopping

times T , all f 2 L

1

(
;F ; IP ) and all integers n � 0,

E[f(f � f

T

)

�

n

g

2

jF

T

℄ � CE[f(f � f

T

)

℄

n

g

2

jF

T

℄: (2.6)

Proof. Let us �x T; f; n and A 2 F

T

and let us 
onsider the martingale

g = (g

k

)

k�0

, g

k

= E[I(A)ff

n

� f

T^n

g jF

k

℄. From (2.2) it follows that

g

k

= I(A)(f

n

k

� f

T^n

k

)

and hen
e

g

�

n

= I(A)(f � f

T

)

�

n

(2.7)

and

jg

n

� g

k

j = I(A)j(f � f

T

)

n

� (f � f

T

)

k

j; 1 � k � n:

Sin
e A \ fT � kg 2 F

k

we have that

E[jg

n

� g

k

j jF

k

℄ = E[I(A \ fT � kg)j(f � f

T

)

n

� (f � f

T

)

k

j jF

k

℄

+ E[I(A \ fT > kg)j(f � f

T

)

n

� (f � f

T

)

k

j jF

k

℄

= I(A)E[j(f � f

T

)

n

� (f � f

T

)

k

j jF

k

℄

and hen
e

g

℄

n

= I(A)(f � f

T

)

℄

n

: (2.8)

Then from (2.7), (2.8) and (2.3) for p = 2 we obtain

Z

A

f(f � f

T

)

�

n

g

2

dIP = kg

�

n

k

2

� Ckg

℄

n

k

2

= C

Z

A

f(f � f

T

)

℄

n

g

2

dIP:

Sin
e the above inequality is true for all A 2 F

T

, we obtain (2.6).
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Theorem 2.5 If W 2 A

1

(A) then there exists a 
onstant C su
h that

Z




�(f

�

)WdIP � C

Z




�(f

℄

)WdIP (2.9)

for all f 2 L

1

(
;F ; IP ). The 
onstant C depends only on W; � and �, where

� is the 
onstant in (2.1).

Proof. Let us �x f 2 L

1

, a stopping time T and an integer n � 0. Sin
e

g 7! g

�

and g 7! g

℄

are sublinear then

0 � f

�

n

� f

�

T^n

� (f � f

T

)

�

n

(2.10)

and

(f � f

T

)

℄

n

� f

℄

n

+ f

℄

T^n

� 2f

℄

n

: (2.11)

Therefore by (2.6)

E[ff

�

n

� f

�

T^n

g

2

jF

T

℄ � E[f(f � f

T

)

�

n

g

2

jF

T

℄

� CE[f(f � f

T

)

℄

n

g

2

jF

T

℄

� 4CE[ff

℄

n

g

2

jF

T

℄:

It is easy to see that f

�

T^S

= (f

S

)

�

T

and f

℄

T^S

= (f

S

)

℄

T

for all stopping times

T and S. Then applying Theorem 2.1 we obtain (2.9).

Theorem 2.6 Let 1 < p < 1. If f =

P

j

f

j

e

j

2 L

p

E

then

P

j

f

�

j

e

j

and

P

j

f

℄

j

e

j


onverge in L

p

E

and

k

1

X

j=1

f

�

j

e

j

k

L

p

E

� C

p

k

1

X

j=1

f

℄

j

e

j

k

L

p

E

(2.12)

where C

p

is a 
onstant depending only on p; � and E.

Proof. Let �(t) = t and Z 2 A

1

(A). Then by Theorem 2.5 there exists a


onstant C

Z

su
h that

Z




f

�

ZdIP � C

Z

Z




f

℄

ZdIP;

for all f 2 L

1

(
;F ; IP ). Therefore, from Theorem 2.2 there exists a 
on-

stant C

p

depending only on p; � and E su
h that (2.12) is true for all f 2

[

1

k=0

L

p

(
;F

k

; IP ;E).
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It follows by Theorem 2.4 for �(t) = t

p

and W = 1 and by Theorem

2.3 that the operator

f

N(

P

j

f

j

e

j

) =

P

j

f

�

j

e

j

is well de�ned and is bounded

on L

p

E

. Sin
e f

℄

j

� 2f

�

j

, then the operator

f

N

℄

(

P

j

f

j

e

j

) =

P

j

f

℄

j

e

j

is also well

de�ned and is bounded on L

p

E

. But

S

1

k=0

L

p

(
;F

k

; IP ;E) is dense in L

p

E

and

hen
e we obtain (2.12) for all f 2 L

p

E

.

Theorem 2.7 Let W 2 A

1

(A). Then there exists a 
onstant C, depending

only on W; �;� and E su
h that, for all f =

P

j

f

j

e

j

2 [

p>1

L

p

E

,

Z




�(k

1

X

j=1

f

�

j

e

j

k)WdIP � C

Z




�(k

1

X

j=1

f

℄

j

e

j

k)WdIP: (2.13)

Proof. We observe thatE is a Bana
h latti
e with absolute value j

P

j

x

j

e

j

j =

P

j

jx

j

je

j

.

Let 1 < p < 1 and f =

P

j

f

j

e

j

2 L

p

E

. By the proof of Theorem

2.6,

f

Nf =

P

j

f

�

j

e

j

and

f

N

℄

f =

P

j

f

℄

j

e

j

are well de�ned as fun
tions in

L

p

E

. We de�ne Uf = k

f

Nfk, V f = k

f

N

℄

fk and U

n

f = U(E[f jF

n

℄); V

n

f =

V (E[f jF

n

℄). Sin
e (U

n

f)

n�0

is an in
reasing sequen
e and U

n

f ! Uf in L

p

when n ! 1, then it follows that U

�

f = sup

n�0

U

n

f = Uf . By the same

way V

�

f = V f .

If T is a stopping time, we obtain from the inequality (2.12) for p = 2,

as in the proof of Lemma 2.1, that there exists a 
onstant C independent of

f; T and n, su
h that

E[U

2

n

(f � f

T

) jF

T

℄ � CE[V

2

n

(f � f

T

) jF

T

℄:

>From the inequalities (2.10) and (2.11) we obtain

jU

n

f � U

T^n

f j � U

n

(f � f

T

);

V

n

(f � f

T

) � 2V

n

f

and hen
e

E[fU

n

f � U

T^n

fg

2

jF

T

℄ � 4CE[V

2

n

f jF

T

℄:

Now, sin
e (f

j

)

�

T^S

= (f

S

j

)

�

T

and (f

j

)

℄

T^S

= (f

S

j

)

℄

T

, then it follows that

U

T^S

f = U

T

f

S

and V

T^S

f = V

T

f

S

for all stopping times T and S. Therefore

we 
an apply Theorem 2.1 and to obtain (2.13).
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3 Maximal Operators on Homogeneous Spa
es

Lemma 3.1 ([22℄, Lemma 3.21, p. 852) Let b be a positive integer and let

� = 8�

5

. Then for ea
h integer k, �b � k � b, there exist an enumerable

Borel partition A

b

k

of X and a positive 
onstant C depending only on X, su
h

that:

(i) for all Q 2 A

b

k

;�b � k � b, there exists x

Q

2 Q su
h that B(x

Q

; �

k

) �

Q � B(x

Q

; �

k+1

) and �(B(x

Q

; �

k+1

)) � C�(Q);

(ii) if �b � k < b, Q

1

2 A

b

k+1

, Q

2

2 A

b

k

and Q

1

\ Q

2

6= ;, then Q

2

� Q

1

,

and 0 < �(Q

1

) � C�(Q

2

).

For a real-valued lo
ally integrable fun
tion f on X we de�ne

M

b

d

f(x) = sup

x2Q

Q2A

b

1

�(Q)

Z

Q

jf(y)jd�(y);

M

b;℄

d

f(x) = sup

x2Q

Q2A

b

1

�(Q)

Z

Q

jf(y)� f

Q

jd�(y);

M

b

f(x) = sup

B

1

�(B)

Z

B

jf(y)jd�(y);

and

M

b;℄

f(x) = sup

B

1

�(B)

Z

B

jf(y)� f

B

jd�(y);

where the supremum is taken over all balls B = B(a; r), su
h that x 2 B

and �

�b�1

� r < �

b

, and A

b

=

S

�b�k�b

A

b

k

.

Lemma 3.2 Let W 2 A

1

(A

b

). Then there exists a 
onstant C, depending

only on E, �, X and W , su
h that, for all f =

P

j

f

j

e

j

2 L

1

E

,

Z

X

�

0

�

sup

k�1

k

k

X

j=1

M

b

d

f

j

(x)e

j

k

1

A

W (x)d�(x) � C

Z

X

�

�

M

b

d

(kfk)(x)

�

W (x)d�(x):

(3.1)

Proof. Let A

b

b

= fQ

b

i

: i 2 I

b

g, I

b

� IN, and 
onsider the probability

measure �

b

i

on the Borel subsets of Q

b

i

given by �

b

i

(A) = �(A)=�(Q

b

i

). Given

17



f =

P

j

f

j

e

j

2 L

1

E

we have that M

b

d

f

j

(x) =

�

jf

j

j

jQ

b

i

�

�

(x), for x 2 Q

b

i

, and

hen
e by Lemma 3.1(ii) and Theorem 2.4,

Z

X

�

0

�

sup

k�1

k

k

X

j=1

M

b

d

f

j

(x)e

j

k

1

A

W (x)d�(x)

=

X

i2I

b

�(Q

b

i

)

Z

Q

b

i

�

0

�

sup

k�1

k

k

X

j=1

�

jf

j

j

jQ

b

i

�

�

(x)e

j

k

1

A

W

jQ

b

i

(x)d�

b

i

(x)

� C

Z

X

�

�

M

b

d

(kfk)(x)

�

W (x)d�(x):

Lemma 3.3 Let W 2 A

1

(A

b

). Then there exists a 
onstant C, depending

only on E, �, X and W , su
h that, for all f =

P

j

f

j

e

j

2

S

p>1

L

p

E

,

Z

X

�

0

�

k

1

X

j=1

M

b

d

f

j

(x)e

j

k

1

A

W (x)d�(x)

� C

Z

X

�

0

�

k

1

X

j=1

M

b;℄

d

f

j

(x)e

j

k

1

A

W (x)d�(x): (3.2)

Proof. Let us 
onsider �

b

i

, i 2 I

b

, as in the proof of Theorem 3.1. Given

f =

P

j

f

j

e

j

2

S

p>1

L

p

E

we have that M

b

d

f

j

(x) =

�

jf

j

j

jQ

b

i

�

�

(x), for x 2 Q

b

i

,

and M

b;℄

d

(jf

j

j)(x) � 2M

b;℄

d

f

j

(x), for x 2 X. Therefore by Lemma 3.1(ii) and

Theorem 2.7,

Z

X

�

0

�

k

1

X

j=1

M

b

d

f

j

(x)e

j

k

1

A

W (x)d�(x)

=

X

i2I

b

�(Q

b

i

)

Z

Q

b

i

�

0

�

k

1

X

j=1

�

jf

j

j

jQ

b

i

�

�

(x)e

j

k

1

A

W

jQ

b

i

(x)d�

b

i

(x)

� C

X

i2I

b

�(Q

b

i

)

Z

Q

b

i

�

0

�

k

1

X

j=1

�

jf

j

j

jQ

b

i

�

℄

(x)e

j

k

1

A

W

jQ

b

i

(x)d�

b

i

(x)

= C

Z

X

�

0

�

k

1

X

j=1

M

b;℄

d

(jf

j

j)(x)e

j

k

1

A

W (x)d�(x)

� C

0

Z

X

�

0

�

k

1

X

j=1

M

b;℄

d

f

j

(x)e

j

k

1

A

W (x)d�(x):
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Lemma 3.4 Let C be the 
onstant in Lemma 3.1. Then, for all 1 < p � 1,

all real-valued lo
ally integrable fun
tion f

and x 2 X, we have

A

p

(X) � A

p

(A

b

); (3.3)

M

b

d

f(x) � CM

b

f(x); (3.4)

M

b;℄

d

f(x) � 2CM

b;℄

f(x): (3.5)

Proof. Let 1 < p <1,W 2 A

p

(X), Q 2 A

b

k

, �b � k � b and x 2 Q. By

Lemma 3.1(i) there exist x

Q

2 Q and C > 0 su
h that Q � B = B(x

Q

; �

k+1

)

and �(B) � C�(Q). Therefore it follows by (1.2) that

 

1

�(Q)

Z

Q

Wd�

! 

1

�(Q)

Z

Q

W

�1=(p�1)

d�

!

p�1

� C

p

C(p;W ):

Now for a real-valued lo
ally integrable fun
tion f we have that

1

�(Q)

Z

Q

jf(y)jd�(y) �

C

�(B)

Z

B

jf(y)jd�(y)

and

1

�(Q)

Z

Q

jf(y)� f

Q

jd�(y) �

1

�(Q)

Z

Q

jf(y)� f

B

jd�(y) + jf

B

� f

Q

j

�

2C

�(B)

Z

B

jf(y)� f

B

jd�(y)

� 2CM

℄

f(x):

Thus we obtain (3.3), (3.4) and (3.5).

The following lemma is the analogous of a result by R. Wheeden [26℄

for the fra
tional maximal operator and for X with a group stru
ture.

Lemma 3.5 Let b be a positive integer. Then there exists a 
onstant C,

depending only on X, su
h that, for all real-valued lo
ally integrable fun
tion

f on X and all x 2 B(11; �

b

), 11 = �(e), we have

M

b

f(x) �

C

jG

b

j

Z

G

b

M

b;g

d

f(x)dg; (3.6)

where

G

b

= fg 2 G : d(g11; 11) < �

b+3

g

and M

b;g

d

f(x) = R

g

�1

M

b

d

R

g

f(x), g 2 G, x 2 X.
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Proof. First we observe that jG

b

j = �(B(11; �

b+3

)) > 0. Let us �x

x 2 B(11; �

b

). From the de�nition of M

b

f(x), there exists a ball B = B(a; r)

su
h that x 2 B, �

�b�1

� r < �

b

and

M

b

f(x) �

2

�(B)

Z

B

jf(y)jd�(y): (3.7)

Let �b � k � b su
h that �

k�1

� r < �

k

. We denote by 
 the set


 =

n

g 2 G

b

: there exists Q 2 A

b

k+1

su
h that B � g

�1

Q

o

:

Given g 2 
, let Q 2 A

b

k+1

su
h that B � g

�1

Q. By Lemma 3.1(i) there

exists x

Q

2 Q su
h that B(x

Q

; �

k+1

) � Q � B(x

Q

; �

k+2

) and hen
e g

�1

Q �

B(g

�1

x

Q

; �

k+2

). If s is the integer su
h that 2

s�1

< �

3

� 2

s

, then by the

doubling 
ondition we have �(B(g

�1

x

Q

; �

k+2

)) � A

s

�(B) and thus

1

�(B)

Z

B

jf(y)jd�(y) �

A

s

�(g

�1

Q)

Z

g

�1

Q

jf(y)jd�(y):

Therefore from (3.7) we get

M

b

f(x) � 2A

s

M

b;g

d

f(x); g 2 
:

Now suppose that there exists a positive 
onstant � su
h that j
j � �jG

b

j for

all positive integers b. Then integrating both sides of the above inequality

with respe
t to the Haar measure dg and on 
, we get (3.6) for C = 2A

s

�

�1

.

We will prove that there exists a positive 
onstant �, depending only

on X, su
h that j
j � �jG

b

j. Given y 2 X we denote by g

y

an element in G

su
h that y = g

y

11.

Let z 2 g

x

Q

G

k�3

g

�1

x

. Then zx 2 B(x

Q

; �

k

) and hen
e for y 2 B,

d(zy; x

Q

) � �(d(zy; zx) + d(zx; x

Q

))

� �[�(d(y; a) + d(a; x)) + �

k

℄

� �

k+1

:

Therefore y 2 z

�1

Q and hen
e

B � z

�1

Q; z 2 g

x

Q

G

k�3

g

�1

x

: (3.8)

Let us denote by � the set

� =

n

Q 2 A

b

k+1

: Q \B(x; �

b+2

) 6= ;

o

:
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Fix Q 2 � and let u 2 Q \ B(x; �

b+2

), g 2 g

x

Q

G

k�3

. Then g11 2 B(x

Q

; �

k

)

and

d(g11; 11) � �(d(g11; x

Q

) + d(x

Q

; 11))

� �[�

k

+ �(d(x

Q

; u) + d(u; 11))℄

� �f�

k

+ �[�

k+2

+ �(d(u; x) + d(x; 11))℄g

� 4�

3

�

b+2

and hen
e

d(gg

�1

x

11; 11) � �(d(g

x

g

�1

11; g

x

11) + d(x; 11))

� �(d(g11; 11) + �

b

)

< �

b+3

:

Thus g 2 G

b

g

x

and hen
e

g

x

Q

G

k�3

g

�1

x

� G

b

; Q 2 �:

Therefore from (3.8)

[

Q2�

g

x

Q

G

k�3

g

�1

x

� 
: (3.9)

If Q;Q

0

2 A

b

k+1

and Q 6= Q

0

then B(x

Q

; �

k

) \ B(x

Q

0

; �

k

) = ; and hen
e

g

x

Q

G

k�3

g

�1

x

\ g

x

Q

0

G

k�3

g

�1

x

= ;:

Then, sin
e G is unimodular (see [14, p. 578℄), it follows by (3.9) and by the

doubling 
ondition that

j
j � j

[

Q2�

g

x

Q

G

k�3

g

�1

x

j

=

X

Q2�

jg

x

Q

G

k�3

j

�

X

Q2�

A

�s

�(B(x

Q

; �

k+2

))

� A

�s

�

0

�

\

Q2�

Q

1

A

� A

�s

�(B(x; �

b+2

))

� A

�2s

jG

b

j:
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Proof of Theorem 1.1: Let us denote by C the greatest 
onstant among

the 
onstants C in (3.1), (3.4) and (3.6), and let s be the integer satisfying

2

s�1

< C � 2

s

. Let f =

P

k

j=1

f

j

e

j

2 L

1

E

. Sin
e W 2 A

1

(X), we 
an


hoose 1 < p < 1 su
h that W 2 A

p

(X). Then, it follows by (1.2) that

R

g

W 2 A

p

(X) and C(p; R

g

W ) = C(p;W ) for all g 2 G. Therefore by (1.1),

(3.1), (3.3), (3.4), (3.6), by Jensen's inequality and Fubini's theorem we have

that,

Z

B(11;�

b

)

�

0

�

k

k

X

j=1

M

b

f

j

(x)e

j

k

1

A

W (x)d�(x)

�

Z

B(11;�

b

)

�

0

�

C

jG

b

j

Z

G

b

k

k

X

j=1

M

b;g

d

f

j

(x)e

j

kdg

1

A

W (x)d�(x)

� sup

g2G

b




s

Z

X

�

0

�

k

k

X

j=1

M

b

d

(R

g

f

j

)(y)e

j

k

1

A

R

g

W (y)d�(y)

� sup

g2G

b




s

C

Z

X

�

�

M

b

d

(kR

g

fk)(y)

�

R

g

W (y)d�(y)

� sup

g2G

b




2s

C

Z

X

�

�

M

b

(kR

g

fk)(gx)

�

W (x)d�(x)

� 


2s

C

Z

X

� (M(kfk)(x))W (x)d�(x);

sin
e M(kR

g

fk)(gx) = M(kfk)(x). Now, let f =

P

1

j=1

f

j

e

j

and f

k

=

P

k

j=1

f

j

e

j

; k � 1. Sin
e the above inequality is true for all f

k

; k � 1, it

follows by the Monotone Convergen
e Theorem that

Z

B(11;�

b

)

�

0

�

sup

k�1

k

k

X

j=1

M

b

f

j

(x)e

j

k

1

A

W (x)d�(x)

� 


2s

C

Z

X

�

�

M

b

(kfk)(x)

�

W (x)d�(x):

Letting b!1 on both sides of the above inequality we obtain (1.3).

Finally, let 1 < p <1; �(t) = t

p

; W 2 A

p

(X) and f =

P

1

j=1

f

j

e

j

2

L

p

E

(W ) \ L

1

E

. By (1.3) and sin
e the operator M is bounded on L

p

(W ) (see

[5℄),

k

`+m

X

j=`

Mf

j

e

j

k

L

p

E

(W )

� C

1=p

kM(k

`+m

X

j=`

f

j

e

j

k)k

L

p

IR

(W )
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� C

0

k

`+m

X

j=`

f

j

e

j

k

L

p

E

(W )

:

>From the above inequality we 
an 
on
lude that

P

1

j=1

Mf

j

e

j


onverges in

L

p

E

(W ) to a fun
tion

f

Mf and

k

f

Mfk

L

p

E

(W )

� C

0

kfk

L

p

E

(W )

:

Now let f =

P

j

f

j

e

j

2 L

p

E

(W ) su
h that f

j

� 0, for all j � 1. For ea
h j,

let (f

k

j

)

k2IN

be a sequen
e of simple fun
tions su
h that 0 � f

k

j

" f

j

a.e.,

k ! 1. Then Mf

k

j

" Mf

j

and for f

k

=

P

j

f

k

j

e

j

2 L

p

E

(W ) \ L

1

E

we have

f

Mf

k

"

f

Mf a.e. Then

k

f

Mfk

L

p

E

(W )

= lim

k!1

k

f

Mf

k

k

L

p

E

(W )

� lim

k!1

C

0

kf

k

k

L

p

E

(W )

= C

0

kfk

L

p

E

(W )

:

Proof of Theorem 1.2: It follows by Theorem 1.1 that the operator

f

M(

P

j

f

j

e

j

) =

P

j

Mf

j

e

j

is well de�ned and is bounded on L

p

E

. Sin
eM

℄

f

j

�

2Mf

j

, then the operator

f

M

℄

(

P

j

f

j

e

j

) =

P

j

M

℄

f

j

e

j

is also well de�ned and

is bounded on L

p

E

.

Let us denote by C the greatest 
onstant among the 
onstants C

in (3.1), (3.5) and (3.6), and let s be the integer satisfying 2

s�1

< C � 2

s

.

Sin
e W 2 A

1

(X), we 
an 
hoose 1 < p <1 su
h that W 2 A

p

(X). Then,

it follows by (1.2) that R

g

W 2 A

p

(X) and C(p; R

g

W ) = C(p;W ) for all

g 2 G. Therefore by (1.1), (3.2), (3.3), (3.5), (3.6), by Jensen's inequality

and Fubini's theorem we have that,

Z

B(11;�

b

)

�

0

�

k

1

X

j=1

M

b

f

j

(x)e

j

k

1

A

W (x)d�(x)

�

Z

B(11;�

b

)

�

0

�

C

jG

b

j

Z

G

b

k

1

X

j=1

M

b;g

d

f

j

(x)e

j

kdg

1

A

W (x)d�(x)

� sup

g2G

b




s

Z

X

�

0

�

k

1

X

j=1

M

b

d

(R

g

f

j

)(y)e

j

k

1

A

R

g

W (y)d�(y)

� sup

g2G

b




s

C

Z

X

�

0

�

k

1

X

j=1

M

b;℄

d

(R

g

f

j

)(y)e

j

k

1

A

R

g

W (y)d�(y)
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� sup

g2G

b




2s+1

C

Z

X

�

0

�

k

1

X

j=1

M

b;℄

(R

g

f

j

)(gx)e

j

k

1

A

W (x)d�(x)

� 


2s+1

C

Z

X

�

0

�

k

1

X

j=1

M

℄

f

j

(x)e

j

k

1

A

W (x)d�(x);

sin
e M

℄

(R

g

f

j

)(gx) =M

℄

f

j

(x). Letting b!1 we obtain (1.4).

4 Singular Integral Operators

In the proof of the following lemma we use the potential-type 
onstru
-

tion by Bourgain [2℄.

Lemma 4.1 Let 1 < p < 1 and W 2 A

p

(X). Then there exist positive


onstants C

p

and r, r > 1, depending only on p, W , X and E, su
h that

k

1

X

j=1

M

r

f

j

e

j

k

L

p

E

(W )

� C

p

k

1

X

j=1

f

j

e

j

k

L

p

E

(W )

; (4.1)

for all f =

P

j

f

j

e

j

2 L

p

E

(W ), where M

r

g = (M(jgj

r

))

1=r

.

Proof. Let 1 < p < 1, W 2 A

p

(X), �(t) = t

p

, let C be the 
onstant in

(1.3) and let g =

P

j

g

j

e

j

2 L

p

E

(W ). For ea
h j � 1 we de�ne

 

j

=

1

X

i=0

(2C

1=p

)

�i

M

(i)

g

j

;

where M

(i)

g

j

is de�ned indu
tively by M

(0)

g

j

= jg

j

j, M

(i+1)

g

j

=M(M

(i)

g

j

).

We have that

M 

j

� 2C

1=p

 

j

and hen
e the weights  

j

; j � 1, are by de�nition, uniformly in the 
lass

A

1

(X). It follows by the Reverse H�older's Inequality (see Calder�on [5℄) that

there exist positive 
onstants C

0

and r, r > 1, depending only on p and C,

su
h that

 

1

�(B)

Z

B

 

r

j

d�

!

1=r

�

C

0

�(B)

Z

B

 

j

d�
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for all balls B and all j � 1. Therefore

M

r

g

j

(x) �M

r

 

j

(x) � C

0

M 

j

(x) � 2C

1=p

C

0

 

j

(x):

But by Theorem 1.1,

k

1

X

j=1

 

j

e

j

k

L

p

E

(W )

�

1

X

i=0

(2C

1=p

)

�i

k

1

X

j=1

M

(i)

g

j

e

j

k

L

p

E

(W )

� 2kgk

L

p

E

(W )

and hen
e

k

1

X

j=1

M

r

g

j

e

j

k

L

p

E

(W )

� 2C

1=p

C

0

k

1

X

j=1

 

j

e

j

k

L

p

E

(W )

� 4C

1=p

C

0

kgk

L

p

E

(W )

:

Lemma 4.2 Let T be a singular integral operator bounded on L

r

(X) for

some r, 1 < r < 1. Assume that the kernel K of T satis�es (H

0

1

) and

K(gx; gy) = K(x; y) for all x; y 2 X and g 2 G. Then there exists a


onstant C

r

su
h that

M

℄

(Tf)(x) � C

r

M

r

f(x); f 2 L

1




(X):

Proof. Let us �x x

0

2 X, ` > 0 and let B = B(x

0

; `), B

2

= B(x

0

; 2`). For

f 2 L

1




(X) we set g = f�

B

2

; h = f � g. Sin
e T is bounded on L

r

(X), then

for all z 2 B,

1

�(B)

Z

B

jTg(x)� (Tg)

B

jd�(x) �

2

�(B)

Z

B

jTg(x)jd�(x)

� C

r

 

1

�(B)

Z

B

2

jg(x)j

r

d�(x)

!

1=r

� C

r

A

1=r

M

r

g(z):

Now let x 2 B, g 2 G su
h that gx

0

= 11, �x = gx and

S

j

(�x) =

n

t : 2

j

d(�x; 11) < d(t; 11) � 2

j+1

d(�x; 11)

o

:
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Then by the (H

0

1

) 
ondition, for all z 2 B,

jTh(x)� Th(x

0

)j

�

Z

XnB

2

jK(x; y)�K(x

0

; y)j jh(y)jd�(y)

�

Z

d(t;11)>2d(�x;11)

jK

0

(t; �x)�K

0

(t; 11)j jR

g

h(t)jd�(t)

� C

1

X

j=1

Z

S

j

(�x)

d(�x; 11)

d(t; 11)�(B(11; d(t; 11)))

jR

g

h(t)jd�(t)

� AC

1

X

j=1

2

�j

�(B(x

0

; 2

j+1

d(x; x

0

)))

Z

gB(x

0

;2

j+1

d(x;x

0

))

jR

g

h(t)jd�(t)

= AC

1

X

1�j<1

2

j

d(x;x

0

)>`

2

�j

�(B(x

0

; 2

j+1

d(x; x

0

)))

Z

B(x

0

;2

j+1

d(x;x

0

))

jh(y)jd�(y)

� ACM

r

h(z)

and hen
e

1

�(B)

Z

B

jTh(x)� (Th)

B

jd�(x) �

2

�(B)

Z

B

jTh(x)� Th(x

0

)jd�(x)

� 2ACM

r

h(z):

Thus for all z 2 X

M

℄

(Tf)(z)

� sup

B3z

1

�(B)

Z

B

jTg(x)� (Tg)

B

jd�(x) + sup

B3z

1

�(B)

Z

B

jTh(x)� (Th)

B

jd�(x)

� C

0

r

M

r

f(z):

Proof of Theorem 1.3: Let us �x 1 < p < 1, W 2 A

p

(X) and let r

and C

p

be the 
onstants in Lemma 4.1. Then it follows by (1.4) for �(t) = t

p

,

by (1.5) and (4.1) that, for all f =

P

j

f

j

e

j

, f

j

2 L

1




(X) for j � 1, and all

positive integers ` and m,

k

`+m

X

j=`

T

j

f

j

e

j

k

L

p

E

(W )

� k

`+m

X

j=`

M(T

j

f

j

)e

j

k

L

p

E

(W )

� C

1=p

k

`+m

X

j=`

M

℄

(T

j

f

j

)e

j

k

L

p

E

(W )
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� C

1=p

C

r

k

`+m

X

j=`

M

r

f

j

e

j

k

L

p

E

(W )

� C

1=p

C

r

C

p

k

`+m

X

j=`

f

j

e

j

k

L

p

E

(W )

:

The above inequality implies that the sequen
e of partial sums of the series

P

j

T

j

f

j

e

j

is a Cau
hy sequen
e in L

p

E

(W ) and hen
e it 
onverges in L

p

E

(W ).

Putting ` = 1 and letting m!1 on both sides of this inequality we obtain

(1.6).

Proof of Corollary 1.1: For all 0 � r � 1 and all x; y 2 S

n

,

jy � (y � x)xj � 2jy � xj; (4.2)

jy � 11� [(y � 11) � x℄xj � 2jy � 11j; (4.3)

j(x � 11)11� (x � y)yj � 2jy � 11j; (4.4)

jy � xj � 2jy � rxj (4.5)

and for all 0 � r � 1 and all x; y 2 S

n

su
h that jx� 11j > 2jy � 11j,

1

2

j11� rxj < jy � rxj < 2j11� rxj; (4.6)

1

2

jx� r11j < jx� ryj < 2jx� r11j: (4.7)

Now �x 0 � r � 1 and x; y 2 S

n

su
h that jx� 11j > 2jy� 11j. Then by (4.6)

j j11� rxj

n+1

� jy � rxj

n+1

j

� (j11� rxj

n

+ j11� rxj

n�1

jy � rxj+ � � �+ jy � rxj

n

)

� Cjy � 11j j11� rxj

n

and hen
e by (4.2), (4.3), (4.5) and (4.6) we obtain

js

r

(x; y)� s

r

(x; 11)j �

2

!

n

jy � (y � x)xj

j j11� rxj

n+1

� jy � rxj

n+1

j

jy � rxj

n+1

j11� rxj

n+1

+

2

!

n

jy � 11� [(y � 11) � x℄xj

j11� rxj

n+1

� C

1

jy � 11j

jx� 11j

n+1

;
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jt

r

(x; y)� t

r

(x; 11)j �

n� 2

2r

Z

r

0

js

%

(x; y)� s

%

(x; 11)jd%

=

(n� 2)C

1

2

jy � 11j

jx� 11j

n+1

;

jK

r

i;j

(x; y)�K

r

i;j

(x; 11)j � jx

i

y

j

� x

j

y

i

j

j j11� rxj

n+1

� jy � rxj

n+1

j

jy � rxj

n+1

j11� rxj

n+1

+ jx

i

(y

j

� 11

j

)� x

j

(y

i

� 11

i

)j

1

j11� rxj

n+1

� C

2

jy � 11j

jx� 11j

n+1

:

Sin
e j11� rxj � 1� r,

jP

r

(x; y)� P

r

(x; 11)j �

1� r

2

!

n

j j11� rxj

n+1

� jy � rxj

n+1

j

jy � rxj

n+1

j11� rxj

n+1

� C

3

jy � 11j

jx� 11j

n+1

and hen
e

jK(x; y)�K(x; 11)j � C

3

jy � 11j

jx� 11j

n+1

:

Therefore the kernels s

r

, t

r

, K

r

i;j

and K satisfy the 
ondition (H

1

) uniformly

for all 0 � r � 1; i; j 2 f1; 2; :::; n+ 1g . By the same way we 
an use (4.2),

(4.4), (4.5) and (4.7) to show that s

r

, t

r

, K

r

i;j

and K satisfy (H

0

1

) uniformly

for all r; i; j. The 
on
lusion of this 
orollary follows from the remark given

above of the statement of Corollary 1.1 and from Theorem 1.4.
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