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Abstrat

We study the hain transitive sets and Morse deompositions of

ows on �ber bundles whose �bers are ompat homogeneous spaes

of Lie groups. The emphasis is put on generalized ag manifolds of

semi-simple (and redutive) Lie groups. In this ase an algebrai de-

sription of the hain transitive sets is given. Our approah onsists in

shadowing the ow by semigroups of homeomorphisms to take advan-

tage of the good properties of the semigroup ations on ag manifolds.

The desription of the hain omponents in the ag bundles generalizes

the Theorem of Selgrade for projetive bundles with an independent

proof.
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1 Introdution

The subjet matter of this artile are ows on �ber bundles whose �bers are

ompat homogeneous spaes of Lie groups, with emphasis to non-ompat

semi-simple Lie groups and their ag manifolds. The aspets of these ows

to be studied are the hain transitive sets and Morse deompositions.

In our set up we start with a prinipal bundle Q ! X with strutural

group G, and let �

t

be a ow of homeomorphisms of Q whih ommutes with

the right ation of G. If F is a homogeneous spae of G we an form the

assoiated �ber bundle E = Q�

G

F ! X with typial �ber F . The ow �

t

on Q indues a ow on E, in whose dynamis we are interested. We shall be

onerned mainly with the generalized ag bundles when G is a non-ompat

semi-simple (or more generally redutive) Lie group and F = G=P is one of

its ag manifolds, where P is a paraboli subgroup of G.

The main result desribes the maximal hain transitive subsets of a ow

on a ag bundle by giving an algebrai haraterization of their intersetions

with the �bers. In fat, �xing a maximal hain transitive subset X in the

base spae we prove in Theorem 9.11 that there exists an adjoint orbit, say

O

�

, in the Lie algebra g of G and a map x 2 X 7! H

x

2 O

�

suh that the

intersetion of a maximal hain transitive subset M with the �ber over x is

given by the singularities of H

x

. Preisely, if we identify the �ber over x with

G=P then the intersetion of M with the �ber is a onneted omponent

of the �xed-point set of the one-parameter group exp (tH

x

) ating on G=P .

These onneted omponents are algebrai varieties that are orbits of the

identity omponent of the entralizer of H

x

in G.

The lass of ows treated here forms a natural generalization of linear

ows on projetive bundles, whih have been extensively studied in the lit-

erature (see e.g. Colonius-Kliemann [5℄, [6℄, Conley [7℄, Saker-Sell [16℄,

Salamon-Zehnder [17℄, Selgrade [18℄, and referenes therein). In fat, linear

ows on projetive bundles are obtained when we speialize Q! X to be a

Gl (n;R) prinipal bundle and take as F the real projetive spae with the

standard projetive ation of the linear group.

As a motivation to work with other �ber bundles, we note that a nat-

ural way to produe ows on projetive bundles is to start with a smooth

dynamial system in a manifold. Its linearization indues a ow on the pro-

jetive bundle of the tangent spae. Some new bundles arise in for dynamial

systems whih leave invariant a geometrial struture like e.g. Hamiltonian

ows, ows of isometries of pseudo-Riemannian manifolds, ows of holomor-
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phi maps in pseudo-omplex manifolds et. In suh ases we an see the

linearized ow as given by a right invariant ow on a redution of the bundle

of frames of the manifold. Anyway we mention that the problem of studying

ows on bundles of homogeneous spaes was posed by Conley [7℄ (see page

83), having in mind Hamiltonian ows evolving e.g. in bundles of Lagrangian

subspaes.

The study of hain reurrene and Morse deompositions of linear ows

on projetive bundles goes bak to Selgrade [18℄, whose theorem shows that

the hain reurrent omponents of a ow whih overs a hain reurrent ow

on the base are vetor subbundles, whih deompose the vetor bundle in a

Whitney sum (see also Salamon-Zenhder [17℄). Reently, Colonius-Kliemann

[6℄ generalized the result of Selgrade by showing the existene of a �nest

Morse deomposition in the bundles whose �bers are ag manifolds of sub-

spaes of a vetor bundle.

Here we extend these results to generalized ag manifolds. In fat, by

the very onstrution of the adjoint orbit O

�

, mentioned above, ad (H

x

) is

diagonalizable with real eigenvalues. Hene when speialized to vetor and

projetive bundles we get on eah �ber a diagonalizable linear map whose

eigenspaes are the hain reurrent omponents, reovering the results of

Selgrade and Colonius-Kliemann (see Theorem 10.1). Atually, our proof

does not require ompatness of the bundles (or equivalently of the base

spae). This is why the results are stated in terms of maximal hain transitive

sets, whih in the ompat ase oinide with the hain reurrent omponents,

providing a �nest Morse deomposition.

At this point we must mention that our approah to hain reurrene

requires that the set of loal homeomorphisms of the base spae X is loally

transitive in the sense that we an map any x 2 X to neighboring points using

\small" loal homeomorphisms of X. Although restritive this ondition is

weak enough so that many lasses of reasonable metri spaes are allowed as

base spaes, like e.g. ompat Riemannian manifolds or open sets in Frehet

spaes.

We explain now the method of proof, whih we believe to have indepen-

dent interest sine it establishes a link between topologial dynamis and

semigroup theory. Starting with a ow � we generate semigroups of loal

homeomorphisms S

";T

, "; T > 0, by suessively omposing the loal home-

omorphisms whih are "-lose (in their domains) to some �

t

, t > T . We

all S

";T

, "; T > 0, the shadowing semigroups of the ow. The orbits of S

";T

are related to hain attainability with the onlusion that a maximal hain
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transitive set for the ow is the intersetion of ontrol sets for the shadowing

semigroups (see Theorem 4.7 below). Here the loal transitivity assumption

enters to ensure that it is possible to substitute "; T -hains by the ation

of S

";T

. The idea of looking at "; T -hains through shadowing semigroups

was already exploited by the authors in [3℄ to study hain ontrol sets for

semigroup ations and ontrol systems.

After relating hain transitivity to ontrol sets we proeed to apply the

theory of semigroups to handle the maximal hain transitive sets (and hene

the Morse deompositions, in the ompat ase). In �rst plae the topologial

arguments of [4℄ are used to redue the problem to a �berwise analysis, whih

amounts to look at semigroup ations on homogenous spaes. This leads us

into the realm of the Lie theoreti results about ontrol sets on ag manifolds

whih were developed in [19℄, [20℄, [21℄, [23℄, [24℄, [25℄, [26℄, [27℄. These

results yield quite quikly the existene of a �nite number of maximal hain

transitive subsets for the ows on the ag bundles, and hene the existene

a �nest Morse deomposition in the ompat ase. From the ontrol sets on

ag manifolds we get also that there exists a unique attrator as well as a

unique repeller hain reurrent omponent.

Now, a key point is the notion of paraboli type of a semigroup S with

non-empty interior in a semi-simple Lie groupG. There are several equivalent

ways of haraterizing the paraboli type of S. The most suitable for our

exposition here is the one whih says that the paraboli type of S is the

(only) ag manifold, say F

�(S)

= G=P

�(S)

, suh that the unique invariant

ontrol set C

�(S)

of S in F

�(S)

is ontratible under iterations of elements in

the interior of S. Furthermore, �

�1

�

C

�(S)

�

is the invariant ontrol set of S in

the maximal ag manifold F, where � : F ! F

�(S)

is the anonial �bration.

The paraboli type of semigroups in G yields the notion of paraboli type

of semigroups of loal homeomorphisms in Q, and hene of the shadowing

semigroups. Using the latter we assoiate to a ow � a spei� ag bundle,

say E

�(�)

, whih we all analogously the paraboli type of �. The property

of E

�(�)

that emerges is that the attrator omponent of the �nest Morse

deomposition of the ow in E

�(�)

meets eah �ber in a single point. Re-

verting time we get the same piture for the repeller, but in a \dual" ag

bundle E

�

�

(�)

. These are the entral results for the haraterization of the

Morse omponents, sine they give the attrator and repeller omponents in

any ag bundle.

Finally, from inidene relations in the ag manifolds related to the do-

mains of attration of the ontrol sets we obtain other reurrent omponents
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from the attrator and the repeller ones. This way we obtain Theorem 9.11,

mentioned above, where the H

x

are intimately related to the paraboli type

of the ow.

2 Preliminaries

In this setion we reall basi fats and onepts about ows, �ber bundles

and semigroups to be used afterwards.

2.1 Flows

Regarding ows on metri spaes we refer to the the books Colonius-Kliemann

[5℄ (Appendix B) and Conley [7℄. Let (Y; d) be a metri spae. Although most

aspets of the theory of ows requires ompatness of the state spae, the ba-

si onepts an be stated without this assumption. Hene we do not assume

in advane that Y is ompat.

Given a ontinuous-time ow � : R � Y ! Y we write the orresponding

homeomorphisms by �

t

(�) = � (t; �) or simply by �

t

(x) = t � x, so that R � x

stands for the orbit of x under the ow. A set A � Y is alled invariant if

t � x � A for all x 2 A. A ompat subset A � L is alled isolated invariant,

if it is invariant and there exists an isolating neighborhood N of A, i.e., a set

N with A � int(N), suh that R � x � N implies x 2 A.

For x 2 Y , the !-limit set of x is denoted by !

�

(x) or simpler by ! (x):

! (x) = fy 2 Y : 9t

k

! +1; t

k

� x! yg:

Analogously, !

�

�

(x) = !

�

(x) is de�ned for t ! �1. On the other hand for

a subset A � Y we put

! (A) = fx 2 Y : 9x

k

2 A; t

k

! +1; t

k

� x

k

! xg;

and de�ne the same way !

�

(A) with t! �1.

A Morse deomposition of the ow �

t

is a �nite olletion fM

i

: i =

1; : : : ; ng of nonvoid, pairwise disjoint, and isolated ompat invariant sets

satisfying the following onditions:

1. For all x 2 Y the sets ! (x) and !

�

(x) are ontained in

n

S

i=1

M

i

.
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2. Suppose there areM

j

0

; : : : ;M

j

l

and x

1

; : : : ; x

l

2 Y n

n

S

i=1

M

i

with !

�

(x

i

) �

M

j

i�1

and ! (x

i

) �M

j

i

for i = 1; : : : ; l, then M

j

0

6=M

j

l

.

The elements of a Morse deomposition are alled Morse sets. We say that

a set A is an attrator if it admits a neighborhood N suh that ! (N) = A.

A repeller is a ompat invariant set R that has a neighborhood N

�

with

!

�

(N

�

) = R. The neighborhoods N and N

�

are alled attrator and repeller

neighborhoods, respetively. If Y is ompat, every attrator is ompat and

invariant, and a repeller is an attrator for the time reversed ow.

A Morse deomposition fM

1

; : : : ;M

n

g is alled �ner than a Morse de-

omposition fM

0

1

; : : : ;M

0

n

0

g if for all j 2 f1; : : : ; n

0

g there exists i 2 f1; : : : ; ng

with M

i

� M

0

j

. Usually one seeks for a �nest Morse deomposition whih

provides all other deompositions through by joining together their ompo-

nents.

The hain reurrene whih we disuss now is a nie devie for getting

Morse deompositions. For x; y 2 Y and "; T > 0 an "; T -hain from x to y

is given by points x

0

= x; x

1

; : : : ; x

n

= y 2 Y and t

0

; : : : ; t

n�1

� T , for some

n 2 N , suh that

d(t

i

� x

i

; x

i+1

) < "; i = 0; 1; : : : ; n� 1:

We denote by C

";T

(x) the set of those y 2 Y suh that there exists an "; T -

hain from x to y, and put C (x) =

T

";T

C

";T

(x). On the other hand C

�

";T

(x)

is the set of those y 2 Y suh that there exists an "; T -hain from y to x, and

C

�

(x) =

T

";T

C

�

";T

(x). Equivalently, C

�

(x) is the set of those y suh that for

all "; T > 0 there exists an "; T -hain from x to y for the reversed ow (see

[8℄, Theorem 3.2D).

A subset A � Y is hain transitive if for all x 2 A, A � C (x). A hain

transitive subset A is maximal transitive (with respet to set inlusion) if

and only if for all x 2 A, A = C (x) or equivalently A = C

�

(x).

A point x 2 Y is hain reurrent if x 2 C (x). We denote by R the hain

reurrent set, that is, the set of all hain reurrent points. Note that a on-

neted omponent of R is hain transitive sine for any y 2 R and "; T > 0

y 2 intC

";T

(y), so that R � C

";T

(x) for every x 2 R. In the ompat ase the

onneted omponents of the hain reurrent set R indeed oinide with the

maximal hain transitive subsets, although in general the onneted om-

ponents may approximate to eah other reating maximal hain transitive

subsets ontaining more than one onneted omponent.
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Another property of the hain reurrent set is that it ontains the ! and

!

�

-limit sets, sine if y 2 ! (x) the ow property �

t

k+l

�t

k

�

�

t

k

(x)

�

= �

t

k

(x)

ensures that for every "; T > 0, y 2 C

";T

(y). Finally, the following proposition

relates the hain reurrent omponents with Morse deompositions.

Proposition 2.1 If Y is ompat, there exists a �nest Morse deomposition

fM

1

; : : : ;M

n

g if and only if the hain reurrent set R has only �nitely

many onneted omponents. In this ase, the Morse sets oinide with the

onneted omponents of the hain reurrent set R.

Proof: See [5℄, Theorem B.2.25.

2.2 Fiber bundles

Our starting point is a prinipal bundle � : Q! X with strutural group G.

Thus G ats freely on the right onQ and its orbits are the �bersQ

x

= �

�1

fxg,

x 2 X (for �ber bundles we refer to Husemoller [11℄ and Kobayashi-Nomizu

[12℄). Eah �ber is di�eomorphi to G. We assume allways that Q ! X is

loally trivial. Often a loal trivialization is realized through a loal ross

setion � : U ! Q, U � X.

Reall that if G ats on the left on a spae F we an onstrut the

assoiated bundle with typial �ber F by taking in Q � F the equivalene

relation (q

1

; v

1

) s (q

2

; v

2

) if and only if there exists g 2 G suh that q

2

= q

1

g

and v

2

= g

�1

v

1

. Let E be the quotient spae by this equivalene relation and

denote by q � v the lass in E of (q; v) 2 Q� F . Then q � v 7! � (q) de�nes a

projetion E ! X, also denoted by � or �

E

if we wish to distinguish it from

the projetion �

Q

: Q! X of Q. Our notation emphasizes the fat that the

map v 2 F 7! q �v 2 E establishes a bijetion between F and the �ber above

x = � (q). We denote in a similar way the inverse of this map. Thus q

�1

� e,

q 2 Q, e 2 E, stands for v 2 F , suh that q � v = e.

The assoiated bundle E ! X is loally trivial when this happens to

Q ! X. In loally trivial bundles over metri spaes we use the following

metri.

Proposition 2.2 Let � : E ! X be a loally trivial bundle with (X; d)

a metri spae as well as the �ber (F; d

F

). Fix a overing U

�

of X with

7



�

�1

(U

�

) � U

�

� F . Then there exists a metri d

E

on E suh that on eah

trivialization U

�

� F it holds

d

E

((x; v) ; (y; w)) = maxfd (x; y) ; d

F

(v; w)g:

Also, d (�e; �f) � d

E

(e; f) for all e; f 2 E.

Proof: See [5℄, [17℄.

To onsider ows on �ber bundles E ! X we start with a ow �

t

on the

prinipal bundle Q ! X, whih ommutes with the right ation of G, that

is, �

t

(qg) = �

t

(q) g, for all t 2 R, q 2 Q and g 2 G. This ondition implies

that �

t

interhanges the �bers of Q and thus indues a ow on X. We shall

denote the ow on the base by t � x, t 2 R, x 2 X. On the other hand the

ow indued on E ! X is also denoted by �

t

, so that �

t

(q � v) = �

t

(q) � v.

Restriting a ow on Q ! X to the domain of a loal ross setion we

obtain a loal oyle in the following sense: Let �

i

: U

i

! Q be ross

setions above U

i

� X, i = 1; 2. If x 2 U and t 2 R are suh that x 2 U

1

and t � x 2 U

2

, then �

t

(�

1

(x)) belongs to the same �ber as �

2

(t � x) so that

there exists an element in G, say �

�

1

;�

2

(t; x), suh that

�

t

(�

1

(x)) = �

2

(t � x) �

�

1

;�

2

(t; x) :

We all the map �

�

1

;�

2

the loal oyle de�ned by �

1

and �

2

. An easy

appliation of the ow property of � together with its right invariane yields

the oyle property:

�

�

1

;�

3

(t+ s; b) = �

�

2

;�

3

(s; t � b)�

�

1

;�

2

(t; b);

if �

3

is a ross setion de�ned on (t + s) � x.

Of ourse, taking di�erent ross setions �

0

i

de�ned on the same U

i

, the lo-

al oyle �

�

0

1

;�

0

2

may hange. We note however the following simple formula:

If �

0

1

= �

1

a and �

0

2

= �

2

b with a; b 2 G, then �

�

0

1

;�

0

2

= b�

�

1

;�

2

a

�1

.

For another way of writing �

t

loally, suppose that Q = U � G. Then

�

t

(x; g) = (f

1

(x) ; f

2

(x; g)) with f

2

(x; gh) = f

2

(x; g)h. In this ase the

indued map in U � F is given by �

t

(x; v) = (f

1

(x) ; f

2

(x; g) v).

2.3 Semigroup ations

By a loal homeomorphism of a metri spae Y we mean a homeomorphism

� : U ! V between open subsets of Y . We denote by lo (Y ) the set of loal
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homeomorphisms of Y . The set lo (Y ) is a loal group in the sense that the

operations of taking inverses and ompositions { when allowed { are losed

in lo (Y ). A subset G � lo (Y ) is a loal (sub) group if it is losed under

these operations. Aordingly we say that S � lo (Y ) is a loal semigroup

in ase S is losed under the allowed ompositions.

In the sequel we follow the ontrol theory terminology and say that a loal

semigroup S satis�es the aessibility property at x 2 Y if int (Sx) 6= ;, and

it satis�es the aessibiltity property if this holds at every x 2 Y .

Reall that a ontrol set of a loal semigroup S � lo (Y ) is a subset

D � Y suh that

1. intD 6= ;,

2. D � l (Sx) for all x 2 D, and

3. D is maximal with these two properties.

The ontrol sets are ordered by D

1

� D

2

if D

2

� l (Sx) for any x 2 D

1

.

An invariant ontrol set is a ontrol set D whih maximal with respet to

this order, that is, l (Sx) = lD for all x 2 D. It is known that under the

aessibility property an invariant ontrol set is losed and has non-empty

interior. On the other hand if the ontrol set D is minimal with respet to

the order then it is open. Still under the assumption of aessibility it makes

sense to introdue the (possibly empty) set

D

0

= fx 2 D : x 2 int (Sx) \ int

�

S

�1

x

�

g;

where D is a ontrol set. In view of the proposition below we all D

0

the

set of transitivity of D (or following Albertini-Sontag [1℄, D

0

is the ore of

D). A ontrol set D suh that D

0

6= ; is alled e�etive ontrol set. These

ontrol sets have the following properties, proved in [4℄, Proposition 2.2 (see

also [25℄, Proposition 2.2).

Proposition 2.3 Suppose D

0

6= ;, that is, D is an e�etive ontrol set.

Then

1. D � int (S

�1

x) for every x 2 D

0

.

2. D

0

= int (S

�1

x) \ int (Sx) for every x 2 D

0

.
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3. For every x; y 2 D

0

there exist g 2 S with gx = y.

4. D

0

is dense in D.

5. D

0

is S-invariant inside D, i.e., � (x) 2 D

0

if � 2 S, x 2 D

0

and

� (x) 2 D.

A speial ase of loal semigroups whih will show up below is obtained

through the ation of a Lie group G. If Y is a homogeneous spae Y = G=H

then G ats transitively on Y and a subsemigroup S � G with intS 6= ;

(w.r.t the topology of G) satis�es int (Sx) 6= ; for all x 2 Y beause the map

g 2 G 7! gx 2 Y is open. In this ontext it is not diÆult to show that

D

0

= fx 2 D : x 2 (intS)xg = fx 2 D : x 2 (intS

�1

)xg. As a omplement

to the above proposition we have the following statement whih ensures the

existene of e�etive ontrol sets.

Proposition 2.4 Let x 2M be suh that

x 2 int (Sx) \ int

�

S

�1

x

�

:

Then there exists a unique e�etive ontrol set D suh that x 2 D

0

.

Proof: See [4℄, Proposition 2.3.

3 Loally transitive groups

Our method of studying the hain reurrene onsists in perturbing the

ow obtaining semigroups of loal homeomorphisms (shadowing semigroups)

whose ontrol sets are shrinked to the hain transitive sets. In order that this

approah works we need a tehnial assumption on the ow whih permits

to ompare hains of the ow with the ation of the shadowing semigroups.

This assumption is stated in terms of loal transitivity of loal groups, whih

we disuss in this setion.

Let (Y; d) be a metri spae and onsider the loal group lo (Y ) of loal

homeomorphisms of Y . We denote by dom (�) the domain of the loal home-

omorphism � : dom (�) ! V in lo(Y ). For �; � 2 lo (Y ) whose domains

overlap put

d

0

(�; �) = sup d(�(x); �(x))

10



where the supremum is taken over dom (�)\ dom (�). Note that for �; � ; � 2

lo (Y ) it holds

d

0

(��; ��) � d

0

(�; �) ; (1)

sine the supremum in the left hand side is taken over a smaller set than in

the right hand side.

De�nition 3.1 We say that a loal group G � lo (Y ) is loally transitive

(abbreviated lotrans) with parameters ; � > 0 if for every x 2 Y and y in

the ball B

�

(x) there exists � 2 G suh that � (x) = y and d (y; x) � d

0

(�; id).

We shall prove below that some reasonable loal groups are loally tran-

sitive. However, in general this ondition is not satis�ed even if G is the full

loal group lo (Y ) of a metri spae.

Exemple: In R

2

denote by C

q

the irle of radious q � 0 entered at the

origin. Consider the ompat metri spae

Y =

1

[

n=1

C

1=n

[ f0g;

with the metri inherited from the standard metri of R

2

. Any loal home-

omorphism  : U ! V of Y with 0 2 U has the property that �(0) = 0 for

otherwise  

�1

would map a onneted omponent of the meeting of V with

a irle into f0g. Hene lo (Y ) is not loally transitive at 0.

We an hange this example by taking Y to be the union of the irles C

q

,

q 2 Q , q � 0. Then we an take in Y the ow where �

t

is the rotation by the

angle t. This ow is hain reurrent. Hene the existene of a hain reurrent

ow on a metri spae is not enough for lo (Y ) to be loally transitive.

Yet another modi�ation of Y gives an example with onneted metri

spae. In fat, in R

3

put

Y

0

= (Y � (�1; 1℄) [

�

R

2

� [1;+1)

�

:

Again lo (Y

0

) is not loally transitive at the origin.

We shall now see some ases of metri spaes whose loal groups are

loally transitive. First, let Y be a metri spae suh that lo (Y ) is lotrans

with parameters ; �. Then for any open subset Y

0

� Y endowed with the

indued distane, lo (Y

0

) is lotrans with the same parameters, sine we

an always shrink the domain of a loal homeomorphism of Y to be a loal

homeomorphism of Y

0

with the e�et that d

0

diminishes.

11



Now, let E be a Frehet spae with translation invariant metri d. For

any v 2 E the translation �

v

(x) = v+x satis�es d

0

(�

v

; id) = d (v; 0). Taking

x; y 2 E, �

v

(x) = y if v = y � x, so that �

v

satis�es the ondition for the

required loal homeomorphism in the de�nition of lotrans. Thus lo (E) is

lotrans with parameters  = 1 and arbitrary � > 0. Therefore, the lotrans

property holds at open subsets of E:

Proposition 3.2 If Y is an open set of a Frehet spae E, endowed with the

indued metri, then lo (Y ) is loally transitive with  = 1 and any �.

Now take Y to be an open set in a �nite dimensional vetor spae E. Then

a similar result holds if instead of a distane oming from E we onsider a

Riemannian metri in Y . In this ase the translations restrited to open sets

are still loal homeomorphisms of Y . The di�erene here is that we annot

take  = 1 trivially. However, we an prove the lotrans property if we ask

equivalene between the Riemannian metri and the distane oming from

E.

Proposition 3.3 Given a �nite dimensional vetor spae E with a norm j�j

let Y � E be a onneted open set and g (�; �) a Riemannian metri in Y .

Denote by d (�; �) the distane in Y de�ned by g and suppose that there are

onstants k

1

; k

2

> 0 with

k

1

d (x; y) < jx� yj < k

2

d (x; y) x; y 2 Y:

Then lo (Y ) is loally transitive with parameters  = k

1

=k

2

and arbitrary �.

Proof: Given x

0

; x 2 Y and v 2 E suh that x + v 2 Y ,

d (x + v; x) <

1

k

1

jvj <

k

2

k

1

d (x

0

+ v; x

0

) :

Thus if we take a suitable restrition of �

v

, it follows that d

0

(�

v

; id) �

(k

2

=k

1

) d (�

v

x

0

; x

0

). This implies at one the lotrans property.

Now, we path together the open sets to show that lo (Y ) is lotrans if

Y is a ompat Riemannian manifold. Reall �rst that a positive real � is

a Lyapunov number of a overing fW

i

g

i2I

of a metri spae if every set of

diameter < � is ontained in some W

i

. It is well known that any overing of

a ompat metri spae admits Lyapunov numbers.
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Proposition 3.4 If Y is a ompat Riemannian manifold then lo (Y ) is

loally transitive.

Proof: Let (V

�

; �

�

) be a �nite atlas for Y and take a subovering to get a

�nite atlas

�

W

�

;  

�

�

suh that eah W

�

is relatively ompat in some V

�

. In

Y

�

=  

�

(W

�

) take the metri indued from Y by  

�

. Sine Y

�

is relatively

ompat the orresponding distane funtion is equivalent to the Eulidian

norm. Hene, the above proposition applies and lo (Y

�

) is lotrans with

parameters 

�

; �

�

> 0. Now, let � be a Lyapunov number of the overing

and take  = minf

�

g and � = minf�

�

; �=2g. Sine any ball of radious � is

ontained in some W

�

the result on the harts ombine to show that lo (Y )

is lotrans with parameters ; �.

For the rest of this setion we speialize the disussion of the lotrans

property to �ber bundles. Our purpose is to ombine this property on the

basis and on the �bers to get loal transitivity on the total spae. Thus given

a prinipal bundle � : Q ! X with struture group G denote by Aut (Q)

the loal group of the right invariant loal homeomorphisms � of Q having

domain dom(�) = �

�1

(U) with U open in X. Of ourse, a right invariant

ow on Q is just a one-parameter group �

t

2 Aut (Q) of globally de�ned

homeomorphisms.

Now, let E ! X be a bundle assoiated to Q ! X with typial �ber

F where G ats on the left. Any � 2 Aut(Q) indues homeomorphisms on

both X and E. Usually the indued maps are also denoted by �. However,

for the moment we shall write e (�) and b (�) for the loal homeomorphisms

in E and X, respetively. Note that the domain of e (�) also has the form

�

�1

(U), U � X. The maps e : Aut (Q)! lo (E) and b : Aut (Q)! lo (X)

de�ne ations of Aut (Q) on E and X, respetively. The images of e and b

are loal groups in the orresponding spaes.

In general b is not onto lo (X). However, we an `lift' to Aut (Q) a

loal homeomorphism � of X, provided dom(�) and im (�) are ontained in

domains of trivializations ofQ. In fat, let �

i

: U

i

! Q, i = 1; 2, be loal ross

setions with dom (�) � U

1

and im (�) � U

2

. Then the map

e

� (�

1

(x) � g) =

�

2

(� (x)) � g, x 2 dom (�), is a lifting of � to a loal homeomorphism in

Aut (Q). With this in mind we prove that Aut (Q) is loally transitive when

this ondition holds at both the �ber and the base spae.

Proposition 3.5 Let E be given with a metri d

E

like in Proposition 2.2.

Then the ation of Aut (Q) on E is loally transitive provided

13



1. lo (X) and the left ation of G on the �ber F are lotrans, and

2. The overing of X de�ning d

E

admits a Lebesgue number � > 0.

Proof: Let �

1

; 

1

> 0 and �

2

; 

2

> 0 be the parameters of loal transitivity of

lo (X) and G, respetively. Put � = minf�

1

; �

2

; �=2g and  = minf

1

; 

2

g.

Take e; f 2 E with d

E

(e; f) < �. Then e; f are ontained in a domain of

trivialization �

�1

(U) � U � F , so we an write e = (x; v) and f = (y; w).

Choose � 2 lo (X) suh that � (x) = y and 

1

d

0

(�; id) � d (x; y). Also take

g 2 G with g (v) = w and 

2

d

0

F

(g; id) � d

F

(u; v). The map � : U�G! U�G

de�ned by � (z; h) = (� (z) ; gh) belongs to Aut (Q). The indued map on

U � F is given by � (z; u) = (� (z) ; gu). Hene, � (x; v) = (y; w). We have

d

0

E

(�; id) = sup d

E

((� (z) ; gu)) = supmaxfd (� (z) ; z) ; d

F

(gu; u)g:

Therefore, d

0

E

(�; id) � maxf1=

1

d (x; y) ; 1=

2

d

F

(v; w)g. By the hoie of

, it follows that d

0

E

(�; id) � d

E

(e; f), onluding the proof.

Corollary 3.6 Suppose that X is ompat. Then Aut (Q) is loally transi-

tive on E if both lo (X) and the left ation of G on F are loally transitive.

Regarding the loal transitivity on the �bers, we reall the following result

proved in [3℄, Corollary 3.4.

Lemma 3.7 Let G=H be a homogeneous spae and suppose that there exists

a ompat subgroup K � G ating transitively on G=H. Endow G=H with

a distane d given by a K-invariant Riemannian metri. Then the ation of

G on G=H is loally transitive.

4 Shadowing semigroups

In this setion we introdue semigroups of loal homeomorphisms of the state

spae Y of a ow �

t

by perturbing the homeomorphisms of the ow at large

times. These semigroups will be alled shadowing semigroups and play a

entral role in the study of hain transitivity. In fat, we show that if the

ow �

t

an be embedded in a loally transitive semigroup then its hain

transitive sets are obtained as intersetions of ontrol sets for the shadowing

semigroups.
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Given a loal group G and � 2 G we put

V

"

(�;G) = f� 2 G : d

0

(�; �) < "g

(or simply V

"

(�) if G is understood).

De�nition 4.1 Let G be a loal semigroup ontaining �

t

for all t 2 R. Given

"; T > 0 de�ne the shadowing semigroup S

";T

(�;G) (or simply S

";T

) to be

the loal subsemigroup of G generated by the sets V

"

(�

t

;G) with t running

through the interval (T;+1). The shadowing semigroups for the reversed

ow �

�

are denoted by S

�

";T

.

Remark: It is tempting to think that the shadowing semigroups for the

reversed ows are given by the inverses S

�1

";T

of the forward semigroups. How-

ever it is not immediate that the subsets V

"

(�

t

;G), t 2 (�1; T ), that gen-

erate S

�

";T

have the form V

"

0

(�

t

;G)

�1

, t 2 (T

0

;1) for some "

0

; T

0

> 0. For

this to happen it is required a kind of equiontinuity of �

�1

�

t

for every loal

homeomorphisms � de�ned in the several open sets of Y . Sine the relation

between these semigroups is not used afterwards we does not disuss it.

Note that by the very de�nition S

";T

� S

"

1

;T

1

if " � "

1

and T � T

1

.

Atually, the next lemma shows that in a ertain sense S

"

1

;T

is ontained in

the interior of S

"

2

;T

if "

1

< "

2

.

Lemma 4.2 Let � be a loal homeomorphism satisfying d

0

(�; id) < Æ. Then

for  2 S

";T

, the omposition � 2 S

"+Æ;T

.

Proof: Write  =  

1

� � � 

k

with  

i

2 V

"

�

�

t

i

;G

�

, t

i

> T , i = 1; : : : ; k. To

prove the lemma it is enough to hek that � 

1

2 S

"+Æ;T

, beause  

2

� � � 

k

2

S

";T

� S

"+Æ;T

. By inequality (1), d

0

(� 

1

;  

1

) � d

0

(�; id), so that d

0

(� 

1

;  

1

) <

Æ. However,  

1

2 V

"

�

�

t

1

;G

�

. Hene for any z in dom (� 

1

) \ dom ( 

1

) =

dom ( 

1

) it holds,

d

�

� 

1

(z) ; �

t

1

(z)

�

� d (� 

1

(z) ;  

1

(z)) + d

�

 

1

(z) ; �

t

1

(z)

�

< Æ + ";

showing that � 

1

2 V

"+Æ

�

�

t

1

;G

�

, onluding the proof.

Given S � lo (Y ) and x 2 Y we write

Sx = f� (x) : � 2 S; x 2 dom (�)g

for the orbit of x under S. Using the previous lemma we get the following

inlusion relation between the orbits of the shadowing semigroups.
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Lemma 4.3 Suppose that �

t

belongs to the lotrans loal group G for all

t 2 R. Take x 2 Y . Then S

";T

x � int (S

"

1

;T

x) if " < "

1

.

Proof: Given � 2 S

";T

let us show that �x 2 int (S

"

1

;T

x). Write � = �

1

� � � �

k

with �

i

2 V

"

�

�

t

i

;G

�

, i = 1; : : : ; k. Now, let ; � > 0 be the parameters

of loal transitivity of G, and hoose �

0

� minf�;  ("

1

� ")g. Then for any

y 2 B

�

0

(�x) there exists � 2 G with �� (x) = y and d (� (�x) ; �x) � d

0

(�; id).

By Lemma 4.2, �� 2 S

"

1

;T

, beause the hoie of �

0

ensures that d

0

(�; id) �

"

1

�". Therefore, every y 2 B

�

0

(�x) belongs to S

"

1

;T

x, proving the lemma.

Corollary 4.4 Suppose that �

t

belongs to the lotrans loal group G for all

t 2 R. Then for every "; T > 0 and x 2 Y , int (S

";T

x) 6= ;.

Our objetive is to show that points reahable by hains of the ow an

be reahed by the ation of the shadowing semigroups and onversely. At

this regard the basi fat is given by the following proposition whose proof

is essentially a reformulation of [3℄, Proposition 3.1.

Proposition 4.5 Keep the above notations and take x; y 2 Y . Then

1. For all "; T > 0, S

";T

x � C

";T

(x). Also, for all "

0

> ", l (S

";T

x) �

C

"

0

;T

(x).

2. Let �

t

, t 2 R, be ontained in the loally transitive group G with

parameters ; �. Take " with 0 < " < � and put "

0

= "=. Then

C

";T

(x) 2 int (S

"

0

;T

x).

Proof:

1. Take y 2 S

";T

x and let  2 S

";T

be suh that y =  (x). Write

 =  

k

� � � 

1

with  

i

2 V

"

�

�

t

i

;G

�

, t

i

> T , i = 1; : : : ; k. Then the

sequene x

0

= x, x

1

=  

1

(x

0

),: : :, x

k

=  

k

(x

k�1

) = y together with

t

1

; : : : ; t

n�1

> T determine an "; T -hain from x to y, sine

d

�

�

t

i

(x

i�1

) ; x

i

�

= d

�

�

t

i

(x

i�1

) ;  

i

(x

i�1

)

�

< ":

Now, for y 2 l (S

";T

x) take a sequene  

n

2 S

";T

with  

n

(x) ! y.

Let n

0

be suh that d

�

 

n

0

(x) ; y

�

< "

0

� ". As before, there exists an

"; T -hain from x to  

n

0

(x). Let this hain be given by y

1

= x,: : :, y

k

=
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n

0

(x

0

), s

1

; : : : ; s

n�1

> T . Thus d

�

�

s

i

(y

i

) ; y

i+1

�

< " for i = 1; : : : ; k.

Therefore, z

1

= x, : : :, z

n�1

= y

n�1

, z

n

= y and s

0

; : : : ; s

n�1

> T

determine an "

0

; T -hain from x to y, sine

d

�

�

s

n�1

(y

n�1

) ; y

�

� d

�

�

s

n�1

(y

n�1

) ;  

n

0

(x)

�

+ d

�

 

n

0

(x) ; y

�

< "

0

:

2. Sine d

�

�

t

i

(x

i

) ; x

i+1

�

< " < �, the lotrans property of G implies that

there exists � 2 G suh that

d

�

�

�

�

t

i

(x

i

)

�

; x

i+1

�

= d

�

�

�

�

t

i

(x

i

)

�

; �

t

i

(x

i

)

�

� d

0

(�; id)

for i = 0; : : : ; n� 1. Hene d

0

(�; id) < "= = "

0

. De�ne �

i

= ��

t

i

. Then

d

0

�

�

i

; �

t

i

�

= d

0

�

��

t

i

; �

t

i

�

� d

0

(�; id) < "

0

beause multipliation on the right diminishes d

0

. Therefore, �

i

2

V

"

0

�

�

t

i

�

. On the other hand, �

i

(x

i

) = ��

t

i

(x

i

) = x

i+1

, and x

n

=

�

n�1

� � � �

0

(x

0

), onluding the proof sine  = �

n�1

� � � �

0

2 S

"

0

;T

.

This proposition ensures that we an replae an "; T -hain by the ation

of an element in S

";T

. From this we get the following useful property of the

ontrol sets of the shadowing semigroups.

Lemma 4.6 With the same assumptions as the previous proposition, take

"

1

< "

2

and suppose that D

"

1

;T

and D

"

2

;T

are e�etive ontrol sets for S

"

1

;T

and S

"

2

;T

, respetively, suh that (D

"

1

;T

)

0

\ (D

"

2

;T

)

0

6= ;. Then D

"

1

;T

�

(D

"

2

;T

)

0

.

Proof: Take x 2 (D

"

1

;T

)

0

\ (D

"

2

;T

)

0

. Then for any y 2 (D

"

1

;T

)

0

, y 2 S

"

1

;T

x

and x 2 S

"

1

;T

y. Sine S

"

1

;T

� S

"

2

;T

, the maximality property in the de�ni-

tion of ontrol sets ensures that y 2 D

"

2

;T

, and a fortiori, by Proposition 2.3,

y 2 (D

"

2

;T

)

0

. Hene, (D

"

1

;T

)

0

� (D

"

2

;T

)

0

. To onlude the proof we show

that z 2 S

"

2

;T

x and x 2 S

"

2

;T

z. By Proposition 2.3 (1), x 2 S

"

1

;T

z � S

"

2

;T

z.

On the other hand, D

"

1

;T

� l (D

"

1

;T

)

0

, so that any z 2 D

"

1

;T

belongs to

l (S

"

1

;T

x). Hene by the the seond statement of the above proposition, it

follows that z 2 int (S

"

2

;T

x) � S

"

2

;T

x, as we desired to show.

Now we an prove the main result of this setion whih gives a hara-

terization of the hain reurrent omponents in terms of the ontrol sets of

the shadowing semigroups.
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Theorem 4.7 Let �

t

be a ow on Y ontained in a lotrans loal group G.

Suppose that for eah "; T > 0 there exists a ontrol set D

";T

of S

";T

(�;G)

suh that M

0

=

T

";T

D

";T

6= ;. Then M

0

is a maximal hain transitive subset.

Conversely let M be a maximal hain transitive subset. Then for every

"; T > 0 there exists an e�etive ontrol set D

";T

(M) of S

";T

(�;G) suh that

M is ontained in the set of transitivity D

";T

(M)

0

. Furthermore,

M =

\

";T

D

";T

(M) =

\

";T

D

";T

(M)

0

: (2)

Proof: If x; y 2 M

0

then for all "; T > 0, x; y 2 D

";T

, so that y 2 l (S

";T

x).

Hene by Proposition 4.5 (1) there exists an "; T -hain from x to y. This

shows that M

0

is hain transitive. The maximality follows by Proposition

4.5 (2). In fat, if x 2 M

0

and for every "; T > 0, z 2 C

";T

(x) and z 2 C

";T

(x)

then z 2 D

";T

, so that z 2 M

0

.

For the seond part take x 2 M. SineM is hain reurrent, x 2 C

";T

(x)

for all "; T > 0. By Proposition 4.5 (2) and Lemma 4.3, it follows that

x 2 int (S

";T

x) for every "; T > 0. But this implies that there exists a ontrol

set D

";T

(M; x) of S

";T

suh that x 2 D

";T

(M; x)

0

(see Proposition 2.4). We

laim that D

";T

(M; x) = D

";T

(M; y) for all x; y 2 M. In fat, sine M is

hain transitive, y 2 C

";T

(x) for all "; T > 0. Hene, by Proposition 4.5 (2),

y 2 S

";T

x. The same way x 2 S

";T

y, showing that x and y belong to the

same ontrol set.

As to the equalities in (2), note that the seond one is a onsequene

of Lemma 4.6. Hene it remains to prove that

T

";T

D

";T

(M) � M. Pik

x 2

T

";T

D

";T

(M). By de�nition of ontrol set we have x 2 l (S

";T

x) for

every "; T > 0. Using Proposition 4.5, we see that any two points x; y 2

T

";T

D

";T

(M) are attainable to eah other by "; T -hains, so that this inter-

setion is indeed ontained in a hain transitive set, whih must be M.

Corollary 4.8 Let the assumptions be as in Theorem 4.7. Then the shad-

owing semigroups S

";T

are transitive on Y if the ow is hain transitive on

Y .

Proof: In fat, assuming that the ow is hain transitive on Y it follows

Y �M � D

";T

(M)

0

� Y
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for every "; T > 0. Therefore, S

";T

is transitive on Y .

The results proved so far apply without hange to the reversed ow �

�

and its shadowing semigroups S

�

";T

. Sine the hain transitive sets for �

and �

�

are the same (see [8℄, Theorem 3.2D), eah hain transitive set M

is ontained in a unique ontrol set D

�

";T

(M) of S

�

";T

. As in Theorem 4.7,

M is the intersetion of the ontrol sets D

�

";T

(M) as well as of their sets of

transitivity D

�

";T

(M)

0

. Clearly, interseting the sets D

�

";T

(M) \ D

";T

(M)

we also get M. For later referene we expliitate this fat.

Corollary 4.9 With the notations and asssumptions as above,

M =

\

";T

�

D

";T

(M) \D

�

";T

(M)

�

=

\

";T

�

D

";T

(M)

0

\D

�

";T

(M)

0

�

:

As another appliation of the shadowing semigroup desription of hains

we get the domain of attration of a hain reurrent omponent M as the

intersetion of the domains of attration of the orresponding ontrol sets.

Reall that the domain of attration A (M) of the hain reurrent om-

ponentM of a ow on Y is de�ned as the set of those z 2 Y for whih there

exists x 2 M suh that x 2 C (z). We denote the domain of attration of

M for the reversed ow by A

�

(M). Analogously, if D is a ontrol set for

the semigroup S, its domain of attration A (D) is the set of z 2 Y suh

that there exists � 2 S with �z 2 D. We note that if D

0

6= ; then A (D)

is open and z 2 A (D) if and only if �z 2 D

0

for some � 2 S (f. [21℄).

In reversing the ation of the semigroup it is this latter ondition whih is

onvenient, that is, we write A

�

(D) for the set of those z 2 Y suh that

�

�1

z 2 D

0

for some � 2 S. It is an immediate onsequene of the de�nitions

that M = A (M) \ A

�

(M) and D

0

= A (D) \ A

�

(D).

Proposition 4.10 Let the notations and assumptions be as in Theorem 4.7.

Then the domain of attration of the hain reurrent omponent M is given

by

A (M) =

\

";T

A (D

";T

(M)) :

Analogously, A

�

(M) =

T

";T

A

�

(D

";T

(M)).
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Proof: Take z 2 A (M). Then, there exists x 2 M suh that x 2 C

";T

(z)

for all "; T > 0. By Proposition 4.5 there exist �

";T

2 S

";T

suh that

�

";T

(z) = x for every "; T > 0. Therefore, z 2 A (D

";T

(M)) for ev-

ery "; T > 0, i.e., z 2

T

";T

A (D

";T

(M)). For the onverse, assume that

z 2

T

";T

A (D

";T

(M)). Hene, there exists �

";T

2 S

";T

and x

";T

2 D

";T

(M)

suh that �

";T

(z) = x

";T

. Take x 2 M � (D

";T

)

0

. By Proposition 4.5,

x

";T

2 C

";T

(z), hene x 2 C

";T

(z).

One we have the desription of the hain reurrent omponents in terms

of ontrol sets the strategy is to use known results about the latter in order

to understand the hain transitive sets. The following statements are easy

onsequenes of this approah.

Proposition 4.11 Let Q ! X with �ber G and E ! X an assoiated

bundle with �ber F = G=L. Assume that F is onneted and the ation

of G on F leaves invariant a probability measure. Then under the lotrans

ondition a ow on E is hain reurrent if it is hain reurrent on X.

Proof: In fat, the existene of an invariant probability measure ensures

that any semigroup with non-empty interior in G ats transitively on F (see

[22℄, Lemma 6.2). This implies that the semigroups S

";T

are transitive on E,

and hene the hain transitivity of the ow.

Cases overed by this proposition are the ompat solvmanifolds and om-

pat groups. In fat, in both ases there are invariant probability measures.

If G is ompat then the Haar measure indues invariant measures on its

homogeneous spaes. Analogously, if G is solvable and G=L ompat, then

there exists an invariant probability on G=L (see Mostow [14℄).

Corollary 4.12 Let the notations and assumptions be as in the above propo-

sition an assume furthermore that G is ompat or G is solvable and G=L

ompat. Then a ow on E is hain reurrent if it is hain reurrent on the

base X.

To onlude this setion we show two fats about hain reurrene whih

in some situations may be helpful to weaken the lotrans ondition to a dense

subset of the state spae.
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Proposition 4.13 Let �

t

be a ow on a metri spae (Y; d) and suppose that

Z � Y is a dense subset whih is invariant by �

t

. Take x; y 2 Z and suppose

that y 2 C

";T

(x). Then there exists an "; T -hain from x to y for the ow

restrited to Z.

Proof: Let (x

1

; : : : ; x

n

), (t

1

; : : : ; t

n

) be a hain between x and y, and suppose

that some x

i

=2 Z. By ontinuity of the ow we an take x

0

i

2 Z lose enough

to x

i

suh that d

�

�

t

i�1

(x

i�1

) ; x

0

i

�

< " and d

�

�

t

i

(x

0

i

) ; x

i+1

�

< ". Substitut-

ing this way x

i

by x

0

i

every time x

i

=2 Z, we get a hain from x to y without

leaving the invariant subset Z.

Proposition 4.14 Let �

t

be a ow on a ompat metri spae (Y; d) on-

taining a dense invariant subset Z. Denote by �

t

the restrition of �

t

to Z

and suppose that M is a maximal hain transitive set of �

t

. Then its losure

lM is a maximal hain transitive set of �

t

.

Proof: Take x 2 M and y 2 lM. Clearly, for "; T > 0, y 2 C

";T

(x). Hene,

by [8℄, Theorem 3.2D, we have also "; T -hains from y to x, showing that lM

is hain transitive. As to the maximality note �rst that by ompatness of

Y , lM is ontained in a maximal hain transitive set, say M

0

. Any z in

M

0

is attainable by hains from w 2 lM. Take a sequene x

n

2 M with

x

n

! w. For n large anough and an "; T -hain starting at w there exists

an "; T -hain starting at x

n

whose end point is lose enough to z. Using the

above propostion we see that z 2 lM, onluding the proof.

As an example where we an apply this proposition, suppose that Y is

the losure of an open set O in a Frehet spae, and onsider a ow �

t

on

Y whih leaves O invariant. By Proposition 3.2, lo (O) is loally transitive.

Hene, we an use the shadowing semigroup method to the ow �

t

restrited

to O. If we are able to get this way maximal hain transitive subsets of �

t

,

then we get also maximal hain transitive subsets of �

t

.

5 Semigroups and ag manifolds

The purpose of this setion is to establish notations and bakground re-

sults about semi-simple Lie groups, their ag manifolds and subsemigroups.

We follow Borel-Tits [2℄, Duistermaat-Kolk-Varadarajan[9℄, Varadarajan [29℄
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and Warner [28℄ as basi referenes to semi-simple Lie groups and ag man-

ifolds. The results about semigroups to be realled here appeared in [19℄,

[20℄, [21℄, [23℄, [24℄, [25℄, [26℄.

5.1 Semi-simple Lie groups and ag manifolds

Given a non-ompat semi-simple Lie algebra g let us take a Cartan deom-

position g = k� s. Choose a maximal abelian subspae a � s and denote by

� the set of roots of the pair (g; a). Take a Weyl hamber a

+

� a and denote

by �

+

the orresponding set of positive roots and � the set of simple roots.

Put

n

+

=

X

�2�

+

g

�

n

�

=

X

�2�

�

g

�

;

where g

�

stands for the �-root spae and �

�

= ��

+

. The Iwasawa deom-

position reads g = k�a�n

+

. The standard minimal paraboli subalgebra is

de�ned by p = m� a� n

+

where m is the entralizer of a in k. On the other

hand given a subset � � � denote by h�i the subset of � spanned by � over

the integers. Put h�i

�

= �

�

\ h�i and let n

�

(�) be the subalgebra of n

�

spanned by g

�

, � 2 h�i

�

. The standard paraboli subalgebra p

�

, assoiated

to �, is given by

p

�

= n

�

(�)� p:

In partiular, p

;

= p.

Now let G be a onneted Lie group with Lie algebra g. For eah � � �

let the standard paraboli subgroup P

�

of G be de�ned as the normalizer of

p

�

in G:

P

�

= fg 2 G : Ad (g) p

�

= p

�

g;

and write F

�

= G=P

�

for the assoiated ag manifold of G. The oset G=P

�

identi�es with the set of paraboli subalgebras of g onjugate to p

�

, so that

F

�

depends only on g and not on the spei� Lie group G having Lie algebra

g. In the sequel we write simply F for the maximal ag manifold F

;

.

Given two subsets �

1

� �

2

� �, the orresponding paraboli subgroups

satisfy P

�

1

� P

�

2

, so that there is a anonial �bration G=P

�

1

! G=P

�

2

,

gP

�

1

7! gP

�

2

. Alternatively, the �bration assigns to the paraboli subalgebra

q 2 F

�

1

the unique paraboli subalgebra in F

�

2

ontaining q. In partiular,

F projets onto every ag manifold F

�

.

We denote by K = exp k, N

�

= exp n

�

and A = exp a the onneted sub-

groups with orresponding Lie algebras. Analogously, we put A

+

= exp a

+
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for the Weyl hamber in G orresponding to a

+

. The group K ats transi-

tively on eah F

�

, allowing an identi�ation G=P

�

= K=K

�

where K

�

=

K \ P

�

.

Reall that a ag manifold F

�

an be embedded into the s omponent

of a Cartan deomposition. In fat, let H

�

2 la

+

be suh that � = f� 2

� : � (H

�

) = 0g. Then K

�

is the entralizer of H

�

in K so that the adjoint

orbit Ad (K)H

�

identi�es with F

�

. Conversely, given H 2 la

+

, Ad (K)H

identi�es with F

�(H)

where � (H) = f� 2 � : � (H) = 0g.

This realization is helpful in desribing the Morse deomposition of the

ow in F

�

indued by exp (tH), t 2 R, H 2 la

+

. In fat, any Z 2 s

de�nes a height funtion f

Z

: Ad (K) (H

�

) ! R by f

Z

(x) = hZ; xi, where

h�; �i is the Cartan-Killing form. Now, there exists in F

�

= Ad (K)H

�

a

K-invariant metri, say (�; �)

H

�

, depending on H

�

suh that the gradient of

f

Z

with respet to (�; �)

H

�

is preisely the vetor �eld

e

Z indued by Z on F

�

(see [9℄). The ow of

e

Z is given by the ation of exp (tZ), t 2 R, so that the

�nest Morse deomposition of exp (tZ) is given by the singularities of

e

Z .

In order to desribe the singularities, denote by W the Weyl group of g,

whih is the group generated by the reetions with respet to the roots in �.

This group is isomorphi toM

�

=M , whereM

�

andM are the normalizer and

entralizer of A in K, respetively. The orbit of H

�

under M

�

is �nite and

the ation of M

�

on this orbit fators through W. Thus we abuse notation

and write the elements of this orbit as b

�

w

= wb

+

�

, w 2 W, where b

+

�

is the

origin in F

�

(the point whih identi�es with H

�

). The proof of the following

lemma an be found in [9℄ (see Proposition 1.3 and Corollary 3.5).

Lemma 5.1 Given H 2 la

+

, the set of �xed points of exp (tH) in F

�

is

given by the disjoint union of onneted subsets

[

w2W

H

nW

K

0

H

b

�

w

where K

0

H

is the identity omponent of the entralizer K

H

of H in K.

In this deomposition the omponent K

0

H

b

+

�

is the only attrator, while

the unique repeller is given by K

0

H

b

�

�

, where b

�

�

= w

0

b

+

�

and w

0

is the prin-

ipal involution of W, that is, the element of largest length as a produt of

reetions with respet to the simple roots.

Let us take in partiular H 2 a

+

. Then K

0

H

= M

0

, so that K

0

H

b

�

w

= b

�

w

for all w 2 W, and the �xed-points are isolated (alternatively, f

H

is a Morse
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funtion). In this ase the stable manifold of the �xed-point b

�

w

is given by

the orbit N

�

b

�

w

, while the unstable manifold is N

+

b

�

w

. Thus there exists a

unique attrator �xed-point b

+

�

whose stable manifold is the open and dense

orbit N

�

b

+

�

and a unique repeller b

�

�

with unstable manifold N

+

b

�

�

, whih is

also open and dense.

More generally, we say that Z 2 g is split-regular in ase Z = Ad (g) (H)

for some g 2 G, H 2 a

+

. Analogously, x 2 G is said to be split-regular in

ase x = ghg

�1

with h 2 A

+

= exp a

+

, that is, x = expZ, with Z split-

regular in g. By taking onjugations we arry over the Morse deomposition

for split-regular elements: If Z = Ad (g) (H), H 2 a

+

, then its �xed-points

are gb

�

w

with stable manifolds gN

+

b

�

w

and unstable manifolds gN

�

b

�

w

. The

same piture holds for the disrete time ow x

n

if x = ghg

�1

is split-regular.

In the sequel we write �x

�

(x) for the set of �xed-points of x in F

�

and

put �x

�

(x; w) = gb

�

w

and all this the �xed-point of type w of x. Also, we

write at

�

(x) = �x

�

(x; 1) for the attrator and rp

�

(x) = �x

�

(x; w

0

) for the

repeller. The stable manifold of the attrator will be denoted by st

�

(x) while

the unstable manifold of the repeller is un

�

(x). We use analogous notations

for a split-regular Z 2 g, for instane, at

�

(Z) is the attrator of exp (tZ),

et. Also, in ase F

�

= F is the maximal ag manifold we suppress the

subsripts � in the notations.

Now we disuss the notion of dual ag manifolds. We refer to [23℄ and

[24℄ for further details. The prinipal involution w

0

2 W maps � onto ��,

so that � = �w

0

leaves � invariant. Thus for � � �, �

�

= � (�) � �, and

we an form the ag manifold F

�

�

, alled dual of F

�

. The diagonal ation

g (b

1

; b

2

) = (gb

1

; gb

2

) of G on F

�

� F

�

�

has a unique open orbit, say O

�

,

whih as a homogeneous spae identi�es with the adjoint orbit Ad (G) (H

�

),

with H

�

as above. In fat, take the pair

�

p

�

; p

�

�

�

2 F

�

� F

�

�

, where p

�

�

=

n

+

(�)� p

�

with

n

+

(�) =

X

�2h�i

+

g

�

p

�

= m� a� n

�

(f. [24℄, page 590). The isotropy subgroup of the G-ation at

�

p

�

; p

�

�

�

is the

intersetion of the normalizers of p

�

and p

�

�

, whih is exatly the entralizer

Z

G

(H

�

). Hene the G-orbit of

�

p

�

; p

�

�

�

is in bijetion with G=Z

G

(H

�

). It

is known that the orbit is open. In the sequel we say that two paraboli

subalgebras q

1

2 F

�

and q

2

2 F

�

�

are opposed if (q

1

; q

2

) belongs to the open

G-orbit in F

�

� F

�

�

.
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In ase � = ;, we have the maximal ag manifold, whih is self-dual.

Given two opposed minimal paraboli subalgebras p

1

and p

2

, p

1

\p

2

ontains

a unique maximal abelian split subalgebra of g, a

1

= Ad (g) a, g 2 G. In

this ase there exists a unique Weyl hamber a

+

1

� a

1

, suh that b

1

is the

attrator and b

2

the repeller of H 2 a

+

1

. Denote by a

+

(b

1

; b

2

) the hamber

oming from this onstrution, and put A

+

(b

1

; b

2

) = exp(a

+

(b

1

; b

2

)). The

�xed point of type w for elements in A

+

(b

1

; b

2

) is denoted by w(b

1

; b

2

).

5.2 Semigroups

We disuss now semigroups in a non-ompat semi-simple Lie group G with

�nite enter. Let S � G be a semigroup with intS 6= ;. Then S ats on

the ag manifolds F

�

of G. It was proved in [25℄, Theorem 6.2, that S is

not transitive in F

�

unless S = G. Moreover, there exists just one invariant

ontrol set C

�

(S) � F

�

. If S is proper C

�

(S) 6= F

�

. We denote the set of

transitivity of C

�

(S) by C

+

�

(S). In view of Proposition 5.2 below we all

C

+

�

(S) the attrator set of S in F

�

. Replaing S by S

�1

we get the repeller

set C

�

�

(S) whih is the only minimal ontrol set of S. In ase F

�

= F is the

maximal ag manifold, we suppress the subsript � and write simply C

�

(S)

for C

�

�

(S), and if the semigroup is understood we put C

�

�

= C

�

�

(S). The

following statement was proved in [25℄.

Proposition 5.2 The attrator set C

+

�

is given by at

�

(h) with h running

through the split-regular elements in intS. Analogously the repeller set C

�

�

is

formed by rp

�

(h), with h running through the split-regular elements in intS.

The semigroups in G are distinguished aording to the geometry of their

invariant ontrol sets. This geometry is desribed by the following state-

ments, proved in [25℄ (see also [21℄ and [23℄).

Proposition 5.3 There exists � � � suh that �

�1

�

(C

�

(S)) is the invariant

ontrol set in the maximal ag manifold F

�

. Among the subsets � satisfying

this property there exists a unique maximal one (with respet to set inlusion).

We denote the maximal subset by � (S) and say that it is the paraboli

type of S. Alternatively, we say also that the paraboli type of S is the

orresponding ag manifold F (S) = F

�(S)

(see [23℄, [25℄, [27℄ for further

disussions about the paraboli type of a semigroup). Given two semigroups
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S

1

� S

2

with non-empty interior, their ontrol sets satisfy C (S

1

) � C (S

2

).

This implies the inlusion between the paraboli types: � (S

1

) � �(S

2

).

When � = � (S), the invariant ontrol set C

�(S)

has the following nie

property, proved in [25℄.

Proposition 5.4 Let h 2 intS be split-regular. Then C

�(S)

� st

�(S)

(h).

The other e�etive ontrol sets are given analogously as sets of �xed-

points: Denote by R (S) the set of split-regular elements in int (S). Then we

have the following result of [25℄.

Proposition 5.5 For eah w 2 W there exists a ontrol set D

�

(w) � F

�

whose set of transitivity is

D

�

(w)

0

= f�x

�

(h; w) : h 2 R (S)g:

The invariant ontrol set is C

�

= D

�

(1) and the minimal ontrol set C

�

�

=

D

�

(w

0

). Conversely, for any e�etive ontrol set D � F

�

there exists w 2 W

suh that D = D

�

(w).

Note that R (S

�1

) = R (S)

�1

. Hene D

�

(w)

0

is also the set of transitivity

of a ontrol set, say D

�

�

(w) of S

�1

(f. [21℄, Proposition 3.1).

Although the map w 7! D

�

(w) is onto the e�etive ontrol sets it is not

in general one-to-one. To relate its level sets at the maximal ag manifold

with the paraboli type of S put

W (S) = fw 2 W : D (w) = D (1)g:

Then W (S) is the subgroup W

�(S)

=

�

M

�

\ P

�(S)

�

=M , and D (w

1

) =

D (w

2

) if and only if W (S)w

1

= W (S)w

2

(see [25℄). Hene the number

of e�etive ontrol sets in F is jWj = jW (S)j. On the other hand the ontrol

sets in F

�

are the image of those in F under the projetion �

�

: F ! F

�

.

For later referene we reord the following fat proved in [23℄, Proposition

6.3.

Proposition 5.6 Take b

1

2 C

+

�(S)

and b

2

2 C

�

�

�

(S)

and let p

1

and p

2

be the

orresponding paraboli subalgebras, respetively. Then p

1

is opposed to p

2

.
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5.3 Redutive groups

For appliations to ows on ag bundles it is onvenient to onsider also

redutive groups besides the semi-simple ones. We have in mind, for instane,

the redutive non-onneted group Gl (n;R), whih appears when studying

ows on vetor bundles. The point is that ontrol sets for semigroups in

redutive Lie groups are determined only by the ation of the semi-simple

omponent so that we an develop our results in the semi-simple setting and

get for free the same results for redutive groups.

To disuss this extension let R be a redutive Lie group with Lie algebra

r = g � z, with g semi-simple and z the enter of r. We assume that R

has a �nite number of onneted omponents. Denote by Z

R

the enter of

R whih is a losed normal subgroup of R. A paraboli subgroup, say P

R

,

of R is de�ned like in the semi-simple ase (f. [28℄, page 85 �), namely,

P

R

= N

R

(p), where p is a paraboli subalgebra of g. The Lie algebra of P

R

is p� z. Let R

0

be the identity omponent of R, and put G = R

0

= (Z

R

\ R

0

).

It follows that G is atually the identity omponent of Aut (g), and thus a

semi-simple Lie group.

Put P = N

G

(p) for the paraboli subgroup of G orresponding to P

R

.

Lemma 5.7 The oset R=P

R

is a union of opies of G=P , and R=P

R

= G=P

if R=P

R

is onneted, that is, if P

R

meets every omponent of R.

Proof: Sine Z

R

� P

R

, any z 2 Z

R

ats as identity on R=P

R

. This implies

that the ation of R on R=P

R

fators through the semi-simple group R=Z

R

in the sense that R=P

R

= (R=Z

R

) = (P

R

=Z

R

). Hene, P = (P

R

\ R

0

) =Z

R

and

R

0

= (P

R

\ R

0

) = G= ((P

R

\R

0

) =Z

R

) = G=P:

Furthermore, given a onneted omponent K of R the set fgP

R

: g 2 Kg is

in bijetion with R

0

= (P

R

\R

0

). The oset spaes R=P

R

and G=P are equal

if and only if P

R

meets every omponent of R.

Now, let S � R be a semigroup with non-empty interior, and write S

for the image of S under the anonial homomorphism R ! R=Z

R

. Then

the ation of S on R=P

R

depends solely on the ation of S, in partiular,

the ontrol sets of S oinide with the ontrol sets of S. Clearly S has non-

empty interior in the (possibly non-onneted) semi-simple Lie group R=Z

R

.

Next we ompare non-onneted semi-simple Lie groups with their onneted

omponents.
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Proposition 5.8 Let G be a semi-simple Lie group with a �nite number

of onneted omponets. Suppose that a paraboli subgroup P

G

meets every

omponent of G. Then for any semigroup S � G, with intS 6= ;, the e�etive

ontrol sets of S in G=P

G

oinides with those of S = S \G

0

.

Proof: Put P

0

= P

G

\ G

0

, so that G=P

0

is a union of opies of G=P

G

,

eah opy is the image of a onneted omponent of G under the projetion

G! G=P

0

. Form the anonial bundle map

� : G=P

0

�! G=P

G

:

The ontrol sets of S in G=P

0

projet onto the ontrol sets in G=P

G

. Also, if

D � G=P

G

is a ontrol set and x 2 D

0

, then any point y 2 �

�1

fxg belongs

to the set of transitivity of a ontrol set, say D � G=P

0

. Now, y and gy,

g 2 G belong to the same omponent, then g 2 G

0

. In partiular, D � lSy,

so that D is also a S-ontrol set. Sine the ontrol sets of S are ontained in

the ontrol sets of S, the result follows.

Corollary 5.9 Let R be a redutive Lie group with a �nite number of on-

neted omponents. Suppose that a paraboli subgroup P

R

� R meets every

omponent of R. Then for any semigroup S � R, with intS 6= ;, the e�etive

ontrol sets of S in G=P

R

oinides with those of S =

�

S \ R

0

�

= (Z

R

\R

0

).

6 Sequenes in G

Let g

k

be a sequene in the semi-simple Lie group G. In order to see the

pointwise limit of the ation of g

k

on the ag manifolds let us �x a polar

deomposition G = Kl (A

+

)K, and write g

k

= u

k

h

k

v

k

with u

k

; v

k

2 K and

h

k

2 l (A

+

).

For a root � 2 � and h 2 A, put �

�

(h) = exp(�(log h)). We say that

g

k

is admissible if u

k

! u, v

k

! v, u; v 2 K and the sequene �

�

(h

k

) are

onvergent for all negative roots �. Note that for every negative root �,

�

�

(h

k

) 2 (0; 1℄, so that any sequene has an admissible subsequene. The

numbers �

�

(h

k

) together with 1 are the eigenvalues of Ad (h

k

). Hene, for

an admissible sequene the restrition of Ad (h

k

) to n

�

onverges to a linear

map � : n

�

! n

�

(f. [10℄ and [26℄, Proposition 2.5).
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Now take a ag manifold F

�

and denote by b

0

the origin orresponding

to the standard paraboli subgroup de�ned by A

+

. Also, put � = N

�

b

0

for

the open Bruhat ell. Then

g

k

v

�1

(expY ) b

0

! u exp (�Y ) b

0

for any Y 2 n

�

(f. [26℄, Proposition 2.5). Hene g

k

x has a limit for any

x 2 v

�1

�

0

and the limit belongs to u (exp (im� )) b

0

.

In the sequel we write dom

�

(g

k

) = v

�1

�

0

and im

�

(g

k

) = u (exp (im�)) b

0

and refer to these sets as the prinipal domain and prinipal image in F

�

,

respetively.

Both sets dom

�

(g

k

) and im

�

(g

k

) are onneted and the prinipal image

redues to a point if and only if � anihilates on n

�

�

, that is, �

�

(h

k

) ! 0 for

the negative roots � =2 h�i. In this ase the sequene is said to be ontrating

with respet to F

�

(f. [10℄).

The next lemma about the inverses g

�1

k

of ontrating sequenes will be

essential in the study of ows on ag bundles.

Lemma 6.1 Let g

k

= v

k

h

k

u

k

be a ontratible sequene with respet to F

�

with u

k

! 1 and v

k

! v. Suppose that C � � is a ompat subset and

b 6= vb

0

. Then there exists k

0

> 0 suh that g

�1

k

b =2 C if k � k

0

.

Proof: Reall that � = N

�

�

� b

0

where N

�

�

= exp n

�

�

and n

�

�

is the nilpotent

Lie algebra spanned by the root spaes g

�

, 0 < � =2 h�i. The adjoint

Ad (h) of h 2 A restrited to n

�

�

is diagonal with eigenvalues exp (� (log h)),

0 < � =2 h�i. The ation of h on n

�

�

is equivalent to the ation on N

�

�

. Take

a basis of n

�

�

formed by root vetors and endow n

�

�

with the orresponding

sup-norm

jjZjj = max ja

i

j

where a

i

is the oordinate with respet to the i-th basi vetor. By the

ontratibility assumption exp

�

�

�

logh

�1

k

��

! 1 for every negative root

� =2 h�i. Hene,

�

�

�

�

h

�1

k

� Z

�

�

�

�

! 1 if Z 2 n

�

�

is not zero. Denote also by

jj�jj the funtion on � obtained through the di�eomorphism with n

�

�

. Sine

C � � is ompat jj�jj attains a maximum  on C.

With these preparations we an prove that for large k, g

�1

k

b stays outside

the ball of radious  if b 6= vb

0

. Sine v

�1

k

b! v

�1

b 6= b

0

, there exists k

1

suh

that

m = inff

�

�

�

�

v

�1

k

b

�

�

�

�

: v

k

b 2 �; k > k

1

g > 0:
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We write m =1 if v

�1

k

b =2 � for all k > k

1

. Applying h

�1

k

it follows that for

large k, h

�1

k

v

�1

k

b is outside a neighborhood O � C. In fat, if jjZjj = m <1

then

�

�

�

�

h

�1

k

Z

�

�

�

�

!1 and ifm =1 then h

�1

k

v

�1

k

b belongs to the omplement of

�. Finally, by ontinuity in the ompat-open topology, the assumption that

u

k

! 1 ensures that for large k, u

k

C � O, so that g

k

b = u

�1

k

h

�1

k

v

�1

k

b =2 C.

7 Domain of attration

The domains of attration of ontrol sets in ag manifolds were given alge-

brai desriptions in [21℄. For later use in the study of ows on ag bundles

we shall reall here some results of [21℄ and prove aditional related fats.

Let D (w) be an e�etive ontrol set for the semigroup S � G in the

maximal ag manifold F. In [21℄ it was proved that the domain of attration

A (D (w)) is a union of Shubert ells as follows: Fix a simple system of roots

� and for a �nite sequene �

1

; : : : ; �

n

in � let s

1

; : : : ; s

n

be the reetions

with respet to these roots, and denote by P

i

= P

f�

i

g

the paraboli subgroup

de�ned by � = f�

i

g. The orresponding ag manifold is denoted by F

i

=

G=P

i

. Assoiated with F

i

there is the anonial �bration �

i

: F ! F

i

. Now,

given i = 1; : : : ; n let 

i

stand for the operation of exhausting a subset of F

with the �bers of �

i

, that is, if X � F then



i

(X) = �

�1

i

�

i

(X) =

[

x2X

F

x

;

with F

x

standing for the �ber through x of �

i

: F ! F

i

. Before proeeding

we note that the simple system of roots � is used merely to label the ag

manifolds and the maps 

i

, sine these maps are independent of the hoie of

�, as happens to the �brations F ! F

i

. The following statement was proved

in [21℄, Theorem 6.3.

Proposition 7.1 The domain of attration of D (w) is given by

A (D (w)) = 

1

� � �

n

�

C

�

�

;

where C

�

is the repeller set of S in F. Here the sequene 

i

is hosen in

suh a way that w

0

w = s

n

� � � s

1

is a redued expression of w

0

w as a produt

of simple roots, where w

0

is the prinipal involution of W.
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Applying this result to S

�1

we get the repeller domain of D (w):

Proposition 7.2 Let D

�

(w) be the ontrol set of S

�1

having the same set

of transitivity as D (w). Denote by A

�

(D

�

(w)) its attrator (reppeller of

D (w)). Then

A

�

�

D

�

(w)

�

= 

0

1

� � �

0

m

�

C

+

�

;

where C

+

� F is the attrator set of S. The sequene 

0

i

orresponds to the

reetions obtained by a redued expression w = r

m

� � � r

1

.

Proof: Follows from the above proposition and [21℄, Proposition 3.1.

By [21℄, Theorem 5.3 and Corollary 5.4, it follows that 

1

� � �

n

fbg is

a Shubert ell in F, for any b 2 F. Our next objetive is to desribe the

intersetion of a pair of suh ells in terms of the exhausting maps. Denote

by P the minimal paraboli subgroup orresponding to � and let b

+

be the

origin in G=P . Now, take w 2 W with redued expression w = r

m

� � � r

1

, and

write 

0

i

for the orresponding exausting maps. On the other hand we put 

i

for suh maps orresponding to a redued expression w

0

w = s

n

� � � s

1

.

Lemma 7.3 

0

1

� � �

0

m

fb

+

g \ 

1

� � �

n

fb

�

g = fwb

+

g.

Proof: By [21℄, Corollary 5.4, 

1

� � �

n

fb

�

g = l (N

�

wb

+

). To �nd an anal-

ogous expression for 

0

1

� � �

0

m

fb

+

g we reall [21℄, Theorem 5.3, whih shows

that l

�

N

w

�1

b

+

�

= 

0

1

� � �

0

m

fw

�1

b

+

g where N

w

�1

= w

�1

N

+

w. Applying w

to both sides of this equallity we get



0

1

� � �

0

m

fb

+

g = l

�

N

+

wb

+

�

:

But it is well known that the ells l (N

+

wb

+

) and l (N

�

wb

+

) meet transver-

sally exatly at wb

+

, onluding the proof.

We an think this lemma as a method of obtaining the whole set of �xed

points from the attrator and repeller ones. In fat, take a split regular h =

exp (H), H 2 a

+

. Then b

+

is the attrator of h, while b

�

is the repeller and

the other �xed points are wb

+

, w 2 W. Thus the above lemma reonstruts

the �xed points from b

�

and the exausting maps. The next lemma generalizes

this onstrution for non-regular H 2 la

+

.

Lemma 7.4 

0

1

� � �

0

m

(K

0

H

b

+

) \ 

1

� � �

n

(K

0

H

b

�

) = K

0

H

b

w

.
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Proof: Take x in the left hand side and u 2 K

0

H

. We have x 2 

0

1

� � �

0

m

(v

1

b

+

)\



1

� � �

n

(v

2

b

�

) for some v

1

; v

2

2 K

0

H

. Using the equivariane of the exhaust-

ing maps we get

ux 2 

0

1

� � �

0

m

�

uv

1

b

+

�

\ 

1

� � �

n

�

uv

2

b

�

�

;

so that the entire orbitK

0

H

x is ontained in 

0

1

� � �

0

m

(K

0

H

b

+

)\

1

� � �

n

(K

0

H

b

�

).

Combining this with the previous lemma we onlude that the right hand side

is ontained in the left one. For the reverse inlusion, take x 2 

0

1

� � �

0

m

(v

1

b

+

)\



1

� � �

n

(v

2

b

�

). Proeeding as in the proof of the previous lemma, we obtain



0

1

� � �

0

m

(v

1

b

+

) = l (v

1

N

+

b

w

) and 

1

� � �

n

(v

2

b

�

) = l (v

2

N

�

b

w

). Now, for

any z 2 l (N

+

b

w

), the limit lim

t!�1

exp (tH) z belongs to a omponent,

say K

0

H

b

w

1

, bigger than K

0

H

b

w

(in fat, N

+

b

w

ontains the unstable manifold

of the �xed-point set K

0

H

b

w

, f. [9℄). Hene, lim

t!�1

exp (tH) x belongs to

K

0

H

b

w

1

, sine v

1

ommutes with exp (tH). Symmetrially, lim

t!+1

exp (tH)

belongs to a omponent K

0

H

b

w

2

smaller than K

0

H

b

w

, beause x 2 l (v

2

N

�

b

w

).

Combining the two limits and using the fat that

S

w2W

H

nW

K

0

H

b

w

is a Morse

deomposition we onlude that K

0

H

b

w

= K

0

H

b

w

1

= K

0

H

b

w

2

, and hene x 2

K

0

H

b

w

.

By taking onjugations we arry over this lemma to the �xed-point set

of exp (tA) if A belongs to an adjoint orbit rossing la

+

. In fat, for any

g 2 G and b 2 F, g

1

� � �

n

(b) = 

1

� � �

n

(gb), and the �xed point set of

exp (tAd (g)H) is the image under g of the �xed point set of exp (tH). For

later referene we state this fat.

Corollary 7.5 Take A 2 Ad (G)H, H 2 la

+

and let �x (Z) be the set of

�xed points of exp (tA) in F. Then there exists a map w 2 W 7! �x (A;w)

onto the set of onneted omponents of �x (A) suh that �x (A; 1) is the

unique attrator, �x (A;w

0

) is the unique repeller and

�x (A;w) = 

0

1

� � �

0

m

(�x (A; 1)) \ 

1

� � �

n

(�x (A;w

0

)) ;

with 

0

i

and 

i

given by redued expressions of w and w

0

w, respetively. Fur-

thermore, �x (A;w

1

) = �x (A;w

2

) if and only if W

H

w

1

=W

H

w

2

.

We onlude this setion with an appliation of the above results to the

ontrol sets of a semigroup S. Let b

1

and b

2

be two points in the maximal

ag manifold F with isotropy subalgebras p

1

and p

2

, respetively. We say

that b

1

and b

2

are opposed if p

1

and p

2

are opposed.
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Proposition 7.6 Let C

�

� F be the attrator and repeller set of S, respe-

tively. Take opposed b

1

2 C

+

and b

2

2 C

�

. Then w(b

1

; b

2

) 2 D (w)

0

(see the

notation at the end of subsetion 5.1).

Proof: By Lemma 7.3, w (b

1

; b

2

) = 

0

1

� � �

0

m

fb

1

g \ 

1

� � �

n

fb

2

g. On the

other hand Propositions 7.1 and 7.2 show that 

0

1

� � �

0

m

fb

1

g \ 

1

� � �

n

fb

2

g

belongs to D (w)

0

.

8 Flag bundles

In this setion we onstrut the maximal hain transitive subsets of a ow

in a ag bundle with the aid of the shadowing semigroups. It will produe

that, analogously to the ontrol sets on ag manifolds, the maximal hain

transitive sets are parametrized by the Weyl group. Hene there is a �nite

number of suh omponents, whih for ompat metri spaes implies the

existene of a �nest Morse deomposition of the ow.

8.1 Control sets

Before applying the shadowing semigroup method we must have a desription

of the ontrol sets on the ag bundles. This will be done by improving the

results of [4℄ with the inlusion of the algebrai haraterizations disussed

in Setion 5 above.

To start with let Q! X be a prinipal bundle whose struture group G

is semi-simple and non-ompat. As before let F

�

be a ag manifold of G

and put E

�

! X for the assoiated bundle E

�

= Q �

G

F

�

, having typial

�ber F

�

. For the maximal ag manifold F we write the assoiated bundle

simply by E ! X. Reall that when �

1

� �

2

there exists a natural �bration

F

�

1

! F

�

2

induing a �bration E

�

1

! E

�

2

. In partiular, we have the �ber

bundle E ! E

�

for any � � �.

Let S be a loal subsemigroup of Aut(Q). To look at the ontrol sets of

S on the ag bundles we assume that S satis�es the aessibility property

on Q and its ation on X is transitive. By the results of [4℄ the ontrol sets

for the ation of S on E are built �berwise from ontrol sets in F. We sketh

the main onstrution: Given q 2 Q de�ne

S

q

= fg 2 G : 9� 2 S; � (q) = q � gg; (3)
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then S

q

is a subsemigroup of G and the aessibility assumption on Q implies

that int

G

(S

q

) 6= ; (see [4℄, Lemma 3.2). Let D

q

be an e�etive ontrol set

of S

q

on F. Aording to our notation, q �D

q

is a subset of the �ber E

x

of E

above x = � (q). Atually the sets q �D

q

are independent of q 2 Q

x

. In fat,

if p = q � a, a 2 G is in the same �ber as q, then S

q�a

= a

�1

S

q

a, so that a

�1

D

is a ontrol set for S

p

. Therefore,

p �D

p

= (q � a) �

�

a

�1

D

q

�

= q �D

q

:

By Theorem 3.5 of [4℄, the intersetion of the set of transitivity of an e�etive

ontrol set of S in E with a �ber has the form q � (D

q

)

0

. Conversely, given

an e�etive ontrol set D

q

, the set q � (D

q

)

0

is the intersetion of the set of

transitivity of a unique e�etive ontrol set in E with the �ber above x = � (q)

(see [4℄, Proposition 3.6). These results yields immediately the �niteness of

ontrol sets on the ag bundles.

Proposition 8.1 Suppose S satis�es the aessibility property on Q and is

transitive on the base spae X. Then the e�etive ontrol sets in a ag bundle

E

�

! X is in bijetion with the e�etive ontrol sets of S

q

on F

�

. Hene,

the number of S-e�etive ontrol sets on E

�

is �nite.

Proof: Fix x 2 X. The transitivity of S on X ensures that any e�etive

ontrol set E meets the �ber above x. By [4℄, Theorem 3.5, the intersetion

of E

0

with the �ber has the form q � (D

q

)

0

. Thus we have a well de�ned map

whih assoiates an e�etive ontrol set in E

�

to an e�etive ontrol set of

S

q

. Sine di�erent ontrol sets are disjoint, this map is one-to-one. On the

other hand the map is onto by [4℄, Proposition 3.6, onluding the proof.

Using the bijetion of this proposition we an label the ontrol sets in

E

�

by the Weyl group W. Thus let D

�

q

(w) be the ontrol set of S

q

on F

�

whose set of transitivity is formed by �xed-points of type w of the elements

of S

q

(f. Setion 5). The set q �D

�

q

(w) is independent of q in the �ber over

x = � (q). We put F

x

�

(w) = q �D

�

q

(w), F

x

�

(w)

0

= q �D

�

q

(w)

0

, and let E

x

�

(w)

be the ontrol set of S in E

�

whih ontains F

x

�

(w)

0

.

Our objetive is to relate the ontrol sets E

x

�

(w) for di�erent x 2 X. In

the general framework of [4℄ this was done only for invariant ontrol sets.

Here however we take advantage of the algebrai properties of the �bers F

�

.

First we onsider the maximal ag bundle.
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Lemma 8.2 Given x 2 X there exists an open neigborhhood U of x suh

that E

y

(w) = E

x

(w) for all y 2 U .

Proof: Take x 2 X and a trivializing neighborhood V of x, so that �

�1

Q

(V ) �

V �G and �

�1

E

(V ) � V � F. Write S

x

for the semigroup S

(x;1)

.

Using the transitivity of S on X, we apply Theorem 4.4 of [4℄ to onlude

that S has a unique invariant ontrol set C (S

x

) � E as well as a unique

minimal ontrol set C

�

(S

x

) � E . Both ontrol sets projet onto X, and by

the same result C (S

x

) \ �

�1

fxg is the invariant ontrol set of S

x

in F while

C

�

(S

x

) \ �

�1

fxg is the minimal ontrol set. As before we put C

+

(S

x

) for

the attrator set of S

x

.

Now, we an hoose (x; b

1

) 2 C

+

and (x; b

2

) 2 C

�

suh that b

1

and

b

2

are opposite to eah other (see Setion 5). By Proposition 7.6 we have

w (b

1

; b

2

) 2 D

x

(w)

0

, so that (x; w (b

1

; b

2

)) 2 (E

x

(w))

0

. Sine (E

x

(w))

0

is

open there exists a neigborhood U

1

of x in X suh that U

1

� fw (b

1

; b

2

)g �

E

x

(w). Also, there exists a neigborhood U

2

of x suh that U

2

� fb

1

g � C

+

and U

2

�fb

2

g � C

�

. Applying again Proposition 7.6, it follows that for every

y 2 U

2

, (y; w (b

1

; b

2

)) 2 E

y

(w). Then U = U

1

\ U

2

satis�es the ondition

of the lemma sine (y; w (b

1

; b

2

)) 2 E

y

(w) \ E

x

(w) for all y 2 U , so that

E

y

(w) = E

x

(w) beause these ontrol sets overlap.

For the sake of simpliity in the notations we proved the above lemma

only for the maximal ag bundle, but the same result holds for any other

bundle E

�

, beause the ontrol sets in E

�

are projetions of the ontrol sets

in E . Hene if we use subsript � for ontrol sets in E

�

we arrive at the

following piture.

Corollary 8.3 Take a onneted omponent � of X and w 2 W. Then the

ontrol sets E

x

�

(w) are independent of x 2 �.

Proof: The relation x � y if E

x

(w) = E

y

(w) is an equivalene relation on

X. By Lemma 8.2 the equivalene lasses are open sets, and hene union of

onneted omponents of X.

Therefore, �xing a onneted omponent � we get a well de�ned ontrol

set E

�

�

(w) in E for eah w 2 W. We do not know whether the ontrol

sets E

�

�

(w) are independent of the onneted omponent �. Note however

that any e�etive ontrol set has the form E

�

�

(w), hene the ontrol sets are

labelled by w 2 W, one � is given.
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For the sake of ompleteness let us disuss what happens in ase � is

hanged into another onneted omponent �

1

of X. There exists a map

� : W ! W suh that E

�

1

�

(w) = E

�

�

(� (w)). Sine any e�etive ontrol set

has the form E

�

�

(w), it follows that � is a bijetion. Furthermore, the map

� is inreasing with respet to the Borel-Chevalley order � in W (f. [21℄).

In fat, it was proved in [21℄ that D

�

q

(w

1

) � D

�

q

(w

2

) if and only if w

2

� w

1

,

so that E

�

1

�

(w

1

) = E

�

�

(� (w

1

)) is smaller than E

�

1

�

(w

2

) = E

�

�

(� (w

2

)) if and

only if w

2

� w

1

, implying that � (w

2

) � � (w

1

) if w

2

� w

1

.

8.2 Chain transitive sets

We proeed now to apply the above results to the shadowing semigroups of

a ow � on a ag bundle. For this we assume that the loal group lo (X) of

the base spae is loally transitive, implying that the shadowing semigroups

S

";T

in Aut (Q) are loally transitive by Corollary 3.6 and Lemma 3.7. In

partiular, S

";T

satis�es the aessibility property for all "; T > 0.

Let us �x one and for all a maximal hain transitive subset X of the ow

on the base spae X and denote by X

";T

the ontrol set of the shadowing

semigroup S

";T

ontaining X (see Theorem 4.7). Let X

0

";T

be the set of tran-

sitivity of X

";T

. Clearly, S

";T

ats transitively on X

0

";T

. Hene, the previous

results apply if we restrit the ation of S

";T

on a ag bundle to the open set

above X

0

";T

.

To avoid umbersome notation we write in the sequel the ontrol sets

of S

";T

above X

0

";T

without any further referene to this restrition. Hene

a ontrol set of S

";T

in E

�

should be understood as a ontrol set for the

restrition of the ation of this semigroup to the bundle E

�

! X

0

";T

. Also,

we denote by E

�

the restrition of a ag bundle E

�

above X , and for e 2 E

�

we write C

r

(e) = C (e) \ E

�

and C

�

r

(e) = C

�

(e) \ E

�

.

Now for w 2 W, there exists an e�etive ontrol set E

�

";T

(w) � E

�

of

S

";T

and for every e�etive ontrol set E � E

�

of S

";T

there exists w 2 W

suh that E = E

�

";T

(w).

Lemma 8.4 Let "

1

; T

1

> 0 and "

2

; T

2

> 0 be given suh that "

1

� "

2

and

T

1

� T

2

. Then for any w 2 W, E

�

"

1

;T

1

(w) � E

�

"

2

;T

2

(w).

Proof: Sine for any q 2 Q, S

"

1

;T

1

� S

"

2

;T

2

it follows that S

"

1

;T

1

q

� S

"

2

;T

2

q

(with obvious notation). Hene the ontrol sets of S

"

1

;T

1

q

are ontained in

those of S

"

2

;T

2

q

. Thus the lemma follows by the �berwise onstrution of the
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ontrol sets on E

�

.

Therefore, to be able to apply Theorem 4.7 it remains to hek that

T

";T

E

�

";T

(w) 6= ;. We onsider �rst the invariant ontrol sets.

Lemma 8.5

T

";T

E

�

";T

(1) 6= ;. Furthermore,

T

";T

E

�

";T

(1) =

T

e2E

�

C

r

(e).

Proof: The ontrol sets E

�

";T

(1) are losed and due to transitivity on the

basis the invariant ontrol sets meet every �ber in a non-empty ompat set.

By the inlusion E

�

"

1

;T

1

(1) � E

�

"

2

;T

2

(1) if "

1

� "

2

and T

1

� T

2

, it follows that

for eah x 2 X the family E

�

";T

(1)

x

satis�es the �nite intersetion property.

Hene by ompateness of the �ber we onlude that

T

";T

E

�

";T

(1) 6= ;. The last

equality is a onsequene of Proposition 4.5 and the fat that E

�

";T

(1) � S

";T

e

for every e 2 E

�

.

Now we onsider the minimal ontrol sets. For this we apply the above

lemma to the shadowing semigroups S

�

";T

for the reversed ow. The orre-

sponding invariant ontrol sets have a non-empty intersetion, whih equals

T

e2E

C

�

(e).

Lemma 8.6

T

e2E

�

C

�

r

(e) =

T

";T

E

�

";T

(w

0

).

Proof: Take f 2

T

e2E

�

C

�

r

(e). By Proposition 4.5, for all "; T > 0, S

";T

f = E .

Hene f belongs to the minimal ontrol set of S

";T

, that is, E

�

";T

(w

0

). This

implies that

T

e2E

�

C

�

r

(e) �

T

";T

E

�

";T

(w

0

). The reverse inlusion is due to the

fat that both sets are maximal hain transitive, by Theorem 4.7.

To get non-empty intersetion for the other ontrol sets we apply the

results about domains of attration of Setion 7. Sine there the statements

are made for the maximal ag manifold we shall work out here the ase of E

and afterwards projet down to the other ag bundles. Thus �x q 2 Q, let

x = � (q) 2 X and write a subsript x for intersetions of subsets of E with

the �ber through x. For example, the sets q

�1

� E

";T

(w

0

)

x

and q

�1

� E

";T

(1)

x

are the minimal and invariant ontrol set of S

";T

q

, respetively.
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Now, take e

�

2

T

";T

E

";T

(w

0

)

x

and e

+

2

T

";T

E

";T

(1)

x

. Put w (e

+

; e

�

) =

q � w (q

�1

� e

+

; q

�1

� e) (see the notations of Proposition 7.6). By Proposition

7.6, w (q

�1

� e

+

; q

�1

� e) belongs to the w-ontrol set of S

";T

q

for every "; T > 0.

Hene for "; T > 0, w (e

+

; e

�

) 2 E

";T

(w)

x

, showing that

T

";T

E

";T

(w) 6= ;.

Lemma 8.7 For any w 2 W,

T

";T

E

�

";T

(w) 6= ;.

Proof: We showed above that

T

";T

E

";T

(w) 6= ;. Sine E

�

";T

(w) is the proje-

tion of E

";T

(w) the lemma follows.

Thus we have proved one of the main results of this paper.

Theorem 8.8 Suppose that lo (X) is loally transitive. Let �

t

be a right

invariant ow on Q and take a maximal hain transitive subset X � X.

Then the assoiated ow on a ag bundle E

�

! X sati�es:

1. For eah w 2 W there exists a maximal hain transitive set M

�;�

(w)

(or simply M

�

(w)).

2. If M � E

�

is a maximal hain transitive set then M = M

�

(w) for

some w 2 W.

3. M

�

(1) is the only attrator while M

�

(w

0

) is the only repeller, where

w

0

is the prinipal involution of W.

In the sequel we put M

+

�

= M

�

(1), M

�

�

= M

�

(w

0

), and supress the

subsripts when E = E

;

is the maximal ag manifold.

Clearly, in the ompat ase the maximal hain transitive subsets oinide

with the onneted omponents of the hain reurrent set, giving rise to the

�nest Morse deomposition.

Corollary 8.9 In the situation of the above theorem, suppose furthermore

that X is ompat. Then the ow on a ag bundle E

�

admits a �nest Morse

deomposition with omponents M

�

(w).
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8.3 Paraboli type

As happens to the ontrol sets on the ag manifolds the map w 7! M (w)

of Theorem 8.8 is not injetive. Analogously to the semigroup ase the level

sets of this map are desribed by the paraboli type of the ow, a onept

whih we shall introdue below based on the paraboli type of semigroups.

Our �rst task is to hek that the semigroups S

q

, q 2 Q, de�ned above,

have the same paraboli type. For this �x q 2 Q, let � = � (S

q

) be the

paraboli type of S

q

, and form the ag bundle E

�

. Then there exists a

natural �bration � : E ! E

�

whose �ber oinides with that of �

�

: F ! F

�

.

Sine � is the paraboli type of S

q

, it follows that the invariant ontrol set

in F, C

q

= C (S

q

), is given by C

q

= �

�1

�

(C

q

�

), where C

q

�

= C

�

(S

q

) is the

invariant ontrol set in F

�

. By [4℄, Theorem 3.5, the subset q � C

q

� E (1).

The same way q � C

q

�

� E

�

(1). Hene for every e 2 q � C

q

�

, �

�1

feg � E (1).

Applying [4℄, Proposition 3.7, we onlude that �

�1

(E

�

(1)) is ontained in

E (1). This shows that for any p 2 Q the paraboli type of S

p

, �

p

� �

q

.

Sine q is arbitrary the laim follows. Thus we have proved the

Proposition 8.10 Let S � Aut (Q) be a loal semigroup whih satis�es the

aessibility property and is transitive on the base X. Then the paraboli type

of S

q

is independent of q 2 Q.

In view of this proposition it makes sense to talk about the paraboli type

of a loal semigroup S � Aut (Q).

De�nition 8.11 Let S � Aut (Q) be a semigroup satisfying the aessibility

property. The paraboli type of S is the ommon paraboli type of S

q

, q 2 Q.

In partiular a shadowing semigroup S

";T

= S

";T

(�;Aut (Q)) of a ow �

has a paraboli type, whih we denote by �

";T

. If "

1

< " and T

1

> T then the

ontrol sets of S

"

1

;T

1

are ontained in those of S

";T

(see Lemma 4.6). Thus

the de�nition of the paraboli type implies that �

"

1

;T

1

� �

";T

. Also, note

that the number of possible paraboli types is �nite. Hene the intersetion

T

";T

�

";T

, whih is possible empty, is well de�ned.

De�nition 8.12 The paraboli type of the ow on Q is de�ned to be

�(�) =

\

";T

�

";T

where �

";T

is the paraboli type of the shadowing semigroup S

";T

.
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Analogous to the ase of ontrol sets the paraboli type of a ow is in-

timately related to the geometry of the attrator maximal hain transitive

subset. In fat, the results about ontrol sets of the shadowing semigroups

yield immediately the following properties of the paraboli type of �.

Proposition 8.13 The �bers ofM

�(�)

(1) are ontained in open ells. Also,

�

�1

M

�(�)

(1) =M (1).

Proposition 8.14 The number of maximal hain transitive subsets in E

�

equals the number of orbits of W

�

in W=W

�(�)

. In partiular, in E this

number is jWj =

�

�

W

�(�)

�

�

.

For the paraboli type of the reversed ow �

�

we must look at the invariant

ontrol sets of the shadowing semigroups S

�

";T

. The repeller maximal hain

transitive subset is the intersetion of the invariant ontrol sets of S

�

";T

as

well as the intersetion of the minimal ontrol sets of S

";T

. From this we get

the reversed paraboli type of �:

Proposition 8.15 Denote by �

�

";T

the paraboli type of S

�

";T

and by �

�

";T

the

paraboli type of S

�1

";T

. Then

�(�

�

) =

\

";T

�

�

";T

=

\

";T

�

�

";T

:

Proof: By Proposition 8.14 a �ber of E ! E

�(�

�

)

is ontained in the minimal

ontrol set of every S

�1

";T

, so that � (�

�

) �

T

";T

�

�

";T

. Sine the repeller max-

imal hain transitive subset in E is the intersetion of the minimal ontrol

sets of S

";T

. The reverse inlusion follows the same way.

Aording to [23℄ the paraboli type of the inverse S

�1

of a semigroup in

G is given by the dual ag manifold of the paraboli type of S. This implies

that the paraboli type of �

�

orresponds to the dual ag manifold of the

paraboli type of �. In view of this we onform to the notation of [23℄ and

write �

�

(�) for � (�

�

).

9 Algebrai desription

In this setion we look at maximal hain transitive sets more arefully. Our

objetive is to prove Theorem 9.11, whih gives an algebrai desription of
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these sets. The main lemma in this diretion is Lemma 9.3, whih ensures

that the ow on the bundle E

�(�)

, orresponding to the paraboli type of �,

is suh that �bers of the attrator maximal hain transitive set redues to

a single point. Here ontrary to the previous setion we must ask for the

existene of !-limits on the base spae, an assumption whih is automati in

the ompat ase.

By reverting the ow the same result holds for the repeller on E

�

�

(�)

.

This gives at one the desription of the attrator and repeller maximal

hain transitive sets on every ag bundle. The other hain transitive sets

will be determined by the extremal ones and the domains of attration.

We keep assuming that the ow on the base spaeX is hain reurrent and

lo (X) is loally transitive: As before denote by M

+

�

the attrator maximal

hain transitive set of the ow on E

�

. Let x; y 2 X be suh that t

k

� x ! y

for a sequene t

k

! +1, and take loal ross setions �

i

: U

i

� X ! Q,

i = 1; 2, with x 2 U

1

and y 2 U

2

. Writing � = �

�

1

;�

2

for the orresponding

loal oyle we obtain the sequene g

k

= � (t

k

; x) inG. Taking a subsequene

if neessary we shall assume that g

k

is admissible, so that it makes sense to

onsider its prinipal image im

�

(g

k

) and prinipal domain dom

�

(g

k

). The

following lemma relates im

�

(g

k

) with M

+

�

. It is ruial in the proof of

Lemma 9.3.

Lemma 9.1 Let the notations and assumptions be as above. Then the prin-

ipal image �

2

(y) � im

�

(g

k

) is ontained in M

+

�

.

Proof: First we prove that the prinipal image meetsM

+

�

. For this �x "; T >

0, denote as before E

�

";T

(1) the invariant ontrol set of S

";T

in E

�

and put

N = E

�

";T

(1)

0

, the set of transitivity of E

�

";T

(1). The latter has non-empty

interior and projets onto X. Hene, N interepts �

1

(x) �dom

�

(g

k

), whih is

dense in the �ber above x. But if b 2 �

1

(x) �dom

�

(g

k

) then �

t

k

(b) onverges

to a point in the prinipal image. Therefore, for any b 2 N\�

1

(x)�dom

�

(g

k

),

lim�

t

k

(b) belongs toM

+

�

\ (�

2

(y) � im

�

(g

k

)), showing that this intersetion

is not empty. However, any point of �

2

(y) � im

�

(g

k

) belongs to ! () for some

 2 E

�

, and hene to the hain reurrent set R. Sine im

�

(g

k

) is onneted,

it follows that �

2

(y) � im

�

(g

k

) is ontained in a onneted omponent of R,

whih in turn is ontained in a unique maximal hain transitive set. By the

�rst part of the proof, the prinipal image meetsM

+

�

, implying the lemma.

When we speialize this lemma to the ase � = � (�), the paraboli type

of the ow, we see that the prinipal image im

�(�)

(g

k

) redues to a single
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point. In fat, for this spei� bundle the attrator set M

+

�

is ontained

in open Bruhat ells, that is, the set � (y)

�1

�

�

M

+

�

\ E

�(�)

�

is ontained in

some open Bruhat ell of F

�(�)

. Thus Lemma 9.1 implies that im

�(�)

(g

k

) is

ontained in an open ell. But the only possibility for this ourrene is when

g

k

is ontratible with respet to � (�), that is im

�(�)

(g

k

) is a point.

Corollary 9.2 Keep the notations and assumptions as above. Then im

�(�)

(g

k

)

redues to a single point.

Now we an prove the main lemma about the strutural property of the

attrator maximal hain transitive sets in the ag bundles.

Lemma 9.3 Let M

+

�(�)

� E

�(�)

be the attrator maximal hain transitive

set in the ag bundle orresponding to the paraboli type of �. Suppose that

x 2 X is suh that ! (x) 6= ;. Then M

+

�(�)

meets the �ber

�

E

�(�)

�

x

over x

in a single point.

Proof: Write A = � (x)

�1

� M

+

�(�)

and �x b

0

2 A. We shall take a polar

deomposition of G adapted to b

0

and A as follows: Choose a Weyl hamber

A

+

� G so that b

0

is the attrator of A

+

in F

�(�)

and the orresponding

stable manifold (open ell) � ontains A (e.g. take A

+

meeting a shadowing

semigroup S

";T

for small enough " > 0 and large T ). This Weyl hamber de-

termines a maximal ompat subgroup K � G and the polar deomposition

G = KA

+

K.

For y 2 ! (x) let t

k

! +1 be a sequene with t

k

� x ! y. Take loal

ross setions �

i

: U

i

! Q, i = 1; 2, around x and y, respetively, and let

� = �

�

1

;�

2

be the orresponding loal oyle. Put g

k

= � (t

k

; x) and assume

without loss of generality that g

k

is admissible.

Now, write g

k

= v

k

h

k

u

k

with v

k

; u

k

2 K and h

k

2 A

+

with u

k

! u, v

k

!

v. By the above orollary g

k

is ontratible in F

�(�)

, so that im

�(�)

(g

k

) = vb

0

.

Changing, if neessary, the ross setion �

1

with �

0

= �

1

� u, u 2 K, we an

assume that u

k

! 1. Then by Lemma 6.1 we onlude that g

�1

k

b is outside

the ompat subset A � � if b 6= vb

0

. However,

�

�t

k

(� (t

k

� x) b) = � (x) �

�

� (t

k

; x)

�1

b

�

= � (x) �

�

g

�1

k

b

�

:

Sine for large k, g

�1

k

b =2 A = � (x)

�1

� M

+

�(�)

, it follows that � (t

k

� x) � b =2

M

+

�(�)

if vb 6= b

0

. Therefore, for large values of k the �ber of M

+

�(�)

above

t

k

� x redues to the point � (t

k

� x) � (v

�1

b

0

). This implies that the �ber
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above x is also a single point, sine �

t

k

settles a bijetion between the �bers

�

E

�(�)

�

x

!

�

E

�(�)

�

t

k

�x

.

Clearly, reverting time this proof yields an analogous result for the re-

peller omponent, as soon as we onsider the ag E

�

�

(�)

orresponding to

the paraboli type of the reversed ow.

Corollary 9.4 Let M

�

�

�

(�)

� E

�

�

(�)

be the repeller maximal hain transi-

tive set in the ag bundle orresponding to the reversed paraboli type of �.

Suppose that x 2 X is suh that !

�

(x) 6= ;. Then M

�

�

�

(�)

meets the �ber

�

E

�

�

(�)

�

x

over x in a single point.

Of ourse, the onditions about ! and !

�

-limits are satis�ed in ase the

base spae X is ompat.

Corollary 9.5 In the situation of Lemma 9.3, assume furthermore that the

base spae is ompat. Then the maximal hain transitive setsM

+

�(�)

� E

�(�)

and M

�

�

�

(�)

� E

�

�

(�)

meet the �bers in singletons.

Corollary 9.6 The bundles E

�(�)

! X and E

�

�

(�)

! X are trivial if

! (x) ; !

�

(x) 6= ; for all x 2 X.

Proof: De�ne � : X ! E

�(�)

by the requirement M

+

\

�

E

�(�)

�

x

= f� (x)g.

Then � is a global ross setion of E

�(�)

! X. It remains only to hek that

� is ontinuous. But this follows by loal trivialization and the elementary

fat that a map between metri spaes is ontinuous provided its graph is

losed and the target spae is ompat. The proof for E

�

�

(�)

! X is similar.

In order to have spei� notations for the ross setions in this orollary we

write 
 : X ! E

�(�)

and 


�

: X ! E

�

�

(�)

with f
 (x)g =M

+

�(�)

\

�

E

�(�)

�

x

and f


�

(x)g =M

�

�

�

(�)

\

�

E

�

�

(�)

�

x

.

Now, we enode the ross setions 
 and 


�

into a global ross setion of

a bundle whose �ber is an adjoint orbit of G. For this let f : Q! F

�(�)

and

f

�

: Q ! F

�

�

(�)

be the funtions orresponding to 
 and 


�

, respetively.

Expliitly,

f (q) = q

�1

� 
 (� (q)) and f

�

(q) = q

�1

� 


�

(� (q)) :
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Note that for every "; T > 0, f (q) belongs to the set of transitivity of the

invariant ontrol set in F

�(�)

of S

q

";T

, while f

�

(q) belongs to the minimal

ontrol set in F

�

�

(�)

.

Hene, the pair (f (q) ; f

�

(q)) belongs to the generi G-orbit O

�(�)

�

F

�(�)

� F

�

�

(�)

, whih as homogeneous spae is O

�(�)

= G=Z

G

�

H

�(�)

�

where

H

�(�)

2 la

+

satis�es �

�

H

�(�)

�

= 0 if and only if � 2 h�(�)i. Thus we

have a map h : Q ! G=Z

G

�

H

�(�)

�

whih is equivariant in the sense that

h (q � g) = g

�1

� h (q). Therefore h de�nes a ross setion of the assoiated

bundle whose typial �ber is Ad (G)H

�(�)

.

Note that the identi�ation of O

�(�)

with Ad (G)H

�(�)

is made in suh a

way that A in the adjoint orbit orresponds to the pair (b

1

; b

2

) 2 F

�

� F

�

�

with b

1

the attrator of expA in F

�

and b

2

the repeller of expA in F

�

�

. For

later referene we reord this onstrution in the following statement.

Proposition 9.7 Let the notations and assumptions be as in Lemma 9.3.

Let A

�(�)

! X be the assoiated bundle, having typial �ber the adjoint orbit

Ad (G)H

�(�)

. Then there exists a ross setion � : X ! A with orresponding

map h : Q ! Ad (G)H

�(�)

, suh that f (q) is the attrator of h (q) in F

�(�)

and f

�

(q) is the repeller of h (q) in F

�

�

(�)

.

One we have the attrator and repeller omponents in the �nest Morse

deomposition (and the ross setion given in Proposition 9.7), the other

omponents are easily obtained through intersetions of the attrating and

repelling domains of the ontrol sets. Presently we shall use the results of

[21℄ (f. Setion 7 above) to desribe an arbitrary omponent M from the

extremal ones M

�

.

In the maximal ag bundle E ! X letM

�

be the attrator and repeller

maximal hain transitive sets, respetively. If M is another maximal hain

transitive set

M = A (M) \ A

�

(M)

and by Proposition 4.10,A (M) =

T

";T

A (D

";T

(M)) whileA

�

(M) =

T

";T

A

�

(D

";T

(M)).

Hene,

M =

\

";T

(A (D

";T

(M)) \ A

�

(D

";T

(M))) :

Combining Propositions 4.10 and 7.1, we get the domain of attration of

the hain transitive setM (w). To state the result we use the same notations

used before for projetions between ag bundles. Thus, �x a simple system
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of roots �, and for a �nite sequene �

1

; : : : ; �

n

in � we let s

1

; : : : ; s

n

be the

reetions with respet to these roots. Then we write E

i

! X for the ag

bundle with �ber F

i

= F

f�

i

g

and put �

i

: E ! E

i

for the anonial projetion.

Aordingly, we write 

i

= �

�1

i

�

i

for the exhausting map.

Before proeeding reall that by Corollary 4.9,

M =

\

";T

�

D

";T

(M) \D

�

";T

(M)

�

for every maximal hain transitive set M. This implies the following lemma

whih will be used in the desription of M (w) to be given below.

Lemma 9.8 Take sequenes "

n

! 0 and T

n

! +1, and suppose that a

sequene

b

n

2 D

"

n

;T

n

�

M

�

�

\D

�

"

n

;T

n

�

M

�

�

onverges to b. Then b 2 M

�

.

Proof: For any "; T > 0, b

n

2 D

�

";T

(M

�

) if n is large enough. But the

ontrol set D

�

";T

(M

�

) is losed, so that b 2 D

�

";T

(M

�

), showing the lemma.

Proposition 9.9 The domain of attration of M (w) is given by

A (M (w)) = 

1

� � �

n

�

M

�

�

; (4)

where 

1

; : : : ; 

n

is taken from a redued expression w

0

w = s

n

� � � s

1

.

Proof: After taking loal ross setions we see that it is enough to prove

that

\

";T



1

� � �

n

�

C

�

";T

�

= 

1

� � �

n

 

\

";T

C

�

";T

!

;

where C

�

";T

= E

";T

(w

0

) stands for the minimal ontrol set of S

";T

in E . The

inlusion of the seond hand side into the �rst is immediate. For the onverse,

take x 2

T

";T



1

� � �

n

�

C

�

";T

�

and sequenes "

k

! 0, T

k

! +1 and b

k

2 C

"

k

;T

k

.

We an assume that b

k

! b, so that by Lemma 9.8, b 2 M

�

=

T

";T

C

�

";T

.
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Now any onverging sequene y

k

2 

1

� � �

n

fb

k

g has limit in 

1

� � �

n

fbg.

In partiular the onstant sequene y

k

= x belongs to 

1

� � �

n

fbg, onlud-

ing the proof.

The same result an be applied to the reversed ow to get A

�

(M (w)).

We must only take are with the labelling of the ontrol sets by the elements

of the Weyl group to pik the right sequene 

1

� � �

n

. When working with

A (D (w)) we are taitly assuming that the map w 7! D (w) is de�ned in

suh a way that D (1) is the invariant ontrol set while D (w

0

) is the minimal

ontrol set. Hene for the reversed ow we must hoose another set of simple

roots (orresponding to a redued expression) in order to write down a for-

mula like (4) for A

�

(D (w)). Aording to [21℄, Proposition 3.1, we must take

a redution expression for w = w

0

(w

0

w). In fat, if we label the ontrol sets

of S

�1

, say as D

�

(w), in suh a way that lC

�

= D

�

(1) and C

+

0

= D

�

(w

0

)

then D (w) and D

�

(w

0

w) have the same set of transitivity. Thus we get,

Proposition 9.10 The repelling domain of M (w) is given by

A

�

(M (w)) = 

1

� � �

m

�

M

+

�

; (5)

where 

1

; : : : ; 

m

is taken from a redued expression w = s

m

� � � s

1

.

Now we an give the full piture of the hain reurrent omponents.

Theorem 9.11 Let the notations and assumptions be as in Lemma 9.3.

Consider the map h : Q ! Ad (G)H of Proposition 9.7, where H is any

element of the \partial hamber" a

+

(� (�)). Then the hain reurrent om-

ponents in the full ag bundle E are given by the �xed points of h (q) as

follows:

M (w)

�(q)

= q � �x (h (q) ; w) :

Proof: Follows immediately from Corollary 7.5 and the above two proposi-

tions.

Remark: If H is like in the above theorem, then the vetor �eld indued

by H on a ag manifold F

�

is gradient with respet to a ertain Riemannian

metri on F

�

. Thus it might be expeted that the gradient-like funtions for

the ow on a bundle E

�

! X ould be built from the ross setion h (q) (f.

Conley [8℄).
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10 Examples and speial ases

10.1 Vetor bundles

Given an n-dimensional real vetor bundle V ! X let �

t

be a ow on V

whih is linear on �bers. This ow an be put in our prinipal bundle set up

by taking the bundle of frames Q = BV ! X of V . The elements of BV

are the invertible linear maps p : R

n

! V

x

where V

x

is the �ber of V above

x 2 X, and the strutural group of BV is G = Gl (n;R) whih ats on the

right on BV by pg = p Æ g, p 2 BV , g 2 Gl (n;R). The vetor bundle is

reovered from BV as the assoiated bundle obtained by the standard linear

ation of Gl (n;R) in R

n

.

The linear ow �

t

on V lifts to a ow, also denoted by �

t

, on BV by

putting �

t

(p) = �

t

Æ p, whih learly satis�es �

t

(pg) = �

t

(p) g, g 2 G. Con-

versely, a right invariant ow on BV indues a linear ow on the assoiated

bundle V , showing that ows on Gl (n;R)-bundles are equivalent to linear

ows on vetor bundles.

The ag manifolds of Gl (n;R) are the usual manifolds of ags of sub-

spaes of R

n

. Hene the assoiated ag bundles are preisely the bundles

over X whih are built from V ! X by taking ags of subspaes of V

x

,

x 2 X. We speialize our results to these bundles. Here the semi-simple

omponent of the Lie algebra of Gl (n;R) is sl (n;R). We take the Lie al-

gebra a of zero trae diagonal matries (with respet to a basis �xed in

advane). A Weyl hamber a

+

� a is given by the set of diagonal matries

diagfa

1

; : : : ; a

n

g satisfying a

1

> � � � > a

n

, so that la

+

is the set of zero trae

diagonal matries with a

1

� � � � � a

n

. With these hoies, the adjoint orbit

Ad (G)H of H 2 la

+

is the set of zero trae diagonalizable matries with

the same eigenvalues as H.

To label the paraboli type of a ow reall that the roots of a are the

funtionals �

ij

(diagfa

1

; : : : ; a

n

g) = a

i

� a

j

, i 6= j, and the simple system of

roots orresponding to a

+

is � = f�

i

= �

i;i+1

: i = 1; : : : ; n� 1g. Note that

for a subset � � � a matrix diagfa

1

; : : : ; a

n

g is anihilated by � if and only if

a

i

= a

i+1

when �

i

2 �. Thus if � = f�

i

1

; : : : ; �

i

k

g, a matrix diagfa

1

; : : : ; a

n

g

belongs to the partial hamber a

+

(�) if and only if

a

1

> a

2

> � � � > a

i

1

= a

i

1

+1

> � � � ;

that is, � determines a set k

�

= fk

1

; : : : ; k

s

g suh that the matries in a

+

(�)

47



are given in diagonal bloks as

0

B

�

�

1

id

k

1

.

.

.

�

s

id

k

s

1

C

A

with �

1

> � � � > �

s

.

Now, aording to Theorem 9.11, the Morse deomposition of a ow satis-

fying our onditions is given as the set of �xed points of h (p) where h : BV !

Ad (G)H is an equivariant map into the adjoint orbit of someH 2 a

+

(� (�)).

Sine the elements of Ad (G)H are linear maps in R

n

we an transfer h (p)

through p : R

n

! V

x

to the linear map H

x

= pÆh (p)Æp

�1

: V

x

! V

x

. Hene,

Theorem 9.11 restates as:

Theorem 10.1 Let �

t

be a ow on the vetor bundle V ! X. If the as-

sumptions of Theorem 9.11 are satis�ed then for eah x 2 X there exists a

diagonalizable linear map H

x

: V

x

! V

x

suh that the Morse sets of �

t

in

a ag bundle are given �berwise by the onneted omponents of the �xed

point set of exp (tH

x

). Furthermore, the map x 7! H

x

is ontinuous and the

spetra of H

x

is onstant along X.

Let us speialize this desription to some ag bundles. First we reover

the Theorem of Selgrade [18℄ about ows on the projetive bundle P (V ) !

X, whose �bers are the projetive spaes P

x

of V

x

, x 2 X. In this ase the

�xed-points of exp (tH

x

) in P

x

are the eigenvetors of H

x

, and the onneted

omponents of the set of �xed-points are given by the eigenspaes of H

x

.

Sine H

x

is diagonalizable and x 7! H

x

is ontinuous we onlude that the

maximal hain transitive subsets are given by

S

x2X

P

�

V

x

�

i

�

, i = 1; : : : ; s

where �

1

> �

2

> � � � > �

s

are the ommon eigenvalues of H

x

, x 2 X, and

V

x

�

i

is the �

i

-eigenspae of H

x

. This reovers the Theorem of Selgrade [18℄.

Note that the paraboli type of the ow orresponds to the ag mani-

fold ontaining ags whose subspaes have dimensions dim (V

�

1

), dim (V

�

1

)+

dim (V

�

2

) et. This relates the paraboli type of the ow and the Selgrade

subbundles.

Corollary 10.2 Let � be a linear ow on the vetor bundle V ! X, and

assume that lo (X) is loally transitive. Then the paraboli type of � or-

responds to the ag manifold ontaining ags whose vetor spaes have the
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same dimension as the ag

V

1

� V

1

� V

2

� � � � � V

1

� � � � � V

s

where V

1

; : : : ; V

s

are the Selgrade subbundles given in dereasing order.

Morse deompositions on ag bundles were studied by Colonius-Kliemann

[6℄ exploiting the suessive �brations between the ag manifolds and the the-

orem on projetive bundles. As a result it is proved the existene of a �nest

Morse deomposition in the full ag manifold with at most n! omponents

on the �bers (see [6℄, Theorem 5). From the above theorem we get in fat

that the number of hain reurrent omponents on the �bers is jWj =

�

�

W

�(�)

�

�

whih is in fat less than n! = jWj. On the other hand [6℄ desribes the follow-

ing Morse deomposition in the Grassmann bundle Gr

k

(V ) of k-dimensional

subspaes of V ! X: Let

V = V

1

� � � � � V

s

be the deomposition of V into the subbundles given by hain reurrent

omponents in P (V ). For x 2 X and a multi-index � = (k

1

; : : : ; k

s

) with

k

i

� 0 and k

1

+ � � �+ k

s

= k de�ne the set

M

�

x

= fU 2 Gr

k

(V )

x

: dim

�

U \ V

i

x

�

= k

i

g

and form M

k

=

S

x2X

M

�

x

. Then the sets M

�

, with � running through

the multi-indies is a Morse deomposition (see [6℄, Theorem 6). It follows

from Theorem 10.1 that the sets M

�

atually onstitute the �nest Morse

deompostion. Indeed it is easy to see that the �xed point set of the ation

of exp (tH

x

) in the Grasmannian Gr

k

(V

x

) is M

�

x

, sine the subspaes V

i

x

are

the eigenspaes of H

x

.

10.2 Representations

Linear ows on vetor bundles arise if we start with a prinipal bundleQ! X

with strutural group G, and take a representation � of G in a vetor spae

U . Then the assoiated bundle V = Q�

G

U ! X obtained by the ation of

G on U is a vetor bundle and right invariant ows on Q indue linear ows

on V .

For a ow on V ! X we an take the Morse deomposition on P (V ) =

S

i

P (V

i

), given by a Whitney sum V =

L

i

V

i

. However, it happens in most
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of the ases that the ation of G on the projetive spae P (U) has a ompat

proper orbit yielding the existene of a losed subbundle E of P (V ) invariant

under the ow. It might be interesting to look at the Morse deomposition

of the ow restrited to E. Of ourse the intersetions with E of the Morse

omponents P (V

i

) provides a Morse deomposition for the restrited ow.

But the embedding of E into P (V ) an be in suh a ompliated way so that

it is hard, if feasible, to see what happens to P (V

i

) \ E. Thus it is more

sensible to study the restrited ow intrinsially, aording to our set up.

We already enountered examples of this situation above: A linear ow �

t

on the vetor bundle V ! X indues a ow �

^k

t

on the k-fold exterior produt

V

k

V of V . The bundle P

�

V

k

V

�

ontains as a subbundle the Grassmann

bundle Gr

k

(V ), given by the set of deomposable vetors. The �nest Morse

deomposition in Gr

k

(V ) was desribed before, while it is not lear how to

obtain it from deompositions of the ow on the whole P

�

V

k

V

�

.

10.3 Linearized ows

A ow �

t

of di�eomorphisms of an n-dimensional manifoldM lifts to a right

invariant ow on the bundle of frames BM by de�ning (t; p) 7! d�

t

Æ p

where p : R

n

! T

x

M is a frame in BM . The study of this \linearized" ow

is one of the motivations for onsidering ows on �ber bundles. Clearly a

ow on BM is a speial ase of the ow onsidered above on general vetor

bundles. However, there are interesting ows whose symmetry allows to

onsider subbundles of BM (geometri strutures) and thus ows on bundles

with groups di�erent from Gl (n;R). Our general set up is adapted to an

intrinsi approah to suh ows. Below we list some ases.

1. Let M be an orientable manifold endowed with a volume element �.

The bundle BM admits a redution to the Sl (n;R)-bundle Vol formed

by the frames p : R

n

! T

x

M suh that p

�

� is the standard volume

element in R

n

. The lifting of a ow �

t

on M leaves invariant Vol if

�

t

, t 2 R, is volume preserving, that is �

�

t

� = �. Although Vol is a

subbundle of BM , the situation here is not muh di�erent from BM

itself, sine the Gl (n;R) and Sl (n;R) ag manifolds oinide, and the

ations of Gl (n;R) fator through Sl (n;R). We observe nevertheless

that if M is ompat then �

t

is hain reurrent, due to the reurrene

theorem.
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2. Let M be a 2n-dimensional manifold endowed with a sympleti form

!. The sympleti struture de�nes a redution of the bundle of frames

to a subbundle Sp � BM omposed of the frames p : R

2n

! T

x

M suh

that p

�

! = !

0

where !

0

is the standard sympleti form on R

2n

:

!

0

(u; v) = v

T

Ju; J =

�

0 �id

n�n

id

n�n

0

�

:

The struture group of the bundle Sp ! M is the sympleti group

Sp(n;R) = fg : g

T

Jg = Jg, whih is a simple Lie group. Its ag mani-

folds are the submanifolds of the general ag manifolds formed by ags

of subspaes of R

2n

whih are Lagrangian with respet to the standard

sympleti form !

0

(a subspae U is Lagrangian if the restrition of

!

0

to U is identially zero). Thus the assoiated ag bundles are built

analogously from subspaes of T

x

M whih are Lagrangian with respet

to !.

Right invariant ows on Sp ! M are obtained e.g. by lifting to BM

Hamiltonian vetor �elds on M . Any suh lifting leaves invariant Sp

and thus indues ows on the Lagrangian ag bundles.

3. There are further examples on manifolds endowed with di�erent ge-

ometri strutures. For instane: 1) Flows of isometries of a pseudo-

Riemannian manifold where the struture group is SO(p; q). 2) Flows of

holomorphi di�eomorphisms on a omplex manifold where the stru-

ture group is Gl (n; C ) � Gl (2n;R).
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