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Abstract

Let X be an homogeneous space and let £ be an UMD Banach
space with a normalized unconditional basis (e;);>1. Given an opera-
tor T from L°(X) in L'(X), we consider the vector-valued extension
T of T given by ’f(zj fiej) =3 T(fj)ej. We prove a weighted inte-
gral inequality for the vector-valued extension of the Hardy-Littlewood
maximal operator and a weighted Fefferman-Stein inequality between
the vector-valued extensions of the Hardy-Littlewood and the sharp
maximal operators, in the context of Orlicz spaces. We give suffi-
cient conditions on the kernel of a singular integral operator to have
the boundedness of the vector-valued extension of this operator on
LP(X,Wdu; E) for 1 < p < oo and for a weight W in the Mucken-
houpt’s class A,(X). Applications to singular integral operators on
the unit sphere S™ and on a finite product of local fields IK" are given.
The versions of all these results for vector-valued extensions of oper-
ators of functions defined in a homogeneous space X and with values
in an UMD Banach lattice are also given.

1 Introduction

The UMD property for Banach spaces plays a central role in the develop-
ment of Vector-Valued Fourier Analysis. In spite of having been extensively
studied (see e.g. [4, 2, 3, 19, 18, 10]), we point out that all the maximal
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operators and singular integral operators considered in these studies, are for
functions defined in the euclidian space IR" or in the torus 7™.

J. Bourgain extended in [2] a result of vector-valued singular

integral operators due to Benedek, Caldern and Panzone, to the context
of UMD Banach spaces. The main goal of this paper is to prove a weighted
extension of the result of Bourgain for vector-valued singular integral opera-
tors of functions defined in a homogeneous space X (Theorem 1.4).

In Section 2 we study weighted integral estimates for vector-valued
extensions of maximal operators from Martingale Theory in the context of
Orlicz spaces, which we apply in the proofs of Theorems 1.1 and 1.2 given in
Section 3.

C. Fefferman and E. M. Stein introduced in [7] a technique to study
the Hardy-Littlewood maximal operator. The dyadic decomposition of IR"
is used as a fundamental tool in this technique. The idea is to obtain an
integral estimate for the dyadic maximal operator and then, by a transference
method, to obtain an integral estimate for the Hardy-Littlewood maximal
operator. This technique was applied to study integral estimates for vector-
valued extensions of this operator (see e.g. [7, 2, 25]) and to study weighted
integral estimates for others maximal operators (see e.g. [21, 22, 26]).

In Section 3 we apply the technique by Fefferman and Stein for
homogeneous spaces and we prove a weighted integral inequality for a vector-
valued extension of the Hardy-Littlewood maximal operator (Theorem 1.1)
and a weighted Fefferman-Stein inequality between vector-valued extensions
of the Hardy-Littlewood and the sharp maximal operators (Theorem 1.2), in
the context of Orlicz spaces.

In Section 4 we study singular integral operators. The proofs of
Theorems 1.3, Theorem 1.4 and Corollary 1.1 are in Section 4.

In this section we give the statements of the main results of this
paper.

Corollaries 1.1 and 1.2 are applications to vector-valued singular
integral operators of functions defined in the unit sphere S™ and in a finite
product of local fields IK", respectively.

In Theorems 1.5, 1.6 and 1.7 we consider vector-valued extensions
of operators for functions defined in a homogeneous space X and with values
in a UMD Banach lattice.

Let G be a locally compact Hausdorff topological group with unit
element e, H a compact subgroup of G and 7 : G — G/ H the canonical map.
Let dg denote a left Haar measure on GG, which we assume to be normalized



in the case of GG to be compact. If A is a Borel subset of GG, we will denote
by |A| the Haar measure of A. The homogeneous space X = G/H is the
set of all left cosets 7(g) = gH, g € G, provided with the quotient topology.
The Haar measure dg induces a measure p on the Borel o-field on X. For
feLiX),

[ f@du@) = [ forg)dg.

The measure y on X is invariable on the action of G, that is, if f € L'(X),
g € G and R,f(x) = f(g 'x), then

[ f@)du() = [ Ry ()dpu(a).
X X
A quasi-distance on X is a map d : X x X — [0, 00) satisfying:

(i) d(z,y) = 0 if and only if z = y;

(ii) d(z,y) =d(y,z) for all x,y € X;

(iii) d(gz,gy) =d(z,y) for all g € G, x,y € X;

(iv) there exists a constant 1 > 1 such that, for all z,y,2z € X,
d(z,y) < nld(x, 2) + d(z,y)];

(v) the balls B(z,0) ={y € X : d(x,y) < (}, x € X, £ >0, are relatively
compact and measurable, and the balls B(1,¢),¢ > 0, form a basis of
neighborhoods of 1 = 7(e);

(vi) (doubling condition) there exists a constant A > 1 such that, for all
¢>0and z € X,

p(B(x,20)) < Au(B(z, ().

Given a quasi-distance d on X, there exists a distance p on X and
a positive real number v such that d is equivalent to p” (see [16]). Therefore
the family of d-balls is equivalent to the family of p?-balls and p”-balls are
open sets. We can show that u(B(z,f)) > 0 for x € X, £ > 0, and that X is
separable.

In this paper X will denote a homogeneous space provided with a
quasi-distance d.



Given a Banach space F with norm || - || and a positive locally inte-
grable function W on X, we denote by L? (X, Wdu; E) or L (W),1 < p < o0,
the Bochner-Lebesgue space consisting of all E-valued (strongly) measurable
functions f defined in X such that

lzon = ([ I5@ W @ant@) " < o

We write LY, (W) = LP(W) when E = R and LE,(W) = LE,(X) = L%, when
W =1.

Throughout this paper (except in Theorems 1.5, 1.6 and 1.7) F will
denote a Banach space with the UMD property (for the definition see e.g.
[4, 2, 3, 19]) and with a normalized unconditional basis (e;);>1, and ® will
denote a non-decreasing continuous function on [0,00) with ®(0) = 0 and
satisfying the As-condition, that is, there exists a constant ¢ > 0 such that

B(2)) < cB(N), A > 0. (1.1)

We put ®(00) = limy o, P(N).
Let W be a positive locally integrable function on X and let 1 <
p < oo. If there exists a constant C' such that

for all ball B = B(x,¢), £ > 0, v € X, we say that W is a weight in the
Muckenhoupt’s class A,(X). If W € A,(X), we denote by C(p, W) the
smallest constant C' that satisfies (1.2). The class A, (X) is defined as the
union of the classes A4,(X), for 1 < p < oo.

Let f be a real-valued locally integrable function on X. The Hardy-
Littlewood maximal operator A and the sharp maximal operator M! are
defined at f respectively by

M) = sup—zs [ 1 w)lduty)

and
1

1(B)

Mf(e) = sup s | 1) = faldu(y),

where

1
fB= m /Bf(y)d/h
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and where the supremum is taken over all balls B, such that z € B.

The following theorem extends results for the Hardy-Littlewood max-
imal operator given in [2, 25].

Theorem 1.1 Let W € A (X) and suppose that ® is a conver function.
Then there exists a constant C, depending only on E, ®, X and W such
that,

A¢GgH;Mﬁm%DW%MMﬂSCA@MNWW@HW@M@%

(1.3)
for all f = ¥, fie; € L. Moreover, if 1 < p < oo, W € A,(X) and
f e Li,(W), then 3=; M fie; converges in Liy(W) to a function M and the
operator M is bounded on L, (W).

There is an intimate relation between the Hardy-Littlewood maxi-
mal operator and the sharp maximal operator. This relation is contained in
the inequality [|[Mf]l, < C||M*fl,, f € L*(R™), 0 < py < p < oo. This
inequality is known as the Fefferman-Stein inequality and it was proved in
[8]. A weighted extension of this inequality and an unweighted extension
for functions defined in a space of homogeneous type (in particular in a ho-
mogeneous space) are well known. The following theorem gives a weighted
vector-valued extension of the Fefferman-Stein inequality for functions de-
fined in a homogeneous space X.

Theorem 1.2 Let W € A (X) and suppose that ® is a conver function.
Then there exists a constant C', depending only on E, ®, X and
W such that, for all f =3, fie; € Upsi Ll

A@@ZMﬁwmowmmmscA@@ZMm@mﬂwmwm.
= =
(1.4)
We say that a linear operator T defined in L°(X) and with values

in the space of all measurable functions, is a singular integral operator if the
following conditions hold:



(i) T has a bounded extension on L"(X) for some r,1 < r < o0;

(ii) there exists a kernel K € L},.(X x X \ A), A = {(z,z) : x € X}, such
that

Tf(@) = [ K(@,y)fm)dul),
for all f € L(X) and almost all x ¢ supp f.

Let T" be a singular integral operator with a kernel K. We say that
K satisfies the condition (Hy,) if

d(y, 1)
d(z, M)p(B(1,d(z, 1))

|K(z,y) — K(z,1)| < C

whenever d(z, 1) > 2d(y, 1), 1 = w(e). If K (z,y) = K(y, ) satisfies (H,)
we say that K satisfies (H ).
The following theorem is proved in Section 4.

Theorem 1.3 Let 1 < p < oo, W € Ay(X) and let (T});>1 be a sequence
of operators from LP(W) in LP(W) such that, for every r > 1, there exists a
constant C, such that

MAT f)(2) < M, f(2), f € LX), j > L. (1.5)

Then for all f = ¥; fie; € L (W) we have that 3, T fje; converges in
L5 (W) and there exists a positive constant C,, such that

1> Tifiesllz vy < Coll X fieille oy (1.6)

It is easy to see that the condition (H,,) for the kernel K of a singular
integral operator implies the Hrmander’s condition (H):

/ K (2,) — K (z,1)|du(z) < C < 0.
d(z,1)>2d(y,1)

The Hormander’s condition was studied by R. R. Coifman and G. Weiss [6],
by A. Kordnyi and S. Végi [14] and by B. Bordin and D. L. Fernandez [1].
It was proved that, if the kernel K satisfies (H;) and (H,) then the singular
integral operator is bounded on LP(X) for 1 < p < oco. The next result
follows immediately from Lemma 4.2 in Section 4 and Theorem 1.3.
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Theorem 1.4 Let 1 < p < oo, W € A,(X) and let T be a singular in-
tegral operator. Assume that the kernel K of T satisfies (Hy), (H..) and
K(gzr,gy) = K(x,y) for all x,y € X, g € G. Then for all f = 3, fie; €
Ly (W) we have that 3°; T f;e; converges in L'y (W) and there exists a positive
constant C, such that

1> Tfiesllewy < Coll X fiesllie - (1.7)

The Theorem 1.4 for the euclidian space R" and W = 1 was proved
by Bourgain [2] and it was also studied in [19]. For W =1 and E = (1,
1 < ¢ < oo but for more general spaces X (spaces of homogeneous type) it
was proved in [1, 20]. The Theorem 1.3 for X = R" and W = 1 was proved
in [19].

Let us consider the unit sphere S™ = {z € R""' : |z| = 1} provided
with the Lebesgue measure do and with the euclidian distance d(z,y) =
|z — y| and let 1 = (1,0,...,0). A kernel K € L] (S™ x S™\ A) satisfies

the condition (Hy) if there exists a constant C' such that for z,y € S™ with
|z — 1| > 2|y — 1| we have

ly — 1
|z — 1t

For 0 <r <1,i,j7€{1,2,...,n+1} and z,y € S™ (x # y for r = 1), we
define the kernels s,, t., K] ; and K by

|K(z,y) = K(z, 1) < C

2y—(y o)

sr(z,y) = w—nma

n—2 (r
2—7,/0 so(z,y)do,

_ LY — XY
Kj(z,y) = Ty — ra[L

te(r,y) =

and )
K(z,y) = —/ P, (x,y)dr,
0
where P,.(z,y) denote the Poisson kernel

1 1—1r?

Pr(z,y) = o Ty — rar
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Let ¢, = s, +t,,0 < r < 1. For f € L>(S™) we define the operators R,, R},
and A, 0 <r<1landije€{l,2,..,n+1}, by

R f@) = [ a-(ey)f)do(y)

R, f@) = [ K@) ()do(y),

Af@) = [ K(@y)f()do(y),

with x € S"if 0 <r <1and x gsupp fifr=1.

The operator R = Ry is called the Riesz transform on S™ and it
was proved in Kordnyi-Végi [14, p. 636] that: lim,_,; R,f = Rf there exists
a.e. and in LP(S™), 1 < p < oo; the operators R, are uniformly bounded
on LP(S™), and ¢.(gx,9y) = ¢ (x,y) for all z,y € S, g € SO(n + 1).
The operators Rf; were considered in Coifman-Weiss [6, p. 76]. They are
uniformly bounded on L*(S™) and K7 (gx, gy) = K7 ;(x,y) for all 2,y € S,
g € SO(n +1). The operator A was studied in Levine [15, p. 508] where it
was proved that: it is bounded on LP(S™) for 1 < p < oo; if Y} is a spherical
harmonic of degree k then AY, = =Y, /(k + 1), and K(gzx,gy) = K(z,y) for
all z,y € S, g € SO(n +1).

In Section 4 we prove the following result.

Corollary 1.1 Let 1 <p < oo, W € Ay(S") and T € {R,, Rl .,A:0<r <

1,57
1,1 <1i,5 <n+1}. Then there exists a constant C, such that,

1> Tfiesllzwy < Coll X fiesllz s (1.8)

7=1 7=1
for all f =%, fie; € LP(S",Wdo; E).

A local field is any locally compact, non-discrete and totally discon-
nected field. Let IK be a fixed local field and dx be a Haar measure of the
additive group IK™ of IK. The measure of a measurable set A of K with
respect to dz we denote by |A|. Let m be the modular function for IK*,
that is, m(\)|A| = |MA| for A € IK and A C K measurable. We also denote
|z| = m(z). The sets

D={reK:|z|]<1} and B={z e K:|z| <1}



are the ring of integers of IK and the unique maximal ideal of ID, respectively.
Let ¢ = p® (p prime) be the order of the finite field ID/IB and let = be a fixed
element of maximum absolute value of B. The Haar measure dz is normalized
such that |D| = 1 and thus |7| = |B|=¢ %

A local field IK has a natural sequence of partitions by balls satisfying
the conditions (i) and (ii) of Lemma 3.1 in Section 3, when we consider the
distance d(x,y) = |z — y|. It follows from this remark that the Theorems
1.1 and 1.2 hold without the hypothesis of ® being a convex function. The
extension of these results for a finite product of local fields is an immediate
consequence of a M. H. Taibleson’s theorem (see [23, p. 548-549)]).

A kernel K € Lj,.(K" x K"\ A) satisfies the condition (H) if for
z,y € K" with |z| > |y| we have

ly|
|x|n+1'

|K(z,y) — K(z,0)] < C

Let w(z) be a function defined on K" and satisfying:

w(zr) = w(n’z), j integer, x € K";

/va|=1 w(z)dx = 0;

e — 7y) — w(@)| < Cq, j =1, |al =yl =1.
Then the kernel ¥(z,y) = ¥(z — y) where
w(r)
Tl

satisfies (Hy) and (H. ). For f € L®(IK") and z € K",z ¢ supp f we
define

U(z) = z € K"\ {0},

Uf(w) = [l ¥l = 5)F()dy.

The operator U was studied in Phillips-Taibleson [17] and it was proved that
U is bounded on LP(IK") for 1 < p < oco. Therefore the next corollary follows
from Theorem 1.4.

Corollary 1.2 Let 1 <p < oo, W € A,(IK"). Then there exists a constant
C, such that,

1> Utieillzzony < Coll 3 fieillzgony. (1.9)

forall f =%, fie; € LP(IK", Wdy; E).
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Now let E be an UMD Banach lattice of real-valued measurable
functions on a o-finite measure space (Y, B,v). The absolute value of h € E
is given by |h|(y) = |h(y)], y € Y. We identify a function f € L5 (W)
with a function defined in the product X x Y setting f(z)(y) = f(x,y). We
denote by LP(W) ® E the set of all vector-valued functions f of the type
f= Z?Zl a;f;, for a; € E, f; € L?(W) and for a integer k, k > 1. This set
is a dense subspace of L%,(W) for 1 < p < oo and any weight W. Given an
operator T in LP(W), we define its extension T in L?(W) ® E (see Rubio de
Francia [18]) in the following form:

Tf(z,y)=T(f(y) (), (z,y) € X x Y.

A characterization of UMD Banach lattice in terms of the extension M of the
Hardy-Littlewood maximal operator, when X = IR", was given by Bourgain
[2] (see also [18]). The Bourgain’s characterization says that E has the UMD
property, if and only if, M is bounded on L2 (IR") and on L%, (R") for some
p, 1 < p < oo, where p' is the conjugate exponent of p and X' is the dual
space of E. The maximal operator M and others maximal operators of the
same type were studied in [10, 12, 11], for X = IR™. In [10] are given new
characterizations of UMD Banach lattice in terms of maximal operators.

In Section 2 we consider the maximal operators Nf = f* and
NP f = f%from martingale theory and their vectorial extensions N(Zj fiej) =
>, fieg, ﬁﬁ(zj fie;) = % f]"jej. The analogous of Theorem 2.4 in Section
2 for the operator N was proved in [25]. By the same way we can prove
the analogous of Theorem 2.7 for the operators N and N Proceeding as in
Section 3, we can apply the inequalities obtained for N and N and prove
the following theorems.

Theorem 1.5 Let W € A (X) and suppose that ® is a convezr function.
Then there exists a constant C, depending only on E, ®, X and W such
that, for all f € L'(W)® E,

[ @ (IRT5@)) W @)dp(a) < € [ ® (7)) W (@)dutz).  (1.10)

Theorem 1.6 Let W € A (X) and suppose that ® is a convezr function.
Then there exists a constant C', depending only on E, ®, X and

W such that, for all f € L'(W)® E,
[ @ (17l Waduts) < € [ @ (TP Wdute). (110
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If ®(t) =P, 1 < p < oo, then we can extend the operators M and

ki by a limit process to all L1, (W) and the above theorems will hold for
these extensions. Proceeding as in Section 4 we can apply Theorems 1.5 and
1.6 and prove the following analogous of the Theorem 1.4 for Banach lattice.

Theorem 1.7 Let 1 < p < oo, W € A,(X) and let T be a singular in-
tegral operator. Assume that the kernel K of T satisfies (Hy), (H.,)) and

K(gz,gy) = K(z,y) for all z,y € X, g € G. Then there exists a positive
constant C, such that, for all f € LP(W) ® E we have that

T fllrzwy < Coll £z ow)- (1.12)

Moreover, the operator T can be continuously extended to all Lk, (W) and the
above inequality holds for its extension and for all f € L% (W).

Applying Theorem 1.7 we obtain the analogous of Corollaries 1.1
and 1.2 for the case of UMD Banach lattice.

2 Maximal Operators in Martingale Theory

Let (Q, F,P) be a probability space and for each k£ = 0, 1,2, ... let A
be a partition of 2 by elements of F satisfying: P(Q) > 0 for all Q € Ay;
the o-field F is generated by the union A = U  Ay; the partition Ay is
a refinement of Ay, that is, for each ) € A, there exists an integer ng > 1
and Q1, ..., Qn, € A1 such that Q@ = Q1 U ... U Qy,. We will denote by
Fi the o-field generated by A; and we will always assume that the sequence
(Ag)k>o is regular with respect to PP, that is, there exists an absolute constant
0 > 1 such that

P(Q) < 0P(Q2), (2.1)

for all Q@ € A and Q5 € Ak-}-l with Q2 C Qq,k > 0.

Given a FE-valued integrable function f : Q — E we will also de-
note by f the martingale (fi)r>o where f; = E[f|F;] is the conditional
expectation of the function f with respect to the o-field F;. A stopping
time is a function 7 : Q@ — {0,1,...,00} such that {T" < k} € F; for all
k > 0. For a stopping time T we denote by Fr the o-field of all sets A € F
such that AN{T < k} € Fy, for all £ > 0. The martingale transform “f
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stopped at T” is defined by 7 = (f)i>0, fii (W) = frw)a(w) and we write
fr(w) = frew)(w). We can show that

BI(A){f — fr} |F] = I(A) (fi = fi) (2:2)

for all integrable functions f : Q2 — FE, all stopping times 7', all £ > 0 and
all A € Fr, where I(A) is the indicator function of the set A.

For a real-valued integrable function f we define the maximal func-
tions

(@) = sup ule)] = sup oo | [ fa

Fw) = swp Ef = £l 1Fle) = sup oo /Q 7 oldP

QeA

o

For an integer n > 0 we define f = (f,)*, f} = (fa)".
It is well known (see [9]) that

where

£y < CollF2llp , 1 < p < oo, f € L(Q,F,P). (2:3)

We can prove (2.3) using the method known as the Calderén-Zygmund de-
composition (see [8, Theorem 5, p. 153]), replacing the dyadic cubes of R"
by the elements of A.

Given a positive integrable function W on €, we denote by L% (W)
or LP(Q,F,WdP; E), 1 < p < oo, the Bochner-Lebesgue space consisting of
all E-valued (strongly) measurable functions f defined in € such that

1/p
I£ligon = ([ 15w aPE) " < oo
We write L5, (W) = LP(W) when E = R and LE,(W) = L%,(Q) = L%, when
W =1.

Let W be a positive integrable function on €2 and let 1 < p < oco. If
there exists a constant C' such that

(e ) g ) < e
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for all Q € A, we say that W is a weight in the class A,(A). The class
A (A) is defined as the union of the classes A,(A) for 1 < p < 0.

Let U be an operator on L}, such that, for each f € L} it associates
a nonnegative process (U f)r>o with Upf = 0 and Uy f Fj-measurable, £ > 0.
For a stopping time 7" we denote by Uj. the maximal operator defined by

Urf(w) = sup Upf(w).

F<T(w)
We write U* f = U~ f.
Theorem 2.1 ([24]) Let W € A (A) and let U and V be two operators on
LY, as above. Suppose that
Urnsf = U;fsa Vinst = qufs

for all stopping times T and S and all f € L. If there exists a constant C
such that
E{U;f = Uppef Y | Fr] < CE{VE fY? | Fr)

for all k > 1, all stopping times T and for all f € LY, then there exists a
constant C' such that

/ U f)WdP < C/ ®(V* f)WdP,

Q Q

for all f € L. The constant C depends only on W,0,® and E, where 0 is
the constant in (2.1).

Theorem 2.2 ([25]) Let U and V' be two operators such that, for each real-
valued integrable function on ) they associate nonnegative F-measurable
functions. Suppose that for any Z € As(A) there erists a constant Cy,
depending only on Z, such that

/QU(h)ZdH’ < C’Z/Qv(h)ZdH’ ,

for all h € U2 (LY (Q, Fy,IP). Then for all 1 < p < oo, there exists a constant
C, such that

1>_Ufieillon < Coll >V fiejlinn

forall f =73, fie; € U LP(Q, Fy, IP; ).
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Theorem 2.3 ([13]) Let W be a positive integrable function and let 1 <
p < oo. Then W € A,(A) if and only if the operator f — f* is bounded on
LP(W).

Theorem 2.4 ([25]) Let W € A (A). Then there exists a constant C,
depending only on E,® and W, such that, for all f =3, fie; € LL,

k
Aﬁ<gﬂ;ﬁmowwscéwwmww (25)

Lemma 2.1 There exists an absolute constant C' such that, for all stopping
times T, all f € L'(Q, F,P) and all integers n > 0,

E{(f = fORY |Fr) < CEH{(f = f1)i}* |F1l. (2.6)

Proof. Let us fix T, f,n and A € Fr and let us consider the martingale
9 = (gk)k>0, gx = E[I(A){fn — fran} |Fi]. From (2.2) it follows that

gt = T(A) (i = ™)
and hence
gn=I(A)(f = )5 (2.7)
and
190 = gkl = IA)(f = [ = (f = fT0l, 1<k <,
Since AN{T < k} € Fj, we have that
Ellgn — gl |F1] = EIANAT < kDI = 1) = (F = F1el 1]
+ BIIANT > EDIf = [ = (F = 1)l |74l
= IAE[(f = fD)n = (F = [l 17l
and hence
gh = I(A)(f — 7). 23)
Then from (2.7), (2.8) and (2.3) for p = 2 we obtain

JAG=yae = gl
< Clgls
= ¢ [{(f - Miyap

Since the above inequality is true for all A € Fr, we obtain (2.6). B
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Theorem 2.5 If W € A, (A) then there erists a constant C' such that
/Qq)(f*)Wle < C’/Q<I>(f”)WdIP (2.9)

for all f € LY(Q, F,P). The constant C' depends only on W,0 and ®, where
6 is the constant in (2.1).

Proof. Let us fix f € L', a stopping time T and an integer n > 0. Since
g — ¢* and g — ¢' are sublinear then

0< fo=fram < (f=fh (2.10)
and
(F = 1T < fit foan <217 (211)
Therefore by (2.6)

E[{fy = fina* \Fr] < EH{(f = 1)} | F7]
CE[{(f = f1)i} |F7]

ACE{ fi}? |F1].

VANVANRPVAN

It is easy to see that fi, ¢ = (f%)% and fh.o = (f5)h for all stopping times
T and S. Then applying Theorem 2.1 we obtain (2.9). B

Theorem 2.6 Let 1 < p < oo. If f = X, fije; € L then ¥, fie; and

>, f]qej converge in LY, and

1Y freill < Goll Y- fegllin (2.12)
7j=1 7=1

where Cy, is a constant depending only on p,0 and E.

Proof. Let ®(t) =t and Z € A, (A). Then by Theorem 2.5 there exists a
constant C'z such that

/ P ZdP < CZ/ FLZdP,

Q Q

for all f € LY, F,P). Therefore, from Theorem 2.2 there exists a con-
stant C), depending only on p,f# and E such that (2.12) is true for all f €
URo LP(Q, F, s E).
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It follows by Theorem 2.4 for ®(t) = ¥ and W =1 and by Theorem
2.3 that the operator ﬁ(zj fiej) = ¥; fie; is well defined and is bounded
on L. Since fﬁ < 2f7, then the operator ﬁﬂ(zj fie)) =%, f}ej is also well
defined and is bounded on L. But U2, LP(Q, F,P; E) is dense in L%, and
hence we obtain (2.12) for all f € L},. ®

Theorem 2.7 Let W € Ay (A). Then there exists a constant C, depending
only on W,0,® and E such that, for all f =3 fe; € Ups1 L,

[ srelwar < ¢ [ a3 fiehwar. (213

Proof. We observe that F is a Banach lattice with absolute value | 3, z;e;| =
¥j |zjle;-

Let 1 <p < ooand f =Y, fje; € L. By the proof of Theorem
2.6, Nf = > fje; and Nﬂf =3 fﬁej are well defined as functions in
L. We define Uf = ||[Nf||, Vf = |[N*f|| and U,f = U(E[f |F.)), Vof =
V(E[f |Fn)). Since (U, f)n>o is an increasing sequence and U, f — U f in L?
when n — oo, then it follows that U*f = sup,;»,U,f = Uf. By the same
way V*f=Vf. -

If T is a stopping time, we obtain from the inequality (2.12) for p = 2,
as in the proof of Lemma 2.1, that there exists a constant C' independent of
f,T and n, such that

BlUR(f = f1) |Fr] <CEWVZ(f = 1) |F2l.
;From the inequalities (2.10) and (2.11) we obtain
Unf = Uranf| < Un(f = f7),

Va(f = f1) < 2Vif

and hence

Now, since (f;)ins = (f7)5 and (fj)ins = (f)f, then it follows that
Urprsf = Urf® and Vpasf = Vi f® for all stopping times T and S. Therefore
we can apply Theorem 2.1 and to obtain (2.13). B
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3 Maximal Operators on Homogeneous Spaces

Lemma 3.1 (/22], Lemma 3.21, p. 852) Let b be a positive integer and let
A = 8n°. Then for each integer k, —b < k < b, there exist an enumerable

Borel partition A% of X and a positive constant C' depending only on X, such
that:

(i) for all Q € AL, —b < k < b, there exists xg € Q such that B(zg, \¥) C
Q C Blrg, 1) and j(B(rg, 1)) < Cu(Q);

(ii) if =b <k <b, Q1 € All::+1) Qs € A and Q1N Qs # 0, then Q2 C Q,
and 0 < p(@Q1) < Cu(Qs).

For a real-valued locally integrable function f on X we define

Mif(@) = sup —s [ 17 0)ldn(y)

QEA

M (@) = sup o [ 11(0) = oldu(y)

IEQ

Mg (@) =sup—z [ 1F)lduty)

and
M f(x) = =sup

57 o 170 = sl

where the supremum is taken over all balls B = B(a,r), such that z € B
and A7 <7 < A\ and Ab = U_p<k<p Ab.

Lemma 3.2 Let W € Ay (A%). Then there exists a constant C, depending
only on E, ®, X and W, such that, for all f =3, f;e; € L,

[ q)(iglfII;Mé’fj(x)ejII) W)du(e) < C [ @ (MIFI)@)) W (2)di).
(3.1)

Proof. Let A} = {Q% :i € I}, I, C IN, and consider the probability
measure ;¢ on the Borel subsets of Q¥ given by u?(A) = u(A)/u(Q?). Given

17



f =% fie; € Ly we have that M3f;(z) = (|f;l i) (x), for = € @, and
hence by Lemma 3.1(ii) and Theorem 2.4,

/ﬁ(gw;Mmmwowmmm
= > u@ /b<mszMmY@W0m@@@Wﬁ

< O [ @ (My(IfI)() W@)dp(x). m

Lemma 3.3 Let W € Ay (A%). Then there exists a constant C, depending
only on E, ®, X and W, such that, for all f =3, fie; € Ups1 L,

L@@iMM@M@W@MM)

sq&¢@§MﬁM@mgwwwu) (32)

Proof. Let us consider p?, i € I,, as in the proof of Theorem 3.1. Given
f =13, fie; € Ups1 Ly we have that M) f;(z) = (|fj||Q?) (z), for z € Q?,
and MY*(|f;])(x) < 2MY*f;(x), for # € X. Therefore by Lemma 3.1(ii) and
Theorem 2.7,

L¢@§MM@M0W@MM)
::ZMQ/l(n(mwrumomwmwm

< CZM(Q qu) (”i |f]|\Q” e]“) I/V|Qb( )du?(m‘)
= C/X‘I’ <||ZM3’H(|fj|)(l")6j||) W (x)du(x)
<

dA@@iMWmmowwwml

18



Lemma 3.4 Let C' be the constant in Lemma 3.1. Then, for all 1 < p < oo,
all real-valued locally integrable function f
and x € X, we have

Ay (X) € A,(AY, (3.3)
M f(x) < CMPf(2), (3.4)
MY () < 20M% f(x). (3.5)

Proof. Let 1 <p < oo, W e A,(X), Qe A, -b<k<bandzr € Q. By
Lemma 3.1(i) there exist zg € @ and C' > 0 such that Q C B = B(zg, \*'!)
and pu(B) < Cu(Q). Therefore it follows by (1.2) that

Now for a real-valued locally integrable function f we have that

5 | Flautn) < = [ wldnty
and

%54V@—mww

IN

07 o) = aldn(v) + 15— fol

g 110 = Faldn()
< 20MPf(z).
Thus we obtain (3.3), (3.4) and (3.5). ®

IN

The following lemma is the analogous of a result by R. Wheeden [26]
for the fractional maximal operator and for X with a group structure.

Lemma 3.5 Let b be a positive integer. Then there exists a constant C',
depending only on X, such that, for all real-valued locally integrable function
fon X and all z € B(1,\°), 1 = 7r(e), we have

M () < o / MY f(x)dg, (3.6)

where
G={g€eG : dgl, 1)< )\b+3}

and M}? f(x) = Ry~ MUR,f(x), g € G, x € X.
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Proof. First we observe that |G,| = u(B(1,\*™3)) > 0. Let us fix
r € B(1, \). From the definition of M?f(x), there exists a ball B = B(a,r)
such that z € B, A™*"! <r < A\’ and

M (@) < 5 [ 1 w)lduty). (3.7

Let —b < k < b such that \¥=! <7 < \¥. We denote by Q the set
Q= {g € Gy : there exists @) € Azﬂ such that B C g_lQ} .

Given g € Q, let Q € A%, such that B C ¢7'Q. By Lemma 3.1(i) there
exists g € @ such that B(zg, \**') € Q C B(zg, AF?) and hence ¢~'Q C
B(g 'zg, \Ft?). If s is the integer such that 2°7% < A* < 2% then by the
doubling condition we have pu(B(g 'zg, \*72)) < A*u(B) and thus
= [l < — 2 [ 1 w)ldn(y)
T y)lep\y) =~ —— -3 y)laply).
u(B) /s 1(g'Q) Jo1@

Therefore from (3.7) we get
Mf(x) < 24°Mg?f(x), g€ Q.

Now suppose that there exists a positive constant « such that |Q] > «|G,| for
all positive integers b. Then integrating both sides of the above inequality
with respect to the Haar measure dg and on €, we get (3.6) for C' = 2A4%a~".
We will prove that there exists a positive constant a;, depending only
on X, such that |Q| > «a|Gy|. Given y € X we denote by g, an element in G
such that y = g, 1.
Let 2 € g,,0k—39; - Then zz € B(zq, A¥) and hence for y € B,

d(zy,zg) < n(d(zy,zx)+d(zx,xq))

nn(d(y, a) + d(a, z)) + A*]
AL

IA A

Therefore y € 27'Q) and hence
BCz'Q, %€ guyGr-sy, - (3.8)
Let us denote by I' the set

T={QeA, : QnB ") £0}.

20



Fix Q € T and let u € Q N B(z, \**?), g € 92oGk-3. Then gl € B(zg, \F)
and

d(gl, 1) N(d(gT, xq) + d(zq, 1))
A" +n(d(zq, u) + d(u, 1))]
n{ A" + 0[N+ (d(u, ) + d(z, 1))}

4,'73 )\b+2

VANVANRVANRVAN

and hence

n(d(g97"'1, g, 1) + d(x, 1))

n(d(gl, 1) + A"
)\b+3‘

d(gg,'1,1)

ANVANRVAN

Thus g € Gyg, and hence

nggk73g;1 CGy,, QeT.

Therefore from (3.8)

U gIng,gg;I c Q. (3.9)
Qer

IfQ,Q € Ay, and Q # Q' then B(zg, \¥) N B(zg, \¥) = 0 and hence
920 Gk—-395 N Yoo Gr-39, " = 0.

Then, since G is unimodular (see [14, p. 578]), it follows by (3.9) and by the
doubling condition that

Q > | nggk—3g;1|

Qer

= Z |nggk73|

Qer

QZFASM(B (2, A"?))

(g
Qerl

A7 (B, A7)
A7|G,.

Y

Y

AVARY]
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Proof of Theorem 1.1: Let us denote by C' the greatest constant among
the constants C' in (3.1), (3.4) and (3.6), and let s be the integer satisfying
270 < C <2 Let f=3XF, fie; € L. Since W € Ay(X), we can
choose 1 < p < oo such that W € A,(X). Then, it follows by (1.2) that
R,W € A,(X) and C(p, R,W) = C(p, W) for all g € G. Therefore by (1.1),
(3.1), (3.3), (3.4), (3.6), by Jensen’s inequality and Fubini’s theorem we have
that,

/B(n,,\b) ® (“ Zbej(x)ej”) W (x)du(x)
/BM, (|g|/ IIZMd,ng e]||dg) W () dp()

< e [ @ (n gM,z(Rgfj)(y)ejn) R W (9)du(y)
< supcC [ ® (Mo f1) (%)) ByW (y)dpa(y)
< supcC [ @ (M(IR,f])(g2)) W (x)dp()

g€

< C [ @ (I @) W (@)dux),

since M(|R,fl)(gz) = M(|f[)(@). Now, let f = T2, fie; and f* =
Z?Zl fiej, k > 1. Since the above inequality is true for all f¥ k > 1, it
follows by the Monotone Convergence Theorem that

/B(ll,/\b) ¢ (?;;113 I ; M"f; (x)ej“) W (z)dp(x)

< e [ o (M(If1) @) W(a)du(a).

Letting b — oo on both sides of the above inequality we obtain (1.3).

Finally, let 1 <p < oo, ®(t) =1, W € A,(X) and f = 22, fje; €
L% (W) N L. By (1.3) and since the operator M is bounded on LP(W) (see
[5]),

l+m l+m

1> Mfeslmay < CYPIIM(| Z fi€ilDllzg, ov
j=t

={
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l+m

< 'Y fieilln wy
j=¢
.From the above inequ~ality we can conclude that 3322, M fje; converges in
L% (W) to a function M f and

IM fllenowy < CN fllezow)

Now let f =3, fie; € L (W) such that f; > 0, for all j > 1. For each j,
let (fk)de be a sequence of simple functions such that 0 < f’C T f; ae.,
k — co. Then Mff + Mf; and for f* =%, fre; € LL(W)nN LlE we have

Mf% 4 Mf ae. Then
M flle )y = Jim M f¥]| 1wy
: 1| £k
Jim C[ g owy
o !
= C'||fllez ow)
__ Proof of Theorem 1.2: It follows by Theorem 1.1 that the operator
M(X; fie;) = 32 M fje; is well defined and is bounded on LF,. Since M*f; <
2M f;, then the operator Mﬁ(zj fie;) = % M f;e; is also well defined and
is bounded on L7,
Let us denote by C the greatest constant among the constants C'
n (3.1), (3.5) and (3.6), and let s be the integer satisfying 2°7! < C' < 2%,
Since W € A, (X), we can choose 1 < p < oo such that W € A,(X). Then,
it follows by (1.2) that R,W € A,(X) and C(p, R,W) = C(p, W) for all

g € G. Therefore by (1.1), (3.2), (3.3), (3.5), (3.6), by Jensen’s inequality
and Fubini’s theorem we have that,

/B(]l,,\b) ® (“ ibej(x)ejH) W (x)du(x)

/BM, <|g |/ IIZMd,ng e]||dg) W () dp()
Sub CS/X(P (H zMg(Rgfj)(y)ejH) R,W (y)du(y)

IN

A

9€Gy

A

9€Gy

sup *C [ @ (n iM&”(Rgfj)(y)ejn) Ry W (5)du(y)
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j=1

< swpetio [ @ (n iMb’”(Rgm(gx)ejn) W (2)dn(z)

A
Q[\')

x
Q

K (n iM”fj(:v)ejll) W (@) du(a)

since M¥(R,f;)(gx) = M*f;(x). Letting b — oo we obtain (1.4). W

4 Singular Integral Operators

In the proof of the following lemma we use the potential-type construc-
tion by Bourgain [2].

Lemma 4.1 Let 1 < p < oo and W € A,(X). Then there erist positive
constants Cp, and r, v > 1, depending only on p, W, X and E, such that

1Y M, fiejlln vy < Coll Y fiesllie wys (4.1)
7=1

7j=1
for all f =¥, fye; € IL(W), where Myg = (M(|g|")"" .

Proof. Let 1 < p < oo, W € A,(X), ®(¢t) = t?, let C be the constant in
(1.3) and let g = X" gje; € L (W). For each j > 1 we define

o0

W = Z(?Cl/p)_iM(i)gj,

1=0

where M®) g; is defined inductively by M g; = |g;|, MtV g, = M(M®g;).
We have that
M1p; < 2C"Pep,

and hence the weights v;,7 > 1, are by definition, uniformly in the class
A;(X). Tt follows by the Reverse Holder’s Inequality (see Calderén [5]) that
there exist positive constants C' and r, r > 1, depending only on p and C,

such that Y
1 . " o
(5] = iy f v
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for all balls B and all j > 1. Therefore
M,g;(z) < Myp(z) < O Mipj(x) < 2CPC ().

But by Theorem 1.1,

| lejejHL%(W) < ;(QCW)*Z’H ZIM(i)gjejHLf,;(W)
= i= j=
< 2[gllze w)

and hence

IS Mygiesllinay < 2CPC1Y weslln oy

Pt =1
< 40T ||g| g -

Lemma 4.2 Let T be a singular integral operator bounded on L"(X) for
some r, 1 < r < oo. Assume that the kernel K of T satisfies (H.)) and
K(gz,gy) = K(x,y) for all z,y € X and g € G. Then there exists a
constant C, such that

MH(Tf)(x) < Co M, f(x), fe LE(X).

Proof. Let us fix g € X, ¢ > 0 and let B = B(x, (), B?> = B(x,2(). For
feLX(X) weset g= fxpz,h=f —g. Since T is bounded on L"(X), then
for all z € B,

1 2
5 [ 1Tate) = Topslinte) < —= [ (Tglo)lduta)
1 ) 1/r
< G (s, loorants))

< CAY Myg(2).
Now let x € B, g € G such that gxg = 1, T = gz and

Si(@) = {t: 2d(z, 1) <d(t,1) <2 d(z, 1)} .
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Then by the (H.) condition, for all z € B,

[Th(x) = Thiay)|
o K@) = Ko, 10(0)ld(y)
< /dm)m(m' (1,7) — K (6, 1) |Ryh(t) dpa(t)
< OS [, o) dE i A e Ol
- ACJZI u(B(as, ;id(m,%))) sty OV
- Zx M(B(xoa;“d(ﬂfa%))) Fearsateamy M)
< ACMA)
and hence
5 [ 1The) = TWyaldn(e) < s [ [Th(e) = Thian) )
< 2ACMh (2).
Thus for all z € X
VAT
< s [ [Tola) = (Ta)sldu(a) +sup s [ [Thiz) = (Th)pldn(a)
< Cerf( )-

Proof of Theorem 1.3: Let us fix 1 < p < oo, W € A,(X) and let r
and C), be the constants in Lemma 4.1. Then it follows by (1.4) for ®(t) = ¢?,
by (1.5) and (4.1) that, for all f = 3, fie;, f; € LP(X) for j > 1, and all

positive integers ¢ and m,

l+m

| Z T]'ijjHL%(W) <
=t

l+m

132 M(T;£5)eillnom)

j=t

26

l+m

01/;;“ Z Mu(ﬂfj)€j||Lg(W)

i=t



l+m
< CVPC Y M, fieglln wy
Jj=t
l+m

< Cl/PCGCH Z fjejHL%(W)-

i=t

The above inequality implies that the sequence of partial sums of the series
>-; T;f;e; is a Cauchy sequence in L%;(W) and hence it converges in L, (W).
Putting ¢ = 1 and letting m — oo on both sides of this inequality we obtain
(1.6). m

Proof of Corollary 1.1: For all 0 <r <1 and all z,y € S,

ly = (y- )] <2y — =], (42)

=1 —[(y— 1) - ala] <2y — 1], (43)

(@ 1)1 — (- gyl < 2y — 1], (4.4)

ly — x| < 2[y — raf (4.5)

and for all 0 < r <1 and all z,y € S™ such that |z — 1| > 2|y — 1],

1

§|]1 —rz| < |y —rz| < 2|1 - rz|, (4.6)
1

§|x—r]l|< |z —ry| < 2|z —rl|. (4.7)

Now fix 0 <r <1 and z,y € S™ such that |z — 1| > 2|y — 1|. Then by (4.6)

|1 = ra " — |y — ra™
< (|0 —ra[" 4+ |1 —rz|™ Yy —r2| + -+ |y — rz]™)
< Cly—=1] |1 —rx

and hence by (4.2), (4.3), (4.5) and (4.6) we obtain

2 | |]1_7,x|n+1_ |y_7.x|n+1|
r 9 — 9op ;]1 S - - )
|sr(7,y) — 5, (2, 1) wn|y (y - z)z| ly — rz|P I — rz|ntl
. 2ly—1- (1)l
Wn, |1 — rznt!
ly — 1|
< C1———
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|t7‘(xay) - tr(xa ]1)| S

"2 sol ) — ol 1) ldo
(n—2)Cy |y —1]
2 |z — 1|+t

|| 1 —ra"" — |y — ra"*|

|KZ’:J( y) — K}, (x | < |zwyj — 2y ly — rz[" L[ — rz[rtL

1
+ fwilyy — 1) — 2y — ]1z')|7|]1 o
ly — 1|
Cort———.

Since |1 —rz| > 1—r,

1—r2| |1 —rz|™*! — |y — rz|?*!
|Pr(xay) _Pr(xan” | | | | | |

Wn, ly — rz[»+H 1 — ra|ntt
ly — 1|
= -1t
and hence
K () — Ko, 1)] < G L=
€,y x, -~ 3|$—]]_|n+1

Therefore the kernels s,, t,, K ; and K satisfy the condition (Hy,) uniformly
forall0 <r <1, i4,j¢€ {1,2, .. n+ 1} . By the same way we can use (4.2),
(4.4), (4.5) and (4.7) to show that Sr, try Ki;j and K satisfy (H__) uniformly
for all r,4,j. The conclusion of this corollary follows from the remark given
above of the statement of Corollary 1.1 and from Theorem 1.4. B
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