S-Convex Fuzzy Processes

Y. CHALCO-CANOM2, M. A. RoJAS-MEDAR?*
IMECC-UNICAMP, CP 6065, 13081-970, Campinas-SP, Brazil.

and

R. OsuNA-GOMEZ®
Departamento de Estadistica e Investigacion Operativa
Facultad de Matematicas, Universidad de Sevilla, Sevilla, 41012, Spain.

Abstract. We introduce the notion of s-convex fuzzy processes. We study their
properties and we give some applications.

1. Introduction

In 1967, Rockafellar [1] introduced the notion of convex processes (see also [2]).
These are set-valued maps whose graphs are closed convex cones. For instance,
they can be see as the set-valued version of a continuous linear operator. Deriva-
tives of some set-valued maps are closed convex processes, which is a desirable
property for a derivative (see [3]). An important property of convex processes is
that it is possible transpose closed convex processes and use the benefits of duality
theory. And as it is well known, these facts are very useful in optimization theory
(see for instance [4], [5], [6], [7], [8])-

The extension of this notion to the fuzzy framework was done by Mattoka
[9]. Recently, Syan, Low and Wu [10] observed that Mattoka definition is very
strict. Therefore, they give other definition that extend the Matloka definition.
In 2000 was introduced by the authors the concept M-convex fuzzy mapping [11],
we observe that 1-convex fuzzy mapping is coincident with definition of convex
process given in [10] (see Theorem 3.4, p. 195 in [10]) for the case m=1.

In 1978, Breckner introduced s-convex functions as a generalization of convex
functions [12], and in 1993 studied the set-valued version [13]. We observe that
convex processes are one particular case of s-convex set-valued maps. Also, in that
one work Breckner proved the fact important that the set-valued map is s-convex

'Ph-D Student, supported by FAPESP-Brazil through Project 00/00055-0.

2e-mail: katary@ime.unicamp.br

3This work was partially supported by CNPq-Brazil through Project 300116/93(RN) and
FAPESP through Project 01/07557-3.

4e-mail marko@ime.unicamp.br

Se-mail: rafaela@us.es



if only if her support function is s-convex function. Other works relationated are
[16], [17], [18].

In this work, we introduce the fuzzy version of the Breckner definition, and
we will call this generalization s-convex fuzzy process. Moreover we will prove the
equivalence with the s-convexity of the fuzzy support function and we study some
properties.

The plan of the paper is as follows. In Section 2, we introduce the notations,
definitions and preliminaries results used throughout the paper. In Section 3
we establish the main results and finally in Section 4 we show some algebraic
properties and the connection with the fuzzy integral mean for fuzzy set-valued
map.

2. Preliminaries

Let R" be denote the n-dimensional Euclidean space. Let s €]0,1] and let f :
R™ — R be a function such that for all « € [0, 1] and for all z,y € R™ the following
inequality holds

f((L=a)z+ay) < (1 —a)f(r)+a’f(y). (2.1)

Theses functions are called s-convex and have been introduced by Breckner
[12], where also it is possible to find examples of s-convex functions.

Let P(R") be denote the set of all nonempty subsets of R, in [13] Breckner
generalized the notion of s-convexity for a set-valued mapping F : R™ — P(R"),
he say that F'is s-convex if the following relation is verified

(1—a)’F(z)+a’F(y) C F((1 —a)x + ay) (2.2)

for all @ € [0,1] and all z,y € R™. We denote by IC(R™) the subset of P(R™)
whose elements are compact nonempty and by IC.(R™) the subset (R™) whose
elements are convex. We recall that if A € JC(R™), the support function (A, ) :
R™ — R is defined as

(A, ) =sup < ¢,a >, Vip € R".
ac€A
It is important to remark that if A, B € K.(R™) then, as a direct consequence
of the separation Hahn-Banach theorem, we obtain: 0(4,-) = o(B,-) & A = B.
The generalization (2.2) is based on the s-convexity of the function o(F(-), ),
that is, F' is s-convex if and only if o(F(+), 1)) is s-convex for all ) € R*. The
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notion of s-convex set-valued mapping was studied by several authors, including
Trif [14].

Now, we will give the extensions of the above results to the fuzzy context. A
fuzzy subset of R” is a function u : R* — [0, 1]. Let F(R™) denote the set of all
nonempty fuzzy sets in R*. A fuzzy set u is called convex [15] if

u(Ayr + (1= A)yz) > min{u(y1), u(y2)},

for all yy,y» € supp (u) ={y / u(y) > 0} and X €]0,1].
We shall define addition and scalar multiplication on F(R™) by the usual
extension principle:

()= sup  minfu(y), o)

a(l) if A£0
(Au)(y) = { xq3(y) if A=0.

We can define an order C on F(R") by setting

and

uCov&suly) <uv(y), Yy eR".

We define the intersection of two fuzzy sets u, v, denoted by u A v, by

(u A v)(y) = min{u(y),v(y)}.

Let u € F(R™). For 0 < o < 1, we denote by [u]* = {y € R* / u(y) > a} the
a-level of u. [u]® = supp (u) = {y € R* / u(y) > 0} is called the support of u.

A fuzzy set u : R* — [0,1] is called fuzzy compact set if [u]* is compact for
all @ € [0,1]. If u € F(R"™) is convex, then [u]® is convex for all « € [0, 1].

We denote by Fo(R") the space of all fuzzy compact convex sets. Given

u,v € Fo(R™), it is satisfied that

(a) uCv & [u]* Cw* Va e l0,1]
(b) [Au]* = A[u]* YA € R, Va €[0,1]

(¢) [u+v]*=[u]*+ [v]* Ya € [0,1].



Any application F' : R™ — Fo(R™) will be call a fuzzy process. For each
a € [0,1] we define the set-valued mapping F,, : R” — K(R") by

Fo(x) = [F(2)]".

For any u € F¢(R™) the support function of u, S(u, (-,-)) : [0,1] x R" — R
is defined as
S(u, (o, ) = o([u]*, ¥).
For the details about support functions see [19].

A fuzzy process ' : R™ — F(R") is called convex if satisfies the following
relation

F((1 = a)z1 + aw)(y) = Jow min{ F(21) (y1), F(22)(y2)},  (2.3)

for all xy, 25, € R™, a €]0,1] and y € R". This notion of convex fuzzy processes
was recently introduced in [10].

Next we introduce the definition of s-convex fuzzy processes. This definition
is a generalization of the notion of s-convexity of a set-valued mapping.

Definition 2.1. Let s €]0,1]. A fuzzy process F : R™ — F(R") is called s-
convex fuzzy process, if for all a €]0,1[ and for all x,y € R™ it satisfies the
condition

(1—a)’F(z)+d°F(y) C F((1 —a)x + ay).
Remark 1. Usually 1-convex fuzzy processes are simply called convex fuzzy pro-

cesses (see [10]).

Example 2.2. Let f : R — R be a s-convex function. Consider F' : R™ — F(R)
defined by
F(2) = Xip@),ls
where x 4 denotes the characteristic function of A.
Since f is s-convex , we have that

[f((L = a)z +ay),00[ 2 [(1 —a)’f(x),00]  +[a’f(y),o0]
for all a €]0,1[ and z,y € R™. Consequently,

F((1-a)r+ay) = Xy((-a)ztay)ool

X{(1—a)* [f(z),00[} T X{a*[f(y),00[}
= (1= @)’ Xif(@) 00l T O°X[f(y)s00]
= (1—a)’F(z)+d°F(y).

U
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Thus, F' is s-convex fuzzy process.

3. Main results

In this Section, we present some properties of a s-convex fuzzy process and we
give two characterizations: the first is using the membership and the second is
given using the concept of support function of a fuzzy set.

Theorem 3.1. Let F : R" — F(R") be a fuzzy process. F is a s-convex fuzzy
process if and only if

Flaz, + (1 —a)x2)(y) > sup min{ F'(z1)(y1), F(z2)(y2)}  (3.1)

y1,y2:a5y1+(1—a)ya=y
for all x1,z5 € R™, a €]0,1] and y € R".

Proof. Suppose that F' is a s-convex fuzzy process. Let x1,x2 € R™, a €]0,1]
and y € R” arbitrary. Then, from the Definition 2.1, from the addition and scalar
multiplication on F(R"), we have that

F(azy + (1 —a)xs)(y)
> (a’F(z1) + (1 —a) F(22))(y)

Y1,y SquIZy =y min{a’F(z1)(y1), (1 — a)*F(z2)(y2) }

= o re (5 e (25))

o min{F (1) (1), F(z2) (1)}

y1,y2:08y1+(1—a)sy2=y

Consequently, (3.1) is satisfied. Reciprocally, let us suppose that (3.1) is sat-
isfied. Then, for all x1, 25 € R™, a €]0,1[ and y € R", we have

Faz, + (1 — a)x2)(y)
sup min{ F'(x1)(y1), F(2)(y2)}

y1,y2:08y1+(1—a)sy2=y

= o re (5 e (2))

= (@ F(m) + (1 - a)'Fr2)) (),

which implies that F' is s-convex.O
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Proposition 3.2. Let F': R™ — F(R™) be a fuzzy process such that
(1) F(x1 + x2) D F(x1) + F(23) Yoy, 25 € R™;
(2) F(az) = a*F(z) Ya > 0, Yz € R™.

Then, F' is a s-convex fuzzy process.

Proof. Let z;,75 € R™, a €]0,1] and y € R™ arbitrary. Then, from the
addition and scalar multiplication on F(R"), and from the conditions (1) and (2),
we have that

F(azy + (1 —a)xs)(y)

> (F(ax)) + F((1— a)zs))(y)
uwp min{F(az1)(y1), F((1 - a)z2)(y2)}
- Z::;nyﬁlf_awy min{F(az)(a’y:), F((1 — a)z2)((1 — a)’y2)}
= i minf(@F() '), (1 - ) F)(( - a)'v)
- M:asylsf(lf_am:ymin{F(:rl)(yl),F(xz)(y2)}.
Consequently,
F(az) + (1 - a)z2)(y) > sup min{ F(z1) (1), F () (12)}

y1,y2:ay1+(1—a)sy2=y

for all z1, 22 € R™, a €]0,1] and y € R” i.e. F satisfies the condition (3.1) of the
Theorem 3.1. Therefore F' is a s-convex fuzzy process.O

Proposition 3.3. A fuzzy process F' : R" — Fo(R") is s-convex if and only if
F, is s-convex for all o € [0, 1].

Proof. Tt is a consequence of (a), (b) and (¢).0

Theorem 3.4. Let F': R" — F¢(R"). F is a s-convex fuzzy process if and only
if S(F(+), (v, ) is s-convex for all (cv,1)).



Proof. Suppose that F' is a s-convex fuzzy process. Let («, 1)) € [0,1] x R™,
x1, 22 € R” and a €]0, 1] arbitrary. Then, from the Proposition 3.3 and properties
of the support function, we have that

S(F(axy + (1 —a)xs), (a, ) = o(Fulaz + (1 — a)s), )
> o(a’Fu(z1) + (1 — a)*Fu(22),9)
= a’0(Fa(71),¥) + (1 — a)’o(Fu(z2),9).

Consequently,
S(F(azy + (1 = a)xz), (@, ¥)) = a’S(F (1), (@, %)) + (1 = a)*S(F(22), (o, ).

Therefore, S(F(-), (o, %)) is s-convex. To prove the converse it is enough to
show that

S(F(azy + (1 — a)xa), (o, ) > S(a*F(x1) + (1 — a)*F(z3), (a, )

for all (o, ¢) € [0, 1] x R™, which is a consequence of the properties of the support
functions of a fuzzy sets.O

4. Applications

In this section, we present some results on operations of s-convex fuzzy processes
and study the s-convexity of fuzzy integral mean.

Definition 4.1. Let Fy, Fy : R™ — F(R") two fuzzy process.

(1) The intersection of Fy and Fy, denoted by Fy N F, : R™ — F(R"), is defined
by

(2) The addition of Fy and F5, denoted by Fy + F, : R™ — F(R"), is defined by

(F1 + FQ)(!L‘) = Fl(ﬂf) + FQ(Q?)

(3) The multiplication by scalar \, denoted by AF; : R™ — F(R"), is defined by

(AF)(2) = A(F(2)).



Proposition 4.2. Let F|, F, : R" — F(R") be two s-convex fuzzy processes.
Then, Fy N F; is a s-convex fuzzy process.

Proof. Let 21,25 € R™, a €]0,1[ and y € R™ arbitrary. Then,
((F1 N Fy)(azy + (1 — a)x2)) (y)
= (Fi(azy + (1 — a)xs) A Fy(axy + (1 — a)xs)) (y)
= min{F(azx; + (1 — a)z3)(y), Fy(azx; + (1 — a)z2)(y)}

1—a)Sy2=y

> min {as +(sup min {Fy (z1)(y1), Fi(22)(y2) },

asy1+(1—a)sys=y
> sup min {min { F1(z1)(y1), F1(22)(y2) }, min {F5(z1) (1), Fo(2) (y2) } }
asy1+(1—a)sys=y

= sup min { F1(21)(y1), F1(22) (42), Fa(21) (1), Fa(22)(y2) }

asy1+(1—a)sy2=y

= sup min {min{ 7\ (z1)(y1), Fo(21)(y1) }, min{ F1 (z2)(y2), F2(22)(y2) } }

aty1+(1—a)sy2=y

= sup min {(F1(z1) A Fa(21))(y1), (Fi(22) A Fa(z2)) (y2) }

ay1+(1—a)sy2=y

= sup min {(F1 N Fy)(21)(y1), (F1 N Fy)(22) (y2) }

ay1+(1—a)sy2=y

sup min {FQ(xl)(yl),Fz(xz)(yz)}}

From the Theorem 3.1 we obtain that F'is a s-convex fuzzy process.O

Proposition 4.3. Let Fy, F> : R™ — F(R"™) be two s-convex fuzzy processes and
A > 0. Then, Fy + \F5 is a s-convex fuzzy process.

Proof. Let 1,7, € R™and a €]0, 1] arbitrary. Then,

(Fy + AFy)(azy + (1 — a)x,)
= Fi(azy + (1 — a)xs) + Ay (azy + (1 — a)z2)
D (a°Fi(x)+ (1 —a)’Fi(x3)) + A (@’ Fa(x1) + (1 — a)’* Fy(22))
= (a°Fi(z1) + a’AFy(21)) + ((1 = a) Fi(22) + (1 — @)’ AFy(x2))
= a’(Fi(z1) + AFy(x1)) + (1 — @)’ (Fi(22) + AFa(22)),
which implies that

(Fy + AFy)(axy + (1 — a)xg) D o’ (Fy + AFy)(x) + (1 — a)’(Fi + AF2)(x2).

8



Therefore, F} + AFy is a s-convex fuzzy process.0

Remark 2. From above proposition, we have that the family of the s-fuzzy con-
vex processes is a cone.

In the following we will study the s-convexity of a fuzzy integral mean of F'.
For definition and properties see [11].

Definition 4.4. [11] Let F : [0,b] — F(R") an integrably bounded f.r.v. Then
the fuzzy mapping My : (0,b] — F(R™) defined by

Mp(z) = %/IF(t)dt Ve e (0,0,

is called the fuzzy integral mean of F.

Remark 3. Observe that takmg t = xs in the previous deﬁnmon the a-level of
Mfp can be written as [Mp(x fo (ws)ds, i.e., Mp(z fo (ws)ds.

Theorem 4.5. Let F : [0,b] - F¢(R") be an integrably bounded fr.v. If F' is
s-convex, then so is Mp.

Proof. Let F be s-convex, x1, 23 € [0,b] and a €]0,1[. Then, using Remark 3
and Proposition 3.3, we obtain

[Mp(az; + (1 —a)xo)]* = /0 F,(azxis + (1 — a)xes)ds
D) /0 (a°Fo(z15) + (1 — a)’F(x2s)) ds

= as/o Fo(x18)ds + (1 — a)s/o F(x9s)ds
= @’ [Mp(21)]" + (1 = a)* [Mp(2:)]"

for all a € [0,1]. Thus, My is s-convex.O
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