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Abstract

We study the chain transitive sets and Morse decompositions of
flows on fiber bundles whose fibers are compact homogeneous spaces
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semi-simple (and reductive) Lie groups. In this case an algebraic de-
scription of the chain transitive sets is given. Our approach consists in
shadowing the flow by semigroups of homeomorphisms to take advan-
tage of the good properties of the semigroup actions on flag manifolds.
The description of the chain components in the flag bundles generalizes
the Theorem of Selgrade for projective bundles with an independent
proof.
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1 Introduction

The subject matter of this article are flows on fiber bundles whose fibers are
compact homogeneous spaces of Lie groups, with emphasis to non-compact
semi-simple Lie groups and their flag manifolds. The aspects of these flows
to be studied are the chain transitive sets and Morse decompositions.

In our set up we start with a principal bundle () — X with structural
group G, and let ¢, be a flow of homeomorphisms of ) which commutes with
the right action of G. If F' is a homogeneous space of G' we can form the
associated fiber bundle £ = @ xg F' — X with typical fiber F'. The flow ¢,
on () induces a flow on F, in whose dynamics we are interested. We shall be
concerned mainly with the generalized flag bundles when G is a non-compact
semi-simple (or more generally reductive) Lie group and F' = G//P is one of
its flag manifolds, where P is a parabolic subgroup of G.

The main result describes the maximal chain transitive subsets of a flow
on a flag bundle by giving an algebraic characterization of their intersections
with the fibers. In fact, fixing a maximal chain transitive subset X in the
base space we prove in Theorem 9.11 that there exists an adjoint orbit, say
Oy, in the Lie algebra g of G and a map x € X — H, € O, such that the
intersection of a maximal chain transitive subset M with the fiber over x is
given by the singularities of H,. Precisely, if we identify the fiber over x with
G/ P then the intersection of M with the fiber is a connected component
of the fixed-point set of the one-parameter group exp (tH,) acting on G/P.
These connected components are algebraic varieties that are orbits of the
identity component of the centralizer of H, in G.

The class of flows treated here forms a natural generalization of linear
flows on projective bundles, which have been extensively studied in the lit-
erature (see e.g. Colonius-Kliemann [5], [6], Conley [7], Sacker-Sell [16],
Salamon-Zehnder [17], Selgrade [18], and references therein). In fact, linear
flows on projective bundles are obtained when we specialize () — X to be a
Gl (n,R) principal bundle and take as F' the real projective space with the
standard projective action of the linear group.

As a motivation to work with other fiber bundles, we note that a nat-
ural way to produce flows on projective bundles is to start with a smooth
dynamical system in a manifold. Its linearization induces a flow on the pro-
jective bundle of the tangent space. Some new bundles arise in for dynamical
systems which leave invariant a geometrical structure like e.g. Hamiltonian
flows, flows of isometries of pseudo-Riemannian manifolds, flows of holomor-



phic maps in pseudo-complex manifolds etc. In such cases we can see the
linearized flow as given by a right invariant flow on a reduction of the bundle
of frames of the manifold. Anyway we mention that the problem of studying
flows on bundles of homogeneous spaces was posed by Conley [7] (see page
83), having in mind Hamiltonian flows evolving e.g. in bundles of Lagrangian
subspaces.

The study of chain recurrence and Morse decompositions of linear flows
on projective bundles goes back to Selgrade [18], whose theorem shows that
the chain recurrent components of a flow which covers a chain recurrent flow
on the base are vector subbundles, which decompose the vector bundle in a
Whitney sum (see also Salamon-Zenhder [17]). Recently, Colonius-Kliemann
[6] generalized the result of Selgrade by showing the existence of a finest
Morse decomposition in the bundles whose fibers are flag manifolds of sub-
spaces of a vector bundle.

Here we extend these results to generalized flag manifolds. In fact, by
the very construction of the adjoint orbit Oy, mentioned above, ad (H,) is
diagonalizable with real eigenvalues. Hence when specialized to vector and
projective bundles we get on each fiber a diagonalizable linear map whose
eigenspaces are the chain recurrent components, recovering the results of
Selgrade and Colonius-Kliemann (see Theorem 10.1). Actually, our proof
does not require compactness of the bundles (or equivalently of the base
space). This is why the results are stated in terms of maximal chain transitive
sets, which in the compact case coincide with the chain recurrent components,
providing a finest Morse decomposition.

At this point we must mention that our approach to chain recurrence
requires that the set of local homeomorphisms of the base space X is locally
transitive in the sense that we can map any z € X to neighboring points using
“small” local homeomorphisms of X. Although restrictive this condition is
weak enough so that many classes of reasonable metric spaces are allowed as
base spaces, like e.g. compact Riemannian manifolds or open sets in Frechet
spaces.

We explain now the method of proof, which we believe to have indepen-
dent interest since it establishes a link between topological dynamics and
semigroup theory. Starting with a flow ¢ we generate semigroups of local
homeomorphisms S, 7, €,T > 0, by successively composing the local home-
omorphisms which are e-close (in their domains) to some ¢,, t > T. We
call S.r, e,T > 0, the shadowing semigroups of the flow. The orbits of S
are related to chain attainability with the conclusion that a maximal chain



transitive set for the flow is the intersection of control sets for the shadowing
semigroups (see Theorem 4.7 below). Here the local transitivity assumption
enters to ensure that it is possible to substitute &, T-chains by the action
of Ser. The idea of looking at ¢,T-chains through shadowing semigroups
was already exploited by the authors in [3] to study chain control sets for
semigroup actions and control systems.

After relating chain transitivity to control sets we proceed to apply the
theory of semigroups to handle the maximal chain transitive sets (and hence
the Morse decompositions, in the compact case). In first place the topological
arguments of [4] are used to reduce the problem to a fiberwise analysis, which
amounts to look at semigroup actions on homogenous spaces. This leads us
into the realm of the Lie theoretic results about control sets on flag manifolds
which were developed in [19], [20], [21], [23], [24], [25], [26], [27]. These
results yield quite quickly the existence of a finite number of maximal chain
transitive subsets for the flows on the flag bundles, and hence the existence
a finest Morse decomposition in the compact case. From the control sets on
flag manifolds we get also that there exists a unique attractor as well as a
unique repeller chain recurrent component.

Now, a key point is the notion of parabolic type of a semigroup S with
non-empty interior in a semi-simple Lie group G. There are several equivalent
ways of characterizing the parabolic type of S. The most suitable for our
exposition here is the one which says that the parabolic type of S is the
(only) flag manifold, say Fg(g) = G/Pg(s), such that the unique invariant
control set Cg(s) of S in Fg(g) is contractible under iterations of elements in
the interior of S. Furthermore, 7! (C’@(S)) is the invariant control set of S in
the maximal flag manifold I, where 7 : F — Fg(g) is the canonical fibration.

The parabolic type of semigroups in G yields the notion of parabolic type
of semigroups of local homeomorphisms in (), and hence of the shadowing
semigroups. Using the latter we associate to a flow ¢ a specific flag bundle,
say KEg(g), which we call analogously the parabolic type of ¢. The property
of Eg(g) that emerges is that the attractor component of the finest Morse
decomposition of the flow in Eg(4) meets each fiber in a single point. Re-
verting time we get the same picture for the repeller, but in a “dual” flag
bundle Eg-(4). These are the central results for the characterization of the
Morse components, since they give the attractor and repeller components in
any flag bundle.

Finally, from incidence relations in the flag manifolds related to the do-
mains of attraction of the control sets we obtain other recurrent components
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from the attractor and the repeller ones. This way we obtain Theorem 9.11,
mentioned above, where the H, are intimately related to the parabolic type
of the flow.

2 Preliminaries

In this section we recall basic facts and concepts about flows, fiber bundles
and semigroups to be used afterwards.

2.1 Flows

Regarding flows on metric spaces we refer to the the books Colonius-Kliemann
[5] (Appendix B) and Conley [7]. Let (Y, d) be a metric space. Although most
aspects of the theory of flows requires compactness of the state space, the ba-
sic concepts can be stated without this assumption. Hence we do not assume
in advance that Y is compact.

Given a continuous-time flow ¢ : R x Y — Y we write the corresponding
homeomorphisms by ¢, (-) = ¢ (¢,-) or simply by ¢, (z) =t -z, so that R - x
stands for the orbit of x under the flow. A set A C Y is called invariant if
t-x C Aforall x € A. A compact subset A C L is called isolated invariant,
if it is invariant and there exists an isolating neighborhood N of A, i.e., a set
N with A C int(V), such that R-z C N implies z € A.

For z € Y, the w-limit set of = is denoted by wy () or simpler by w (z):

w(z)={yeY: 3t — +o0o, ty - — y}.

Analogously, wj (z) = w* (7) is defined for £ — —oo0. On the other hand for
a subset A C Y we put

w(A)={zreY :3u, € A, ty — 400, t) x) — T},

and define the same way w* (A) with ¢ — —oo.

A Morse decomposition of the flow ¢, is a finite collection {M; : i =
1,...,n} of nonvoid, pairwise disjoint, and isolated compact invariant sets
satisfying the following conditions:

n

1. For all z € Y the sets w (z) and w* (z) are contained in |J M;.
i=1



2. Suppose there are M, ..., M and zy,..., 2, € Y\ | M, withw* (x;) C
i=1
M, , and w(z;) C M, fori=1,...,1, then M; # M,,.

The elements of a Morse decomposition are called Morse sets. We say that
a set A is an attractor if it admits a neighborhood N such that w (N) = A.
A repeller is a compact invariant set R that has a neighborhood N* with
w* (N*) = R. The neighborhoods N and N* are called attractor and repeller
neighborhoods, respectively. If Y is compact, every attractor is compact and
invariant, and a repeller is an attractor for the time reversed flow.

A Morse decomposition {M;, ..., M,} is called finer than a Morse de-
composition {M/, ..., M/ }ifforallj € {1,...,n'} thereexistsi € {1,...,n}
with M; C ./\/l; Usually one seeks for a finest Morse decomposition which
provides all other decompositions through by joining together their compo-
nents.

The chain recurrence which we discuss now is a nice device for getting
Morse decompositions. For z,y € Y and £,T > 0 an ¢, T-chain from = to y
is given by points g = z,21,..., 2, =y € Y and ty,...,t, 1 > T, for some
n € N, such that

d(ti-xi,xi+1)<5, iZO,l,...,n—l.

We denote by C.r (x) the set of those y € Y such that there exists an ¢, T-
chain from z to y, and put C (z) = (), 7 C. 7 (z). On the other hand C; ; (z)
is the set of those y € Y such that there exists an ¢, T-chain from y to x, and
C* (z) = .4 C:r (z). Equivalently, C* (x) is the set of those y such that for
all e, T > 0 there exists an e, T-chain from z to y for the reversed flow (see
[8], Theorem 3.2D).

A subset A C Y is chain transitive if for all x € A, A C C (). A chain
transitive subset A is maximal transitive (with respect to set inclusion) if
and only if for all z € A, A =C () or equivalently A = C* (z).

A point z € Y is chain recurrent if z € C (). We denote by R the chain
recurrent set, that is, the set of all chain recurrent points. Note that a con-
nected component of R is chain transitive since for any y € R and ¢,7 > 0
y € intC. 1 (y), so that R C C.r (z) for every z € R. In the compact case the
connected components of the chain recurrent set R indeed coincide with the
maximal chain transitive subsets, although in general the connected com-
ponents may approximate to each other creating maximal chain transitive
subsets containing more than one connected component.



Another property of the chain recurrent set is that it contains the w and
w*-limit sets, since if y € w (z) the flow property ¢, _,, (¢, (z)) = ¢y, ()
ensures that for every ¢,7 > 0, y € C.r (y). Finally, the following proposition
relates the chain recurrent components with Morse decompositions.

Proposition 2.1 IfY is compact, there exists a finest Morse decomposition
{My, ..., My} if and only if the chain recurrent set R has only finitely
many connected components. In this case, the Morse sets coincide with the
connected components of the chain recurrent set R.

Proof: See [5], Theorem B.2.25. ]

2.2 Fiber bundles

Our starting point is a principal bundle 7 : () — X with structural group G.
Thus G acts freely on the right on @ and its orbits are the fibers Q, = 7 '{z},
x € X (for fiber bundles we refer to Husemoller [11] and Kobayashi-Nomizu
[12]). Each fiber is diffeomorphic to G. We assume allways that Q@ — X is
locally trivial. Often a local trivialization is realized through a local cross
section x : U — Q, U C X.

Recall that if G acts on the left on a space F' we can construct the
associated bundle with typical fiber F' by taking in ) X F' the equivalence
relation (q1,v1) ~ (go, v2) if and only if there exists g € G such that ¢ = ¢1 ¢
and v, = ¢~ 'vy. Let E be the quotient space by this equivalence relation and
denote by ¢ - v the class in F of (¢,v) € @ x F. Then ¢- v+ 7 (q) defines a
projection F — X, also denoted by 7 or 7 if we wish to distinguish it from
the projection mg : (Q — X of Q. Our notation emphasizes the fact that the
map v € F'— ¢-v € E establishes a bijection between F' and the fiber above
r = 7 (q). We denote in a similar way the inverse of this map. Thus ¢~' - e,
q € Q, ec FE, stands for v € F, such that ¢-v =e.

The associated bundle £ — X is locally trivial when this happens to
@ — X. In locally trivial bundles over metric spaces we use the following
metric.

Proposition 2.2 Let 7 : E — X be a locally trivial bundle with (X,d)
a metric space as well as the fiber (F,dp). Fiz a covering U, of X with



7' (U,) = U, x F. Then there exists a metric dg on E such that on each
trivialization U, X F it holds

dg (({L‘, v) ) (ya w)) = max{d (Q?, y) 7dF (va w)}
Also, d(me,nf) < dg (e, f) for alle, f € E.
Proof: See [5], [17]. |

To consider flows on fiber bundles £ — X we start with a flow ¢, on the
principal bundle () — X, which commutes with the right action of GG, that
is, ¢, (qg) = ¢, (q) g, for all t € R, ¢ € @ and g € G. This condition implies
that ¢, interchanges the fibers of () and thus induces a flow on X. We shall
denote the flow on the base by t-x, t € R, x € X. On the other hand the
flow induced on E — X is also denoted by ¢,, so that ¢, (¢ -v) = ¢, (¢) - v.

Restricting a flow on () — X to the domain of a local cross section we
obtain a local cocycle in the following sense: Let x; : U; — @ be cross
sections above U; C X, 1 =1,2. If z € U and t € R are such that z € U;
and ¢ - x € Us, then ¢, (x; (z)) belongs to the same fiber as x, (¢ - ) so that
there exists an element in G, say p, , (f,), such that

¢, (X1 (7)) = xo (- 2) Px 1 X (t, ).

We call the map p, ., the local cocycle defined by x; and x,. An easy
application of the flow property of ¢ together with its right invariance yields
the cocycle property:

le,Xa (t + 5, b) = px2,x3(87t ’ b)pxl,X2 (tﬂ b)a

if x5 is a cross section defined on (¢ + s) - z.

Of course, taking different cross sections x; defined on the same U;, the lo-
cal cocycle py, \» may change. We note however the following simple formula:
If X} = xya and x5 = x,b with a,b € G, then p, ., =bp,  a .

For another way of writing ¢, locally, suppose that Q = U x G. Then

o, (x,9) = (fi (x), fo(z,9)) with fo(z,gh) = fo(x,g)h. In this case the
induced map in U x F is given by ¢, (z,v) = (f1 (x), f2 (z, g) v).

2.3 Semigroup actions

By a local homeomorphism of a metric space Y we mean a homeomorphism
¢ : U — V between open subsets of Y. We denote by loc (Y') the set of local
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homeomorphisms of Y. The set loc (V) is a local group in the sense that the
operations of taking inverses and compositions — when allowed — are closed
in loc (Y). A subset G C loc(Y) is a local (sub) group if it is closed under
these operations. Accordingly we say that S C loc (Y) is a local semigroup
in case § is closed under the allowed compositions.

In the sequel we follow the control theory terminology and say that a local
semigroup S satisfies the accessibility property at x € Y if int (Sx) # (), and
it satisfies the accessibiltity property if this holds at every x € Y.

Recall that a control set of a local semigroup S C loc(Y) is a subset
D C Y such that

1. intD # (),
2. D Ccl(Sz) for all z € D, and

3. D is maximal with these two properties.

The control sets are ordered by Dy < Dy if Dy C ¢l (Sz) for any x € D;.
An invariant control set is a control set D which maximal with respect to
this order, that is, ¢l (Sx) = clD for all x € D. It is known that under the
accessibility property an invariant control set is closed and has non-empty
interior. On the other hand if the control set D is minimal with respect to
the order then it is open. Still under the assumption of accessibility it makes
sense to introduce the (possibly empty) set

Do={z € D:x€int(Sz)Nint (S 'z)},

where D is a control set. In view of the proposition below we call Dy the
set of transitivity of D (or following Albertini-Sontag [1], Dy is the core of
D). A control set D such that Dy # 0 is called effective control set. These
control sets have the following properties, proved in [4], Proposition 2.2 (see
also [25], Proposition 2.2).

Proposition 2.3 Suppose Dy # 0, that is, D is an effective control set.
Then

1. D Cint (8 'z) for every x € Dy.

2. Dy = int (87 'z) Nint (Sz) for every = € D.



3. For every z,y € D, there exist g € S with gz = y.
4. Dy is dense in D.

5. Dgy is S-invariant inside D, i.e., £(z) € Dy if £ € S, © € Dy and
¢(x) € D.

A special case of local semigroups which will show up below is obtained
through the action of a Lie group G. If Y is a homogeneous space Y = G/H
then G acts transitively on Y and a subsemigroup S C G with intS # ()
(w.r.t the topology of ) satisfies int (Sxz) # ) for all z € Y because the map
g € G+ gr € Y is open. In this context it is not difficult to show that
Dy={re€D:zxe (intS)z} ={z € D:z € (intS')z}. As a complement
to the above proposition we have the following statement which ensures the
existence of effective control sets.

Proposition 2.4 Let x € M be such that
z € int (Sz) Nint (87 'z) .
Then there exists a unique effective control set D such that x € Dy.

Proof: See [4], Proposition 2.3. ]

3 Locally transitive groups

Our method of studying the chain recurrence consists in perturbing the
flow obtaining semigroups of local homeomorphisms (shadowing semigroups)
whose control sets are shrinked to the chain transitive sets. In order that this
approach works we need a technical assumption on the flow which permits
to compare chains of the flow with the action of the shadowing semigroups.
This assumption is stated in terms of local transitivity of local groups, which
we discuss in this section.

Let (Y, d) be a metric space and consider the local group loc (Y') of local
homeomorphisms of Y. We denote by dom () the domain of the local home-
omorphism £ : dom (§) — V in loc(Y'). For &, n € loc (Y) whose domains
overlap put

d'(&,n) = supd(&(z),n(x))
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where the supremum is taken over dom (§) Ndom (7). Note that for £, 7,1 €
loc (Y') it holds

d (&n,mn) < d' (&, 7), (1)

since the supremum in the left hand side is taken over a smaller set than in
the right hand side.

Definition 3.1 We say that a local group G C loc (Y) is locally transitive
(abbreviated loctrans) with parameters c¢,p > 0 if for every x € Y and y in
the ball B, (x) there exists £ € G such that & (v) =y and d (y,z) > cd (&,1d).

We shall prove below that some reasonable local groups are locally tran-
sitive. However, in general this condition is not satisfied even if G is the full
local group loc (YY) of a metric space.

Exemple: In R? denote by C, the circle of radious ¢ > 0 centered at the
origin. Consider the compact metric space

Y =Gy u{o},
n=1

with the metric inherited from the standard metric of R?. Any local home-
omorphism ¢ : U — V of Y with 0 € U has the property that ¢(0) = 0 for
otherwise 1)~' would map a connected component of the meeting of V' with
a circle into {0}. Hence loc (V) is not locally transitive at 0.

We can change this example by taking Y to be the union of the circles Cy,
g € Q, ¢ > 0. Then we can take in Y the flow where ¢, is the rotation by the
angle t. This flow is chain recurrent. Hence the existence of a chain recurrent
flow on a metric space is not enough for loc (Y) to be locally transitive.

Yet another modification of Y gives an example with connected metric
space. In fact, in R® put

Y' = (V x (=00, 1]) U (R? x [1,+00)).

Again loc (Y”) is not locally transitive at the origin.

We shall now see some cases of metric spaces whose local groups are
locally transitive. First, let Y be a metric space such that loc (V) is loctrans
with parameters ¢, p. Then for any open subset Y’ C Y endowed with the
induced distance, loc (Y”) is loctrans with the same parameters, since we
can always shrink the domain of a local homeomorphism of Y to be a local
homeomorphism of Y’ with the effect that d’ diminishes.
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Now, let E be a Frechet space with translation invariant metric d. For
any v € F the translation 7, () = v+« satisfies d’ (7,,1d) = d (v,0). Taking
x,y € E, 7, (x) =y if v = y — x, so that 7, satisfies the condition for the
required local homeomorphism in the definition of loctrans. Thus loc (E) is
loctrans with parameters ¢ = 1 and arbitrary p > 0. Therefore, the loctrans
property holds at open subsets of E:

Proposition 3.2 IfY is an open set of a Frechet space E, endowed with the
induced metric, then loc (Y') is locally transitive with ¢ =1 and any p.

Now take Y to be an open set in a finite dimensional vector space E. Then
a similar result holds if instead of a distance coming from E we consider a
Riemannian metric in Y. In this case the translations restricted to open sets
are still local homeomorphisms of Y. The difference here is that we cannot
take ¢ = 1 trivially. However, we can prove the loctrans property if we ask
equivalence between the Riemannian metric and the distance coming from

E.

Proposition 3.3 Given a finite dimensional vector space E with a norm ||
let Y C E be a connected open set and g (-,-) a Riemannian metric in Y.
Denote by d (-,-) the distance in Y defined by g and suppose that there are
constants ki, ke > 0 with

kid(z,y) <|z—y| <ked(z,y) wy€Y.
Then loc (Y) is locally transitive with parameters ¢ = ky/ko and arbitrary p.

Proof: Given zy,z € Y and v € F such that z +v € Y,

1 k
d(z+v,2) < —|v] < 2d (z0 4 v, 7)) .
kq kq
Thus if we take a suitable restriction of 7,, it follows that d'(7,,id) <
(ka/k1) d (1420, z0). This implies at once the loctrans property. ]

Now, we patch together the open sets to show that loc (Y) is loctrans if
Y is a compact Riemannian manifold. Recall first that a positive real \ is
a Lyapunov number of a covering {W;};c; of a metric space if every set of
diameter < A is contained in some Wj. It is well known that any covering of
a compact metric space admits Lyapunov numbers.
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Proposition 3.4 If Y is a compact Riemannian manifold then loc(Y") is
locally transitive.

Proof: Let (V,,¢,) be a finite atlas for Y and take a subcovering to get a
finite atlas (Wg, wﬂ) such that each Wj is relatively compact in some V,,. In
Yy = 1P (Wp) take the metric induced from Y by 1)4. Since Yj is relatively
compact the corresponding distance function is equivalent to the Euclidian
norm. Hence, the above proposition applies and loc (Y3) is loctrans with
parameters cg, ps > 0. Now, let A be a Lyapunov number of the covering
and take ¢ = min{cg} and p = min{pgz, \/2}. Since any ball of radious p is
contained in some Wy the result on the charts combine to show that loc (Y)
is loctrans with parameters c, p. 1

For the rest of this section we specialize the discussion of the loctrans
property to fiber bundles. Our purpose is to combine this property on the
basis and on the fibers to get local transitivity on the total space. Thus given
a principal bundle 7 : @ — X with structure group G denote by Aut (Q)
the local group of the right invariant local homeomorphisms & of ) having
domain dom (¢) = 7=' (U) with U open in X. Of course, a right invariant
flow on @ is just a one-parameter group ¢, € Aut (Q) of globally defined
homeomorphisms.

Now, let £ — X be a bundle associated to () — X with typical fiber
F where G acts on the left. Any £ € Aut(Q) induces homeomorphisms on
both X and E. Usually the induced maps are also denoted by £. However,
for the moment we shall write e (§) and b (§) for the local homeomorphisms
in £ and X, respectively. Note that the domain of e (§) also has the form
71 (U),U C X. The maps e : Aut (Q) — loc(E) and b : Aut (Q) — loc (X)
define actions of Aut (QQ) on E and X, respectively. The images of e and b
are local groups in the corresponding spaces.

In general b is not onto loc (X). However, we can ‘lift’ to Aut(Q) a
local homeomorphism 6 of X, provided dom (#) and im (f) are contained in
domains of trivializations of ). In fact, let x; : U; — @, 1 = 1, 2, be local cross
sections with dom (8) C Uy and im (8) C U,. Then the map 6 (x, (z) - g) =
Xo (0 (x)) - g, x € dom (#), is a lifting of 6 to a local homeomorphism in
Aut (Q). With this in mind we prove that Aut (@) is locally transitive when
this condition holds at both the fiber and the base space.

Proposition 3.5 Let E be given with a metric dg like in Proposition 2.2.
Then the action of Aut (Q) on E is locally transitive provided
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1. loc (X)) and the left action of G on the fiber F' are loctrans, and

2. The covering of X defining dg admits a Lebesque number A > 0.

Proof: Let p;,c; > 0 and p,, co > 0 be the parameters of local transitivity of
loc (X) and G, respectively. Put p = min{p,, p,, A\/2} and ¢ = min{e, eo}.
Take e, f € E with dg (e, f) < p. Then e, f are contained in a domain of
trivialization 77! (U) ~ U x F, so we can write e = (z,v) and f = (y,w).
Choose 6 € loc (X) such that 6 () = y and ¢id’ (6,id) < d(x,y). Also take
g € Gwith g (v) = w and cody (g,1d) < dp (u,v). Themap & : UxG — UXG
defined by & (z,h) = (6(2), gh) belongs to Aut (Q). The induced map on
U x F is given by & (z,u) = (0 (2), gu). Hence, & (z,v) = (y, w). We have

d (&,1d) = supdg ((0 (2), gu)) = supmax{d (6 (2), 2) ,dr (gu,u)}.

Therefore, d (£,id) < max{1/c1d (x,y),1/codp (v,w)}. By the choice of
¢, it follows that cd’; (€,id) < dg (e, f), concluding the proof. ]

Corollary 3.6 Suppose that X is compact. Then Aut (Q) is locally transi-
tive on E if both loc (X) and the left action of G on F are locally transitive.

Regarding the local transitivity on the fibers, we recall the following result
proved in [3], Corollary 3.4.

Lemma 3.7 Let G/H be a homogeneous space and suppose that there exists
a compact subgroup K C G acting transitively on G/H. Endow G/H with
a distance d given by a K-invariant Riemannian metric. Then the action of
G on G/H is locally transitive.

4 Shadowing semigroups

In this section we introduce semigroups of local homeomorphisms of the state
space Y of a flow ¢, by perturbing the homeomorphisms of the flow at large
times. These semigroups will be called shadowing semigroups and play a
central role in the study of chain transitivity. In fact, we show that if the
flow ¢, can be embedded in a locally transitive semigroup then its chain
transitive sets are obtained as intersections of control sets for the shadowing
semigroups.

14



Given a local group G and £ € G we put

Vi, 9)={neg:d(En) <c}
(or simply V. (€) if G is understood).

Definition 4.1 Let G be a local semigroup containing ¢, for allt € R. Given
e, T > 0 define the shadowing semigroup S: 1 (¢,G) (or simply S.r) to be
the local subsemigroup of G generated by the sets V. (¢,,G) with t running
through the interval (T, +00). The shadowing semigroups for the reversed
flow ¢* are denoted by S? 7.

Remark: It is tempting to think that the shadowing semigroups for the
reversed flows are given by the inverses S_, + of the forward semigroups. How-
ever it is not immediate that the subsets V; (¢,,G), t € (—oo,T), that gen-
erate S?p have the form V. (¢,,G) ", t € (T",00) for some &', T" > 0. For
this to happen it is required a kind of equicontinuity of £ ~'¢, for every local
homeomorphisms £ defined in the several open sets of Y. Since the relation
between these semigroups is not used afterwards we does not discuss it.

Note that by the very definition S, C S;,p, if ¢ < ey and T > Tj.
Actually, the next lemma shows that in a certain sense S., p is contained in
the interior of S;, 7 if &1 < e9.

Lemma 4.2 Let & be a local homeomorphism satisfying d' (§,id) < 6. Then
for iy € S.p, the composition {3 € Seis7.

Proof: Write ¢ = t; -+ -4, with ¢; € V. (¢,.,G), t; > T, i =1,..., k. To
prove the lemma it is enough to check that ¢, € S.ys51, because 1, - -1, €

SE,T C Se+5,T- BY inequality (1)7 dl (&ﬂp ¢1) S d, (57 ld)a S0 that d, (fwu wl) <
§. However, 1, € V. (¢,,,G). Hence for any z in dom (£¢;) N dom (¢y) =
dom (1)) it holds,

d (&)1 (2) ¢y, (2)) < d(Ey (2),¢ (2)) +d (¥ (2), by, (2))
< d+es,

showing that £, € Vs (d)tl, Q), concluding the proof. 1

Given S C loc (V) and = € Y we write
Sr={¢(z): ¢ €S, x€dom(p)}

for the orbit of x under S. Using the previous lemma we get the following
inclusion relation between the orbits of the shadowing semigroups.

15



Lemma 4.3 Suppose that ¢, belongs to the loctrans local group G for all
teR. Takex € Y. Then S.px C int (Se, rx) if € < €.

Proof: Given n € S, r let us show that nz € int (S., rz). Write n =n, - - -,
with n, € V. (¢>ti,g), 1 = 1,...,k. Now, let ¢,p > 0 be the parameters
of local transitivity of G, and choose p' < min{p,c(e; —¢)}. Then for any
y € B, (nz) there exists £ € G with &n (z) = yand d (€ (nz) ,nx) > cd' (€,id).
By Lemma 4.2, £y € S., 1, because the choice of p’ ensures that d' (£,1id) <
e1—¢. Therefore, every y € B, (nz) belongs to S., rx, proving the lemma. 1

Corollary 4.4 Suppose that ¢, belongs to the loctrans local group G for all
t € R. Then for every e,T >0 and x € Y, int (S.rx) # 0.

Our objective is to show that points reachable by chains of the flow can
be reached by the action of the shadowing semigroups and conversely. At
this regard the basic fact is given by the following proposition whose proof
is essentially a reformulation of [3], Proposition 3.1.

Proposition 4.5 Keep the above notations and take v,y € Y. Then

1. For all ,T > 0, Scox C C.r(x). Also, for all &' > ¢, cl(Serzx) C
C&J’T (Q?)

2. Let ¢,, t € R, be contained in the locally transitive group G with
parameters c,p. Take ¢ with 0 < € < p and put & = e/c. Then
CE,T (ZII) € int (SE/’TZII).

Proof:

1. Take y € S.rx and let ¢ € S.r be such that y = ¢ (z). Write
W =y, with o; € Vo(¢,,G), t; > T, i = 1,...,k. Then the
sequence Tg = x, 1 = (xo),- .., Tx = VYp(xp_1) = y together with
t1,...,tn_1 > T determine an ¢, T-chain from z to y, since

d (¢ti (zi-1) ,5172') =d (¢ti (i1) s («’Eiq)) <EéE.
Now, for y € cl(S:rz) take a sequence ¢, € S.r with ¢, () — v.

Let ng be such that d (wno (x) ,y) < &' —e. As before, there exists an
e, T-chain from z to 1, (x). Let this chain be given by y; = z,..., y, =
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Vo (o), 15y Sn1 > T. Thus d (¢, (vi),yir1) <efori=1,... k.
Therefore, z; = z, ..., Zn-1 = Yn_1, Zn = y and Sg,..., 8,1 > T
determine an ¢, T-chain from x to y, since

d By, (Yn-1),y) < d (b (Yn-1) ,%n, () +d (¢, () ,y) <&

2. Since d (¢ti (x;) ,:L’Z-H) < & < p, the loctrans property of G implies that
there exists £ € G such that

d (& (by, (7:)) s wir1) = d (€ (¢, (), by, () > ed' (€,id)
fori=0,...,n—1. Hence d' (£,id) < e/c = ¢'. Define n; = £¢, . Then

d, (nza ¢tl) = dl (5¢ti7 ¢t1) S d, (57 ld) < 81

because multiplication on the right diminishes d’. Therefore, n, €
Vo (¢,,). On the other hand, n; (z;) = £¢,, (;) = @1, and =z, =
Mot Mo (%o), concluding the proof since ¢y =n,_; -1y € Ser 1.

This proposition ensures that we can replace an ¢, T-chain by the action
of an element in S, 7. From this we get the following useful property of the
control sets of the shadowing semigroups.

Lemma 4.6 With the same assumptions as the previous proposition, take
g1 < g9 and suppose that D., v and D., 1 are effective control sets for S., r
and Se,r, respectively, such that (D, 1), N (Deyr)y # 0. Then D.,r C
(Dﬁz,T)o'

Proof: Take z € (D, 1), N (De,,1),- Then for any y € (D., 1)y, ¥ € Se, 72
and x € S;, ry. Since S., v C S, 7, the maximality property in the defini-
tion of control sets ensures that y € D, r, and a fortiori, by Proposition 2.3,
y € (D.y1),- Hence, (D., 1), C (D.yr),- To conclude the proof we show
that z € S, ro and = € S,, rz. By Proposition 2.3 (1), z € S., 72 C S, rz.
On the other hand, D., r C cl (DEI,T)O, so that any 2z € D, r belongs to
cl (S;, rx). Hence by the the second statement of the above proposition, it
follows that z € int (S., ) C Se, 77, as we desired to show. ]

Now we can prove the main result of this section which gives a charac-

terization of the chain recurrent components in terms of the control sets of
the shadowing semigroups.
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Theorem 4.7 Let ¢, be a flow on'Y contained in a loctrans local group G.
Suppose that for each e, T > 0 there exists a control set D.r of S.r(¢,G)

such that M" = ( Der # 0. Then M’ is a mazimal chain transitive subset.
e, T

Conversely let M be a maximal chain transitive subset. Then for every

e, T > 0 there exists an effective control set D. (M) of S.r (¢,G) such that

M is contained in the set of transitivity D, (M),. Furthermore,
M =(\D.x (M) =()Der (M), (2)
e, T

e, T

Proof: If z,y € M’ then for all 6,7 > 0, z,y € D. r, so that y € ¢l (S:rz).
Hence by Proposition 4.5 (1) there exists an &, T-chain from x to y. This
shows that M’ is chain transitive. The maximality follows by Proposition
4.5 (2). In fact, if £ € M and for every ¢,7 > 0, z € C. v (z) and z € C. 1 (2)
then z € D, p, so that z € M.

For the second part take z € M. Since M is chain recurrent, = € C. 7 (2)
for all e, T > 0. By Proposition 4.5 (2) and Lemma 4.3, it follows that
x € int (S, rx) for every ,T > 0. But this implies that there exists a control
set D. 7 (M, z) of Scr such that x € D1 (M, z), (see Proposition 2.4). We
claim that D. 7 (M,z) = D.r (M,y) for all x,y € M. In fact, since M is
chain transitive, y € C.r (x) for all ,7 > 0. Hence, by Proposition 4.5 (2),
y € Serx. The same way x € S: ry, showing that x and y belong to the
same control set.

As to the equalities in (2), note that the second one is a consequence

of Lemma 4.6. Hence it remains to prove that (| D.r (M) C M. Pick
e, T
z € () Der (M). By definition of control set we have z € cl(S.7x) for
e, T
every £,T > 0. Using Proposition 4.5, we see that any two points x,y €

() D.7 (M) are attainable to each other by ¢, T-chains, so that this inter-
e, T
section is indeed contained in a chain transitive set, which must be M. 1

Corollary 4.8 Let the assumptions be as in Theorem /.7. Then the shad-
owing semigroups Ser are transitive on Y if the flow is chain transitive on

Y.
Proof: In fact, assuming that the flow is chain transitive on Y it follows

YCMCD.r(M),CY
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for every ¢,T > 0. Therefore, S, r is transitive on Y. 1

The results proved so far apply without change to the reversed flow ¢
and its shadowing semigroups S ;. Since the chain transitive sets for ¢
and ¢" are the same (see [8], Theorem 3.2D), each chain transitive set M
is contained in a unique control set D} (M) of Sfp. As in Theorem 4.7,
M is the intersection of the control sets D}, (M) as well as of their sets of
transitivity D7, (M),. Clearly, intersecting the sets D, (M) N D, 1 (M)
we also get M. For later reference we explicitate this fact.

Corollary 4.9 With the notations and asssumptions as above,

M =YD (M) N D; 7 (M) =) (Deyr (M) N D21 (M),) .

e, T

As another application of the shadowing semigroup description of chains
we get the domain of attraction of a chain recurrent component M as the
intersection of the domains of attraction of the corresponding control sets.

Recall that the domain of attraction A (M) of the chain recurrent com-
ponent M of a flow on Y is defined as the set of those z € Y for which there
exists € M such that z € C(z). We denote the domain of attraction of
M for the reversed flow by A* (M). Analogously, if D is a control set for
the semigroup S, its domain of attraction A (D) is the set of z € Y such
that there exists £ € S with &2 € D. We note that if Dy # () then A (D)
is open and z € A (D) if and only if £z € D, for some £ € S (cf. [21]).
In reversing the action of the semigroup it is this latter condition which is
convenient, that is, we write A* (D) for the set of those z € Y such that
'z € D, for some & € S. Tt is an immediate consequence of the definitions

that M = A (M) N A* (M) and Dy = A(D)N A* (D).

Proposition 4.10 Let the notations and assumptions be as in Theorem 4.7.
Then the domain of attraction of the chain recurrent component M is given
by
A(M) = (A (Der (M)).
e, T

Analogously, A* (M) = N A* (Der (M)).
e, T
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Proof: Take z € A(M). Then, there exists x € M such that x € C.r (2)
for all &,7 > 0. By Proposition 4.5 there exist ¢., € S.r such that
¢.7(2) = x for every ¢, 7 > 0. Therefore, z € A(D.r(M)) for ev-
ery &, 7 > 0, ie,, 2 € (.7 A(Der (M)). For the converse, assume that
z€Nop ADer (M)). Hence, there exists ¢.p € Sep and 2.0 € D, p (M)
such that ¢.7(2) = 2.r. Take v € M C (D.r),- By Proposition 4.5,
e € Cor (2), hence x € Cor (2). 1

Once we have the description of the chain recurrent components in terms
of control sets the strategy is to use known results about the latter in order
to understand the chain transitive sets. The following statements are easy
consequences of this approach.

Proposition 4.11 Let Q — X with fiber G and E — X an associated
bundle with fiber F = G/L. Assume that F is connected and the action
of G on F leaves invariant a probability measure. Then under the loctrans
condition a flow on E is chain recurrent if it is chain recurrent on X.

Proof: In fact, the existence of an invariant probability measure ensures
that any semigroup with non-empty interior in G acts transitively on F' (see
[22], Lemma 6.2). This implies that the semigroups S. r are transitive on E,
and hence the chain transitivity of the flow. ]

Cases covered by this proposition are the compact solvmanifolds and com-
pact groups. In fact, in both cases there are invariant probability measures.
If G is compact then the Haar measure induces invariant measures on its
homogeneous spaces. Analogously, if G is solvable and G/L compact, then
there exists an invariant probability on G/L (see Mostow [14]).

Corollary 4.12 Let the notations and assumptions be as in the above propo-
sition an assume furthermore that G is compact or G is solvable and G/L
compact. Then a flow on E is chain recurrent if it is chain recurrent on the
base X.

To conclude this section we show two facts about chain recurrence which

in some situations may be helpful to weaken the loctrans condition to a dense
subset of the state space.
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Proposition 4.13 Let ¢, be a flow on a metric space (Y, d) and suppose that
Z CY is a dense subset which is invariant by ¢,. Take x,y € Z and suppose
that y € C.r (v). Then there exists an e, T-chain from x to y for the flow
restricted to Z.

Proof: Let (z1,...,2y,), (t1,...,t,) be a chain between x and y, and suppose
that some z; ¢ Z. By continuity of the flow we can take z; € Z close enough
to x; such that d (¢, (zi_1),}) < e and d (¢,, (2}),2i+1) < &. Substitut-
ing this way z; by =} every time z; ¢ 7, we get a chain from z to y without
leaving the invariant subset Z. 1

Proposition 4.14 Let ¢, be a flow on a compact metric space (Y,d) con-
taining a dense invariant subset Z. Denote by ¢, the restriction of ¢, to Z
and suppose that M is a mazimal chain transitive set of ¢,. Then its closure
cIM is a mazimal chain transitive set of ¢,.

Proof: Take x € M and y € cIM. Clearly, fore,T > 0, y € C. r (z). Hence,
by [8], Theorem 3.2D, we have also e, T-chains from y to x, showing that cIM
is chain transitive. As to the maximality note first that by compactness of
Y, cIM is contained in a maximal chain transitive set, say M'. Any z in
M’ is attainable by chains from w € cIM. Take a sequence z, € M with
x, — w. For n large anough and an ¢,T-chain starting at w there exists
an ¢, T-chain starting at z,, whose end point is close enough to z. Using the
above propostion we see that z € cIM, concluding the proof. 1

As an example where we can apply this proposition, suppose that Y is
the closure of an open set O in a Frechet space, and consider a flow ¢, on
Y which leaves O invariant. By Proposition 3.2, loc (O) is locally transitive.
Hence, we can use the shadowing semigroup method to the flow ¢, restricted
to O. If we are able to get this way maximal chain transitive subsets of ¢,,
then we get also maximal chain transitive subsets of ¢,.

5 Semigroups and flag manifolds
The purpose of this section is to establish notations and background re-

sults about semi-simple Lie groups, their flag manifolds and subsemigroups.
We follow Borel-Tits [2], Duistermaat-Kolk-Varadarajan[9], Varadarajan [29]
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and Warner [28] as basic references to semi-simple Lie groups and flag man-
ifolds. The results about semigroups to be recalled here appeared in [19],
[20], [21], [23], [24], [25], [26].

5.1 Semi-simple Lie groups and flag manifolds

Given a non-compact semi-simple Lie algebra g let us take a Cartan decom-
position g = €4 s. Choose a maximal abelian subspace a C s and denote by
IT the set of roots of the pair (g, a). Take a Weyl chamber a™ C a and denote
by IT* the corresponding set of positive roots and ¥ the set of simple roots.

Put
n+:Zga n_:Zgaa
acllt acll—
where g, stands for the a-root space and [T~ = —TI". The Iwasawa decom-

position reads g = €@ a®nt. The standard minimal parabolic subalgebra is
defined by p = m @ a®n* where m is the centralizer of a in &. On the other
hand given a subset © C X denote by (O) the subset of IT spanned by © over
the integers. Put (©)* = I1* N (O) and let n* (©) be the subalgebra of n*
spanned by go, o € (©)*. The standard parabolic subalgebra pg, associated
to ©, is given by

In particular, pg = p.

Now let G be a connected Lie group with Lie algebra g. For each © C ¥
let the standard parabolic subgroup Pg of G be defined as the normalizer of
o in G-

Po ={g € G :Ad(g)pe = pe},

and write Fg = G/ Pg for the associated flag manifold of G. The coset G/Pg
identifies with the set of parabolic subalgebras of g conjugate to peg, so that
Fo depends only on g and not on the specific Lie group G having Lie algebra
g. In the sequel we write simply F for the maximal flag manifold Fj.

Given two subsets ©; C ©, C X, the corresponding parabolic subgroups
satisfy Pg, C Pg,, so that there is a canonical fibration G/Pg, — G/Pe,,
gPo, — gPo,. Alternatively, the fibration assigns to the parabolic subalgebra
q € Fg, the unique parabolic subalgebra in Fg, containing g. In particular,
F projects onto every flag manifold Fg.

We denote by K = exp €, N* = expn® and A = exp a the connected sub-
groups with corresponding Lie algebras. Analogously, we put AT = expa®
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for the Weyl chamber in G corresponding to a™. The group K acts transi-
tively on each Fg, allowing an identification G/Py = K/Kg where Ko =
KN Pg.

Recall that a flag manifold Fg can be embedded into the s component
of a Cartan decomposition. In fact, let Hg € cla® be such that © = {a €
Y :a(Hg) = 0}. Then Kg is the centralizer of Hg in K so that the adjoint
orbit Ad (K) He identifies with Fg. Conversely, given H € cla™, Ad (K) H
identifies with Fo() where © (H) = {a € ¥ : a(H) = 0}.

This realization is helpful in describing the Morse decomposition of the
flow in Fg induced by exp (tH), t € R, H € clat. In fact, any Z € s
defines a height function f7 : Ad (K) (He) — R by fz (z) = (Z, z), where
(-,-) is the Cartan-Killing form. Now, there exists in Fg = Ad (K) He a
K-invariant metric, say (-, ), , depending on Hg such that the gradient of

[z with respect to (-, ')H@ is precisely the vector field 7 induced by Z on Fg

(see [9]). The flow of Z is given by the action of exp (tZ), t € R, so that the
finest Morse decomposition of exp (£Z) is given by the singularities of Z .

In order to describe the singularities, denote by W the Weyl group of g,
which is the group generated by the reflections with respect to the roots in II.
This group is isomorphic to M* /M, where M* and M are the normalizer and
centralizer of A in K, respectively. The orbit of Hg under M* is finite and
the action of M* on this orbit factors through Y. Thus we abuse notation
and write the elements of this orbit as b9 = wbl, w € W, where b is the
origin in Fg (the point which identifies with Hg). The proof of the following
lemma can be found in [9] (see Proposition 1.3 and Corollary 3.5).

Lemma 5.1 Given H € cla™, the set of fized points of exp (tH) in Fg is
given by the disjoint union of connected subsets

U xho
weWr\W

where KY is the identity component of the centralizer Kg of H in K.

In this decomposition the component K%bg is the only attractor, while

the unique repeller is given by K%bg, where bg = wobd and wy is the prin-
cipal involution of W, that is, the element of largest length as a product of
reflections with respect to the simple roots.

Let us take in particular H € a*. Then K% = M, so that K%b° = 9
for all w € W, and the fixed-points are isolated (alternatively, fy is a Morse
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function). In this case the stable manifold of the fixed-point b2 is given by
the orbit N=b9, while the unstable manifold is N*b2. Thus there exists a
unique attractor fixed-point b, whose stable manifold is the open and dense
orbit N~bg and a unique repeller bg with unstable manifold N*bg, which is
also open and dense.

More generally, we say that Z € g is split-regular in case Z = Ad (g) (H)
for some g € G, H € a™. Analogously, x € G is said to be split-regular in
case v = ghg™' with h € AT = expa™, that is, z = exp Z, with Z split-
regular in g. By taking conjugations we carry over the Morse decomposition
for split-regular elements: If Z = Ad (¢g) (H), H € a™, then its fixed-points
are gb® with stable manifolds g N*b69 and unstable manifolds gN~b9. The
same picture holds for the discrete time flow 2" if & = ghg™!' is split-regular.
In the sequel we write fixg (z) for the set of fixed-points of = in Fg and
put fixe (z,w) = ¢gb2 and call this the fized-point of type w of x. Also, we
write ate () = fixe (z, 1) for the attractor and rpg (z) = fixg (z, wy) for the
repeller. The stable manifold of the attractor will be denoted by ste () while
the unstable manifold of the repeller is ung (). We use analogous notations
for a split-regular Z € g, for instance, atg (7) is the attractor of exp (t7),
etc. Also, in case Fg = F is the maximal flag manifold we suppress the
subscripts © in the notations.

Now we discuss the notion of dual flag manifolds. We refer to [23] and
[24] for further details. The principal involution wy € W maps ¥ onto —¥,
so that © = —wyp leaves ¥ invariant. Thus for © C ¥, ©* = 1 (0) C X, and
we can form the flag manifold Fg-, called dual of Fg. The diagonal action
g (b1,b2) = (gb1, gby) of G on Fg x Fg- has a unique open orbit, say Og,
which as a homogeneous space identifies with the adjoint orbit Ad (G) (He),
with Hg as above. In fact, take the pair (p@,pé) € Fo x Fo-, where pg =
nt (©) ® p~ with

nt (0) = Z go P =mPDadn
ac(O)t

(cf. [24], page 590). The isotropy subgroup of the G-action at (pe, pg) is the
intersection of the normalizers of pg and pg, which is exactly the centralizer
Zq (Ho). Hence the G-orbit of (pe,pg) is in bijection with G/Z; (He). It
is known that the orbit is open. In the sequel we say that two parabolic
subalgebras q; € Fg and ¢y € Fo- are opposed if (q1, q2) belongs to the open
G-orbit in Fg x Fg-.
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In case © = (), we have the maximal flag manifold, which is self-dual.
Given two opposed minimal parabolic subalgebras p; and ps, p; NP, contains
a unique maximal abelian split subalgebra of g, a; = Ad(g)a, g € G. In
this case there exists a unique Weyl chamber a C a;, such that b; is the
attractor and by the repeller of H € af. Denote by a*(by,by) the chamber
coming from this construction, and put A*(by,by) = exp(a®(by,b2)). The
fixed point of type w for elements in At (by,by) is denoted by w(by, b2).

5.2 Semigroups

We discuss now semigroups in a non-compact semi-simple Lie group G with
finite center. Let S C G be a semigroup with intS # (). Then S acts on
the flag manifolds Fg of G. It was proved in [25], Theorem 6.2, that S is
not transitive in Fg unless S = G. Moreover, there exists just one invariant
control set Cg (S) C Fg. If S is proper Cg (S) # Fg. We denote the set of
transitivity of Ce (S) by Cg (S). In view of Proposition 5.2 below we call
Cd (S) the attractor set of S in Fg. Replacing S by S™! we get the repeller
set Cg (S) which is the only minimal control set of S. In case Fg = F is the
maximal flag manifold, we suppress the subscript © and write simply C* (5)
for C% (S), and if the semigroup is understood we put Cg = Cg (S). The
following statement was proved in [25].

Proposition 5.2 The attractor set Cg is given by ate (h) with h running
through the split-reqular elements in intS. Analogously the repeller set Cg is
formed by rpg (h), with h running through the split-reqular elements in intS.

The semigroups in GG are distinguished according to the geometry of their
invariant control sets. This geometry is described by the following state-
ments, proved in [25] (see also [21] and [23]).

Proposition 5.3 There exists © C ¥ such that mg' (Ce (S)) is the invariant
control set in the maximal flag manifold Fe. Among the subsets © satisfying
this property there exists a unique maximal one (with respect to set inclusion).

We denote the maximal subset by © (S) and say that it is the parabolic
type of S. Alternatively, we say also that the parabolic type of S is the
corresponding flag manifold F(S) = Forg) (see [23], [25], [27] for further
discussions about the parabolic type of a semigroup). Given two semigroups
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Sy C Sy with non-empty interior, their control sets satisfy C' (S;) C C'(Sz).
This implies the inclusion between the parabolic types: © (S7) C © (S).

When © = O (S), the invariant control set Ceg(g) has the following nice
property, proved in [25].

Proposition 5.4 Let h € intS be split-reqular. Then Ce(s) C stes) ().

The other effective control sets are given analogously as sets of fixed-
points: Denote by R (S) the set of split-regular elements in int (S). Then we
have the following result of [25].

Proposition 5.5 For each w € W there exists a control set Do (w) C Fg
whose set of transitivity is

Dg (w), = {fixe (h,w) : h € R(S)}.

The invariant control set is Co = Dg (1) and the minimal control set Cg =
Deg (wp). Conversely, for any effective control set D C Fg there existsw € W
such that D = Dg (w).

Note that R(S~') = R(S)™". Hence Dg (w), is also the set of transitivity
of a control set, say Dg (w) of S™' (cf. [21], Proposition 3.1).

Although the map w — Dg (w) is onto the effective control sets it is not
in general one-to-one. To relate its level sets at the maximal flag manifold
with the parabolic type of S put

W(S)={weW:Dw)=D(1)}

Then W (S) is the subgroup We(s) = (M* ﬂP@(S)) /M, and D (w;) =
D (wy) if and only if W (S)w; = W (S)wy (see [25]). Hence the number
of effective control sets in F is [W|/ W (S)|. On the other hand the control
sets in Fg are the image of those in F under the projection 7g : F — Fg.

For later reference we record the following fact proved in [23], Proposition
6.3.

Proposition 5.6 Take b; € 0&5) and by € Cé*(s) and let p, and py be the
corresponding parabolic subalgebras, respectively. Then p, is opposed to ps.
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5.3 Reductive groups

For applications to flows on flag bundles it is convenient to consider also
reductive groups besides the semi-simple ones. We have in mind, for instance,
the reductive non-connected group Gl (n,R), which appears when studying
flows on vector bundles. The point is that control sets for semigroups in
reductive Lie groups are determined only by the action of the semi-simple
component so that we can develop our results in the semi-simple setting and
get for free the same results for reductive groups.

To discuss this extension let R be a reductive Lie group with Lie algebra
t = g ® 3, with g semi-simple and 3 the center of r. We assume that R
has a finite number of connected components. Denote by Zi the center of
R which is a closed normal subgroup of R. A parabolic subgroup, say Pk,
of R is defined like in the semi-simple case (cf. [28], page 85 ff), namely,
Pr = Npg (p), where p is a parabolic subalgebra of g. The Lie algebra of Pg
is p@3. Let Ry be the identity component of R, and put G = Ry/ (Zr N Ry).
It follows that G is actually the identity component of Aut(g), and thus a
semi-simple Lie group.

Put P = Ng (p) for the parabolic subgroup of G corresponding to Pg.

Lemma 5.7 The coset R/ Pg is a union of copies of G/P, and R/Pr = G/P
if R/ Pg is connected, that is, if Pr meets every component of R.

Proof: Since Zp C Pg, any z € Zp acts as identity on R/Pg. This implies
that the action of R on R/Pg factors through the semi-simple group R/Zp
in the sense that R/Pr = (R/Zg) | (Pr/Zr). Hence, P = (Pr N Ry) /Zr and

Ro/ (PrO Ry) = G/ (Pr N Ro) /Zz) = G/P.

Furthermore, given a connected component K of R the set {gPg : g € K} is
in bijection with Ry/ (Pr N Ry). The coset spaces R/Pr and G/P are equal
if and only if P meets every component of R. 1

Now, let S C R be a semigroup with non-empty interior, and write S
for the image of S under the canonical homomorphism R — R/Zg. Then
the action of S on R/Pg depends solely on the action of S, in particular,
the control sets of S coincide with the control sets of S. Clearly S has non-
empty interior in the (possibly non-connected) semi-simple Lie group R/Zg.
Next we compare non-connected semi-simple Lie groups with their connected
components.
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Proposition 5.8 Let G be a semi-simple Lie group with a finite number
of connected componets. Suppose that a parabolic subgroup Pg meets every
component of G. Then for any semigroup S C G, with intS # 0, the effective
control sets of S in G /P coincides with those of S =S N Gy.

Proof: Put P° = Pz N Gy, so that G/P° is a union of copies of G/ Pz,
each copy is the image of a connected component of G under the projection
G — G/P°. Form the canonical bundle map

7m:G/P" — G/Pg.

The control sets of S in G/ P® project onto the control sets in @/Pg. Also, if
D C G/P5is a control set and z € Dy, then any point y € 7~ '{z} belongs
to the set of transitivity of a control set, say D C G/P°. Now, y and gy,
g € G belong to the same component, then g € Gy. In particular, D C clSy,
so that D is also a S-control set. Since the control sets of S are contained in
the control sets of S, the result follows. 1

Corollary 5.9 Let R be a reductive Lie group with a finite number of con-
nected components. Suppose that a parabolic subgroup Pr C R meets every
component of R. Then for any semigroup S C R, with intS # 0, the effective
control sets of S in G/Pg coincides with those of S = (SN Ry) / (Zr N Ry).

6 Sequences in G

Let g, be a sequence in the semi-simple Lie group G. In order to see the
pointwise limit of the action of g, on the flag manifolds let us fix a polar
decomposition G = Kcl (A1) K, and write g = uphgpvp with ug, v, € K and
hy, € cl (AT).

For a root o € IT and h € A, put A\,(h) = exp(a(logh)). We say that
gr is admissible if uy — u, vy — v, u,v € K and the sequence \,(hy) are
convergent for all negative roots a. Note that for every negative root «,
Ao (hi) € (0,1], so that any sequence has an admissible subsequence. The
numbers A\, (hx) together with 1 are the eigenvalues of Ad (hy). Hence, for
an admissible sequence the restriction of Ad (hx) to n~ converges to a linear
map 7:n~ — n~ (cf. [10] and [26], Proposition 2.5).
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Now take a flag manifold Fg and denote by by the origin corresponding
to the standard parabolic subgroup defined by A™. Also, put o = N~b, for
the open Bruhat cell. Then

grv ™" (expY) by — uwexp (TY) by

for any Y € n~ (cf. [26], Proposition 2.5). Hence gz has a limit for any
r € v 'og and the limit belongs to u (exp (im7)) by.

In the sequel we write domg (gx) = v~ oy and img (gx) = u (exp (im7)) by
and refer to these sets as the principal domain and principal image in Fg,
respectively.

Both sets domg (gx) and img (gx) are connected and the principal image
reduces to a point if and only if 7 anihilates on ng, that is, A, (hg) — 0 for
the negative roots a ¢ (©). In this case the sequence is said to be contracting
with respect to Fg (cf. [10]).

The next lemma about the inverses g, ' of contracting sequences will be
essential in the study of flows on flag bundles.

Lemma 6.1 Let g, = vphruy be a contractible sequence with respect to Fg
with up — 1 and vy — v. Suppose that C' C o is a compact subset and
b # vby. Then there exists kg > 0 such that gk_lb ¢ C if k> k.

Proof: Recall that 0 = Ng - by where Ng = expng and ng is the nilpotent
Lie algebra spanned by the root spaces g,, 0 < a ¢ (©). The adjoint
Ad (h) of h € A restricted to ng is diagonal with eigenvalues exp (« (logh)),
0 < a ¢ (O). The action of h on ng is equivalent to the action on Ng. Take
a basis of ng formed by root vectors and endow ng with the corresponding
sup-norm

121 = max|ai

where a; is the coordinate with respect to the i-th basic vector. By the
contractibility assumption exp (a (log h,;l)) — oo for every negative root
a ¢ (©). Hence, ||h;'-Z|| = o if Z € ng is not zero. Denote also by
||-|| the function on o obtained through the diffecomorphism with ng. Since
C' C o is compact ||-|| attains a maximum c on C.

With these preparations we can prove that for large k, gk’lb stays outside
the ball of radious ¢ if b # vby. Since v} 'b — v~'b # by, there exists k; such
that

m = inf{||v;'b|| : ob € 0, k > ki } > 0.
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We write m = oo if v, 'b & o for all k > k. Applying h, ' it follows that for
large k, h; 'v, 'b is outside a neighborhood O D C'. In fact, if || Z|| = m < oo
then ‘ ‘h,;lZ‘ ‘ — oo and if m = oo then h,;lvk’lb belongs to the complement of
0. Finally, by continuity in the compact-open topology, the assumption that
ur, — 1 ensures that for large k, u,C' C O, so that ¢g;b = u,:lh,;lvk_lb ¢C. 1

7 Domain of attraction

The domains of attraction of control sets in flag manifolds were given alge-
braic descriptions in [21]. For later use in the study of flows on flag bundles
we shall recall here some results of [21] and prove aditional related facts.

Let D (w) be an effective control set for the semigroup S C G in the
maximal flag manifold F. In [21] it was proved that the domain of attraction
A (D (w)) is a union of Schubert cells as follows: Fix a simple system of roots
3 and for a finite sequence aj,...,q, in X let s1,...,s, be the reflections
with respect to these roots, and denote by P; = P4,y the parabolic subgroup
defined by © = {a;}. The corresponding flag manifold is denoted by F; =
G/ P;. Associated with F; there is the canonical fibration 7; : F — F;. Now,
given 7 = 1,...,n let v, stand for the operation of exhausting a subset of F
with the fibers of 7;, that is, if X C F then

i (X) =m i (X) = U Fs,

zeX

with F, standing for the fiber through z of 7; : F — T;. Before proceeding
we note that the simple system of roots ¥ is used merely to label the flag
manifolds and the maps +;, since these maps are independent of the choice of
), as happens to the fibrations F — F;. The following statement was proved
n [21], Theorem 6.3.

Proposition 7.1 The domain of attraction of D (w) is given by
AD (w)) =717, (C7),
where C~ is the repeller set of S in F. Here the sequence v, is chosen in

such a way that wow = s, --- 81 s a reduced expression of wow as a product
of simple roots, where wy is the principal involution of W.
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Applying this result to S~' we get the repeller domain of D (w):

Proposition 7.2 Let D~ (w) be the control set of S™' having the same set
of transitivity as D (w). Denote by A* (D~ (w)) its attractor (reppeller of
D (w)). Then

A" (D™ (w)) =77 (CF)
where C C F is the attractor set of S. The sequence v corresponds to the
reflections obtained by a reduced expression w = 1y - ry.

Proof: Follows from the above proposition and [21], Proposition 3.1. ]

By [21], Theorem 5.3 and Corollary 5.4, it follows that ~,---~,{b} is
a Schubert cell in F, for any b € F. Our next objective is to describe the
intersection of a pair of such cells in terms of the exhausting maps. Denote
by P the minimal parabolic subgroup corresponding to ¥ and let b* be the
origin in G/P. Now, take w € W with reduced expression w = rp, - - -1, and
write v, for the corresponding exausting maps. On the other hand we put ~,
for such maps corresponding to a reduced expression wyw = sy, - - - 5.

Lemma 7.3 -+ 7, {b"} N7y -7, {07} = {wb™}.

Proof: By [21], Corollary 5.4, v, -+ -v,{b"} = cl (N"wb™). To find an anal-
ogous expression for v - -~/ {b"} we recall [21], Theorem 5.3, which shows

that cl (wale“) =~ {w bt} where N*°' = w 'N+tw. Applying w
to both sides of this equallity we get

Vi {0 = (NTwb™) .

But it is well known that the cells ¢l (NTwb™) and ¢l (N~ wb™) meet transver-
sally exactly at wb™, concluding the proof. 1

We can think this lemma as a method of obtaining the whole set of fixed
points from the attractor and repeller ones. In fact, take a split regular h =
exp (H), H € a™. Then b" is the attractor of h, while b~ is the repeller and
the other fixed points are wb™, w € W. Thus the above lemma reconstructs
the fixed points from b* and the exausting maps. The next lemma generalizes
this construction for non-regular H € cla™.

Lemma 7.4 )~ (K¥bT) Ny -, (K%b™) = K%b,,.
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Proof: Take z in the left hand side and u € K%. Wehave x € v} ---+ (v;b7)N
Yy Yy, (0207) for some vy, vy € KY. Using the equivariance of the exhaust-
ing maps we get

ur € oy -l (wtnb*) Ny - (102d7)

so that the entire orbit K%z is contained in v} - - -~/ (K%b%)Ny, -+ -, (K%b7).
Combining this with the previous lemma we conclude that the right hand side
is contained in the left one. For the reverse inclusion, take x € v} -+ -~/ (v1b7)N
Y1+ Vn (12b7). Proceeding as in the proof of the previous lemma, we obtain
Yy (vbt) = el (vyNThy,) and v, -+ -7, (v2b7) = ¢l (V2N b,). Now, for
any z € cl(N*b,), the limit lim,, . exp (tH) 2 belongs to a component,
say K%b,,, bigger than K%b,, (in fact, N*b, contains the unstable manifold
of the fixed-point set Kb, cf. [9]). Hence, lim; , . exp (tH) z belongs to
K%b,,, since v; commutes with exp (tH). Symmetrically, lim;_, ., exp (tH)
belongs to a component, K¥%b,,, smaller than K¥%b,,, because x € cl (voN7b,).
Combining the two limits and using the fact that (J, cyy,\w K%b,, is a Morse
decomposition we conclude that K%b, = K%b,, = K%b,,, and hence = €
K%b,,. |

By taking conjugations we carry over this lemma to the fixed-point set
of exp (tA) if A belongs to an adjoint orbit crossing cla®™. In fact, for any
g€ GandbeF gy -, () = -7, (gb), and the fixed point set of
exp (tAd (g) H) is the image under g of the fixed point set of exp (tH). For
later reference we state this fact.

Corollary 7.5 Take A € Ad(G) H, H € cla®™ and let fix(Z) be the set of
fized points of exp (tA) in F. Then there erists a map w € W — fix (A, w)
onto the set of connected components of fix (A) such that fix (A,1) is the
unique attractor, fix (A, wy) is the unique repeller and

fix (Aaw) = 711 e "YZn (ﬁX (Aa 1)) Y1 Yn (ﬁX (Aawo))a

with v, and ~; given by reduced expressions of w and wow, respectively. Fur-

thermore, fix (A, wy) = fix (A, ws) if and only if Wrw, = Wyw,.

We conclude this section with an application of the above results to the
control sets of a semigroup S. Let b; and by be two points in the maximal
flag manifold F with isotropy subalgebras p; and ps, respectively. We say
that b; and by are opposed if p; and p, are opposed.
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Proposition 7.6 Let C* C F be the attractor and repeller set of S, respec-
tively. Take opposed by € C and by € C~. Then w(by,bs) € D (w), (see the
notation at the end of subsection 5.1).

Proof: By Lemma 7.3, w (by,b2) = o)7L {bi} Ny, v,{b2}. On the
other hand Propositions 7.1 and 7.2 show that | ---~, {b1} Ny, -7, {b2}
belongs to D (w),. ]

8 Flag bundles

In this section we construct the maximal chain transitive subsets of a flow
in a flag bundle with the aid of the shadowing semigroups. It will produce
that, analogously to the control sets on flag manifolds, the maximal chain
transitive sets are parametrized by the Weyl group. Hence there is a finite
number of such components, which for compact metric spaces implies the
existence of a finest Morse decomposition of the flow.

8.1 Control sets

Before applying the shadowing semigroup method we must have a description
of the control sets on the flag bundles. This will be done by improving the
results of [4] with the inclusion of the algebraic characterizations discussed
in Section 5 above.

To start with let () — X be a principal bundle whose structure group G
is semi-simple and non-compact. As before let Fg be a flag manifold of GG
and put Eg — X for the associated bundle Eg = ) X Fg, having typical
fiber Fg. For the maximal flag manifold F we write the associated bundle
simply by E — X. Recall that when ©; C © there exists a natural fibration
Fo, — Fo, inducing a fibration Eg, — Eg,. In particular, we have the fiber
bundle E — Eg for any © C ¥.

Let S be a local subsemigroup of Aut(Q). To look at the control sets of
S on the flag bundles we assume that S satisfies the accessibility property
on @ and its action on X is transitive. By the results of [4] the control sets
for the action of S on E are built fiberwise from control sets in F. We sketch
the main construction: Given ¢ € () define

Se={9e€G:39€S,9(q)=q-g}, (3)
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then S, is a subsemigroup of G' and the accessibility assumption on () implies
that intg (S,) # 0 (see [4], Lemma 3.2). Let D, be an effective control set
of S, on F. According to our notation, g - D, is a subset of the fiber E, of E
above r = 7 (¢). Actually the sets ¢ - D, are independent of ¢ € @),. In fact,
if p=g¢-a, a € G is in the same fiber as ¢, then S, = a 'S,a, so that a~'D
is a control set for S,. Therefore,

p'Dp:(‘I'a)'(aiqu) =q-Dy.

By Theorem 3.5 of [4], the intersection of the set of transitivity of an effective
control set of S in E with a fiber has the form ¢ - (D,),. Conversely, given
an effective control set Dy, the set ¢ - (D,), is the intersection of the set of
transitivity of a unique effective control set in E with the fiber above x = 7 (¢)
(see [4], Proposition 3.6). These results yields immediately the finiteness of
control sets on the flag bundles.

Proposition 8.1 Suppose S satisfies the accessibility property on ) and is
transitive on the base space X. Then the effective control sets in a flag bundle
Eo — X is in bijection with the effective control sets of S, on Fg. Hence,
the number of S-effective control sets on Eg 1is finite.

Proof: Fix x € X. The transitivity of S on X ensures that any effective
control set E' meets the fiber above x. By [4], Theorem 3.5, the intersection
of Ey with the fiber has the form ¢- (D,),. Thus we have a well defined map
which associates an effective control set in Eg to an effective control set of
Sq- Since different control sets are disjoint, this map is one-to-one. On the
other hand the map is onto by [4], Proposition 3.6, concluding the proof. 1

Using the bijection of this proposition we can label the control sets in
Eo by the Weyl group W. Thus let DY (w) be the control set of S, on Fo
whose set of transitivity is formed by fixed-points of type w of the elements
of Sy (cf. Section 5). The set ¢ - D (w) is independent of ¢ in the fiber over
z =m(q). We put F§ (w) = ¢- D (w), F§ (w)y = ¢- DY (w),, and let EE (w)
be the control set of S in Eg which contains F§ (w),.

Our objective is to relate the control sets EE (w) for different x € X. In
the general framework of [4] this was done only for invariant control sets.
Here however we take advantage of the algebraic properties of the fibers Fg.
First we consider the maximal flag bundle.
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Lemma 8.2 Given x € X there exists an open neigborhhood U of x such
that EY (w) = E* (w) for ally € U.

Proof: Take z € X and a trivializing neighborhood V' of z, so that 7@1 (V) ~
V x G and 73" (V) =~ V x F. Write S, for the semigroup Sy

Using the transitivity of S on X, we apply Theorem 4.4 of [4] to conclude
that S has a unique invariant control set C'(S,) C E as well as a unique
minimal control set C'~ (S,) C E. Both control sets project onto X, and by
the same result C (S;) N7 '{z} is the invariant control set of S, in F while
C~ (Sy) N7 'z} is the minimal control set. As before we put C* (S,) for
the attractor set of S,.

Now, we can choose (x,b;) € CT and (x,b;) € C~ such that b; and
by are opposite to each other (see Section 5). By Proposition 7.6 we have
w (b1,b2) € Dy (w),, so that (z,w (by,be)) € (E* (w)),. Since (E” (w)), is
open there exists a neighorhood Uy of = in X such that Uy x {w (by,b9)} C
E* (w). Also, there exists a neigborhood Us of x such that Uy x {b;} C C'*
and Uy x {bo} C C~. Applying again Proposition 7.6, it follows that for every
y € Uy, (y,w(by,b)) € EY (w). Then U = U; N U, satisfies the condition
of the lemma since (y,w (by,b9)) € EY (w) N E® (w) for all y € U, so that
EY (w) = E” (w) because these control sets overlap. |

For the sake of simplicity in the notations we proved the above lemma
only for the maximal flag bundle, but the same result holds for any other
bundle Eg, because the control sets in Eg are projections of the control sets
in E. Hence if we use subscript © for control sets in Eg we arrive at the
following picture.

Corollary 8.3 Take a connected component k of X and w € W. Then the
control sets EE (w) are independent of x € k.

Proof: The relation x ~ y if E* (w) = EY (w) is an equivalence relation on
X. By Lemma 8.2 the equivalence classes are open sets, and hence union of
connected components of X. 1

Therefore, fixing a connected component x we get a well defined control
set B¢ (w) in E for each w € W. We do not know whether the control
sets E§ (w) are independent of the connected component x. Note however
that any effective control set has the form E§ (w), hence the control sets are
labelled by w € W, once k is given.

35



For the sake of completeness let us discuss what happens in case k is
changed into another connected component x; of X. There exists a map
7 : W — W such that Eg' (w) = E§ (7 (w)). Since any effective control set
has the form E§ (w), it follows that 7 is a bijection. Furthermore, the map
7 is increasing with respect to the Borel-Chevalley order < in W (cf. [21]).
In fact, it was proved in [21] that DY (w;) = DY (ws) if and only if wy < wy,
so that Eg' (wy) = E§ (7 (wy)) is smaller than Eg' (we) = E§ (7 (we)) if and
only if wy < wy, implying that 7 (ws) =< 7 (wq) if wy < wy.

8.2 Chain transitive sets

We proceed now to apply the above results to the shadowing semigroups of
a flow ¢ on a flag bundle. For this we assume that the local group loc (X) of
the base space is locally transitive, implying that the shadowing semigroups
Ser in Aut (Q) are locally transitive by Corollary 3.6 and Lemma 3.7. In
particular, S, r satisfies the accessibility property for all ¢,7" > 0.

Let us fix once and for all a maximal chain transitive subset X of the flow
on the base space X and denote by X, the control set of the shadowing
semigroup S containing X' (see Theorem 4.7). Let X2/ be the set of tran-
sitivity of &, 7. Clearly, S; 1 acts transitively on XEO,T. Hence, the previous
results apply if we restrict the action of S, 7 on a flag bundle to the open set
above X7

To avoid cumbersome notation we write in the sequel the control sets
of S, above X?; without any further reference to this restriction. Hence
a control set of S;r in Eg should be understood as a control set for the
restriction of the action of this semigroup to the bundle B — X 7. Also,
we denote by £g the restriction of a flag bundle Eg above X', and for e € &g
we write C, () = C (e) N Eg and C} (e) = C* (e) N Ep.

Now for w € W, there exists an effective control set E2 (w) C Ee of
Se,r and for every effective control set £ C Eg of S. ¢ there exists w € W
such that £ = E2p (w).

Lemma 8.4 Let 1, Ty > 0 and €5, T5 > 0 be given such that e1 < g9 and
Ty > Ty. Then for any w € W, ES 1, (w) C EQ 1, (w).

Proof: Since for any ¢ € Q, S., 1, C S., 1, it follows that S;" c S

(with obvious notation). Hence the control sets of St are contained in
those of S;Q’TQ. Thus the lemma follows by the fiberwise construction of the
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control sets on Eg. ]

Therefore, to be able to apply Theorem 4.7 it remains to check that

N B2y (w) # 0. We consider first the invariant control sets.
e, T

Lemma 8.5 () E2; (1) # 0. Furthermore, (Y E2; (1) = ) C, (e).

e, T e, T ecfo

Proof: The control sets EST (1) are closed and due to transitivity on the

basis the invariant control sets meet every fiber in a non-empty compact set.
By the inclusion EY , (1) C ES) 5, (1) if &1 < &3 and Ty > T, it follows that

for each = € X the family E2; (1), satisfies the finite intersection property.

Hence by compacteness of the fiber we conclude that () E2p, (1) # 0. The last
e, T

equality is a consequence of Proposition 4.5 and the fact that ES. (1) C S. re
for every e € &g. |

Now we consider the minimal control sets. For this we apply the above
lemma to the shadowing semigroups 57 for the reversed flow. The corre-
sponding invariant control sets have a non-empty intersection, which equals

M C* (e).

ecE

Lemma 8.6 () C;(e) = ) B2y (wo).
e, T

ecfo

Proof: Take f € () C; (e). By Proposition 4.5, for all ,7 > 0, S, rf = E.
e€fo
Hence f belongs to the minimal control set of S, that is, EOp (wo). This

implies that () C; (e) C () ESp (wo). The reverse inclusion is due to the
e€EEy e, T
fact that both sets are maximal chain transitive, by Theorem 4.7. ]

To get non-empty intersection for the other control sets we apply the
results about domains of attraction of Section 7. Since there the statements
are made for the maximal flag manifold we shall work out here the case of E
and afterwards project down to the other flag bundles. Thus fix ¢ € @, let
x =m(q) € X and write a subscript = for intersections of subsets of E with
the fiber through x. For example, the sets ¢ '+ E. 7 (wy), and ¢ * E. r (1),
are the minimal and invariant control set of SS’T, respectively.
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Now, take e € () E.r(wy), and et € (E.r(1),. Put w(et,e”) =
e, T e, T

q-w(q” ,q*1 . e) (see the notations of Proposition 7.6). By Proposition
7.6, w(q *1 - €) belongs to the w-control set of SZ’T for every ,T > 0.

)
Hence for ¢, T > 0, w(et,e”) € E.r(w),, showing that () E.r (w) # 0.
e, T

1 .

Lemma 8.7 For any w € W, (| E2p (w) # 0.

Ea

Proof: We showed above that () E. (w) # (). Since E2p (w) is the projec-
e, T
tion of E. 1 (w) the lemma follows. 1

Thus we have proved one of the main results of this paper.

Theorem 8.8 Suppose that loc (X) is locally transitive. Let ¢, be a right
wnvariant flow on @ and take a maximal chain transitive subset X C X.
Then the associated flow on a flag bundle Eg — X satifies:

1. For each w € W there exists a maximal chain transitive set Mg 4 (w)

(or simply Me (w)).

2. If M C &g is a mazximal chain transitive set then M = Mg (w) for
some w € W.

3. Mg (1) is the only attractor while Mg (wy) is the only repeller, where
wy 18 the principal involution of W.

In the sequel we put Mg = Mg (1), Mg = Mg (wy), and supress the
subscripts when E = [y is the maximal flag manifold.

Clearly, in the compact case the maximal chain transitive subsets coincide
with the connected components of the chain recurrent set, giving rise to the
finest Morse decomposition.

Corollary 8.9 In the situation of the above theorem, suppose furthermore

that X is compact. Then the flow on a flag bundle Eg admits a finest Morse
decomposition with components Mg (w).
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8.3 Parabolic type

As happens to the control sets on the flag manifolds the map w +— M (w)
of Theorem 8.8 is not injective. Analogously to the semigroup case the level
sets of this map are described by the parabolic type of the flow, a concept
which we shall introduce below based on the parabolic type of semigroups.

Our first task is to check that the semigroups S;, ¢ € ), defined above,
have the same parabolic type. For this fix ¢ € Q, let © = O (S,) be the
parabolic type of S;, and form the flag bundle Eg. Then there exists a
natural fibration 7 : E — Eg whose fiber coincides with that of 7g : F — Fg.
Since © is the parabolic type of S,, it follows that the invariant control set
in F, C?7 = C(S,), is given by C? = 75! (C), where C¢ = Co (S,) is the
invariant control set in Fg. By [4], Theorem 3.5, the subset ¢ - C? C E (1).
The same way ¢ - C§ C Eg (1). Hence for every e € ¢ - Cg, 7 *{e} C E(1).
Applying [4], Proposition 3.7, we conclude that 7! (Eg (1)) is contained in
E (1). This shows that for any p € @ the parabolic type of S,, ©, C ©,.
Since ¢ is arbitrary the claim follows. Thus we have proved the

Proposition 8.10 Let S C Aut (Q) be a local semigroup which satisfies the
accessibility property and is transitive on the base X . Then the parabolic type
of Sy is independent of ¢ € Q.

In view of this proposition it makes sense to talk about the parabolic type
of a local semigroup S C Aut (Q).

Definition 8.11 Let S C Aut (Q) be a semigroup satisfying the accessibility
property. The parabolic type of S is the common parabolic type of S, q € Q.

In particular a shadowing semigroup S. 7 = S. 7 (¢, Aut (Q)) of a flow ¢
has a parabolic type, which we denote by O, r. If &1 < e and T} > T then the
control sets of S, 7, are contained in those of S. 7 (see Lemma 4.6). Thus
the definition of the parabolic type implies that ©., 7, C ©.7. Also, note
that the number of possible parabolic types is finite. Hence the intersection
ﬂE’T O, 1, which is possible empty, is well defined.

Definition 8.12 The parabolic type of the flow on Q s defined to be

@ (¢) = m 98,T
e, T
where ©. r is the parabolic type of the shadowing semigroup S; r.
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Analogous to the case of control sets the parabolic type of a flow is in-
timately related to the geometry of the attractor maximal chain transitive
subset. In fact, the results about control sets of the shadowing semigroups
yield immediately the following properties of the parabolic type of ¢.

Proposition 8.13 The fibers of Megg) (1) are contained in open cells. Also,
T Meyg (1) = M (1).

Proposition 8.14 The number of maximal chain transitive subsets in Eg
equals the number of orbits of We in W/We(g). In particular, in E this
number is |W| / |Wag)|-

For the parabolic type of the reversed flow ¢* we must look at the invariant
control sets of the shadowing semigroups S? ;. The repeller maximal chain
transitive subset is the intersection of the invariant control sets of S7r as
well as the intersection of the minimal control sets of S, r. From this we get
the reversed parabolic type of ¢:

Proposition 8.15 Denote by O 1 the parabolic type of S; 1 and by O the
parabolic type of SE’% Then

o (¢*) = m9:,T = ﬂ @;T-
e, T e, T

Proof: By Proposition 8.14 a fiber of E — Eg(4+) is contained in the minimal
control set of every S;%, so that © (¢") C (). O Since the repeller max-
imal chain transitive subset in E is the intersection of the minimal control
sets of S;p. The reverse inclusion follows the same way. ]

According to [23] the parabolic type of the inverse S~! of a semigroup in
G is given by the dual flag manifold of the parabolic type of S. This implies
that the parabolic type of ¢* corresponds to the dual flag manifold of the
parabolic type of ¢. In view of this we conform to the notation of [23] and

write ©* (¢) for © (¢).

9 Algebraic description

In this section we look at maximal chain transitive sets more carefully. Our
objective is to prove Theorem 9.11, which gives an algebraic description of
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these sets. The main lemma in this direction is Lemma 9.3, which ensures
that the flow on the bundle Eg(4), corresponding to the parabolic type of ¢,
is such that fibers of the attractor maximal chain transitive set reduces to
a single point. Here contrary to the previous section we must ask for the
existence of w-limits on the base space, an assumption which is automatic in
the compact case.

By reverting the flow the same result holds for the repeller on Eg- (4.
This gives at once the description of the attractor and repeller maximal
chain transitive sets on every flag bundle. The other chain transitive sets
will be determined by the extremal ones and the domains of attraction.

We keep assuming that the flow on the base space X is chain recurrent and
loc (X) is locally transitive. As before denote by M{, the attractor maximal
chain transitive set of the flow on Eg. Let 2,y € X be such that t; - x — y
for a sequence t;, — +o00, and take local cross sections y; : U; C X — @,
i =1,2, with € Uy and y € Up. Writing p = p, ,, for the corresponding
local cocycle we obtain the sequence g = p (t, z) in G. Taking a subsequence
if necessary we shall assume that ¢, is admissible, so that it makes sense to
consider its principal image img (¢gx) and principal domain domg (gx). The
following lemma relates img (g) with MJ. It is crucial in the proof of
Lemma 9.3.

Lemma 9.1 Let the notations and assumptions be as above. Then the prin-
cipal image x, (y) - ime (gx) is contained in M.

Proof: First we prove that the principal image meets M. For this fix e, T’ >
0, denote as before E2;. (1) the invariant control set of S, in Ee and put
N = E2 (1), the set of transitivity of EOp (1). The latter has non-empty
interior and projects onto X. Hence, N intercepts x; (z)-domg (gx), which is
dense in the fiber above z. But if b € x; (2)-dome (gi) then ¢, (b) converges
to a point in the principal image. Therefore, for any b € NNy, (x)-dome (gi),
lim ¢, (b) belongs to ME N (x, (y) - ime (gk)), showing that this intersection
is not empty. However, any point of y, (y)-img (gx) belongs to w (¢) for some
¢ € Eg, and hence to the chain recurrent set R. Since img (gi) is connected,
it follows that x, (y) - ime (gx) is contained in a connected component of R,
which in turn is contained in a unique maximal chain transitive set. By the
first part of the proof, the principal image meets Mg, implying the lemma. &

When we specialize this lemma to the case © = © (¢), the parabolic type
of the flow, we see that the principal image imgy) (gx) reduces to a single
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point. In fact, for this specific bundle the attractor set Mg is contained
in open Bruhat cells, that is, the set y (y)_1 . (Mg N IE@(¢)) is contained in
some open Bruhat cell of Fg(4). Thus Lemma 9.1 implies that imeg) (gx) is
contained in an open cell. But the only possibility for this ocurrence is when
gk is contractible with respect to © (¢), that is imgy) (gx) is a point.

Corollary 9.2 Keep the notations and assumptions as above. Then imeg) (gk)
reduces to a single point.

Now we can prove the main lemma about the structural property of the
attractor maximal chain transitive sets in the flag bundles.

Lemma 9.3 Let Mg(cﬁ) C Ee(g) be the attractor mazimal chain transitive
set in the flag bundle corresponding to the parabolic type of ¢. Suppose that
z € X is such that w (x) # 0. Then M&@ meets the fiber (E@(¢))I over x
i a single point.

Proof: Write A = x ()™ - Mg(cﬁ) and fix by € A. We shall take a polar
decomposition of GG adapted to by and A as follows: Choose a Weyl chamber
A% C G so that by is the attractor of A™ in Fg(4) and the corresponding
stable manifold (open cell) o contains A (e.g. take AT meeting a shadowing
semigroup S; r for small enough ¢ > 0 and large T"). This Weyl chamber de-
termines a maximal compact subgroup K C G and the polar decomposition
G=KA'K.

For y € w(x) let ¢, — +oo be a sequence with ¢ - x — y. Take local
cross sections x; : U; — @, ¢+ = 1,2, around x and y, respectively, and let
P = Py, , be the corresponding local cocycle. Put g = p (t, z) and assume
without loss of generality that g, is admissible.

Now, write g, = vihpuy with v, up € K and hy, € AT with u, — u, v, —
v. By the above corollary g, is contractible in Fg(4), so that ime g (gx) = vbo.
Changing, if necessary, the cross section x; with x' = x; - u, v € K, we can
assume that u;y — 1. Then by Lemma 6.1 we conclude that gk_lb is outside
the compact subset A C o if b # vby. However,

d_y, (X (tr-2)b) = x (2) - (p(tr,2) "' 0) = x (2) - (g, 'D) .

Since for large k, g7'b ¢ A = x (z)""- Mg(cﬁ)’ it follows that x (tx - z) - b ¢
Mg@b) if vb # by. Therefore, for large values of k the fiber of Mg@b) above
ty - x reduces to the point y (tz - ) - (v7'by). This implies that the fiber
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above r is also a single point, since ¢, settles a bijection between the fibers
(Eo(s), = (Bo(e)),,.o- I

Clearly, reverting time this proof yields an analogous result for the re-
peller component, as soon as we consider the flag Eg-(4) corresponding to
the parabolic type of the reversed flow.

Corollary 9.4 Let M(;*(¢) C Eo«() be the repeller mazimal chain transi-
tive set in the flag bundle corresponding to the reversed parabolic type of ¢.
Suppose that © € X is such that w* (x) # 0. Then M. 4y meets the fiber

(E@*(¢))I over x in a single point.

Of course, the conditions about w and w*-limits are satisfied in case the
base space X is compact.

Corollary 9.5 In the situation of Lemma 9.3, assume furthermore that the
base space is compact. Then the mazximal chain transitive sets Mg(d)) C Eg(g)

and Mé*(¢) C Eo- (¢) meet the fibers in singletons.

Corollary 9.6 The bundles Eg(yy — X and Eg-4y — X are trivial if
w(z),w* (x) #0 forallz € X.

Proof: Define y : X — Eg(4) by the requirement M* N (Eg(y)). = {x (2)}.
Then x is a global cross section of g4y — X. It remains only to check that
X is continuous. But this follows by local trivialization and the elementary
fact that a map between metric spaces is continuous provided its graph is
closed and the target space is compact. The proof for Eg-(4) — X is similar.
|

In order to have specific notations for the cross sections in this corollary we
write Q@ X — Eg(g) and Q° : X — Eg-(4) with {Q(z)} = Mg(cﬁ) N (Eo(s))

and {Q" (2)} = Mg. 4 N (Bor (4)) -

Now, we encode the cross sections €2 and 2* into a global cross section of
a bundle whose fiber is an adjoint orbit of GG. For this let f : Q — Feg(4) and
f* 1 Q — Feg-(4) be the functions corresponding to € and Q*, respectively.

Explicitly,

x

fl@)=q¢ "' Q(x(q) and [ (¢)=q ' -Q(x(q)).
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Note that for every €, 7 > 0, f (q) belongs to the set of transitivity of the
invariant control set in Fg(g) of S, while f*(g) belongs to the minimal
control set in Fg-«(4).

Hence, the pair (f (q), f* (¢)) belongs to the generic G-orbit Ogy C
Fo(s) X Fo-(4), which as homogeneous space is Ogg) = G/Zq (H@(¢>)) where
Hey) € cla® satisfies o (Ho(g)) = 0 if and only if o € (O (¢)). Thus we
have a map h : Q — G/Zg (H@(¢)) which is equivariant in the sense that
h(qg-g) = g=' - h(q). Therefore h defines a cross section of the associated
bundle whose typical fiber is Ad (G) He(g).

Note that the identification of Og(y) with Ad (G) He(y) is made in such a
way that A in the adjoint orbit corresponds to the pair (b1, bs) € Fg X Fo-
with b; the attractor of exp A in Fg and by the repeller of exp A in Fg-. For
later reference we record this construction in the following statement.

Proposition 9.7 Let the notations and assumptions be as in Lemma 9.3.
Let Ag(y) — X be the associated bundle, having typical fiber the adjoint orbit
Ad (G) He(g)- Then there exists a cross section ¢ : X — A with corresponding
map h : Q — Ad(G) He(g), such that f (q) is the attractor of h(q) in Fe(g)
and f*(q) is the repeller ofh( ) in Fo«(g)-

Once we have the attractor and repeller components in the finest Morse
decomposition (and the cross section given in Proposition 9.7), the other
components are easily obtained through intersections of the attracting and
repelling domains of the control sets. Presently we shall use the results of
[21] (cf. Section 7 above) to describe an arbitrary component M from the
extremal ones M*.

In the maximal flag bundle E — X let M™* be the attractor and repeller
maximal chain transitive sets, respectively. If M is another maximal chain
transitive set

M=AM)Nn A" (M)
and by Proposition 4.10, A (M) = () A (D7 (M)) while A* (M) = " A* (D.r (M)).

e, T
Hence,

M=V (ADer (1) N A (D (M)

Combining Pr0p0s1t10ns 4.10 and 7.1, we get the domain of attraction of
the chain transitive set M (w). To state the result we use the same notations
used before for projections between flag bundles. Thus, fix a simple system
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of roots ¥, and for a finite sequence aq,...,q, in ¥ we let s1,...,s, be the
reflections with respect to these roots. Then we write E; — X for the flag
bundle with fiber F; = Fy,,} and put m; : E — ; for the canonical projection.
Accordingly, we write ; = m; 'm; for the exhausting map.

Before proceeding recall that by Corollary 4.9,

M = ﬂ (De;r (M) N D (M))

for every maximal chain transitive set M. This implies the following lemma
which will be used in the description of M (w) to be given below.

Lemma 9.8 Take sequences €, — 0 and T, — +o00, and suppose that a
sequence

by € De, 1, ( MT)N D} 4 (M7)
converges to b. Then b€ M~.

Proof: For any ¢,T7 > 0, b, € D! (M7) if n is large enough. But the
control set D7 ;. (M7) is closed, so that b € D4 (M™), showing the lemma.
|

Proposition 9.9 The domain of attraction of M (w) is given by
AM (w)) =717, (M7), (4)
where vq,...,7, is taken from a reduced expression wow = Sy ---S;.

Proof: After taking local cross sections we see that it is enough to prove

that
ﬂ’h T (Ca_,T) =71 Tn <ﬂcg_,T> )
e, T e, T

where C_ . = E.r (wp) stands for the minimal control set of S. 7 in E. The
inclusion of the second hand side into the first is immediate. For the converse,

takex € (71 7Vn (CE’T) and sequences €, — 0, T, — +oo and b, € C, 1.
e, T

We can assume that by — b, so that by Lemma 9.8, b € M~ = ﬂg’T Cor
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Now any converging sequence y; € v, - - -7v,{bx} has limit in v, -- -, {b}.
In particular the constant sequence y, =  belongs to v, - - -7, {b}, conclud-
ing the proof. ]

The same result can be applied to the reversed flow to get A* (M (w)).
We must only take care with the labelling of the control sets by the elements
of the Weyl group to pick the right sequence 7, - --v,. When working with
A (D (w)) we are tacitly assuming that the map w — D (w) is defined in
such a way that D (1) is the invariant control set while D (wy) is the minimal
control set. Hence for the reversed flow we must choose another set, of simple
roots (corresponding to a reduced expression) in order to write down a for-
mula like (4) for A* (D (w)). According to [21], Proposition 3.1, we must take
a reduction expression for w = wq (wow). In fact, if we label the control sets
of S71 say as D~ (w), in such a way that cIC~ = D~ (1) and Cy" = D~ (wy)
then D (w) and D~ (wpw) have the same set of transitivity. Thus we get,

Proposition 9.10 The repelling domain of M (w) is given by
A (M () =7, (M), (5)
where vy, ...,%,, i taken from a reduced erpression w = S, - - - Sy.
Now we can give the full picture of the chain recurrent components.

Theorem 9.11 Let the notations and assumptions be as in Lemma 9.5.
Consider the map h : Q — Ad(G) H of Proposition 9.7, where H is any
element of the “partial chamber” a* (0 (¢)). Then the chain recurrent com-
ponents in the full flag bundle B are given by the fized points of h(q) as
follows:

M (W), =a fix(h(q),w).

Proof: Follows immediately from Corollary 7.5 and the above two proposi-
tions. i

Remark: If H is like in the above theorem, then the vector field induced
by H on a flag manifold Fg is gradient with respect to a certain Riemannian
metric on Fg. Thus it might be expected that the gradient-like functions for
the flow on a bundle Eg — X could be built from the cross section h (¢) (cf.
Conley [8]).
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10 Examples and special cases

10.1 Vector bundles

Given an n-dimensional real vector bundle V' — X let ¢, be a flow on V
which is linear on fibers. This flow can be put in our principal bundle set up
by taking the bundle of frames () = BV — X of V. The elements of BV
are the invertible linear maps p : R* — V, where V, is the fiber of V' above
x € X, and the structural group of BV is G = Gl (n,R) which acts on the
right on BV by pg = pog, p € BV, g € Gl(n,R). The vector bundle is
recovered from BV as the associated bundle obtained by the standard linear
action of Gl (n,R) in R".

The linear flow ¢, on V lifts to a flow, also denoted by ¢,, on BV by
putting ¢, (p) = ¢, o p, which clearly satisfies ¢, (pg) = ¢, (p) g, g € G. Con-
versely, a right invariant low on BV induces a linear flow on the associated
bundle V', showing that flows on Gl (n, R)-bundles are equivalent to linear
flows on vector bundles.

The flag manifolds of Gl (n,R) are the usual manifolds of flags of sub-
spaces of R”. Hence the associated flag bundles are precisely the bundles
over X which are built from V' — X by taking flags of subspaces of V,
xr € X. We specialize our results to these bundles. Here the semi-simple
component of the Lie algebra of Gl(n,R) is sl(n,R). We take the Lie al-
gebra a of zero trace diagonal matrices (with respect to a basis fixed in
advance). A Weyl chamber a* C a is given by the set of diagonal matrices
diag{ai, ..., a,} satisfying a; > - -+ > a,, so that cla™ is the set of zero trace
diagonal matrices with a; > --- > a,. With these choices, the adjoint orbit
Ad(G) H of H € cla® is the set of zero trace diagonalizable matrices with
the same eigenvalues as H.

To label the parabolic type of a flow recall that the roots of a are the

functionals «;; (diag{a1,...,a,}) = a; — a;j, i # j, and the simple system of
roots corresponding to a* is ¥ = {a; = a;,;41 17 =1,...,n — 1}. Note that
for a subset © C ¥ a matrix diag{ay, ..., a,} is anihilated by © if and only if
a; = a;+1 when a; € ©. Thusif © = {«,, ..., q;, }, a matrix diag{ay, ..., a,}

belongs to the partial chamber a™ (©) if and only if
ay > Qg > -+ > Gy = Q41 > 00,

that is, © determines a set kg = {k, ..., ks} such that the matrices in a™ (©)
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are given in diagonal blocks as

Aridy,

Asidy,

with Ay > -+ > A,

Now, according to Theorem 9.11, the Morse decomposition of a flow satis-
fying our conditions is given as the set of fixed points of h (p) where h : BV —
Ad (G) H is an equivariant map into the adjoint orbit of some H € a™ (© (¢)).
Since the elements of Ad (G) H are linear maps in R" we can transfer h (p)
through p : R* — V}, to the linear map H, = poh (p)op ! :V, — V.. Hence,
Theorem 9.11 restates as:

Theorem 10.1 Let ¢, be a flow on the vector bundle V- — X. If the as-
sumptions of Theorem 9.11 are satisfied then for each v € X there exists a
diagonalizable linear map H, : V, — V, such that the Morse sets of ¢, in
a flag bundle are given fiberwise by the connected components of the fized
point set of exp (tH,). Furthermore, the map x — H, is continuous and the
spectra of Hy is constant along X .

Let us specialize this description to some flag bundles. First we recover
the Theorem of Selgrade [18] about flows on the projective bundle P (V) —
X, whose fibers are the projective spaces P, of V., z € X. In this case the
fixed-points of exp (tH,) in P, are the eigenvectors of H,, and the connected
components of the set of fixed-points are given by the eigenspaces of H,.
Since H, is diagonalizable and = — H, is continuous we conclude that the
maximal chain transitive subsets are given by UxeXIE”(V/\’“;), 1= 1,...,s8
where A\; > Ay > --- > )\, are the common eigenvalues of H,, v € X, and
VL is the \;-eigenspace of H,. This recovers the Theorem of Selgrade [18].

Note that the parabolic type of the flow corresponds to the flag mani-
fold containing flags whose subspaces have dimensions dim (V}, ), dim (V},) +
dim (V),) etc. This relates the parabolic type of the flow and the Selgrade
subbundles.

Corollary 10.2 Let ¢ be a linear flow on the vector bundle V. — X, and

assume that loc (X) is locally transitive. Then the parabolic type of ¢ cor-
responds to the flag manifold containing flags whose vector spaces have the
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same dimension as the flag
icvieW,Cc---CVid---aV;
where Vi, ...,V are the Selgrade subbundles given in decreasing order.

Morse decompositions on flag bundles were studied by Colonius-Kliemann
[6] exploiting the successive fibrations between the flag manifolds and the the-
orem on projective bundles. As a result it is proved the existence of a finest
Morse decomposition in the full flag manifold with at most n! components
on the fibers (see [6], Theorem 5). From the above theorem we get in fact
that the number of chain recurrent components on the fibers is [W|/ |Wa(g)|
which is in fact less than n! = |W|. On the other hand [6] describes the follow-
ing Morse decomposition in the Grassmann bundle Gr, (V') of k-dimensional
subspaces of V' — X: Let

V=V ..oV

be the decomposition of V' into the subbundles given by chain recurrent
components in P(V). For x € X and a multi-index k = (ky,...,ks) with
k; > 0 and ky + -+ 4+ ks = k define the set

M; ={U € Gry (V), : dim (Uﬂ Vx‘) = k;}

and form M* = (J,.y M%. Then the sets M”, with x running through
the multi-indices is a Morse decomposition (see [6], Theorem 6). It follows
from Theorem 10.1 that the sets M" actually constitute the finest Morse
decompostion. Indeed it is easy to see that the fixed point set of the action
of exp (tH,) in the Grasmannian Gry, (V) is MF, since the subspaces V! are
the eigenspaces of H,.

10.2 Representations

Linear flows on vector bundles arise if we start with a principal bundle Q — X
with structural group G, and take a representation p of G in a vector space
U. Then the associated bundle V = @) xg U — X obtained by the action of
G on U is a vector bundle and right invariant flows on () induce linear flows
on V.

For a flow on V' — X we can take the Morse decomposition on P (V) =
U; P (V;), given by a Whitney sum V' = @, Vi;. However, it happens in most
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of the cases that the action of G' on the projective space P (U) has a compact
proper orbit yielding the existence of a closed subbundle E of P (V') invariant
under the flow. It might be interesting to look at the Morse decomposition
of the flow restricted to E. Of course the intersections with E of the Morse
components P (V;) provides a Morse decomposition for the restricted flow.
But the embedding of E into P (V') can be in such a complicated way so that
it is hard, if feasible, to see what happens to P (V;) N E. Thus it is more
sensible to study the restricted flow intrinsically, according to our set up.
We already encountered examples of this situation above: A linear flow ¢,
on the vector bundle V' — X induces a flow ¢{** on the k-fold exterior product

A"V of V. The bundle P (/\k V) contains as a subbundle the Grassmann

bundle Gry (V'), given by the set of decomposable vectors. The finest Morse
decomposition in Gry (V) was described before, while it is not clear how to

obtain it from decompositions of the flow on the whole P (/\k V).

10.3 Linearized flows

A flow ¢, of diffeomorphisms of an n-dimensional manifold M lifts to a right
invariant flow on the bundle of frames BM by defining (¢,p) — d¢, o p
where p : R* — T, M is a frame in BM. The study of this “linearized” flow
is one of the motivations for considering flows on fiber bundles. Clearly a
flow on BM is a special case of the flow considered above on general vector
bundles. However, there are interesting flows whose symmetry allows to
consider subbundles of BM (geometric structures) and thus flows on bundles
with groups different from Gl (n,R). Our general set up is adapted to an
intrinsic approach to such flows. Below we list some cases.

1. Let M be an orientable manifold endowed with a volume element v.
The bundle BM admits a reduction to the Sl (n, R)-bundle Vol formed
by the frames p : R* — T, M such that p*v is the standard volume
element in R". The lifting of a flow ¢, on M leaves invariant Vol if
¢, t € R, is volume preserving, that is ¢;v = v. Although Vol is a
subbundle of BM, the situation here is not much different from BM
itself, since the Gl (n,R) and Sl (n,R) flag manifolds coincide, and the
actions of Gl (n,R) factor through Sl (n,R). We observe nevertheless
that if M is compact then ¢, is chain recurrent, due to the recurrence
theorem.
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2. Let M be a 2n-dimensional manifold endowed with a symplectic form

w. The symplectic structure defines a reduction of the bundle of frames
to a subbundle Sp C BM composed of the frames p : R*® — T, M such
that p*w = wy where wy is the standard symplectic form on R?":

_ T _ 0 _idnxn
wolu,v) =v" Ju, J = < id.. 0 .

The structure group of the bundle Sp — M is the symplectic group
Sp(n,R) = {g: g¥.Jg = J}, which is a simple Lie group. Its flag mani-
folds are the submanifolds of the general flag manifolds formed by flags
of subspaces of R?" which are Lagrangian with respect to the standard
symplectic form wq (a subspace U is Lagrangian if the restriction of
wp to U is identically zero). Thus the associated flag bundles are built
analogously from subspaces of T, M which are Lagrangian with respect
to w.

Right invariant flows on Sp — M are obtained e.g. by lifting to BM
Hamiltonian vector fields on M. Any such lifting leaves invariant Sp
and thus induces flows on the Lagrangian flag bundles.

There are further examples on manifolds endowed with different ge-
ometric structures. For instance: 1) Flows of isometries of a pseudo-
Riemannian manifold where the structure group is SO(p, ¢). 2) Flows of
holomorphic diffeomorphisms on a complex manifold where the struc-
ture group is Gl (n,C) C Gl (2n,R).
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