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Abstra
t

We study the 
hain transitive sets and Morse de
ompositions of


ows on �ber bundles whose �bers are 
ompa
t homogeneous spa
es

of Lie groups. The emphasis is put on generalized 
ag manifolds of

semi-simple (and redu
tive) Lie groups. In this 
ase an algebrai
 de-

s
ription of the 
hain transitive sets is given. Our approa
h 
onsists in

shadowing the 
ow by semigroups of homeomorphisms to take advan-

tage of the good properties of the semigroup a
tions on 
ag manifolds.

The des
ription of the 
hain 
omponents in the 
ag bundles generalizes

the Theorem of Selgrade for proje
tive bundles with an independent

proof.
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1 Introdu
tion

The subje
t matter of this arti
le are 
ows on �ber bundles whose �bers are


ompa
t homogeneous spa
es of Lie groups, with emphasis to non-
ompa
t

semi-simple Lie groups and their 
ag manifolds. The aspe
ts of these 
ows

to be studied are the 
hain transitive sets and Morse de
ompositions.

In our set up we start with a prin
ipal bundle Q ! X with stru
tural

group G, and let �

t

be a 
ow of homeomorphisms of Q whi
h 
ommutes with

the right a
tion of G. If F is a homogeneous spa
e of G we 
an form the

asso
iated �ber bundle E = Q�

G

F ! X with typi
al �ber F . The 
ow �

t

on Q indu
es a 
ow on E, in whose dynami
s we are interested. We shall be


on
erned mainly with the generalized 
ag bundles when G is a non-
ompa
t

semi-simple (or more generally redu
tive) Lie group and F = G=P is one of

its 
ag manifolds, where P is a paraboli
 subgroup of G.

The main result des
ribes the maximal 
hain transitive subsets of a 
ow

on a 
ag bundle by giving an algebrai
 
hara
terization of their interse
tions

with the �bers. In fa
t, �xing a maximal 
hain transitive subset X in the

base spa
e we prove in Theorem 9.11 that there exists an adjoint orbit, say

O

�

, in the Lie algebra g of G and a map x 2 X 7! H

x

2 O

�

su
h that the

interse
tion of a maximal 
hain transitive subset M with the �ber over x is

given by the singularities of H

x

. Pre
isely, if we identify the �ber over x with

G=P then the interse
tion of M with the �ber is a 
onne
ted 
omponent

of the �xed-point set of the one-parameter group exp (tH

x

) a
ting on G=P .

These 
onne
ted 
omponents are algebrai
 varieties that are orbits of the

identity 
omponent of the 
entralizer of H

x

in G.

The 
lass of 
ows treated here forms a natural generalization of linear


ows on proje
tive bundles, whi
h have been extensively studied in the lit-

erature (see e.g. Colonius-Kliemann [5℄, [6℄, Conley [7℄, Sa
ker-Sell [16℄,

Salamon-Zehnder [17℄, Selgrade [18℄, and referen
es therein). In fa
t, linear


ows on proje
tive bundles are obtained when we spe
ialize Q! X to be a

Gl (n;R) prin
ipal bundle and take as F the real proje
tive spa
e with the

standard proje
tive a
tion of the linear group.

As a motivation to work with other �ber bundles, we note that a nat-

ural way to produ
e 
ows on proje
tive bundles is to start with a smooth

dynami
al system in a manifold. Its linearization indu
es a 
ow on the pro-

je
tive bundle of the tangent spa
e. Some new bundles arise in for dynami
al

systems whi
h leave invariant a geometri
al stru
ture like e.g. Hamiltonian


ows, 
ows of isometries of pseudo-Riemannian manifolds, 
ows of holomor-
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phi
 maps in pseudo-
omplex manifolds et
. In su
h 
ases we 
an see the

linearized 
ow as given by a right invariant 
ow on a redu
tion of the bundle

of frames of the manifold. Anyway we mention that the problem of studying


ows on bundles of homogeneous spa
es was posed by Conley [7℄ (see page

83), having in mind Hamiltonian 
ows evolving e.g. in bundles of Lagrangian

subspa
es.

The study of 
hain re
urren
e and Morse de
ompositions of linear 
ows

on proje
tive bundles goes ba
k to Selgrade [18℄, whose theorem shows that

the 
hain re
urrent 
omponents of a 
ow whi
h 
overs a 
hain re
urrent 
ow

on the base are ve
tor subbundles, whi
h de
ompose the ve
tor bundle in a

Whitney sum (see also Salamon-Zenhder [17℄). Re
ently, Colonius-Kliemann

[6℄ generalized the result of Selgrade by showing the existen
e of a �nest

Morse de
omposition in the bundles whose �bers are 
ag manifolds of sub-

spa
es of a ve
tor bundle.

Here we extend these results to generalized 
ag manifolds. In fa
t, by

the very 
onstru
tion of the adjoint orbit O

�

, mentioned above, ad (H

x

) is

diagonalizable with real eigenvalues. Hen
e when spe
ialized to ve
tor and

proje
tive bundles we get on ea
h �ber a diagonalizable linear map whose

eigenspa
es are the 
hain re
urrent 
omponents, re
overing the results of

Selgrade and Colonius-Kliemann (see Theorem 10.1). A
tually, our proof

does not require 
ompa
tness of the bundles (or equivalently of the base

spa
e). This is why the results are stated in terms of maximal 
hain transitive

sets, whi
h in the 
ompa
t 
ase 
oin
ide with the 
hain re
urrent 
omponents,

providing a �nest Morse de
omposition.

At this point we must mention that our approa
h to 
hain re
urren
e

requires that the set of lo
al homeomorphisms of the base spa
e X is lo
ally

transitive in the sense that we 
an map any x 2 X to neighboring points using

\small" lo
al homeomorphisms of X. Although restri
tive this 
ondition is

weak enough so that many 
lasses of reasonable metri
 spa
es are allowed as

base spa
es, like e.g. 
ompa
t Riemannian manifolds or open sets in Fre
het

spa
es.

We explain now the method of proof, whi
h we believe to have indepen-

dent interest sin
e it establishes a link between topologi
al dynami
s and

semigroup theory. Starting with a 
ow � we generate semigroups of lo
al

homeomorphisms S

";T

, "; T > 0, by su

essively 
omposing the lo
al home-

omorphisms whi
h are "-
lose (in their domains) to some �

t

, t > T . We


all S

";T

, "; T > 0, the shadowing semigroups of the 
ow. The orbits of S

";T

are related to 
hain attainability with the 
on
lusion that a maximal 
hain

3



transitive set for the 
ow is the interse
tion of 
ontrol sets for the shadowing

semigroups (see Theorem 4.7 below). Here the lo
al transitivity assumption

enters to ensure that it is possible to substitute "; T -
hains by the a
tion

of S

";T

. The idea of looking at "; T -
hains through shadowing semigroups

was already exploited by the authors in [3℄ to study 
hain 
ontrol sets for

semigroup a
tions and 
ontrol systems.

After relating 
hain transitivity to 
ontrol sets we pro
eed to apply the

theory of semigroups to handle the maximal 
hain transitive sets (and hen
e

the Morse de
ompositions, in the 
ompa
t 
ase). In �rst pla
e the topologi
al

arguments of [4℄ are used to redu
e the problem to a �berwise analysis, whi
h

amounts to look at semigroup a
tions on homogenous spa
es. This leads us

into the realm of the Lie theoreti
 results about 
ontrol sets on 
ag manifolds

whi
h were developed in [19℄, [20℄, [21℄, [23℄, [24℄, [25℄, [26℄, [27℄. These

results yield quite qui
kly the existen
e of a �nite number of maximal 
hain

transitive subsets for the 
ows on the 
ag bundles, and hen
e the existen
e

a �nest Morse de
omposition in the 
ompa
t 
ase. From the 
ontrol sets on


ag manifolds we get also that there exists a unique attra
tor as well as a

unique repeller 
hain re
urrent 
omponent.

Now, a key point is the notion of paraboli
 type of a semigroup S with

non-empty interior in a semi-simple Lie groupG. There are several equivalent

ways of 
hara
terizing the paraboli
 type of S. The most suitable for our

exposition here is the one whi
h says that the paraboli
 type of S is the

(only) 
ag manifold, say F

�(S)

= G=P

�(S)

, su
h that the unique invariant


ontrol set C

�(S)

of S in F

�(S)

is 
ontra
tible under iterations of elements in

the interior of S. Furthermore, �

�1

�

C

�(S)

�

is the invariant 
ontrol set of S in

the maximal 
ag manifold F, where � : F ! F

�(S)

is the 
anoni
al �bration.

The paraboli
 type of semigroups in G yields the notion of paraboli
 type

of semigroups of lo
al homeomorphisms in Q, and hen
e of the shadowing

semigroups. Using the latter we asso
iate to a 
ow � a spe
i�
 
ag bundle,

say E

�(�)

, whi
h we 
all analogously the paraboli
 type of �. The property

of E

�(�)

that emerges is that the attra
tor 
omponent of the �nest Morse

de
omposition of the 
ow in E

�(�)

meets ea
h �ber in a single point. Re-

verting time we get the same pi
ture for the repeller, but in a \dual" 
ag

bundle E

�

�

(�)

. These are the 
entral results for the 
hara
terization of the

Morse 
omponents, sin
e they give the attra
tor and repeller 
omponents in

any 
ag bundle.

Finally, from in
iden
e relations in the 
ag manifolds related to the do-

mains of attra
tion of the 
ontrol sets we obtain other re
urrent 
omponents
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from the attra
tor and the repeller ones. This way we obtain Theorem 9.11,

mentioned above, where the H

x

are intimately related to the paraboli
 type

of the 
ow.

2 Preliminaries

In this se
tion we re
all basi
 fa
ts and 
on
epts about 
ows, �ber bundles

and semigroups to be used afterwards.

2.1 Flows

Regarding 
ows on metri
 spa
es we refer to the the books Colonius-Kliemann

[5℄ (Appendix B) and Conley [7℄. Let (Y; d) be a metri
 spa
e. Although most

aspe
ts of the theory of 
ows requires 
ompa
tness of the state spa
e, the ba-

si
 
on
epts 
an be stated without this assumption. Hen
e we do not assume

in advan
e that Y is 
ompa
t.

Given a 
ontinuous-time 
ow � : R � Y ! Y we write the 
orresponding

homeomorphisms by �

t

(�) = � (t; �) or simply by �

t

(x) = t � x, so that R � x

stands for the orbit of x under the 
ow. A set A � Y is 
alled invariant if

t � x � A for all x 2 A. A 
ompa
t subset A � L is 
alled isolated invariant,

if it is invariant and there exists an isolating neighborhood N of A, i.e., a set

N with A � int(N), su
h that R � x � N implies x 2 A.

For x 2 Y , the !-limit set of x is denoted by !

�

(x) or simpler by ! (x):

! (x) = fy 2 Y : 9t

k

! +1; t

k

� x! yg:

Analogously, !

�

�

(x) = !

�

(x) is de�ned for t ! �1. On the other hand for

a subset A � Y we put

! (A) = fx 2 Y : 9x

k

2 A; t

k

! +1; t

k

� x

k

! xg;

and de�ne the same way !

�

(A) with t! �1.

A Morse de
omposition of the 
ow �

t

is a �nite 
olle
tion fM

i

: i =

1; : : : ; ng of nonvoid, pairwise disjoint, and isolated 
ompa
t invariant sets

satisfying the following 
onditions:

1. For all x 2 Y the sets ! (x) and !

�

(x) are 
ontained in

n

S

i=1

M

i

.
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2. Suppose there areM

j

0

; : : : ;M

j

l

and x

1

; : : : ; x

l

2 Y n

n

S

i=1

M

i

with !

�

(x

i

) �

M

j

i�1

and ! (x

i

) �M

j

i

for i = 1; : : : ; l, then M

j

0

6=M

j

l

.

The elements of a Morse de
omposition are 
alled Morse sets. We say that

a set A is an attra
tor if it admits a neighborhood N su
h that ! (N) = A.

A repeller is a 
ompa
t invariant set R that has a neighborhood N

�

with

!

�

(N

�

) = R. The neighborhoods N and N

�

are 
alled attra
tor and repeller

neighborhoods, respe
tively. If Y is 
ompa
t, every attra
tor is 
ompa
t and

invariant, and a repeller is an attra
tor for the time reversed 
ow.

A Morse de
omposition fM

1

; : : : ;M

n

g is 
alled �ner than a Morse de-


omposition fM

0

1

; : : : ;M

0

n

0

g if for all j 2 f1; : : : ; n

0

g there exists i 2 f1; : : : ; ng

with M

i

� M

0

j

. Usually one seeks for a �nest Morse de
omposition whi
h

provides all other de
ompositions through by joining together their 
ompo-

nents.

The 
hain re
urren
e whi
h we dis
uss now is a ni
e devi
e for getting

Morse de
ompositions. For x; y 2 Y and "; T > 0 an "; T -
hain from x to y

is given by points x

0

= x; x

1

; : : : ; x

n

= y 2 Y and t

0

; : : : ; t

n�1

� T , for some

n 2 N , su
h that

d(t

i

� x

i

; x

i+1

) < "; i = 0; 1; : : : ; n� 1:

We denote by C

";T

(x) the set of those y 2 Y su
h that there exists an "; T -


hain from x to y, and put C (x) =

T

";T

C

";T

(x). On the other hand C

�

";T

(x)

is the set of those y 2 Y su
h that there exists an "; T -
hain from y to x, and

C

�

(x) =

T

";T

C

�

";T

(x). Equivalently, C

�

(x) is the set of those y su
h that for

all "; T > 0 there exists an "; T -
hain from x to y for the reversed 
ow (see

[8℄, Theorem 3.2D).

A subset A � Y is 
hain transitive if for all x 2 A, A � C (x). A 
hain

transitive subset A is maximal transitive (with respe
t to set in
lusion) if

and only if for all x 2 A, A = C (x) or equivalently A = C

�

(x).

A point x 2 Y is 
hain re
urrent if x 2 C (x). We denote by R the 
hain

re
urrent set, that is, the set of all 
hain re
urrent points. Note that a 
on-

ne
ted 
omponent of R is 
hain transitive sin
e for any y 2 R and "; T > 0

y 2 intC

";T

(y), so that R � C

";T

(x) for every x 2 R. In the 
ompa
t 
ase the


onne
ted 
omponents of the 
hain re
urrent set R indeed 
oin
ide with the

maximal 
hain transitive subsets, although in general the 
onne
ted 
om-

ponents may approximate to ea
h other 
reating maximal 
hain transitive

subsets 
ontaining more than one 
onne
ted 
omponent.
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Another property of the 
hain re
urrent set is that it 
ontains the ! and

!

�

-limit sets, sin
e if y 2 ! (x) the 
ow property �

t

k+l

�t

k

�

�

t

k

(x)

�

= �

t

k

(x)

ensures that for every "; T > 0, y 2 C

";T

(y). Finally, the following proposition

relates the 
hain re
urrent 
omponents with Morse de
ompositions.

Proposition 2.1 If Y is 
ompa
t, there exists a �nest Morse de
omposition

fM

1

; : : : ;M

n

g if and only if the 
hain re
urrent set R has only �nitely

many 
onne
ted 
omponents. In this 
ase, the Morse sets 
oin
ide with the


onne
ted 
omponents of the 
hain re
urrent set R.

Proof: See [5℄, Theorem B.2.25.

2.2 Fiber bundles

Our starting point is a prin
ipal bundle � : Q! X with stru
tural group G.

Thus G a
ts freely on the right onQ and its orbits are the �bersQ

x

= �

�1

fxg,

x 2 X (for �ber bundles we refer to Husemoller [11℄ and Kobayashi-Nomizu

[12℄). Ea
h �ber is di�eomorphi
 to G. We assume allways that Q ! X is

lo
ally trivial. Often a lo
al trivialization is realized through a lo
al 
ross

se
tion � : U ! Q, U � X.

Re
all that if G a
ts on the left on a spa
e F we 
an 
onstru
t the

asso
iated bundle with typi
al �ber F by taking in Q � F the equivalen
e

relation (q

1

; v

1

) s (q

2

; v

2

) if and only if there exists g 2 G su
h that q

2

= q

1

g

and v

2

= g

�1

v

1

. Let E be the quotient spa
e by this equivalen
e relation and

denote by q � v the 
lass in E of (q; v) 2 Q� F . Then q � v 7! � (q) de�nes a

proje
tion E ! X, also denoted by � or �

E

if we wish to distinguish it from

the proje
tion �

Q

: Q! X of Q. Our notation emphasizes the fa
t that the

map v 2 F 7! q �v 2 E establishes a bije
tion between F and the �ber above

x = � (q). We denote in a similar way the inverse of this map. Thus q

�1

� e,

q 2 Q, e 2 E, stands for v 2 F , su
h that q � v = e.

The asso
iated bundle E ! X is lo
ally trivial when this happens to

Q ! X. In lo
ally trivial bundles over metri
 spa
es we use the following

metri
.

Proposition 2.2 Let � : E ! X be a lo
ally trivial bundle with (X; d)

a metri
 spa
e as well as the �ber (F; d

F

). Fix a 
overing U

�

of X with

7



�

�1

(U

�

) � U

�

� F . Then there exists a metri
 d

E

on E su
h that on ea
h

trivialization U

�

� F it holds

d

E

((x; v) ; (y; w)) = maxfd (x; y) ; d

F

(v; w)g:

Also, d (�e; �f) � d

E

(e; f) for all e; f 2 E.

Proof: See [5℄, [17℄.

To 
onsider 
ows on �ber bundles E ! X we start with a 
ow �

t

on the

prin
ipal bundle Q ! X, whi
h 
ommutes with the right a
tion of G, that

is, �

t

(qg) = �

t

(q) g, for all t 2 R, q 2 Q and g 2 G. This 
ondition implies

that �

t

inter
hanges the �bers of Q and thus indu
es a 
ow on X. We shall

denote the 
ow on the base by t � x, t 2 R, x 2 X. On the other hand the


ow indu
ed on E ! X is also denoted by �

t

, so that �

t

(q � v) = �

t

(q) � v.

Restri
ting a 
ow on Q ! X to the domain of a lo
al 
ross se
tion we

obtain a lo
al 
o
y
le in the following sense: Let �

i

: U

i

! Q be 
ross

se
tions above U

i

� X, i = 1; 2. If x 2 U and t 2 R are su
h that x 2 U

1

and t � x 2 U

2

, then �

t

(�

1

(x)) belongs to the same �ber as �

2

(t � x) so that

there exists an element in G, say �

�

1

;�

2

(t; x), su
h that

�

t

(�

1

(x)) = �

2

(t � x) �

�

1

;�

2

(t; x) :

We 
all the map �

�

1

;�

2

the lo
al 
o
y
le de�ned by �

1

and �

2

. An easy

appli
ation of the 
ow property of � together with its right invarian
e yields

the 
o
y
le property:

�

�

1

;�

3

(t+ s; b) = �

�

2

;�

3

(s; t � b)�

�

1

;�

2

(t; b);

if �

3

is a 
ross se
tion de�ned on (t + s) � x.

Of 
ourse, taking di�erent 
ross se
tions �

0

i

de�ned on the same U

i

, the lo-


al 
o
y
le �

�

0

1

;�

0

2

may 
hange. We note however the following simple formula:

If �

0

1

= �

1

a and �

0

2

= �

2

b with a; b 2 G, then �

�

0

1

;�

0

2

= b�

�

1

;�

2

a

�1

.

For another way of writing �

t

lo
ally, suppose that Q = U � G. Then

�

t

(x; g) = (f

1

(x) ; f

2

(x; g)) with f

2

(x; gh) = f

2

(x; g)h. In this 
ase the

indu
ed map in U � F is given by �

t

(x; v) = (f

1

(x) ; f

2

(x; g) v).

2.3 Semigroup a
tions

By a lo
al homeomorphism of a metri
 spa
e Y we mean a homeomorphism

� : U ! V between open subsets of Y . We denote by lo
 (Y ) the set of lo
al

8



homeomorphisms of Y . The set lo
 (Y ) is a lo
al group in the sense that the

operations of taking inverses and 
ompositions { when allowed { are 
losed

in lo
 (Y ). A subset G � lo
 (Y ) is a lo
al (sub) group if it is 
losed under

these operations. A

ordingly we say that S � lo
 (Y ) is a lo
al semigroup

in 
ase S is 
losed under the allowed 
ompositions.

In the sequel we follow the 
ontrol theory terminology and say that a lo
al

semigroup S satis�es the a

essibility property at x 2 Y if int (Sx) 6= ;, and

it satis�es the a

essibiltity property if this holds at every x 2 Y .

Re
all that a 
ontrol set of a lo
al semigroup S � lo
 (Y ) is a subset

D � Y su
h that

1. intD 6= ;,

2. D � 
l (Sx) for all x 2 D, and

3. D is maximal with these two properties.

The 
ontrol sets are ordered by D

1

� D

2

if D

2

� 
l (Sx) for any x 2 D

1

.

An invariant 
ontrol set is a 
ontrol set D whi
h maximal with respe
t to

this order, that is, 
l (Sx) = 
lD for all x 2 D. It is known that under the

a

essibility property an invariant 
ontrol set is 
losed and has non-empty

interior. On the other hand if the 
ontrol set D is minimal with respe
t to

the order then it is open. Still under the assumption of a

essibility it makes

sense to introdu
e the (possibly empty) set

D

0

= fx 2 D : x 2 int (Sx) \ int

�

S

�1

x

�

g;

where D is a 
ontrol set. In view of the proposition below we 
all D

0

the

set of transitivity of D (or following Albertini-Sontag [1℄, D

0

is the 
ore of

D). A 
ontrol set D su
h that D

0

6= ; is 
alled e�e
tive 
ontrol set. These


ontrol sets have the following properties, proved in [4℄, Proposition 2.2 (see

also [25℄, Proposition 2.2).

Proposition 2.3 Suppose D

0

6= ;, that is, D is an e�e
tive 
ontrol set.

Then

1. D � int (S

�1

x) for every x 2 D

0

.

2. D

0

= int (S

�1

x) \ int (Sx) for every x 2 D

0

.
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3. For every x; y 2 D

0

there exist g 2 S with gx = y.

4. D

0

is dense in D.

5. D

0

is S-invariant inside D, i.e., � (x) 2 D

0

if � 2 S, x 2 D

0

and

� (x) 2 D.

A spe
ial 
ase of lo
al semigroups whi
h will show up below is obtained

through the a
tion of a Lie group G. If Y is a homogeneous spa
e Y = G=H

then G a
ts transitively on Y and a subsemigroup S � G with intS 6= ;

(w.r.t the topology of G) satis�es int (Sx) 6= ; for all x 2 Y be
ause the map

g 2 G 7! gx 2 Y is open. In this 
ontext it is not diÆ
ult to show that

D

0

= fx 2 D : x 2 (intS)xg = fx 2 D : x 2 (intS

�1

)xg. As a 
omplement

to the above proposition we have the following statement whi
h ensures the

existen
e of e�e
tive 
ontrol sets.

Proposition 2.4 Let x 2M be su
h that

x 2 int (Sx) \ int

�

S

�1

x

�

:

Then there exists a unique e�e
tive 
ontrol set D su
h that x 2 D

0

.

Proof: See [4℄, Proposition 2.3.

3 Lo
ally transitive groups

Our method of studying the 
hain re
urren
e 
onsists in perturbing the


ow obtaining semigroups of lo
al homeomorphisms (shadowing semigroups)

whose 
ontrol sets are shrinked to the 
hain transitive sets. In order that this

approa
h works we need a te
hni
al assumption on the 
ow whi
h permits

to 
ompare 
hains of the 
ow with the a
tion of the shadowing semigroups.

This assumption is stated in terms of lo
al transitivity of lo
al groups, whi
h

we dis
uss in this se
tion.

Let (Y; d) be a metri
 spa
e and 
onsider the lo
al group lo
 (Y ) of lo
al

homeomorphisms of Y . We denote by dom (�) the domain of the lo
al home-

omorphism � : dom (�) ! V in lo
(Y ). For �; � 2 lo
 (Y ) whose domains

overlap put

d

0

(�; �) = sup d(�(x); �(x))

10



where the supremum is taken over dom (�)\ dom (�). Note that for �; � ; � 2

lo
 (Y ) it holds

d

0

(��; ��) � d

0

(�; �) ; (1)

sin
e the supremum in the left hand side is taken over a smaller set than in

the right hand side.

De�nition 3.1 We say that a lo
al group G � lo
 (Y ) is lo
ally transitive

(abbreviated lo
trans) with parameters 
; � > 0 if for every x 2 Y and y in

the ball B

�

(x) there exists � 2 G su
h that � (x) = y and d (y; x) � 
d

0

(�; id).

We shall prove below that some reasonable lo
al groups are lo
ally tran-

sitive. However, in general this 
ondition is not satis�ed even if G is the full

lo
al group lo
 (Y ) of a metri
 spa
e.

Exemple: In R

2

denote by C

q

the 
ir
le of radious q � 0 
entered at the

origin. Consider the 
ompa
t metri
 spa
e

Y =

1

[

n=1

C

1=n

[ f0g;

with the metri
 inherited from the standard metri
 of R

2

. Any lo
al home-

omorphism  : U ! V of Y with 0 2 U has the property that �(0) = 0 for

otherwise  

�1

would map a 
onne
ted 
omponent of the meeting of V with

a 
ir
le into f0g. Hen
e lo
 (Y ) is not lo
ally transitive at 0.

We 
an 
hange this example by taking Y to be the union of the 
ir
les C

q

,

q 2 Q , q � 0. Then we 
an take in Y the 
ow where �

t

is the rotation by the

angle t. This 
ow is 
hain re
urrent. Hen
e the existen
e of a 
hain re
urrent


ow on a metri
 spa
e is not enough for lo
 (Y ) to be lo
ally transitive.

Yet another modi�
ation of Y gives an example with 
onne
ted metri


spa
e. In fa
t, in R

3

put

Y

0

= (Y � (�1; 1℄) [

�

R

2

� [1;+1)

�

:

Again lo
 (Y

0

) is not lo
ally transitive at the origin.

We shall now see some 
ases of metri
 spa
es whose lo
al groups are

lo
ally transitive. First, let Y be a metri
 spa
e su
h that lo
 (Y ) is lo
trans

with parameters 
; �. Then for any open subset Y

0

� Y endowed with the

indu
ed distan
e, lo
 (Y

0

) is lo
trans with the same parameters, sin
e we


an always shrink the domain of a lo
al homeomorphism of Y to be a lo
al

homeomorphism of Y

0

with the e�e
t that d

0

diminishes.
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Now, let E be a Fre
het spa
e with translation invariant metri
 d. For

any v 2 E the translation �

v

(x) = v+x satis�es d

0

(�

v

; id) = d (v; 0). Taking

x; y 2 E, �

v

(x) = y if v = y � x, so that �

v

satis�es the 
ondition for the

required lo
al homeomorphism in the de�nition of lo
trans. Thus lo
 (E) is

lo
trans with parameters 
 = 1 and arbitrary � > 0. Therefore, the lo
trans

property holds at open subsets of E:

Proposition 3.2 If Y is an open set of a Fre
het spa
e E, endowed with the

indu
ed metri
, then lo
 (Y ) is lo
ally transitive with 
 = 1 and any �.

Now take Y to be an open set in a �nite dimensional ve
tor spa
e E. Then

a similar result holds if instead of a distan
e 
oming from E we 
onsider a

Riemannian metri
 in Y . In this 
ase the translations restri
ted to open sets

are still lo
al homeomorphisms of Y . The di�eren
e here is that we 
annot

take 
 = 1 trivially. However, we 
an prove the lo
trans property if we ask

equivalen
e between the Riemannian metri
 and the distan
e 
oming from

E.

Proposition 3.3 Given a �nite dimensional ve
tor spa
e E with a norm j�j

let Y � E be a 
onne
ted open set and g (�; �) a Riemannian metri
 in Y .

Denote by d (�; �) the distan
e in Y de�ned by g and suppose that there are


onstants k

1

; k

2

> 0 with

k

1

d (x; y) < jx� yj < k

2

d (x; y) x; y 2 Y:

Then lo
 (Y ) is lo
ally transitive with parameters 
 = k

1

=k

2

and arbitrary �.

Proof: Given x

0

; x 2 Y and v 2 E su
h that x + v 2 Y ,

d (x + v; x) <

1

k

1

jvj <

k

2

k

1

d (x

0

+ v; x

0

) :

Thus if we take a suitable restri
tion of �

v

, it follows that d

0

(�

v

; id) �

(k

2

=k

1

) d (�

v

x

0

; x

0

). This implies at on
e the lo
trans property.

Now, we pat
h together the open sets to show that lo
 (Y ) is lo
trans if

Y is a 
ompa
t Riemannian manifold. Re
all �rst that a positive real � is

a Lyapunov number of a 
overing fW

i

g

i2I

of a metri
 spa
e if every set of

diameter < � is 
ontained in some W

i

. It is well known that any 
overing of

a 
ompa
t metri
 spa
e admits Lyapunov numbers.
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Proposition 3.4 If Y is a 
ompa
t Riemannian manifold then lo
 (Y ) is

lo
ally transitive.

Proof: Let (V

�

; �

�

) be a �nite atlas for Y and take a sub
overing to get a

�nite atlas

�

W

�

;  

�

�

su
h that ea
h W

�

is relatively 
ompa
t in some V

�

. In

Y

�

=  

�

(W

�

) take the metri
 indu
ed from Y by  

�

. Sin
e Y

�

is relatively


ompa
t the 
orresponding distan
e fun
tion is equivalent to the Eu
lidian

norm. Hen
e, the above proposition applies and lo
 (Y

�

) is lo
trans with

parameters 


�

; �

�

> 0. Now, let � be a Lyapunov number of the 
overing

and take 
 = minf


�

g and � = minf�

�

; �=2g. Sin
e any ball of radious � is


ontained in some W

�

the result on the 
harts 
ombine to show that lo
 (Y )

is lo
trans with parameters 
; �.

For the rest of this se
tion we spe
ialize the dis
ussion of the lo
trans

property to �ber bundles. Our purpose is to 
ombine this property on the

basis and on the �bers to get lo
al transitivity on the total spa
e. Thus given

a prin
ipal bundle � : Q ! X with stru
ture group G denote by Aut (Q)

the lo
al group of the right invariant lo
al homeomorphisms � of Q having

domain dom(�) = �

�1

(U) with U open in X. Of 
ourse, a right invariant


ow on Q is just a one-parameter group �

t

2 Aut (Q) of globally de�ned

homeomorphisms.

Now, let E ! X be a bundle asso
iated to Q ! X with typi
al �ber

F where G a
ts on the left. Any � 2 Aut(Q) indu
es homeomorphisms on

both X and E. Usually the indu
ed maps are also denoted by �. However,

for the moment we shall write e (�) and b (�) for the lo
al homeomorphisms

in E and X, respe
tively. Note that the domain of e (�) also has the form

�

�1

(U), U � X. The maps e : Aut (Q)! lo
 (E) and b : Aut (Q)! lo
 (X)

de�ne a
tions of Aut (Q) on E and X, respe
tively. The images of e and b

are lo
al groups in the 
orresponding spa
es.

In general b is not onto lo
 (X). However, we 
an `lift' to Aut (Q) a

lo
al homeomorphism � of X, provided dom(�) and im (�) are 
ontained in

domains of trivializations ofQ. In fa
t, let �

i

: U

i

! Q, i = 1; 2, be lo
al 
ross

se
tions with dom (�) � U

1

and im (�) � U

2

. Then the map

e

� (�

1

(x) � g) =

�

2

(� (x)) � g, x 2 dom (�), is a lifting of � to a lo
al homeomorphism in

Aut (Q). With this in mind we prove that Aut (Q) is lo
ally transitive when

this 
ondition holds at both the �ber and the base spa
e.

Proposition 3.5 Let E be given with a metri
 d

E

like in Proposition 2.2.

Then the a
tion of Aut (Q) on E is lo
ally transitive provided
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1. lo
 (X) and the left a
tion of G on the �ber F are lo
trans, and

2. The 
overing of X de�ning d

E

admits a Lebesgue number � > 0.

Proof: Let �

1

; 


1

> 0 and �

2

; 


2

> 0 be the parameters of lo
al transitivity of

lo
 (X) and G, respe
tively. Put � = minf�

1

; �

2

; �=2g and 
 = minf


1

; 


2

g.

Take e; f 2 E with d

E

(e; f) < �. Then e; f are 
ontained in a domain of

trivialization �

�1

(U) � U � F , so we 
an write e = (x; v) and f = (y; w).

Choose � 2 lo
 (X) su
h that � (x) = y and 


1

d

0

(�; id) � d (x; y). Also take

g 2 G with g (v) = w and 


2

d

0

F

(g; id) � d

F

(u; v). The map � : U�G! U�G

de�ned by � (z; h) = (� (z) ; gh) belongs to Aut (Q). The indu
ed map on

U � F is given by � (z; u) = (� (z) ; gu). Hen
e, � (x; v) = (y; w). We have

d

0

E

(�; id) = sup d

E

((� (z) ; gu)) = supmaxfd (� (z) ; z) ; d

F

(gu; u)g:

Therefore, d

0

E

(�; id) � maxf1=


1

d (x; y) ; 1=


2

d

F

(v; w)g. By the 
hoi
e of


, it follows that 
d

0

E

(�; id) � d

E

(e; f), 
on
luding the proof.

Corollary 3.6 Suppose that X is 
ompa
t. Then Aut (Q) is lo
ally transi-

tive on E if both lo
 (X) and the left a
tion of G on F are lo
ally transitive.

Regarding the lo
al transitivity on the �bers, we re
all the following result

proved in [3℄, Corollary 3.4.

Lemma 3.7 Let G=H be a homogeneous spa
e and suppose that there exists

a 
ompa
t subgroup K � G a
ting transitively on G=H. Endow G=H with

a distan
e d given by a K-invariant Riemannian metri
. Then the a
tion of

G on G=H is lo
ally transitive.

4 Shadowing semigroups

In this se
tion we introdu
e semigroups of lo
al homeomorphisms of the state

spa
e Y of a 
ow �

t

by perturbing the homeomorphisms of the 
ow at large

times. These semigroups will be 
alled shadowing semigroups and play a


entral role in the study of 
hain transitivity. In fa
t, we show that if the


ow �

t


an be embedded in a lo
ally transitive semigroup then its 
hain

transitive sets are obtained as interse
tions of 
ontrol sets for the shadowing

semigroups.
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Given a lo
al group G and � 2 G we put

V

"

(�;G) = f� 2 G : d

0

(�; �) < "g

(or simply V

"

(�) if G is understood).

De�nition 4.1 Let G be a lo
al semigroup 
ontaining �

t

for all t 2 R. Given

"; T > 0 de�ne the shadowing semigroup S

";T

(�;G) (or simply S

";T

) to be

the lo
al subsemigroup of G generated by the sets V

"

(�

t

;G) with t running

through the interval (T;+1). The shadowing semigroups for the reversed


ow �

�

are denoted by S

�

";T

.

Remark: It is tempting to think that the shadowing semigroups for the

reversed 
ows are given by the inverses S

�1

";T

of the forward semigroups. How-

ever it is not immediate that the subsets V

"

(�

t

;G), t 2 (�1; T ), that gen-

erate S

�

";T

have the form V

"

0

(�

t

;G)

�1

, t 2 (T

0

;1) for some "

0

; T

0

> 0. For

this to happen it is required a kind of equi
ontinuity of �

�1

�

t

for every lo
al

homeomorphisms � de�ned in the several open sets of Y . Sin
e the relation

between these semigroups is not used afterwards we does not dis
uss it.

Note that by the very de�nition S

";T

� S

"

1

;T

1

if " � "

1

and T � T

1

.

A
tually, the next lemma shows that in a 
ertain sense S

"

1

;T

is 
ontained in

the interior of S

"

2

;T

if "

1

< "

2

.

Lemma 4.2 Let � be a lo
al homeomorphism satisfying d

0

(�; id) < Æ. Then

for  2 S

";T

, the 
omposition � 2 S

"+Æ;T

.

Proof: Write  =  

1

� � � 

k

with  

i

2 V

"

�

�

t

i

;G

�

, t

i

> T , i = 1; : : : ; k. To

prove the lemma it is enough to 
he
k that � 

1

2 S

"+Æ;T

, be
ause  

2

� � � 

k

2

S

";T

� S

"+Æ;T

. By inequality (1), d

0

(� 

1

;  

1

) � d

0

(�; id), so that d

0

(� 

1

;  

1

) <

Æ. However,  

1

2 V

"

�

�

t

1

;G

�

. Hen
e for any z in dom (� 

1

) \ dom ( 

1

) =

dom ( 

1

) it holds,

d

�

� 

1

(z) ; �

t

1

(z)

�

� d (� 

1

(z) ;  

1

(z)) + d

�

 

1

(z) ; �

t

1

(z)

�

< Æ + ";

showing that � 

1

2 V

"+Æ

�

�

t

1

;G

�

, 
on
luding the proof.

Given S � lo
 (Y ) and x 2 Y we write

Sx = f� (x) : � 2 S; x 2 dom (�)g

for the orbit of x under S. Using the previous lemma we get the following

in
lusion relation between the orbits of the shadowing semigroups.
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Lemma 4.3 Suppose that �

t

belongs to the lo
trans lo
al group G for all

t 2 R. Take x 2 Y . Then S

";T

x � int (S

"

1

;T

x) if " < "

1

.

Proof: Given � 2 S

";T

let us show that �x 2 int (S

"

1

;T

x). Write � = �

1

� � � �

k

with �

i

2 V

"

�

�

t

i

;G

�

, i = 1; : : : ; k. Now, let 
; � > 0 be the parameters

of lo
al transitivity of G, and 
hoose �

0

� minf�; 
 ("

1

� ")g. Then for any

y 2 B

�

0

(�x) there exists � 2 G with �� (x) = y and d (� (�x) ; �x) � 
d

0

(�; id).

By Lemma 4.2, �� 2 S

"

1

;T

, be
ause the 
hoi
e of �

0

ensures that d

0

(�; id) �

"

1

�". Therefore, every y 2 B

�

0

(�x) belongs to S

"

1

;T

x, proving the lemma.

Corollary 4.4 Suppose that �

t

belongs to the lo
trans lo
al group G for all

t 2 R. Then for every "; T > 0 and x 2 Y , int (S

";T

x) 6= ;.

Our obje
tive is to show that points rea
hable by 
hains of the 
ow 
an

be rea
hed by the a
tion of the shadowing semigroups and 
onversely. At

this regard the basi
 fa
t is given by the following proposition whose proof

is essentially a reformulation of [3℄, Proposition 3.1.

Proposition 4.5 Keep the above notations and take x; y 2 Y . Then

1. For all "; T > 0, S

";T

x � C

";T

(x). Also, for all "

0

> ", 
l (S

";T

x) �

C

"

0

;T

(x).

2. Let �

t

, t 2 R, be 
ontained in the lo
ally transitive group G with

parameters 
; �. Take " with 0 < " < � and put "

0

= "=
. Then

C

";T

(x) 2 int (S

"

0

;T

x).

Proof:

1. Take y 2 S

";T

x and let  2 S

";T

be su
h that y =  (x). Write

 =  

k

� � � 

1

with  

i

2 V

"

�

�

t

i

;G

�

, t

i

> T , i = 1; : : : ; k. Then the

sequen
e x

0

= x, x

1

=  

1

(x

0

),: : :, x

k

=  

k

(x

k�1

) = y together with

t

1

; : : : ; t

n�1

> T determine an "; T -
hain from x to y, sin
e

d

�

�

t

i

(x

i�1

) ; x

i

�

= d

�

�

t

i

(x

i�1

) ;  

i

(x

i�1

)

�

< ":

Now, for y 2 
l (S

";T

x) take a sequen
e  

n

2 S

";T

with  

n

(x) ! y.

Let n

0

be su
h that d

�

 

n

0

(x) ; y

�

< "

0

� ". As before, there exists an

"; T -
hain from x to  

n

0

(x). Let this 
hain be given by y

1

= x,: : :, y

k

=
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n

0

(x

0

), s

1

; : : : ; s

n�1

> T . Thus d

�

�

s

i

(y

i

) ; y

i+1

�

< " for i = 1; : : : ; k.

Therefore, z

1

= x, : : :, z

n�1

= y

n�1

, z

n

= y and s

0

; : : : ; s

n�1

> T

determine an "

0

; T -
hain from x to y, sin
e

d

�

�

s

n�1

(y

n�1

) ; y

�

� d

�

�

s

n�1

(y

n�1

) ;  

n

0

(x)

�

+ d

�

 

n

0

(x) ; y

�

< "

0

:

2. Sin
e d

�

�

t

i

(x

i

) ; x

i+1

�

< " < �, the lo
trans property of G implies that

there exists � 2 G su
h that

d

�

�

�

�

t

i

(x

i

)

�

; x

i+1

�

= d

�

�

�

�

t

i

(x

i

)

�

; �

t

i

(x

i

)

�

� 
d

0

(�; id)

for i = 0; : : : ; n� 1. Hen
e d

0

(�; id) < "=
 = "

0

. De�ne �

i

= ��

t

i

. Then

d

0

�

�

i

; �

t

i

�

= d

0

�

��

t

i

; �

t

i

�

� d

0

(�; id) < "

0

be
ause multipli
ation on the right diminishes d

0

. Therefore, �

i

2

V

"

0

�

�

t

i

�

. On the other hand, �

i

(x

i

) = ��

t

i

(x

i

) = x

i+1

, and x

n

=

�

n�1

� � � �

0

(x

0

), 
on
luding the proof sin
e  = �

n�1

� � � �

0

2 S

"

0

;T

.

This proposition ensures that we 
an repla
e an "; T -
hain by the a
tion

of an element in S

";T

. From this we get the following useful property of the


ontrol sets of the shadowing semigroups.

Lemma 4.6 With the same assumptions as the previous proposition, take

"

1

< "

2

and suppose that D

"

1

;T

and D

"

2

;T

are e�e
tive 
ontrol sets for S

"

1

;T

and S

"

2

;T

, respe
tively, su
h that (D

"

1

;T

)

0

\ (D

"

2

;T

)

0

6= ;. Then D

"

1

;T

�

(D

"

2

;T

)

0

.

Proof: Take x 2 (D

"

1

;T

)

0

\ (D

"

2

;T

)

0

. Then for any y 2 (D

"

1

;T

)

0

, y 2 S

"

1

;T

x

and x 2 S

"

1

;T

y. Sin
e S

"

1

;T

� S

"

2

;T

, the maximality property in the de�ni-

tion of 
ontrol sets ensures that y 2 D

"

2

;T

, and a fortiori, by Proposition 2.3,

y 2 (D

"

2

;T

)

0

. Hen
e, (D

"

1

;T

)

0

� (D

"

2

;T

)

0

. To 
on
lude the proof we show

that z 2 S

"

2

;T

x and x 2 S

"

2

;T

z. By Proposition 2.3 (1), x 2 S

"

1

;T

z � S

"

2

;T

z.

On the other hand, D

"

1

;T

� 
l (D

"

1

;T

)

0

, so that any z 2 D

"

1

;T

belongs to


l (S

"

1

;T

x). Hen
e by the the se
ond statement of the above proposition, it

follows that z 2 int (S

"

2

;T

x) � S

"

2

;T

x, as we desired to show.

Now we 
an prove the main result of this se
tion whi
h gives a 
hara
-

terization of the 
hain re
urrent 
omponents in terms of the 
ontrol sets of

the shadowing semigroups.
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Theorem 4.7 Let �

t

be a 
ow on Y 
ontained in a lo
trans lo
al group G.

Suppose that for ea
h "; T > 0 there exists a 
ontrol set D

";T

of S

";T

(�;G)

su
h that M

0

=

T

";T

D

";T

6= ;. Then M

0

is a maximal 
hain transitive subset.

Conversely let M be a maximal 
hain transitive subset. Then for every

"; T > 0 there exists an e�e
tive 
ontrol set D

";T

(M) of S

";T

(�;G) su
h that

M is 
ontained in the set of transitivity D

";T

(M)

0

. Furthermore,

M =

\

";T

D

";T

(M) =

\

";T

D

";T

(M)

0

: (2)

Proof: If x; y 2 M

0

then for all "; T > 0, x; y 2 D

";T

, so that y 2 
l (S

";T

x).

Hen
e by Proposition 4.5 (1) there exists an "; T -
hain from x to y. This

shows that M

0

is 
hain transitive. The maximality follows by Proposition

4.5 (2). In fa
t, if x 2 M

0

and for every "; T > 0, z 2 C

";T

(x) and z 2 C

";T

(x)

then z 2 D

";T

, so that z 2 M

0

.

For the se
ond part take x 2 M. Sin
eM is 
hain re
urrent, x 2 C

";T

(x)

for all "; T > 0. By Proposition 4.5 (2) and Lemma 4.3, it follows that

x 2 int (S

";T

x) for every "; T > 0. But this implies that there exists a 
ontrol

set D

";T

(M; x) of S

";T

su
h that x 2 D

";T

(M; x)

0

(see Proposition 2.4). We


laim that D

";T

(M; x) = D

";T

(M; y) for all x; y 2 M. In fa
t, sin
e M is


hain transitive, y 2 C

";T

(x) for all "; T > 0. Hen
e, by Proposition 4.5 (2),

y 2 S

";T

x. The same way x 2 S

";T

y, showing that x and y belong to the

same 
ontrol set.

As to the equalities in (2), note that the se
ond one is a 
onsequen
e

of Lemma 4.6. Hen
e it remains to prove that

T

";T

D

";T

(M) � M. Pi
k

x 2

T

";T

D

";T

(M). By de�nition of 
ontrol set we have x 2 
l (S

";T

x) for

every "; T > 0. Using Proposition 4.5, we see that any two points x; y 2

T

";T

D

";T

(M) are attainable to ea
h other by "; T -
hains, so that this inter-

se
tion is indeed 
ontained in a 
hain transitive set, whi
h must be M.

Corollary 4.8 Let the assumptions be as in Theorem 4.7. Then the shad-

owing semigroups S

";T

are transitive on Y if the 
ow is 
hain transitive on

Y .

Proof: In fa
t, assuming that the 
ow is 
hain transitive on Y it follows

Y �M � D

";T

(M)

0

� Y

18



for every "; T > 0. Therefore, S

";T

is transitive on Y .

The results proved so far apply without 
hange to the reversed 
ow �

�

and its shadowing semigroups S

�

";T

. Sin
e the 
hain transitive sets for �

and �

�

are the same (see [8℄, Theorem 3.2D), ea
h 
hain transitive set M

is 
ontained in a unique 
ontrol set D

�

";T

(M) of S

�

";T

. As in Theorem 4.7,

M is the interse
tion of the 
ontrol sets D

�

";T

(M) as well as of their sets of

transitivity D

�

";T

(M)

0

. Clearly, interse
ting the sets D

�

";T

(M) \ D

";T

(M)

we also get M. For later referen
e we expli
itate this fa
t.

Corollary 4.9 With the notations and asssumptions as above,

M =

\

";T

�

D

";T

(M) \D

�

";T

(M)

�

=

\

";T

�

D

";T

(M)

0

\D

�

";T

(M)

0

�

:

As another appli
ation of the shadowing semigroup des
ription of 
hains

we get the domain of attra
tion of a 
hain re
urrent 
omponent M as the

interse
tion of the domains of attra
tion of the 
orresponding 
ontrol sets.

Re
all that the domain of attra
tion A (M) of the 
hain re
urrent 
om-

ponentM of a 
ow on Y is de�ned as the set of those z 2 Y for whi
h there

exists x 2 M su
h that x 2 C (z). We denote the domain of attra
tion of

M for the reversed 
ow by A

�

(M). Analogously, if D is a 
ontrol set for

the semigroup S, its domain of attra
tion A (D) is the set of z 2 Y su
h

that there exists � 2 S with �z 2 D. We note that if D

0

6= ; then A (D)

is open and z 2 A (D) if and only if �z 2 D

0

for some � 2 S (
f. [21℄).

In reversing the a
tion of the semigroup it is this latter 
ondition whi
h is


onvenient, that is, we write A

�

(D) for the set of those z 2 Y su
h that

�

�1

z 2 D

0

for some � 2 S. It is an immediate 
onsequen
e of the de�nitions

that M = A (M) \ A

�

(M) and D

0

= A (D) \ A

�

(D).

Proposition 4.10 Let the notations and assumptions be as in Theorem 4.7.

Then the domain of attra
tion of the 
hain re
urrent 
omponent M is given

by

A (M) =

\

";T

A (D

";T

(M)) :

Analogously, A

�

(M) =

T

";T

A

�

(D

";T

(M)).
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Proof: Take z 2 A (M). Then, there exists x 2 M su
h that x 2 C

";T

(z)

for all "; T > 0. By Proposition 4.5 there exist �

";T

2 S

";T

su
h that

�

";T

(z) = x for every "; T > 0. Therefore, z 2 A (D

";T

(M)) for ev-

ery "; T > 0, i.e., z 2

T

";T

A (D

";T

(M)). For the 
onverse, assume that

z 2

T

";T

A (D

";T

(M)). Hen
e, there exists �

";T

2 S

";T

and x

";T

2 D

";T

(M)

su
h that �

";T

(z) = x

";T

. Take x 2 M � (D

";T

)

0

. By Proposition 4.5,

x

";T

2 C

";T

(z), hen
e x 2 C

";T

(z).

On
e we have the des
ription of the 
hain re
urrent 
omponents in terms

of 
ontrol sets the strategy is to use known results about the latter in order

to understand the 
hain transitive sets. The following statements are easy


onsequen
es of this approa
h.

Proposition 4.11 Let Q ! X with �ber G and E ! X an asso
iated

bundle with �ber F = G=L. Assume that F is 
onne
ted and the a
tion

of G on F leaves invariant a probability measure. Then under the lo
trans


ondition a 
ow on E is 
hain re
urrent if it is 
hain re
urrent on X.

Proof: In fa
t, the existen
e of an invariant probability measure ensures

that any semigroup with non-empty interior in G a
ts transitively on F (see

[22℄, Lemma 6.2). This implies that the semigroups S

";T

are transitive on E,

and hen
e the 
hain transitivity of the 
ow.

Cases 
overed by this proposition are the 
ompa
t solvmanifolds and 
om-

pa
t groups. In fa
t, in both 
ases there are invariant probability measures.

If G is 
ompa
t then the Haar measure indu
es invariant measures on its

homogeneous spa
es. Analogously, if G is solvable and G=L 
ompa
t, then

there exists an invariant probability on G=L (see Mostow [14℄).

Corollary 4.12 Let the notations and assumptions be as in the above propo-

sition an assume furthermore that G is 
ompa
t or G is solvable and G=L


ompa
t. Then a 
ow on E is 
hain re
urrent if it is 
hain re
urrent on the

base X.

To 
on
lude this se
tion we show two fa
ts about 
hain re
urren
e whi
h

in some situations may be helpful to weaken the lo
trans 
ondition to a dense

subset of the state spa
e.
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Proposition 4.13 Let �

t

be a 
ow on a metri
 spa
e (Y; d) and suppose that

Z � Y is a dense subset whi
h is invariant by �

t

. Take x; y 2 Z and suppose

that y 2 C

";T

(x). Then there exists an "; T -
hain from x to y for the 
ow

restri
ted to Z.

Proof: Let (x

1

; : : : ; x

n

), (t

1

; : : : ; t

n

) be a 
hain between x and y, and suppose

that some x

i

=2 Z. By 
ontinuity of the 
ow we 
an take x

0

i

2 Z 
lose enough

to x

i

su
h that d

�

�

t

i�1

(x

i�1

) ; x

0

i

�

< " and d

�

�

t

i

(x

0

i

) ; x

i+1

�

< ". Substitut-

ing this way x

i

by x

0

i

every time x

i

=2 Z, we get a 
hain from x to y without

leaving the invariant subset Z.

Proposition 4.14 Let �

t

be a 
ow on a 
ompa
t metri
 spa
e (Y; d) 
on-

taining a dense invariant subset Z. Denote by �

t

the restri
tion of �

t

to Z

and suppose that M is a maximal 
hain transitive set of �

t

. Then its 
losure


lM is a maximal 
hain transitive set of �

t

.

Proof: Take x 2 M and y 2 
lM. Clearly, for "; T > 0, y 2 C

";T

(x). Hen
e,

by [8℄, Theorem 3.2D, we have also "; T -
hains from y to x, showing that 
lM

is 
hain transitive. As to the maximality note �rst that by 
ompa
tness of

Y , 
lM is 
ontained in a maximal 
hain transitive set, say M

0

. Any z in

M

0

is attainable by 
hains from w 2 
lM. Take a sequen
e x

n

2 M with

x

n

! w. For n large anough and an "; T -
hain starting at w there exists

an "; T -
hain starting at x

n

whose end point is 
lose enough to z. Using the

above propostion we see that z 2 
lM, 
on
luding the proof.

As an example where we 
an apply this proposition, suppose that Y is

the 
losure of an open set O in a Fre
het spa
e, and 
onsider a 
ow �

t

on

Y whi
h leaves O invariant. By Proposition 3.2, lo
 (O) is lo
ally transitive.

Hen
e, we 
an use the shadowing semigroup method to the 
ow �

t

restri
ted

to O. If we are able to get this way maximal 
hain transitive subsets of �

t

,

then we get also maximal 
hain transitive subsets of �

t

.

5 Semigroups and 
ag manifolds

The purpose of this se
tion is to establish notations and ba
kground re-

sults about semi-simple Lie groups, their 
ag manifolds and subsemigroups.

We follow Borel-Tits [2℄, Duistermaat-Kolk-Varadarajan[9℄, Varadarajan [29℄
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and Warner [28℄ as basi
 referen
es to semi-simple Lie groups and 
ag man-

ifolds. The results about semigroups to be re
alled here appeared in [19℄,

[20℄, [21℄, [23℄, [24℄, [25℄, [26℄.

5.1 Semi-simple Lie groups and 
ag manifolds

Given a non-
ompa
t semi-simple Lie algebra g let us take a Cartan de
om-

position g = k� s. Choose a maximal abelian subspa
e a � s and denote by

� the set of roots of the pair (g; a). Take a Weyl 
hamber a

+

� a and denote

by �

+

the 
orresponding set of positive roots and � the set of simple roots.

Put

n

+

=

X

�2�

+

g

�

n

�

=

X

�2�

�

g

�

;

where g

�

stands for the �-root spa
e and �

�

= ��

+

. The Iwasawa de
om-

position reads g = k�a�n

+

. The standard minimal paraboli
 subalgebra is

de�ned by p = m� a� n

+

where m is the 
entralizer of a in k. On the other

hand given a subset � � � denote by h�i the subset of � spanned by � over

the integers. Put h�i

�

= �

�

\ h�i and let n

�

(�) be the subalgebra of n

�

spanned by g

�

, � 2 h�i

�

. The standard paraboli
 subalgebra p

�

, asso
iated

to �, is given by

p

�

= n

�

(�)� p:

In parti
ular, p

;

= p.

Now let G be a 
onne
ted Lie group with Lie algebra g. For ea
h � � �

let the standard paraboli
 subgroup P

�

of G be de�ned as the normalizer of

p

�

in G:

P

�

= fg 2 G : Ad (g) p

�

= p

�

g;

and write F

�

= G=P

�

for the asso
iated 
ag manifold of G. The 
oset G=P

�

identi�es with the set of paraboli
 subalgebras of g 
onjugate to p

�

, so that

F

�

depends only on g and not on the spe
i�
 Lie group G having Lie algebra

g. In the sequel we write simply F for the maximal 
ag manifold F

;

.

Given two subsets �

1

� �

2

� �, the 
orresponding paraboli
 subgroups

satisfy P

�

1

� P

�

2

, so that there is a 
anoni
al �bration G=P

�

1

! G=P

�

2

,

gP

�

1

7! gP

�

2

. Alternatively, the �bration assigns to the paraboli
 subalgebra

q 2 F

�

1

the unique paraboli
 subalgebra in F

�

2


ontaining q. In parti
ular,

F proje
ts onto every 
ag manifold F

�

.

We denote by K = exp k, N

�

= exp n

�

and A = exp a the 
onne
ted sub-

groups with 
orresponding Lie algebras. Analogously, we put A

+

= exp a

+
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for the Weyl 
hamber in G 
orresponding to a

+

. The group K a
ts transi-

tively on ea
h F

�

, allowing an identi�
ation G=P

�

= K=K

�

where K

�

=

K \ P

�

.

Re
all that a 
ag manifold F

�


an be embedded into the s 
omponent

of a Cartan de
omposition. In fa
t, let H

�

2 
la

+

be su
h that � = f� 2

� : � (H

�

) = 0g. Then K

�

is the 
entralizer of H

�

in K so that the adjoint

orbit Ad (K)H

�

identi�es with F

�

. Conversely, given H 2 
la

+

, Ad (K)H

identi�es with F

�(H)

where � (H) = f� 2 � : � (H) = 0g.

This realization is helpful in des
ribing the Morse de
omposition of the


ow in F

�

indu
ed by exp (tH), t 2 R, H 2 
la

+

. In fa
t, any Z 2 s

de�nes a height fun
tion f

Z

: Ad (K) (H

�

) ! R by f

Z

(x) = hZ; xi, where

h�; �i is the Cartan-Killing form. Now, there exists in F

�

= Ad (K)H

�

a

K-invariant metri
, say (�; �)

H

�

, depending on H

�

su
h that the gradient of

f

Z

with respe
t to (�; �)

H

�

is pre
isely the ve
tor �eld

e

Z indu
ed by Z on F

�

(see [9℄). The 
ow of

e

Z is given by the a
tion of exp (tZ), t 2 R, so that the

�nest Morse de
omposition of exp (tZ) is given by the singularities of

e

Z .

In order to des
ribe the singularities, denote by W the Weyl group of g,

whi
h is the group generated by the re
e
tions with respe
t to the roots in �.

This group is isomorphi
 toM

�

=M , whereM

�

andM are the normalizer and


entralizer of A in K, respe
tively. The orbit of H

�

under M

�

is �nite and

the a
tion of M

�

on this orbit fa
tors through W. Thus we abuse notation

and write the elements of this orbit as b

�

w

= wb

+

�

, w 2 W, where b

+

�

is the

origin in F

�

(the point whi
h identi�es with H

�

). The proof of the following

lemma 
an be found in [9℄ (see Proposition 1.3 and Corollary 3.5).

Lemma 5.1 Given H 2 
la

+

, the set of �xed points of exp (tH) in F

�

is

given by the disjoint union of 
onne
ted subsets

[

w2W

H

nW

K

0

H

b

�

w

where K

0

H

is the identity 
omponent of the 
entralizer K

H

of H in K.

In this de
omposition the 
omponent K

0

H

b

+

�

is the only attra
tor, while

the unique repeller is given by K

0

H

b

�

�

, where b

�

�

= w

0

b

+

�

and w

0

is the prin-


ipal involution of W, that is, the element of largest length as a produ
t of

re
e
tions with respe
t to the simple roots.

Let us take in parti
ular H 2 a

+

. Then K

0

H

= M

0

, so that K

0

H

b

�

w

= b

�

w

for all w 2 W, and the �xed-points are isolated (alternatively, f

H

is a Morse
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fun
tion). In this 
ase the stable manifold of the �xed-point b

�

w

is given by

the orbit N

�

b

�

w

, while the unstable manifold is N

+

b

�

w

. Thus there exists a

unique attra
tor �xed-point b

+

�

whose stable manifold is the open and dense

orbit N

�

b

+

�

and a unique repeller b

�

�

with unstable manifold N

+

b

�

�

, whi
h is

also open and dense.

More generally, we say that Z 2 g is split-regular in 
ase Z = Ad (g) (H)

for some g 2 G, H 2 a

+

. Analogously, x 2 G is said to be split-regular in


ase x = ghg

�1

with h 2 A

+

= exp a

+

, that is, x = expZ, with Z split-

regular in g. By taking 
onjugations we 
arry over the Morse de
omposition

for split-regular elements: If Z = Ad (g) (H), H 2 a

+

, then its �xed-points

are gb

�

w

with stable manifolds gN

+

b

�

w

and unstable manifolds gN

�

b

�

w

. The

same pi
ture holds for the dis
rete time 
ow x

n

if x = ghg

�1

is split-regular.

In the sequel we write �x

�

(x) for the set of �xed-points of x in F

�

and

put �x

�

(x; w) = gb

�

w

and 
all this the �xed-point of type w of x. Also, we

write at

�

(x) = �x

�

(x; 1) for the attra
tor and rp

�

(x) = �x

�

(x; w

0

) for the

repeller. The stable manifold of the attra
tor will be denoted by st

�

(x) while

the unstable manifold of the repeller is un

�

(x). We use analogous notations

for a split-regular Z 2 g, for instan
e, at

�

(Z) is the attra
tor of exp (tZ),

et
. Also, in 
ase F

�

= F is the maximal 
ag manifold we suppress the

subs
ripts � in the notations.

Now we dis
uss the notion of dual 
ag manifolds. We refer to [23℄ and

[24℄ for further details. The prin
ipal involution w

0

2 W maps � onto ��,

so that � = �w

0

leaves � invariant. Thus for � � �, �

�

= � (�) � �, and

we 
an form the 
ag manifold F

�

�

, 
alled dual of F

�

. The diagonal a
tion

g (b

1

; b

2

) = (gb

1

; gb

2

) of G on F

�

� F

�

�

has a unique open orbit, say O

�

,

whi
h as a homogeneous spa
e identi�es with the adjoint orbit Ad (G) (H

�

),

with H

�

as above. In fa
t, take the pair

�

p

�

; p

�

�

�

2 F

�

� F

�

�

, where p

�

�

=

n

+

(�)� p

�

with

n

+

(�) =

X

�2h�i

+

g

�

p

�

= m� a� n

�

(
f. [24℄, page 590). The isotropy subgroup of the G-a
tion at

�

p

�

; p

�

�

�

is the

interse
tion of the normalizers of p

�

and p

�

�

, whi
h is exa
tly the 
entralizer

Z

G

(H

�

). Hen
e the G-orbit of

�

p

�

; p

�

�

�

is in bije
tion with G=Z

G

(H

�

). It

is known that the orbit is open. In the sequel we say that two paraboli


subalgebras q

1

2 F

�

and q

2

2 F

�

�

are opposed if (q

1

; q

2

) belongs to the open

G-orbit in F

�

� F

�

�

.
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In 
ase � = ;, we have the maximal 
ag manifold, whi
h is self-dual.

Given two opposed minimal paraboli
 subalgebras p

1

and p

2

, p

1

\p

2


ontains

a unique maximal abelian split subalgebra of g, a

1

= Ad (g) a, g 2 G. In

this 
ase there exists a unique Weyl 
hamber a

+

1

� a

1

, su
h that b

1

is the

attra
tor and b

2

the repeller of H 2 a

+

1

. Denote by a

+

(b

1

; b

2

) the 
hamber


oming from this 
onstru
tion, and put A

+

(b

1

; b

2

) = exp(a

+

(b

1

; b

2

)). The

�xed point of type w for elements in A

+

(b

1

; b

2

) is denoted by w(b

1

; b

2

).

5.2 Semigroups

We dis
uss now semigroups in a non-
ompa
t semi-simple Lie group G with

�nite 
enter. Let S � G be a semigroup with intS 6= ;. Then S a
ts on

the 
ag manifolds F

�

of G. It was proved in [25℄, Theorem 6.2, that S is

not transitive in F

�

unless S = G. Moreover, there exists just one invariant


ontrol set C

�

(S) � F

�

. If S is proper C

�

(S) 6= F

�

. We denote the set of

transitivity of C

�

(S) by C

+

�

(S). In view of Proposition 5.2 below we 
all

C

+

�

(S) the attra
tor set of S in F

�

. Repla
ing S by S

�1

we get the repeller

set C

�

�

(S) whi
h is the only minimal 
ontrol set of S. In 
ase F

�

= F is the

maximal 
ag manifold, we suppress the subs
ript � and write simply C

�

(S)

for C

�

�

(S), and if the semigroup is understood we put C

�

�

= C

�

�

(S). The

following statement was proved in [25℄.

Proposition 5.2 The attra
tor set C

+

�

is given by at

�

(h) with h running

through the split-regular elements in intS. Analogously the repeller set C

�

�

is

formed by rp

�

(h), with h running through the split-regular elements in intS.

The semigroups in G are distinguished a

ording to the geometry of their

invariant 
ontrol sets. This geometry is des
ribed by the following state-

ments, proved in [25℄ (see also [21℄ and [23℄).

Proposition 5.3 There exists � � � su
h that �

�1

�

(C

�

(S)) is the invariant


ontrol set in the maximal 
ag manifold F

�

. Among the subsets � satisfying

this property there exists a unique maximal one (with respe
t to set in
lusion).

We denote the maximal subset by � (S) and say that it is the paraboli


type of S. Alternatively, we say also that the paraboli
 type of S is the


orresponding 
ag manifold F (S) = F

�(S)

(see [23℄, [25℄, [27℄ for further

dis
ussions about the paraboli
 type of a semigroup). Given two semigroups
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S

1

� S

2

with non-empty interior, their 
ontrol sets satisfy C (S

1

) � C (S

2

).

This implies the in
lusion between the paraboli
 types: � (S

1

) � �(S

2

).

When � = � (S), the invariant 
ontrol set C

�(S)

has the following ni
e

property, proved in [25℄.

Proposition 5.4 Let h 2 intS be split-regular. Then C

�(S)

� st

�(S)

(h).

The other e�e
tive 
ontrol sets are given analogously as sets of �xed-

points: Denote by R (S) the set of split-regular elements in int (S). Then we

have the following result of [25℄.

Proposition 5.5 For ea
h w 2 W there exists a 
ontrol set D

�

(w) � F

�

whose set of transitivity is

D

�

(w)

0

= f�x

�

(h; w) : h 2 R (S)g:

The invariant 
ontrol set is C

�

= D

�

(1) and the minimal 
ontrol set C

�

�

=

D

�

(w

0

). Conversely, for any e�e
tive 
ontrol set D � F

�

there exists w 2 W

su
h that D = D

�

(w).

Note that R (S

�1

) = R (S)

�1

. Hen
e D

�

(w)

0

is also the set of transitivity

of a 
ontrol set, say D

�

�

(w) of S

�1

(
f. [21℄, Proposition 3.1).

Although the map w 7! D

�

(w) is onto the e�e
tive 
ontrol sets it is not

in general one-to-one. To relate its level sets at the maximal 
ag manifold

with the paraboli
 type of S put

W (S) = fw 2 W : D (w) = D (1)g:

Then W (S) is the subgroup W

�(S)

=

�

M

�

\ P

�(S)

�

=M , and D (w

1

) =

D (w

2

) if and only if W (S)w

1

= W (S)w

2

(see [25℄). Hen
e the number

of e�e
tive 
ontrol sets in F is jWj = jW (S)j. On the other hand the 
ontrol

sets in F

�

are the image of those in F under the proje
tion �

�

: F ! F

�

.

For later referen
e we re
ord the following fa
t proved in [23℄, Proposition

6.3.

Proposition 5.6 Take b

1

2 C

+

�(S)

and b

2

2 C

�

�

�

(S)

and let p

1

and p

2

be the


orresponding paraboli
 subalgebras, respe
tively. Then p

1

is opposed to p

2

.
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5.3 Redu
tive groups

For appli
ations to 
ows on 
ag bundles it is 
onvenient to 
onsider also

redu
tive groups besides the semi-simple ones. We have in mind, for instan
e,

the redu
tive non-
onne
ted group Gl (n;R), whi
h appears when studying


ows on ve
tor bundles. The point is that 
ontrol sets for semigroups in

redu
tive Lie groups are determined only by the a
tion of the semi-simple


omponent so that we 
an develop our results in the semi-simple setting and

get for free the same results for redu
tive groups.

To dis
uss this extension let R be a redu
tive Lie group with Lie algebra

r = g � z, with g semi-simple and z the 
enter of r. We assume that R

has a �nite number of 
onne
ted 
omponents. Denote by Z

R

the 
enter of

R whi
h is a 
losed normal subgroup of R. A paraboli
 subgroup, say P

R

,

of R is de�ned like in the semi-simple 
ase (
f. [28℄, page 85 �), namely,

P

R

= N

R

(p), where p is a paraboli
 subalgebra of g. The Lie algebra of P

R

is p� z. Let R

0

be the identity 
omponent of R, and put G = R

0

= (Z

R

\ R

0

).

It follows that G is a
tually the identity 
omponent of Aut (g), and thus a

semi-simple Lie group.

Put P = N

G

(p) for the paraboli
 subgroup of G 
orresponding to P

R

.

Lemma 5.7 The 
oset R=P

R

is a union of 
opies of G=P , and R=P

R

= G=P

if R=P

R

is 
onne
ted, that is, if P

R

meets every 
omponent of R.

Proof: Sin
e Z

R

� P

R

, any z 2 Z

R

a
ts as identity on R=P

R

. This implies

that the a
tion of R on R=P

R

fa
tors through the semi-simple group R=Z

R

in the sense that R=P

R

= (R=Z

R

) = (P

R

=Z

R

). Hen
e, P = (P

R

\ R

0

) =Z

R

and

R

0

= (P

R

\ R

0

) = G= ((P

R

\R

0

) =Z

R

) = G=P:

Furthermore, given a 
onne
ted 
omponent K of R the set fgP

R

: g 2 Kg is

in bije
tion with R

0

= (P

R

\R

0

). The 
oset spa
es R=P

R

and G=P are equal

if and only if P

R

meets every 
omponent of R.

Now, let S � R be a semigroup with non-empty interior, and write S

for the image of S under the 
anoni
al homomorphism R ! R=Z

R

. Then

the a
tion of S on R=P

R

depends solely on the a
tion of S, in parti
ular,

the 
ontrol sets of S 
oin
ide with the 
ontrol sets of S. Clearly S has non-

empty interior in the (possibly non-
onne
ted) semi-simple Lie group R=Z

R

.

Next we 
ompare non-
onne
ted semi-simple Lie groups with their 
onne
ted


omponents.
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Proposition 5.8 Let G be a semi-simple Lie group with a �nite number

of 
onne
ted 
omponets. Suppose that a paraboli
 subgroup P

G

meets every


omponent of G. Then for any semigroup S � G, with intS 6= ;, the e�e
tive


ontrol sets of S in G=P

G


oin
ides with those of S = S \G

0

.

Proof: Put P

0

= P

G

\ G

0

, so that G=P

0

is a union of 
opies of G=P

G

,

ea
h 
opy is the image of a 
onne
ted 
omponent of G under the proje
tion

G! G=P

0

. Form the 
anoni
al bundle map

� : G=P

0

�! G=P

G

:

The 
ontrol sets of S in G=P

0

proje
t onto the 
ontrol sets in G=P

G

. Also, if

D � G=P

G

is a 
ontrol set and x 2 D

0

, then any point y 2 �

�1

fxg belongs

to the set of transitivity of a 
ontrol set, say D � G=P

0

. Now, y and gy,

g 2 G belong to the same 
omponent, then g 2 G

0

. In parti
ular, D � 
lSy,

so that D is also a S-
ontrol set. Sin
e the 
ontrol sets of S are 
ontained in

the 
ontrol sets of S, the result follows.

Corollary 5.9 Let R be a redu
tive Lie group with a �nite number of 
on-

ne
ted 
omponents. Suppose that a paraboli
 subgroup P

R

� R meets every


omponent of R. Then for any semigroup S � R, with intS 6= ;, the e�e
tive


ontrol sets of S in G=P

R


oin
ides with those of S =

�

S \ R

0

�

= (Z

R

\R

0

).

6 Sequen
es in G

Let g

k

be a sequen
e in the semi-simple Lie group G. In order to see the

pointwise limit of the a
tion of g

k

on the 
ag manifolds let us �x a polar

de
omposition G = K
l (A

+

)K, and write g

k

= u

k

h

k

v

k

with u

k

; v

k

2 K and

h

k

2 
l (A

+

).

For a root � 2 � and h 2 A, put �

�

(h) = exp(�(log h)). We say that

g

k

is admissible if u

k

! u, v

k

! v, u; v 2 K and the sequen
e �

�

(h

k

) are


onvergent for all negative roots �. Note that for every negative root �,

�

�

(h

k

) 2 (0; 1℄, so that any sequen
e has an admissible subsequen
e. The

numbers �

�

(h

k

) together with 1 are the eigenvalues of Ad (h

k

). Hen
e, for

an admissible sequen
e the restri
tion of Ad (h

k

) to n

�


onverges to a linear

map � : n

�

! n

�

(
f. [10℄ and [26℄, Proposition 2.5).
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Now take a 
ag manifold F

�

and denote by b

0

the origin 
orresponding

to the standard paraboli
 subgroup de�ned by A

+

. Also, put � = N

�

b

0

for

the open Bruhat 
ell. Then

g

k

v

�1

(expY ) b

0

! u exp (�Y ) b

0

for any Y 2 n

�

(
f. [26℄, Proposition 2.5). Hen
e g

k

x has a limit for any

x 2 v

�1

�

0

and the limit belongs to u (exp (im� )) b

0

.

In the sequel we write dom

�

(g

k

) = v

�1

�

0

and im

�

(g

k

) = u (exp (im�)) b

0

and refer to these sets as the prin
ipal domain and prin
ipal image in F

�

,

respe
tively.

Both sets dom

�

(g

k

) and im

�

(g

k

) are 
onne
ted and the prin
ipal image

redu
es to a point if and only if � anihilates on n

�

�

, that is, �

�

(h

k

) ! 0 for

the negative roots � =2 h�i. In this 
ase the sequen
e is said to be 
ontra
ting

with respe
t to F

�

(
f. [10℄).

The next lemma about the inverses g

�1

k

of 
ontra
ting sequen
es will be

essential in the study of 
ows on 
ag bundles.

Lemma 6.1 Let g

k

= v

k

h

k

u

k

be a 
ontra
tible sequen
e with respe
t to F

�

with u

k

! 1 and v

k

! v. Suppose that C � � is a 
ompa
t subset and

b 6= vb

0

. Then there exists k

0

> 0 su
h that g

�1

k

b =2 C if k � k

0

.

Proof: Re
all that � = N

�

�

� b

0

where N

�

�

= exp n

�

�

and n

�

�

is the nilpotent

Lie algebra spanned by the root spa
es g

�

, 0 < � =2 h�i. The adjoint

Ad (h) of h 2 A restri
ted to n

�

�

is diagonal with eigenvalues exp (� (log h)),

0 < � =2 h�i. The a
tion of h on n

�

�

is equivalent to the a
tion on N

�

�

. Take

a basis of n

�

�

formed by root ve
tors and endow n

�

�

with the 
orresponding

sup-norm

jjZjj = max ja

i

j

where a

i

is the 
oordinate with respe
t to the i-th basi
 ve
tor. By the


ontra
tibility assumption exp

�

�

�

logh

�1

k

��

! 1 for every negative root

� =2 h�i. Hen
e,

�

�

�

�

h

�1

k

� Z

�

�

�

�

! 1 if Z 2 n

�

�

is not zero. Denote also by

jj�jj the fun
tion on � obtained through the di�eomorphism with n

�

�

. Sin
e

C � � is 
ompa
t jj�jj attains a maximum 
 on C.

With these preparations we 
an prove that for large k, g

�1

k

b stays outside

the ball of radious 
 if b 6= vb

0

. Sin
e v

�1

k

b! v

�1

b 6= b

0

, there exists k

1

su
h

that

m = inff

�

�

�

�

v

�1

k

b

�

�

�

�

: v

k

b 2 �; k > k

1

g > 0:
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We write m =1 if v

�1

k

b =2 � for all k > k

1

. Applying h

�1

k

it follows that for

large k, h

�1

k

v

�1

k

b is outside a neighborhood O � C. In fa
t, if jjZjj = m <1

then

�

�

�

�

h

�1

k

Z

�

�

�

�

!1 and ifm =1 then h

�1

k

v

�1

k

b belongs to the 
omplement of

�. Finally, by 
ontinuity in the 
ompa
t-open topology, the assumption that

u

k

! 1 ensures that for large k, u

k

C � O, so that g

k

b = u

�1

k

h

�1

k

v

�1

k

b =2 C.

7 Domain of attra
tion

The domains of attra
tion of 
ontrol sets in 
ag manifolds were given alge-

brai
 des
riptions in [21℄. For later use in the study of 
ows on 
ag bundles

we shall re
all here some results of [21℄ and prove aditional related fa
ts.

Let D (w) be an e�e
tive 
ontrol set for the semigroup S � G in the

maximal 
ag manifold F. In [21℄ it was proved that the domain of attra
tion

A (D (w)) is a union of S
hubert 
ells as follows: Fix a simple system of roots

� and for a �nite sequen
e �

1

; : : : ; �

n

in � let s

1

; : : : ; s

n

be the re
e
tions

with respe
t to these roots, and denote by P

i

= P

f�

i

g

the paraboli
 subgroup

de�ned by � = f�

i

g. The 
orresponding 
ag manifold is denoted by F

i

=

G=P

i

. Asso
iated with F

i

there is the 
anoni
al �bration �

i

: F ! F

i

. Now,

given i = 1; : : : ; n let 


i

stand for the operation of exhausting a subset of F

with the �bers of �

i

, that is, if X � F then




i

(X) = �

�1

i

�

i

(X) =

[

x2X

F

x

;

with F

x

standing for the �ber through x of �

i

: F ! F

i

. Before pro
eeding

we note that the simple system of roots � is used merely to label the 
ag

manifolds and the maps 


i

, sin
e these maps are independent of the 
hoi
e of

�, as happens to the �brations F ! F

i

. The following statement was proved

in [21℄, Theorem 6.3.

Proposition 7.1 The domain of attra
tion of D (w) is given by

A (D (w)) = 


1

� � �


n

�

C

�

�

;

where C

�

is the repeller set of S in F. Here the sequen
e 


i

is 
hosen in

su
h a way that w

0

w = s

n

� � � s

1

is a redu
ed expression of w

0

w as a produ
t

of simple roots, where w

0

is the prin
ipal involution of W.
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Applying this result to S

�1

we get the repeller domain of D (w):

Proposition 7.2 Let D

�

(w) be the 
ontrol set of S

�1

having the same set

of transitivity as D (w). Denote by A

�

(D

�

(w)) its attra
tor (reppeller of

D (w)). Then

A

�

�

D

�

(w)

�

= 


0

1

� � �


0

m

�

C

+

�

;

where C

+

� F is the attra
tor set of S. The sequen
e 


0

i


orresponds to the

re
e
tions obtained by a redu
ed expression w = r

m

� � � r

1

.

Proof: Follows from the above proposition and [21℄, Proposition 3.1.

By [21℄, Theorem 5.3 and Corollary 5.4, it follows that 


1

� � �


n

fbg is

a S
hubert 
ell in F, for any b 2 F. Our next obje
tive is to des
ribe the

interse
tion of a pair of su
h 
ells in terms of the exhausting maps. Denote

by P the minimal paraboli
 subgroup 
orresponding to � and let b

+

be the

origin in G=P . Now, take w 2 W with redu
ed expression w = r

m

� � � r

1

, and

write 


0

i

for the 
orresponding exausting maps. On the other hand we put 


i

for su
h maps 
orresponding to a redu
ed expression w

0

w = s

n

� � � s

1

.

Lemma 7.3 


0

1

� � �


0

m

fb

+

g \ 


1

� � �


n

fb

�

g = fwb

+

g.

Proof: By [21℄, Corollary 5.4, 


1

� � �


n

fb

�

g = 
l (N

�

wb

+

). To �nd an anal-

ogous expression for 


0

1

� � �


0

m

fb

+

g we re
all [21℄, Theorem 5.3, whi
h shows

that 
l

�

N

w

�1

b

+

�

= 


0

1

� � �


0

m

fw

�1

b

+

g where N

w

�1

= w

�1

N

+

w. Applying w

to both sides of this equallity we get




0

1

� � �


0

m

fb

+

g = 
l

�

N

+

wb

+

�

:

But it is well known that the 
ells 
l (N

+

wb

+

) and 
l (N

�

wb

+

) meet transver-

sally exa
tly at wb

+

, 
on
luding the proof.

We 
an think this lemma as a method of obtaining the whole set of �xed

points from the attra
tor and repeller ones. In fa
t, take a split regular h =

exp (H), H 2 a

+

. Then b

+

is the attra
tor of h, while b

�

is the repeller and

the other �xed points are wb

+

, w 2 W. Thus the above lemma re
onstru
ts

the �xed points from b

�

and the exausting maps. The next lemma generalizes

this 
onstru
tion for non-regular H 2 
la

+

.

Lemma 7.4 


0

1

� � �


0

m

(K

0

H

b

+

) \ 


1

� � �


n

(K

0

H

b

�

) = K

0

H

b

w

.
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Proof: Take x in the left hand side and u 2 K

0

H

. We have x 2 


0

1

� � �


0

m

(v

1

b

+

)\




1

� � �


n

(v

2

b

�

) for some v

1

; v

2

2 K

0

H

. Using the equivarian
e of the exhaust-

ing maps we get

ux 2 


0

1

� � �


0

m

�

uv

1

b

+

�

\ 


1

� � �


n

�

uv

2

b

�

�

;

so that the entire orbitK

0

H

x is 
ontained in 


0

1

� � �


0

m

(K

0

H

b

+

)\


1

� � �


n

(K

0

H

b

�

).

Combining this with the previous lemma we 
on
lude that the right hand side

is 
ontained in the left one. For the reverse in
lusion, take x 2 


0

1

� � �


0

m

(v

1

b

+

)\




1

� � �


n

(v

2

b

�

). Pro
eeding as in the proof of the previous lemma, we obtain




0

1

� � �


0

m

(v

1

b

+

) = 
l (v

1

N

+

b

w

) and 


1

� � �


n

(v

2

b

�

) = 
l (v

2

N

�

b

w

). Now, for

any z 2 
l (N

+

b

w

), the limit lim

t!�1

exp (tH) z belongs to a 
omponent,

say K

0

H

b

w

1

, bigger than K

0

H

b

w

(in fa
t, N

+

b

w


ontains the unstable manifold

of the �xed-point set K

0

H

b

w

, 
f. [9℄). Hen
e, lim

t!�1

exp (tH) x belongs to

K

0

H

b

w

1

, sin
e v

1


ommutes with exp (tH). Symmetri
ally, lim

t!+1

exp (tH)

belongs to a 
omponent K

0

H

b

w

2

smaller than K

0

H

b

w

, be
ause x 2 
l (v

2

N

�

b

w

).

Combining the two limits and using the fa
t that

S

w2W

H

nW

K

0

H

b

w

is a Morse

de
omposition we 
on
lude that K

0

H

b

w

= K

0

H

b

w

1

= K

0

H

b

w

2

, and hen
e x 2

K

0

H

b

w

.

By taking 
onjugations we 
arry over this lemma to the �xed-point set

of exp (tA) if A belongs to an adjoint orbit 
rossing 
la

+

. In fa
t, for any

g 2 G and b 2 F, g


1

� � �


n

(b) = 


1

� � �


n

(gb), and the �xed point set of

exp (tAd (g)H) is the image under g of the �xed point set of exp (tH). For

later referen
e we state this fa
t.

Corollary 7.5 Take A 2 Ad (G)H, H 2 
la

+

and let �x (Z) be the set of

�xed points of exp (tA) in F. Then there exists a map w 2 W 7! �x (A;w)

onto the set of 
onne
ted 
omponents of �x (A) su
h that �x (A; 1) is the

unique attra
tor, �x (A;w

0

) is the unique repeller and

�x (A;w) = 


0

1

� � �


0

m

(�x (A; 1)) \ 


1

� � �


n

(�x (A;w

0

)) ;

with 


0

i

and 


i

given by redu
ed expressions of w and w

0

w, respe
tively. Fur-

thermore, �x (A;w

1

) = �x (A;w

2

) if and only if W

H

w

1

=W

H

w

2

.

We 
on
lude this se
tion with an appli
ation of the above results to the


ontrol sets of a semigroup S. Let b

1

and b

2

be two points in the maximal


ag manifold F with isotropy subalgebras p

1

and p

2

, respe
tively. We say

that b

1

and b

2

are opposed if p

1

and p

2

are opposed.
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Proposition 7.6 Let C

�

� F be the attra
tor and repeller set of S, respe
-

tively. Take opposed b

1

2 C

+

and b

2

2 C

�

. Then w(b

1

; b

2

) 2 D (w)

0

(see the

notation at the end of subse
tion 5.1).

Proof: By Lemma 7.3, w (b

1

; b

2

) = 


0

1

� � �


0

m

fb

1

g \ 


1

� � �


n

fb

2

g. On the

other hand Propositions 7.1 and 7.2 show that 


0

1

� � �


0

m

fb

1

g \ 


1

� � �


n

fb

2

g

belongs to D (w)

0

.

8 Flag bundles

In this se
tion we 
onstru
t the maximal 
hain transitive subsets of a 
ow

in a 
ag bundle with the aid of the shadowing semigroups. It will produ
e

that, analogously to the 
ontrol sets on 
ag manifolds, the maximal 
hain

transitive sets are parametrized by the Weyl group. Hen
e there is a �nite

number of su
h 
omponents, whi
h for 
ompa
t metri
 spa
es implies the

existen
e of a �nest Morse de
omposition of the 
ow.

8.1 Control sets

Before applying the shadowing semigroup method we must have a des
ription

of the 
ontrol sets on the 
ag bundles. This will be done by improving the

results of [4℄ with the in
lusion of the algebrai
 
hara
terizations dis
ussed

in Se
tion 5 above.

To start with let Q! X be a prin
ipal bundle whose stru
ture group G

is semi-simple and non-
ompa
t. As before let F

�

be a 
ag manifold of G

and put E

�

! X for the asso
iated bundle E

�

= Q �

G

F

�

, having typi
al

�ber F

�

. For the maximal 
ag manifold F we write the asso
iated bundle

simply by E ! X. Re
all that when �

1

� �

2

there exists a natural �bration

F

�

1

! F

�

2

indu
ing a �bration E

�

1

! E

�

2

. In parti
ular, we have the �ber

bundle E ! E

�

for any � � �.

Let S be a lo
al subsemigroup of Aut(Q). To look at the 
ontrol sets of

S on the 
ag bundles we assume that S satis�es the a

essibility property

on Q and its a
tion on X is transitive. By the results of [4℄ the 
ontrol sets

for the a
tion of S on E are built �berwise from 
ontrol sets in F. We sket
h

the main 
onstru
tion: Given q 2 Q de�ne

S

q

= fg 2 G : 9� 2 S; � (q) = q � gg; (3)
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then S

q

is a subsemigroup of G and the a

essibility assumption on Q implies

that int

G

(S

q

) 6= ; (see [4℄, Lemma 3.2). Let D

q

be an e�e
tive 
ontrol set

of S

q

on F. A

ording to our notation, q �D

q

is a subset of the �ber E

x

of E

above x = � (q). A
tually the sets q �D

q

are independent of q 2 Q

x

. In fa
t,

if p = q � a, a 2 G is in the same �ber as q, then S

q�a

= a

�1

S

q

a, so that a

�1

D

is a 
ontrol set for S

p

. Therefore,

p �D

p

= (q � a) �

�

a

�1

D

q

�

= q �D

q

:

By Theorem 3.5 of [4℄, the interse
tion of the set of transitivity of an e�e
tive


ontrol set of S in E with a �ber has the form q � (D

q

)

0

. Conversely, given

an e�e
tive 
ontrol set D

q

, the set q � (D

q

)

0

is the interse
tion of the set of

transitivity of a unique e�e
tive 
ontrol set in E with the �ber above x = � (q)

(see [4℄, Proposition 3.6). These results yields immediately the �niteness of


ontrol sets on the 
ag bundles.

Proposition 8.1 Suppose S satis�es the a

essibility property on Q and is

transitive on the base spa
e X. Then the e�e
tive 
ontrol sets in a 
ag bundle

E

�

! X is in bije
tion with the e�e
tive 
ontrol sets of S

q

on F

�

. Hen
e,

the number of S-e�e
tive 
ontrol sets on E

�

is �nite.

Proof: Fix x 2 X. The transitivity of S on X ensures that any e�e
tive


ontrol set E meets the �ber above x. By [4℄, Theorem 3.5, the interse
tion

of E

0

with the �ber has the form q � (D

q

)

0

. Thus we have a well de�ned map

whi
h asso
iates an e�e
tive 
ontrol set in E

�

to an e�e
tive 
ontrol set of

S

q

. Sin
e di�erent 
ontrol sets are disjoint, this map is one-to-one. On the

other hand the map is onto by [4℄, Proposition 3.6, 
on
luding the proof.

Using the bije
tion of this proposition we 
an label the 
ontrol sets in

E

�

by the Weyl group W. Thus let D

�

q

(w) be the 
ontrol set of S

q

on F

�

whose set of transitivity is formed by �xed-points of type w of the elements

of S

q

(
f. Se
tion 5). The set q �D

�

q

(w) is independent of q in the �ber over

x = � (q). We put F

x

�

(w) = q �D

�

q

(w), F

x

�

(w)

0

= q �D

�

q

(w)

0

, and let E

x

�

(w)

be the 
ontrol set of S in E

�

whi
h 
ontains F

x

�

(w)

0

.

Our obje
tive is to relate the 
ontrol sets E

x

�

(w) for di�erent x 2 X. In

the general framework of [4℄ this was done only for invariant 
ontrol sets.

Here however we take advantage of the algebrai
 properties of the �bers F

�

.

First we 
onsider the maximal 
ag bundle.
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Lemma 8.2 Given x 2 X there exists an open neigborhhood U of x su
h

that E

y

(w) = E

x

(w) for all y 2 U .

Proof: Take x 2 X and a trivializing neighborhood V of x, so that �

�1

Q

(V ) �

V �G and �

�1

E

(V ) � V � F. Write S

x

for the semigroup S

(x;1)

.

Using the transitivity of S on X, we apply Theorem 4.4 of [4℄ to 
on
lude

that S has a unique invariant 
ontrol set C (S

x

) � E as well as a unique

minimal 
ontrol set C

�

(S

x

) � E . Both 
ontrol sets proje
t onto X, and by

the same result C (S

x

) \ �

�1

fxg is the invariant 
ontrol set of S

x

in F while

C

�

(S

x

) \ �

�1

fxg is the minimal 
ontrol set. As before we put C

+

(S

x

) for

the attra
tor set of S

x

.

Now, we 
an 
hoose (x; b

1

) 2 C

+

and (x; b

2

) 2 C

�

su
h that b

1

and

b

2

are opposite to ea
h other (see Se
tion 5). By Proposition 7.6 we have

w (b

1

; b

2

) 2 D

x

(w)

0

, so that (x; w (b

1

; b

2

)) 2 (E

x

(w))

0

. Sin
e (E

x

(w))

0

is

open there exists a neigborhood U

1

of x in X su
h that U

1

� fw (b

1

; b

2

)g �

E

x

(w). Also, there exists a neigborhood U

2

of x su
h that U

2

� fb

1

g � C

+

and U

2

�fb

2

g � C

�

. Applying again Proposition 7.6, it follows that for every

y 2 U

2

, (y; w (b

1

; b

2

)) 2 E

y

(w). Then U = U

1

\ U

2

satis�es the 
ondition

of the lemma sin
e (y; w (b

1

; b

2

)) 2 E

y

(w) \ E

x

(w) for all y 2 U , so that

E

y

(w) = E

x

(w) be
ause these 
ontrol sets overlap.

For the sake of simpli
ity in the notations we proved the above lemma

only for the maximal 
ag bundle, but the same result holds for any other

bundle E

�

, be
ause the 
ontrol sets in E

�

are proje
tions of the 
ontrol sets

in E . Hen
e if we use subs
ript � for 
ontrol sets in E

�

we arrive at the

following pi
ture.

Corollary 8.3 Take a 
onne
ted 
omponent � of X and w 2 W. Then the


ontrol sets E

x

�

(w) are independent of x 2 �.

Proof: The relation x � y if E

x

(w) = E

y

(w) is an equivalen
e relation on

X. By Lemma 8.2 the equivalen
e 
lasses are open sets, and hen
e union of


onne
ted 
omponents of X.

Therefore, �xing a 
onne
ted 
omponent � we get a well de�ned 
ontrol

set E

�

�

(w) in E for ea
h w 2 W. We do not know whether the 
ontrol

sets E

�

�

(w) are independent of the 
onne
ted 
omponent �. Note however

that any e�e
tive 
ontrol set has the form E

�

�

(w), hen
e the 
ontrol sets are

labelled by w 2 W, on
e � is given.
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For the sake of 
ompleteness let us dis
uss what happens in 
ase � is


hanged into another 
onne
ted 
omponent �

1

of X. There exists a map

� : W ! W su
h that E

�

1

�

(w) = E

�

�

(� (w)). Sin
e any e�e
tive 
ontrol set

has the form E

�

�

(w), it follows that � is a bije
tion. Furthermore, the map

� is in
reasing with respe
t to the Borel-Chevalley order � in W (
f. [21℄).

In fa
t, it was proved in [21℄ that D

�

q

(w

1

) � D

�

q

(w

2

) if and only if w

2

� w

1

,

so that E

�

1

�

(w

1

) = E

�

�

(� (w

1

)) is smaller than E

�

1

�

(w

2

) = E

�

�

(� (w

2

)) if and

only if w

2

� w

1

, implying that � (w

2

) � � (w

1

) if w

2

� w

1

.

8.2 Chain transitive sets

We pro
eed now to apply the above results to the shadowing semigroups of

a 
ow � on a 
ag bundle. For this we assume that the lo
al group lo
 (X) of

the base spa
e is lo
ally transitive, implying that the shadowing semigroups

S

";T

in Aut (Q) are lo
ally transitive by Corollary 3.6 and Lemma 3.7. In

parti
ular, S

";T

satis�es the a

essibility property for all "; T > 0.

Let us �x on
e and for all a maximal 
hain transitive subset X of the 
ow

on the base spa
e X and denote by X

";T

the 
ontrol set of the shadowing

semigroup S

";T


ontaining X (see Theorem 4.7). Let X

0

";T

be the set of tran-

sitivity of X

";T

. Clearly, S

";T

a
ts transitively on X

0

";T

. Hen
e, the previous

results apply if we restri
t the a
tion of S

";T

on a 
ag bundle to the open set

above X

0

";T

.

To avoid 
umbersome notation we write in the sequel the 
ontrol sets

of S

";T

above X

0

";T

without any further referen
e to this restri
tion. Hen
e

a 
ontrol set of S

";T

in E

�

should be understood as a 
ontrol set for the

restri
tion of the a
tion of this semigroup to the bundle E

�

! X

0

";T

. Also,

we denote by E

�

the restri
tion of a 
ag bundle E

�

above X , and for e 2 E

�

we write C

r

(e) = C (e) \ E

�

and C

�

r

(e) = C

�

(e) \ E

�

.

Now for w 2 W, there exists an e�e
tive 
ontrol set E

�

";T

(w) � E

�

of

S

";T

and for every e�e
tive 
ontrol set E � E

�

of S

";T

there exists w 2 W

su
h that E = E

�

";T

(w).

Lemma 8.4 Let "

1

; T

1

> 0 and "

2

; T

2

> 0 be given su
h that "

1

� "

2

and

T

1

� T

2

. Then for any w 2 W, E

�

"

1

;T

1

(w) � E

�

"

2

;T

2

(w).

Proof: Sin
e for any q 2 Q, S

"

1

;T

1

� S

"

2

;T

2

it follows that S

"

1

;T

1

q

� S

"

2

;T

2

q

(with obvious notation). Hen
e the 
ontrol sets of S

"

1

;T

1

q

are 
ontained in

those of S

"

2

;T

2

q

. Thus the lemma follows by the �berwise 
onstru
tion of the
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ontrol sets on E

�

.

Therefore, to be able to apply Theorem 4.7 it remains to 
he
k that

T

";T

E

�

";T

(w) 6= ;. We 
onsider �rst the invariant 
ontrol sets.

Lemma 8.5

T

";T

E

�

";T

(1) 6= ;. Furthermore,

T

";T

E

�

";T

(1) =

T

e2E

�

C

r

(e).

Proof: The 
ontrol sets E

�

";T

(1) are 
losed and due to transitivity on the

basis the invariant 
ontrol sets meet every �ber in a non-empty 
ompa
t set.

By the in
lusion E

�

"

1

;T

1

(1) � E

�

"

2

;T

2

(1) if "

1

� "

2

and T

1

� T

2

, it follows that

for ea
h x 2 X the family E

�

";T

(1)

x

satis�es the �nite interse
tion property.

Hen
e by 
ompa
teness of the �ber we 
on
lude that

T

";T

E

�

";T

(1) 6= ;. The last

equality is a 
onsequen
e of Proposition 4.5 and the fa
t that E

�

";T

(1) � S

";T

e

for every e 2 E

�

.

Now we 
onsider the minimal 
ontrol sets. For this we apply the above

lemma to the shadowing semigroups S

�

";T

for the reversed 
ow. The 
orre-

sponding invariant 
ontrol sets have a non-empty interse
tion, whi
h equals

T

e2E

C

�

(e).

Lemma 8.6

T

e2E

�

C

�

r

(e) =

T

";T

E

�

";T

(w

0

).

Proof: Take f 2

T

e2E

�

C

�

r

(e). By Proposition 4.5, for all "; T > 0, S

";T

f = E .

Hen
e f belongs to the minimal 
ontrol set of S

";T

, that is, E

�

";T

(w

0

). This

implies that

T

e2E

�

C

�

r

(e) �

T

";T

E

�

";T

(w

0

). The reverse in
lusion is due to the

fa
t that both sets are maximal 
hain transitive, by Theorem 4.7.

To get non-empty interse
tion for the other 
ontrol sets we apply the

results about domains of attra
tion of Se
tion 7. Sin
e there the statements

are made for the maximal 
ag manifold we shall work out here the 
ase of E

and afterwards proje
t down to the other 
ag bundles. Thus �x q 2 Q, let

x = � (q) 2 X and write a subs
ript x for interse
tions of subsets of E with

the �ber through x. For example, the sets q

�1

� E

";T

(w

0

)

x

and q

�1

� E

";T

(1)

x

are the minimal and invariant 
ontrol set of S

";T

q

, respe
tively.
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Now, take e

�

2

T

";T

E

";T

(w

0

)

x

and e

+

2

T

";T

E

";T

(1)

x

. Put w (e

+

; e

�

) =

q � w (q

�1

� e

+

; q

�1

� e) (see the notations of Proposition 7.6). By Proposition

7.6, w (q

�1

� e

+

; q

�1

� e) belongs to the w-
ontrol set of S

";T

q

for every "; T > 0.

Hen
e for "; T > 0, w (e

+

; e

�

) 2 E

";T

(w)

x

, showing that

T

";T

E

";T

(w) 6= ;.

Lemma 8.7 For any w 2 W,

T

";T

E

�

";T

(w) 6= ;.

Proof: We showed above that

T

";T

E

";T

(w) 6= ;. Sin
e E

�

";T

(w) is the proje
-

tion of E

";T

(w) the lemma follows.

Thus we have proved one of the main results of this paper.

Theorem 8.8 Suppose that lo
 (X) is lo
ally transitive. Let �

t

be a right

invariant 
ow on Q and take a maximal 
hain transitive subset X � X.

Then the asso
iated 
ow on a 
ag bundle E

�

! X sati�es:

1. For ea
h w 2 W there exists a maximal 
hain transitive set M

�;�

(w)

(or simply M

�

(w)).

2. If M � E

�

is a maximal 
hain transitive set then M = M

�

(w) for

some w 2 W.

3. M

�

(1) is the only attra
tor while M

�

(w

0

) is the only repeller, where

w

0

is the prin
ipal involution of W.

In the sequel we put M

+

�

= M

�

(1), M

�

�

= M

�

(w

0

), and supress the

subs
ripts when E = E

;

is the maximal 
ag manifold.

Clearly, in the 
ompa
t 
ase the maximal 
hain transitive subsets 
oin
ide

with the 
onne
ted 
omponents of the 
hain re
urrent set, giving rise to the

�nest Morse de
omposition.

Corollary 8.9 In the situation of the above theorem, suppose furthermore

that X is 
ompa
t. Then the 
ow on a 
ag bundle E

�

admits a �nest Morse

de
omposition with 
omponents M

�

(w).
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8.3 Paraboli
 type

As happens to the 
ontrol sets on the 
ag manifolds the map w 7! M (w)

of Theorem 8.8 is not inje
tive. Analogously to the semigroup 
ase the level

sets of this map are des
ribed by the paraboli
 type of the 
ow, a 
on
ept

whi
h we shall introdu
e below based on the paraboli
 type of semigroups.

Our �rst task is to 
he
k that the semigroups S

q

, q 2 Q, de�ned above,

have the same paraboli
 type. For this �x q 2 Q, let � = � (S

q

) be the

paraboli
 type of S

q

, and form the 
ag bundle E

�

. Then there exists a

natural �bration � : E ! E

�

whose �ber 
oin
ides with that of �

�

: F ! F

�

.

Sin
e � is the paraboli
 type of S

q

, it follows that the invariant 
ontrol set

in F, C

q

= C (S

q

), is given by C

q

= �

�1

�

(C

q

�

), where C

q

�

= C

�

(S

q

) is the

invariant 
ontrol set in F

�

. By [4℄, Theorem 3.5, the subset q � C

q

� E (1).

The same way q � C

q

�

� E

�

(1). Hen
e for every e 2 q � C

q

�

, �

�1

feg � E (1).

Applying [4℄, Proposition 3.7, we 
on
lude that �

�1

(E

�

(1)) is 
ontained in

E (1). This shows that for any p 2 Q the paraboli
 type of S

p

, �

p

� �

q

.

Sin
e q is arbitrary the 
laim follows. Thus we have proved the

Proposition 8.10 Let S � Aut (Q) be a lo
al semigroup whi
h satis�es the

a

essibility property and is transitive on the base X. Then the paraboli
 type

of S

q

is independent of q 2 Q.

In view of this proposition it makes sense to talk about the paraboli
 type

of a lo
al semigroup S � Aut (Q).

De�nition 8.11 Let S � Aut (Q) be a semigroup satisfying the a

essibility

property. The paraboli
 type of S is the 
ommon paraboli
 type of S

q

, q 2 Q.

In parti
ular a shadowing semigroup S

";T

= S

";T

(�;Aut (Q)) of a 
ow �

has a paraboli
 type, whi
h we denote by �

";T

. If "

1

< " and T

1

> T then the


ontrol sets of S

"

1

;T

1

are 
ontained in those of S

";T

(see Lemma 4.6). Thus

the de�nition of the paraboli
 type implies that �

"

1

;T

1

� �

";T

. Also, note

that the number of possible paraboli
 types is �nite. Hen
e the interse
tion

T

";T

�

";T

, whi
h is possible empty, is well de�ned.

De�nition 8.12 The paraboli
 type of the 
ow on Q is de�ned to be

�(�) =

\

";T

�

";T

where �

";T

is the paraboli
 type of the shadowing semigroup S

";T

.
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Analogous to the 
ase of 
ontrol sets the paraboli
 type of a 
ow is in-

timately related to the geometry of the attra
tor maximal 
hain transitive

subset. In fa
t, the results about 
ontrol sets of the shadowing semigroups

yield immediately the following properties of the paraboli
 type of �.

Proposition 8.13 The �bers ofM

�(�)

(1) are 
ontained in open 
ells. Also,

�

�1

M

�(�)

(1) =M (1).

Proposition 8.14 The number of maximal 
hain transitive subsets in E

�

equals the number of orbits of W

�

in W=W

�(�)

. In parti
ular, in E this

number is jWj =

�

�

W

�(�)

�

�

.

For the paraboli
 type of the reversed 
ow �

�

we must look at the invariant


ontrol sets of the shadowing semigroups S

�

";T

. The repeller maximal 
hain

transitive subset is the interse
tion of the invariant 
ontrol sets of S

�

";T

as

well as the interse
tion of the minimal 
ontrol sets of S

";T

. From this we get

the reversed paraboli
 type of �:

Proposition 8.15 Denote by �

�

";T

the paraboli
 type of S

�

";T

and by �

�

";T

the

paraboli
 type of S

�1

";T

. Then

�(�

�

) =

\

";T

�

�

";T

=

\

";T

�

�

";T

:

Proof: By Proposition 8.14 a �ber of E ! E

�(�

�

)

is 
ontained in the minimal


ontrol set of every S

�1

";T

, so that � (�

�

) �

T

";T

�

�

";T

. Sin
e the repeller max-

imal 
hain transitive subset in E is the interse
tion of the minimal 
ontrol

sets of S

";T

. The reverse in
lusion follows the same way.

A

ording to [23℄ the paraboli
 type of the inverse S

�1

of a semigroup in

G is given by the dual 
ag manifold of the paraboli
 type of S. This implies

that the paraboli
 type of �

�


orresponds to the dual 
ag manifold of the

paraboli
 type of �. In view of this we 
onform to the notation of [23℄ and

write �

�

(�) for � (�

�

).

9 Algebrai
 des
ription

In this se
tion we look at maximal 
hain transitive sets more 
arefully. Our

obje
tive is to prove Theorem 9.11, whi
h gives an algebrai
 des
ription of
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these sets. The main lemma in this dire
tion is Lemma 9.3, whi
h ensures

that the 
ow on the bundle E

�(�)

, 
orresponding to the paraboli
 type of �,

is su
h that �bers of the attra
tor maximal 
hain transitive set redu
es to

a single point. Here 
ontrary to the previous se
tion we must ask for the

existen
e of !-limits on the base spa
e, an assumption whi
h is automati
 in

the 
ompa
t 
ase.

By reverting the 
ow the same result holds for the repeller on E

�

�

(�)

.

This gives at on
e the des
ription of the attra
tor and repeller maximal


hain transitive sets on every 
ag bundle. The other 
hain transitive sets

will be determined by the extremal ones and the domains of attra
tion.

We keep assuming that the 
ow on the base spa
eX is 
hain re
urrent and

lo
 (X) is lo
ally transitive: As before denote by M

+

�

the attra
tor maximal


hain transitive set of the 
ow on E

�

. Let x; y 2 X be su
h that t

k

� x ! y

for a sequen
e t

k

! +1, and take lo
al 
ross se
tions �

i

: U

i

� X ! Q,

i = 1; 2, with x 2 U

1

and y 2 U

2

. Writing � = �

�

1

;�

2

for the 
orresponding

lo
al 
o
y
le we obtain the sequen
e g

k

= � (t

k

; x) inG. Taking a subsequen
e

if ne
essary we shall assume that g

k

is admissible, so that it makes sense to


onsider its prin
ipal image im

�

(g

k

) and prin
ipal domain dom

�

(g

k

). The

following lemma relates im

�

(g

k

) with M

+

�

. It is 
ru
ial in the proof of

Lemma 9.3.

Lemma 9.1 Let the notations and assumptions be as above. Then the prin-


ipal image �

2

(y) � im

�

(g

k

) is 
ontained in M

+

�

.

Proof: First we prove that the prin
ipal image meetsM

+

�

. For this �x "; T >

0, denote as before E

�

";T

(1) the invariant 
ontrol set of S

";T

in E

�

and put

N = E

�

";T

(1)

0

, the set of transitivity of E

�

";T

(1). The latter has non-empty

interior and proje
ts onto X. Hen
e, N inter
epts �

1

(x) �dom

�

(g

k

), whi
h is

dense in the �ber above x. But if b 2 �

1

(x) �dom

�

(g

k

) then �

t

k

(b) 
onverges

to a point in the prin
ipal image. Therefore, for any b 2 N\�

1

(x)�dom

�

(g

k

),

lim�

t

k

(b) belongs toM

+

�

\ (�

2

(y) � im

�

(g

k

)), showing that this interse
tion

is not empty. However, any point of �

2

(y) � im

�

(g

k

) belongs to ! (
) for some


 2 E

�

, and hen
e to the 
hain re
urrent set R. Sin
e im

�

(g

k

) is 
onne
ted,

it follows that �

2

(y) � im

�

(g

k

) is 
ontained in a 
onne
ted 
omponent of R,

whi
h in turn is 
ontained in a unique maximal 
hain transitive set. By the

�rst part of the proof, the prin
ipal image meetsM

+

�

, implying the lemma.

When we spe
ialize this lemma to the 
ase � = � (�), the paraboli
 type

of the 
ow, we see that the prin
ipal image im

�(�)

(g

k

) redu
es to a single
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point. In fa
t, for this spe
i�
 bundle the attra
tor set M

+

�

is 
ontained

in open Bruhat 
ells, that is, the set � (y)

�1

�

�

M

+

�

\ E

�(�)

�

is 
ontained in

some open Bruhat 
ell of F

�(�)

. Thus Lemma 9.1 implies that im

�(�)

(g

k

) is


ontained in an open 
ell. But the only possibility for this o
urren
e is when

g

k

is 
ontra
tible with respe
t to � (�), that is im

�(�)

(g

k

) is a point.

Corollary 9.2 Keep the notations and assumptions as above. Then im

�(�)

(g

k

)

redu
es to a single point.

Now we 
an prove the main lemma about the stru
tural property of the

attra
tor maximal 
hain transitive sets in the 
ag bundles.

Lemma 9.3 Let M

+

�(�)

� E

�(�)

be the attra
tor maximal 
hain transitive

set in the 
ag bundle 
orresponding to the paraboli
 type of �. Suppose that

x 2 X is su
h that ! (x) 6= ;. Then M

+

�(�)

meets the �ber

�

E

�(�)

�

x

over x

in a single point.

Proof: Write A = � (x)

�1

� M

+

�(�)

and �x b

0

2 A. We shall take a polar

de
omposition of G adapted to b

0

and A as follows: Choose a Weyl 
hamber

A

+

� G so that b

0

is the attra
tor of A

+

in F

�(�)

and the 
orresponding

stable manifold (open 
ell) � 
ontains A (e.g. take A

+

meeting a shadowing

semigroup S

";T

for small enough " > 0 and large T ). This Weyl 
hamber de-

termines a maximal 
ompa
t subgroup K � G and the polar de
omposition

G = KA

+

K.

For y 2 ! (x) let t

k

! +1 be a sequen
e with t

k

� x ! y. Take lo
al


ross se
tions �

i

: U

i

! Q, i = 1; 2, around x and y, respe
tively, and let

� = �

�

1

;�

2

be the 
orresponding lo
al 
o
y
le. Put g

k

= � (t

k

; x) and assume

without loss of generality that g

k

is admissible.

Now, write g

k

= v

k

h

k

u

k

with v

k

; u

k

2 K and h

k

2 A

+

with u

k

! u, v

k

!

v. By the above 
orollary g

k

is 
ontra
tible in F

�(�)

, so that im

�(�)

(g

k

) = vb

0

.

Changing, if ne
essary, the 
ross se
tion �

1

with �

0

= �

1

� u, u 2 K, we 
an

assume that u

k

! 1. Then by Lemma 6.1 we 
on
lude that g

�1

k

b is outside

the 
ompa
t subset A � � if b 6= vb

0

. However,

�

�t

k

(� (t

k

� x) b) = � (x) �

�

� (t

k

; x)

�1

b

�

= � (x) �

�

g

�1

k

b

�

:

Sin
e for large k, g

�1

k

b =2 A = � (x)

�1

� M

+

�(�)

, it follows that � (t

k

� x) � b =2

M

+

�(�)

if vb 6= b

0

. Therefore, for large values of k the �ber of M

+

�(�)

above

t

k

� x redu
es to the point � (t

k

� x) � (v

�1

b

0

). This implies that the �ber
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above x is also a single point, sin
e �

t

k

settles a bije
tion between the �bers

�

E

�(�)

�

x

!

�

E

�(�)

�

t

k

�x

.

Clearly, reverting time this proof yields an analogous result for the re-

peller 
omponent, as soon as we 
onsider the 
ag E

�

�

(�)


orresponding to

the paraboli
 type of the reversed 
ow.

Corollary 9.4 Let M

�

�

�

(�)

� E

�

�

(�)

be the repeller maximal 
hain transi-

tive set in the 
ag bundle 
orresponding to the reversed paraboli
 type of �.

Suppose that x 2 X is su
h that !

�

(x) 6= ;. Then M

�

�

�

(�)

meets the �ber

�

E

�

�

(�)

�

x

over x in a single point.

Of 
ourse, the 
onditions about ! and !

�

-limits are satis�ed in 
ase the

base spa
e X is 
ompa
t.

Corollary 9.5 In the situation of Lemma 9.3, assume furthermore that the

base spa
e is 
ompa
t. Then the maximal 
hain transitive setsM

+

�(�)

� E

�(�)

and M

�

�

�

(�)

� E

�

�

(�)

meet the �bers in singletons.

Corollary 9.6 The bundles E

�(�)

! X and E

�

�

(�)

! X are trivial if

! (x) ; !

�

(x) 6= ; for all x 2 X.

Proof: De�ne � : X ! E

�(�)

by the requirement M

+

\

�

E

�(�)

�

x

= f� (x)g.

Then � is a global 
ross se
tion of E

�(�)

! X. It remains only to 
he
k that

� is 
ontinuous. But this follows by lo
al trivialization and the elementary

fa
t that a map between metri
 spa
es is 
ontinuous provided its graph is


losed and the target spa
e is 
ompa
t. The proof for E

�

�

(�)

! X is similar.

In order to have spe
i�
 notations for the 
ross se
tions in this 
orollary we

write 
 : X ! E

�(�)

and 


�

: X ! E

�

�

(�)

with f
 (x)g =M

+

�(�)

\

�

E

�(�)

�

x

and f


�

(x)g =M

�

�

�

(�)

\

�

E

�

�

(�)

�

x

.

Now, we en
ode the 
ross se
tions 
 and 


�

into a global 
ross se
tion of

a bundle whose �ber is an adjoint orbit of G. For this let f : Q! F

�(�)

and

f

�

: Q ! F

�

�

(�)

be the fun
tions 
orresponding to 
 and 


�

, respe
tively.

Expli
itly,

f (q) = q

�1

� 
 (� (q)) and f

�

(q) = q

�1

� 


�

(� (q)) :
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Note that for every "; T > 0, f (q) belongs to the set of transitivity of the

invariant 
ontrol set in F

�(�)

of S

q

";T

, while f

�

(q) belongs to the minimal


ontrol set in F

�

�

(�)

.

Hen
e, the pair (f (q) ; f

�

(q)) belongs to the generi
 G-orbit O

�(�)

�

F

�(�)

� F

�

�

(�)

, whi
h as homogeneous spa
e is O

�(�)

= G=Z

G

�

H

�(�)

�

where

H

�(�)

2 
la

+

satis�es �

�

H

�(�)

�

= 0 if and only if � 2 h�(�)i. Thus we

have a map h : Q ! G=Z

G

�

H

�(�)

�

whi
h is equivariant in the sense that

h (q � g) = g

�1

� h (q). Therefore h de�nes a 
ross se
tion of the asso
iated

bundle whose typi
al �ber is Ad (G)H

�(�)

.

Note that the identi�
ation of O

�(�)

with Ad (G)H

�(�)

is made in su
h a

way that A in the adjoint orbit 
orresponds to the pair (b

1

; b

2

) 2 F

�

� F

�

�

with b

1

the attra
tor of expA in F

�

and b

2

the repeller of expA in F

�

�

. For

later referen
e we re
ord this 
onstru
tion in the following statement.

Proposition 9.7 Let the notations and assumptions be as in Lemma 9.3.

Let A

�(�)

! X be the asso
iated bundle, having typi
al �ber the adjoint orbit

Ad (G)H

�(�)

. Then there exists a 
ross se
tion � : X ! A with 
orresponding

map h : Q ! Ad (G)H

�(�)

, su
h that f (q) is the attra
tor of h (q) in F

�(�)

and f

�

(q) is the repeller of h (q) in F

�

�

(�)

.

On
e we have the attra
tor and repeller 
omponents in the �nest Morse

de
omposition (and the 
ross se
tion given in Proposition 9.7), the other


omponents are easily obtained through interse
tions of the attra
ting and

repelling domains of the 
ontrol sets. Presently we shall use the results of

[21℄ (
f. Se
tion 7 above) to des
ribe an arbitrary 
omponent M from the

extremal ones M

�

.

In the maximal 
ag bundle E ! X letM

�

be the attra
tor and repeller

maximal 
hain transitive sets, respe
tively. If M is another maximal 
hain

transitive set

M = A (M) \ A

�

(M)

and by Proposition 4.10,A (M) =

T

";T

A (D

";T

(M)) whileA

�

(M) =

T

";T

A

�

(D

";T

(M)).

Hen
e,

M =

\

";T

(A (D

";T

(M)) \ A

�

(D

";T

(M))) :

Combining Propositions 4.10 and 7.1, we get the domain of attra
tion of

the 
hain transitive setM (w). To state the result we use the same notations

used before for proje
tions between 
ag bundles. Thus, �x a simple system
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of roots �, and for a �nite sequen
e �

1

; : : : ; �

n

in � we let s

1

; : : : ; s

n

be the

re
e
tions with respe
t to these roots. Then we write E

i

! X for the 
ag

bundle with �ber F

i

= F

f�

i

g

and put �

i

: E ! E

i

for the 
anoni
al proje
tion.

A

ordingly, we write 


i

= �

�1

i

�

i

for the exhausting map.

Before pro
eeding re
all that by Corollary 4.9,

M =

\

";T

�

D

";T

(M) \D

�

";T

(M)

�

for every maximal 
hain transitive set M. This implies the following lemma

whi
h will be used in the des
ription of M (w) to be given below.

Lemma 9.8 Take sequen
es "

n

! 0 and T

n

! +1, and suppose that a

sequen
e

b

n

2 D

"

n

;T

n

�

M

�

�

\D

�

"

n

;T

n

�

M

�

�


onverges to b. Then b 2 M

�

.

Proof: For any "; T > 0, b

n

2 D

�

";T

(M

�

) if n is large enough. But the


ontrol set D

�

";T

(M

�

) is 
losed, so that b 2 D

�

";T

(M

�

), showing the lemma.

Proposition 9.9 The domain of attra
tion of M (w) is given by

A (M (w)) = 


1

� � �


n

�

M

�

�

; (4)

where 


1

; : : : ; 


n

is taken from a redu
ed expression w

0

w = s

n

� � � s

1

.

Proof: After taking lo
al 
ross se
tions we see that it is enough to prove

that

\

";T




1

� � �


n

�

C

�

";T

�

= 


1

� � �


n

 

\

";T

C

�

";T

!

;

where C

�

";T

= E

";T

(w

0

) stands for the minimal 
ontrol set of S

";T

in E . The

in
lusion of the se
ond hand side into the �rst is immediate. For the 
onverse,

take x 2

T

";T




1

� � �


n

�

C

�

";T

�

and sequen
es "

k

! 0, T

k

! +1 and b

k

2 C

"

k

;T

k

.

We 
an assume that b

k

! b, so that by Lemma 9.8, b 2 M

�

=

T

";T

C

�

";T

.
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Now any 
onverging sequen
e y

k

2 


1

� � �


n

fb

k

g has limit in 


1

� � �


n

fbg.

In parti
ular the 
onstant sequen
e y

k

= x belongs to 


1

� � �


n

fbg, 
on
lud-

ing the proof.

The same result 
an be applied to the reversed 
ow to get A

�

(M (w)).

We must only take 
are with the labelling of the 
ontrol sets by the elements

of the Weyl group to pi
k the right sequen
e 


1

� � �


n

. When working with

A (D (w)) we are ta
itly assuming that the map w 7! D (w) is de�ned in

su
h a way that D (1) is the invariant 
ontrol set while D (w

0

) is the minimal


ontrol set. Hen
e for the reversed 
ow we must 
hoose another set of simple

roots (
orresponding to a redu
ed expression) in order to write down a for-

mula like (4) for A

�

(D (w)). A

ording to [21℄, Proposition 3.1, we must take

a redu
tion expression for w = w

0

(w

0

w). In fa
t, if we label the 
ontrol sets

of S

�1

, say as D

�

(w), in su
h a way that 
lC

�

= D

�

(1) and C

+

0

= D

�

(w

0

)

then D (w) and D

�

(w

0

w) have the same set of transitivity. Thus we get,

Proposition 9.10 The repelling domain of M (w) is given by

A

�

(M (w)) = 


1

� � �


m

�

M

+

�

; (5)

where 


1

; : : : ; 


m

is taken from a redu
ed expression w = s

m

� � � s

1

.

Now we 
an give the full pi
ture of the 
hain re
urrent 
omponents.

Theorem 9.11 Let the notations and assumptions be as in Lemma 9.3.

Consider the map h : Q ! Ad (G)H of Proposition 9.7, where H is any

element of the \partial 
hamber" a

+

(� (�)). Then the 
hain re
urrent 
om-

ponents in the full 
ag bundle E are given by the �xed points of h (q) as

follows:

M (w)

�(q)

= q � �x (h (q) ; w) :

Proof: Follows immediately from Corollary 7.5 and the above two proposi-

tions.

Remark: If H is like in the above theorem, then the ve
tor �eld indu
ed

by H on a 
ag manifold F

�

is gradient with respe
t to a 
ertain Riemannian

metri
 on F

�

. Thus it might be expe
ted that the gradient-like fun
tions for

the 
ow on a bundle E

�

! X 
ould be built from the 
ross se
tion h (q) (
f.

Conley [8℄).
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10 Examples and spe
ial 
ases

10.1 Ve
tor bundles

Given an n-dimensional real ve
tor bundle V ! X let �

t

be a 
ow on V

whi
h is linear on �bers. This 
ow 
an be put in our prin
ipal bundle set up

by taking the bundle of frames Q = BV ! X of V . The elements of BV

are the invertible linear maps p : R

n

! V

x

where V

x

is the �ber of V above

x 2 X, and the stru
tural group of BV is G = Gl (n;R) whi
h a
ts on the

right on BV by pg = p Æ g, p 2 BV , g 2 Gl (n;R). The ve
tor bundle is

re
overed from BV as the asso
iated bundle obtained by the standard linear

a
tion of Gl (n;R) in R

n

.

The linear 
ow �

t

on V lifts to a 
ow, also denoted by �

t

, on BV by

putting �

t

(p) = �

t

Æ p, whi
h 
learly satis�es �

t

(pg) = �

t

(p) g, g 2 G. Con-

versely, a right invariant 
ow on BV indu
es a linear 
ow on the asso
iated

bundle V , showing that 
ows on Gl (n;R)-bundles are equivalent to linear


ows on ve
tor bundles.

The 
ag manifolds of Gl (n;R) are the usual manifolds of 
ags of sub-

spa
es of R

n

. Hen
e the asso
iated 
ag bundles are pre
isely the bundles

over X whi
h are built from V ! X by taking 
ags of subspa
es of V

x

,

x 2 X. We spe
ialize our results to these bundles. Here the semi-simple


omponent of the Lie algebra of Gl (n;R) is sl (n;R). We take the Lie al-

gebra a of zero tra
e diagonal matri
es (with respe
t to a basis �xed in

advan
e). A Weyl 
hamber a

+

� a is given by the set of diagonal matri
es

diagfa

1

; : : : ; a

n

g satisfying a

1

> � � � > a

n

, so that 
la

+

is the set of zero tra
e

diagonal matri
es with a

1

� � � � � a

n

. With these 
hoi
es, the adjoint orbit

Ad (G)H of H 2 
la

+

is the set of zero tra
e diagonalizable matri
es with

the same eigenvalues as H.

To label the paraboli
 type of a 
ow re
all that the roots of a are the

fun
tionals �

ij

(diagfa

1

; : : : ; a

n

g) = a

i

� a

j

, i 6= j, and the simple system of

roots 
orresponding to a

+

is � = f�

i

= �

i;i+1

: i = 1; : : : ; n� 1g. Note that

for a subset � � � a matrix diagfa

1

; : : : ; a

n

g is anihilated by � if and only if

a

i

= a

i+1

when �

i

2 �. Thus if � = f�

i

1

; : : : ; �

i

k

g, a matrix diagfa

1

; : : : ; a

n

g

belongs to the partial 
hamber a

+

(�) if and only if

a

1

> a

2

> � � � > a

i

1

= a

i

1

+1

> � � � ;

that is, � determines a set k

�

= fk

1

; : : : ; k

s

g su
h that the matri
es in a

+

(�)
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are given in diagonal blo
ks as

0

B

�

�

1

id

k

1

.

.

.

�

s

id

k

s

1

C

A

with �

1

> � � � > �

s

.

Now, a

ording to Theorem 9.11, the Morse de
omposition of a 
ow satis-

fying our 
onditions is given as the set of �xed points of h (p) where h : BV !

Ad (G)H is an equivariant map into the adjoint orbit of someH 2 a

+

(� (�)).

Sin
e the elements of Ad (G)H are linear maps in R

n

we 
an transfer h (p)

through p : R

n

! V

x

to the linear map H

x

= pÆh (p)Æp

�1

: V

x

! V

x

. Hen
e,

Theorem 9.11 restates as:

Theorem 10.1 Let �

t

be a 
ow on the ve
tor bundle V ! X. If the as-

sumptions of Theorem 9.11 are satis�ed then for ea
h x 2 X there exists a

diagonalizable linear map H

x

: V

x

! V

x

su
h that the Morse sets of �

t

in

a 
ag bundle are given �berwise by the 
onne
ted 
omponents of the �xed

point set of exp (tH

x

). Furthermore, the map x 7! H

x

is 
ontinuous and the

spe
tra of H

x

is 
onstant along X.

Let us spe
ialize this des
ription to some 
ag bundles. First we re
over

the Theorem of Selgrade [18℄ about 
ows on the proje
tive bundle P (V ) !

X, whose �bers are the proje
tive spa
es P

x

of V

x

, x 2 X. In this 
ase the

�xed-points of exp (tH

x

) in P

x

are the eigenve
tors of H

x

, and the 
onne
ted


omponents of the set of �xed-points are given by the eigenspa
es of H

x

.

Sin
e H

x

is diagonalizable and x 7! H

x

is 
ontinuous we 
on
lude that the

maximal 
hain transitive subsets are given by

S

x2X

P

�

V

x

�

i

�

, i = 1; : : : ; s

where �

1

> �

2

> � � � > �

s

are the 
ommon eigenvalues of H

x

, x 2 X, and

V

x

�

i

is the �

i

-eigenspa
e of H

x

. This re
overs the Theorem of Selgrade [18℄.

Note that the paraboli
 type of the 
ow 
orresponds to the 
ag mani-

fold 
ontaining 
ags whose subspa
es have dimensions dim (V

�

1

), dim (V

�

1

)+

dim (V

�

2

) et
. This relates the paraboli
 type of the 
ow and the Selgrade

subbundles.

Corollary 10.2 Let � be a linear 
ow on the ve
tor bundle V ! X, and

assume that lo
 (X) is lo
ally transitive. Then the paraboli
 type of � 
or-

responds to the 
ag manifold 
ontaining 
ags whose ve
tor spa
es have the

48



same dimension as the 
ag

V

1

� V

1

� V

2

� � � � � V

1

� � � � � V

s

where V

1

; : : : ; V

s

are the Selgrade subbundles given in de
reasing order.

Morse de
ompositions on 
ag bundles were studied by Colonius-Kliemann

[6℄ exploiting the su

essive �brations between the 
ag manifolds and the the-

orem on proje
tive bundles. As a result it is proved the existen
e of a �nest

Morse de
omposition in the full 
ag manifold with at most n! 
omponents

on the �bers (see [6℄, Theorem 5). From the above theorem we get in fa
t

that the number of 
hain re
urrent 
omponents on the �bers is jWj =

�

�

W

�(�)

�

�

whi
h is in fa
t less than n! = jWj. On the other hand [6℄ des
ribes the follow-

ing Morse de
omposition in the Grassmann bundle Gr

k

(V ) of k-dimensional

subspa
es of V ! X: Let

V = V

1

� � � � � V

s

be the de
omposition of V into the subbundles given by 
hain re
urrent


omponents in P (V ). For x 2 X and a multi-index � = (k

1

; : : : ; k

s

) with

k

i

� 0 and k

1

+ � � �+ k

s

= k de�ne the set

M

�

x

= fU 2 Gr

k

(V )

x

: dim

�

U \ V

i

x

�

= k

i

g

and form M

k

=

S

x2X

M

�

x

. Then the sets M

�

, with � running through

the multi-indi
es is a Morse de
omposition (see [6℄, Theorem 6). It follows

from Theorem 10.1 that the sets M

�

a
tually 
onstitute the �nest Morse

de
ompostion. Indeed it is easy to see that the �xed point set of the a
tion

of exp (tH

x

) in the Grasmannian Gr

k

(V

x

) is M

�

x

, sin
e the subspa
es V

i

x

are

the eigenspa
es of H

x

.

10.2 Representations

Linear 
ows on ve
tor bundles arise if we start with a prin
ipal bundleQ! X

with stru
tural group G, and take a representation � of G in a ve
tor spa
e

U . Then the asso
iated bundle V = Q�

G

U ! X obtained by the a
tion of

G on U is a ve
tor bundle and right invariant 
ows on Q indu
e linear 
ows

on V .

For a 
ow on V ! X we 
an take the Morse de
omposition on P (V ) =

S

i

P (V

i

), given by a Whitney sum V =

L

i

V

i

. However, it happens in most
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of the 
ases that the a
tion of G on the proje
tive spa
e P (U) has a 
ompa
t

proper orbit yielding the existen
e of a 
losed subbundle E of P (V ) invariant

under the 
ow. It might be interesting to look at the Morse de
omposition

of the 
ow restri
ted to E. Of 
ourse the interse
tions with E of the Morse


omponents P (V

i

) provides a Morse de
omposition for the restri
ted 
ow.

But the embedding of E into P (V ) 
an be in su
h a 
ompli
ated way so that

it is hard, if feasible, to see what happens to P (V

i

) \ E. Thus it is more

sensible to study the restri
ted 
ow intrinsi
ally, a

ording to our set up.

We already en
ountered examples of this situation above: A linear 
ow �

t

on the ve
tor bundle V ! X indu
es a 
ow �

^k

t

on the k-fold exterior produ
t

V

k

V of V . The bundle P

�

V

k

V

�


ontains as a subbundle the Grassmann

bundle Gr

k

(V ), given by the set of de
omposable ve
tors. The �nest Morse

de
omposition in Gr

k

(V ) was des
ribed before, while it is not 
lear how to

obtain it from de
ompositions of the 
ow on the whole P

�

V

k

V

�

.

10.3 Linearized 
ows

A 
ow �

t

of di�eomorphisms of an n-dimensional manifoldM lifts to a right

invariant 
ow on the bundle of frames BM by de�ning (t; p) 7! d�

t

Æ p

where p : R

n

! T

x

M is a frame in BM . The study of this \linearized" 
ow

is one of the motivations for 
onsidering 
ows on �ber bundles. Clearly a


ow on BM is a spe
ial 
ase of the 
ow 
onsidered above on general ve
tor

bundles. However, there are interesting 
ows whose symmetry allows to


onsider subbundles of BM (geometri
 stru
tures) and thus 
ows on bundles

with groups di�erent from Gl (n;R). Our general set up is adapted to an

intrinsi
 approa
h to su
h 
ows. Below we list some 
ases.

1. Let M be an orientable manifold endowed with a volume element �.

The bundle BM admits a redu
tion to the Sl (n;R)-bundle Vol formed

by the frames p : R

n

! T

x

M su
h that p

�

� is the standard volume

element in R

n

. The lifting of a 
ow �

t

on M leaves invariant Vol if

�

t

, t 2 R, is volume preserving, that is �

�

t

� = �. Although Vol is a

subbundle of BM , the situation here is not mu
h di�erent from BM

itself, sin
e the Gl (n;R) and Sl (n;R) 
ag manifolds 
oin
ide, and the

a
tions of Gl (n;R) fa
tor through Sl (n;R). We observe nevertheless

that if M is 
ompa
t then �

t

is 
hain re
urrent, due to the re
urren
e

theorem.
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2. Let M be a 2n-dimensional manifold endowed with a symple
ti
 form

!. The symple
ti
 stru
ture de�nes a redu
tion of the bundle of frames

to a subbundle Sp � BM 
omposed of the frames p : R

2n

! T

x

M su
h

that p

�

! = !

0

where !

0

is the standard symple
ti
 form on R

2n

:

!

0

(u; v) = v

T

Ju; J =

�

0 �id

n�n

id

n�n

0

�

:

The stru
ture group of the bundle Sp ! M is the symple
ti
 group

Sp(n;R) = fg : g

T

Jg = Jg, whi
h is a simple Lie group. Its 
ag mani-

folds are the submanifolds of the general 
ag manifolds formed by 
ags

of subspa
es of R

2n

whi
h are Lagrangian with respe
t to the standard

symple
ti
 form !

0

(a subspa
e U is Lagrangian if the restri
tion of

!

0

to U is identi
ally zero). Thus the asso
iated 
ag bundles are built

analogously from subspa
es of T

x

M whi
h are Lagrangian with respe
t

to !.

Right invariant 
ows on Sp ! M are obtained e.g. by lifting to BM

Hamiltonian ve
tor �elds on M . Any su
h lifting leaves invariant Sp

and thus indu
es 
ows on the Lagrangian 
ag bundles.

3. There are further examples on manifolds endowed with di�erent ge-

ometri
 stru
tures. For instan
e: 1) Flows of isometries of a pseudo-

Riemannian manifold where the stru
ture group is SO(p; q). 2) Flows of

holomorphi
 di�eomorphisms on a 
omplex manifold where the stru
-

ture group is Gl (n; C ) � Gl (2n;R).
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