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Abstra
t. We introdu
e the notion of s-
onvex fuzzy pro
esses. We study their

properties and we give some appli
ations.

1. Introdu
tion

In 1967, Ro
kafellar [1℄ introdu
ed the notion of 
onvex pro
esses (see also [2℄).

These are set-valued maps whose graphs are 
losed 
onvex 
ones. For instan
e,

they 
an be see as the set-valued version of a 
ontinuous linear operator. Deriva-

tives of some set-valued maps are 
losed 
onvex pro
esses, whi
h is a desirable

property for a derivative (see [3℄). An important property of 
onvex pro
esses is

that it is possible transpose 
losed 
onvex pro
esses and use the bene�ts of duality

theory. And as it is well known, these fa
ts are very useful in optimization theory

(see for instan
e [4℄, [5℄, [6℄, [7℄, [8℄).

The extension of this notion to the fuzzy framework was done by Mat loka

[9℄. Re
ently, Syan, Low and Wu [10℄ observed that Mat loka de�nition is very

stri
t. Therefore, they give other de�nition that extend the Mat loka de�nition.

In 2000 was introdu
ed by the authors the 
on
ept M-
onvex fuzzy mapping [11℄,

we observe that 1-
onvex fuzzy mapping is 
oin
ident with de�nition of 
onvex

pro
ess given in [10℄ (see Theorem 3.4, p. 195 in [10℄) for the 
ase m=1.

In 1978, Bre
kner introdu
ed s-
onvex fun
tions as a generalization of 
onvex

fun
tions [12℄, and in 1993 studied the set-valued version [13℄. We observe that


onvex pro
esses are one parti
ular 
ase of s-
onvex set-valued maps. Also, in that

one work Bre
kner proved the fa
t important that the set-valued map is s-
onvex
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if only if her support fun
tion is s-
onvex fun
tion. Other works relationated are

[16℄, [17℄, [18℄.

In this work, we introdu
e the fuzzy version of the Bre
kner de�nition, and

we will 
all this generalization s-
onvex fuzzy pro
ess. Moreover we will prove the

equivalen
e with the s-
onvexity of the fuzzy support fun
tion and we study some

properties.

The plan of the paper is as follows. In Se
tion 2, we introdu
e the notations,

de�nitions and preliminaries results used throughout the paper. In Se
tion 3

we establish the main results and �nally in Se
tion 4 we show some algebrai


properties and the 
onne
tion with the fuzzy integral mean for fuzzy set-valued

map.

2. Preliminaries

Let R

n

be denote the n-dimensional Eu
lidean spa
e. Let s 2℄0; 1℄ and let f :

R

n

! R be a fun
tion su
h that for all a 2 [0; 1℄ and for all x; y 2 R

n

the following

inequality holds

f((1� a)x + ay) � (1� a)

s

f(x) + a

s

f(y): (2.1)

Theses fun
tions are 
alled s-
onvex and have been introdu
ed by Bre
kner

[12℄, where also it is possible to �nd examples of s-
onvex fun
tions.

Let P (R

n

) be denote the set of all nonempty subsets of R

n

; in [13℄ Bre
kner

generalized the notion of s-
onvexity for a set-valued mapping F : R

m

! P (R

n

),

he say that F is s-
onvex if the following relation is veri�ed

(1� a)

s

F (x) + a

s

F (y) � F ((1� a)x + ay) (2.2)

for all a 2 [0; 1℄ and all x; y 2 R

m

. We denote by K(R

m

) the subset of P (R

m

)

whose elements are 
ompa
t nonempty and by K




(R

m

) the subset K(R

m

) whose

elements are 
onvex. We re
all that if A 2 K(R

m

), the support fun
tion �(A; �) :

R

m

! R is de�ned as

�(A;  ) = sup

a2A

<  ; a >; 8 2 R

m

:

It is important to remark that if A;B 2 K




(R

m

) then, as a dire
t 
onsequen
e

of the separation Hahn-Bana
h theorem, we obtain: �(A; �) = �(B; �) , A = B:

The generalization (2.2) is based on the s-
onvexity of the fun
tion �(F (�);  ),

that is, F is s-
onvex if and only if �(F (�);  ) is s-
onvex for all  2 R

n

. The
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notion of s-
onvex set-valued mapping was studied by several authors, in
luding

Trif [14℄.

Now, we will give the extensions of the above results to the fuzzy 
ontext. A

fuzzy subset of R

n

is a fun
tion u : R

n

! [0; 1℄: Let F(R

n

) denote the set of all

nonempty fuzzy sets in R

n

. A fuzzy set u is 
alled 
onvex [15℄ if

u(�y

1

+ (1� �)y

2

) � minfu(y

1

); u(y

2

)g;

for all y

1

; y

2

2 supp (u) = fy / u(y) > 0g and � 2℄0; 1[.

We shall de�ne addition and s
alar multipli
ation on F(R

n

) by the usual

extension prin
iple:

(u+ v)(y) = sup

y

1

;y

2

:y

1

+y

2

=y

minfu(y

1

); v(y

2

)g

and

(�u)(y) =

�

u(

y

�

) if � 6= 0

�

f0g

(y) if � = 0:

We 
an de�ne an order � on F(R

n

) by setting

u � v , u(y) � v(y); 8y 2 R

n

:

We de�ne the interse
tion of two fuzzy sets u; v, denoted by u ^ v, by

(u ^ v)(y) = minfu(y); v(y)g:

Let u 2 F(R

n

). For 0 < � � 1, we denote by [u℄

�

= fy 2 R

n

/ u(y) � �g the

�-level of u. [u℄

0

= supp (u) = fy 2 R

n

/ u(y) > 0g is 
alled the support of u.

A fuzzy set u : R

n

! [0; 1℄ is 
alled fuzzy 
ompa
t set if [u℄

�

is 
ompa
t for

all � 2 [0; 1℄. If u 2 F(R

n

) is 
onvex, then [u℄

�

is 
onvex for all � 2 [0; 1℄.

We denote by F

C

(R

n

) the spa
e of all fuzzy 
ompa
t 
onvex sets. Given

u; v 2 F

C

(R

n

), it is satis�ed that

(a) u � v , [u℄

�

� [v℄

�

8� 2 [0; 1℄

(b) [�u℄

�

= �[u℄

�

8� 2 R; 8� 2 [0; 1℄

(
) [u+ v℄

�

= [u℄

�

+ [v℄

�

8� 2 [0; 1℄.
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Any appli
ation F : R

m

! F

C

(R

n

) will be 
all a fuzzy pro
ess. For ea
h

� 2 [0; 1℄ we de�ne the set-valued mapping F

�

: R

m

! K(R

n

) by

F

�

(x) = [F (x)℄

�

:

For any u 2 F

C

(R

n

) the support fun
tion of u; S(u; (�; �)) : [0; 1℄ � R

m

! R,

is de�ned as

S(u; (�;  )) = �([u℄

�

;  ):

For the details about support fun
tions see [19℄.

A fuzzy pro
ess F : R

m

! F(R

n

) is 
alled 
onvex if satis�es the following

relation

F ((1� a)x

1

+ ax

2

)(y) � sup

y

1

;y

2

:(1�a)y

1

+ay

2

=y

minfF (x

1

)(y

1

); F (x

2

)(y

2

)g; (2.3)

for all x

1

; x

2

2 R

m

, a 2℄0; 1[ and y 2 R

n

. This notion of 
onvex fuzzy pro
esses

was re
ently introdu
ed in [10℄.

Next we introdu
e the de�nition of s-
onvex fuzzy pro
esses. This de�nition

is a generalization of the notion of s-
onvexity of a set-valued mapping.

De�nition 2.1. Let s 2℄0; 1℄. A fuzzy pro
ess F : R

m

! F(R

n

) is 
alled s-


onvex fuzzy pro
ess, if for all a 2℄0; 1[ and for all x; y 2 R

m

it satis�es the


ondition

(1� a)

s

F (x) + a

s

F (y) � F ((1� a)x + ay):

Remark 1. Usually 1-
onvex fuzzy pro
esses are simply 
alled 
onvex fuzzy pro-


esses (see [10℄).

Example 2.2. Let f : R

m

! R be a s-
onvex fun
tion. Consider F : R

m

! F(R)

de�ned by

F (x) := �

[f(x);1[

;

where �

A

denotes the 
hara
teristi
 fun
tion of A.

Sin
e f is s-
onvex , we have that

[f((1� a)x+ ay);1[ � [(1� a)

s

f(x);1[ +[a

s

f(y);1[

for all a 2℄0; 1[ and x; y 2 R

m

. Consequently,

F ((1� a)x + ay) = �

[f(((1�a)x+ay);1[

� �

f(1�a)

s

[f(x);1[g

+ �

fa

s

[f(y);1[g

= (1� a)

s

�

[f(x);1[

+ a

s

�

[f(y);1℄

= (1� a)

s

F (x) + a

s

F (y):
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Thus, F is s-
onvex fuzzy pro
ess.

3. Main results

In this Se
tion, we present some properties of a s-
onvex fuzzy pro
ess and we

give two 
hara
terizations: the �rst is using the membership and the se
ond is

given using the 
on
ept of support fun
tion of a fuzzy set.

Theorem 3.1. Let F : R

m

! F(R

n

) be a fuzzy pro
ess. F is a s-
onvex fuzzy

pro
ess if and only if

F (ax

1

+ (1� a)x

2

)(y) � sup

y

1

;y

2

:a

s

y

1

+(1�a)

s

y

2

=y

minfF (x

1

)(y

1

); F (x

2

)(y

2

)g (3.1)

for all x

1

; x

2

2 R

m

, a 2℄0; 1[ and y 2 R

n

.

Proof. Suppose that F is a s-
onvex fuzzy pro
ess. Let x

1

; x

2

2 R

m

, a 2℄0; 1[

and y 2 R

n

arbitrary. Then, from the De�nition 2.1, from the addition and s
alar

multipli
ation on F(R

n

); we have that

F (ax

1

+ (1� a)x

2

)(y)

� (a

s

F (x

1

) + (1� a)

s

F (x

2

))(y)

= sup

y

1

;y

2

:y

1

+y

2

=y

minfa

s

F (x

1

)(y

1

); (1� a)

s

F (x

2

)(y

2

)g

= sup

y

1

;y

2

:y

1

+y

2

=y

min

�

F (x

1

)

�

y

1

a

s

�

; F (x

2

)

�

y

2

(1� a)

s

��

= sup

y

1

;y

2

:a

s

y

1

+(1�a)

s

y

2

=y

minfF (x

1

)(y

1

); F (x

2

)(y

2

)g:

Consequently, (3.1) is satis�ed. Re
ipro
ally, let us suppose that (3.1) is sat-

is�ed. Then, for all x

1

; x

2

2 R

m

, a 2℄0; 1[ and y 2 R

n

, we have

F (ax

1

+ (1� a)x

2

)(y)

� sup

y

1

;y

2

:a

s

y

1

+(1�a)

s

y

2

=y

minfF (x

1

)(y

1

); F (x

2

)(y

2

)g

= sup

y

1

;y

2

:y

1

+y

2

=y

min

�

F (x

1

)

�

y

1

a

s

�

; F (x

2

)

�

y

2

(1� a)

s

��

= (a

s

F (x

1

) + (1� a)

s

F (x

2

))(y);

whi
h implies that F is s-
onvex.2
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Proposition 3.2. Let F : R

m

! F(R

n

) be a fuzzy pro
ess su
h that

(1) F (x

1

+ x

2

) � F (x

1

) + F (x

2

) 8x

1

; x

2

2 R

m

;

(2) F (ax) = a

s

F (x) 8a > 0; 8x 2 R

m

.

Then, F is a s-
onvex fuzzy pro
ess.

Proof. Let x

1

; x

2

2 R

m

, a 2℄0; 1[ and y 2 R

n

arbitrary. Then, from the

addition and s
alar multipli
ation on F(R

n

); and from the 
onditions (1) and (2),

we have that

F (ax

1

+ (1� a)x

2

)(y)

� (F (ax

1

) + F ((1� a)x

2

))(y)

= sup

y

1

;y

2

:y

1

+y

2

=y

minfF (ax

1

)(y

1

); F ((1� a)x

2

)(y

2

)g

= sup

y

1

;y

2

:a

s

y

1

+(1�a)

s

y

2

=y

minfF (ax

1

)(a

s

y

1

); F ((1� a)x

2

)((1� a)

s

y

2

)g

= sup

y

1

;y

2

:a

s

y

1

+(1�a)

s

y

2

=y

minf(a

s

F (x

1

))(a

s

y

1

); ((1� a)

s

F (x

2

))((1� a)

s

y

2

)g

= sup

y

1

;y

2

:a

s

y

1

+(1�a)

s

y

2

=y

minfF (x

1

)(y

1

); F (x

2

)(y

2

)g:

Consequently,

F (ax

1

+ (1� a)x

2

)(y) � sup

y

1

;y

2

:a

s

y

1

+(1�a)

s

y

2

=y

minfF (x

1

)(y

1

); F (x

2

)(y

2

)g

for all x

1

; x

2

2 R

m

, a 2℄0; 1[ and y 2 R

n

,i.e. F satis�es the 
ondition (3.1) of the

Theorem 3.1. Therefore F is a s-
onvex fuzzy pro
ess.2

Proposition 3.3. A fuzzy pro
ess F : R

m

! F

C

(R

n

) is s-
onvex if and only if

F

�

is s-
onvex for all � 2 [0; 1℄.

Proof. It is a 
onsequen
e of (a), (b) and (
).2

Theorem 3.4. Let F : R

m

! F

C

(R

n

). F is a s-
onvex fuzzy pro
ess if and only

if S(F (�); (�;  )) is s-
onvex for all (�;  ).
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Proof. Suppose that F is a s-
onvex fuzzy pro
ess. Let (�;  ) 2 [0; 1℄� R

m

,

x

1

; x

2

2 R

n

and a 2℄0; 1[ arbitrary. Then, from the Proposition 3.3 and properties

of the support fun
tion, we have that

S(F (ax

1

+ (1� a)x

2

); (�;  )) = �(F

�

(ax

1

+ (1� a)x

2

);  )

� �(a

s

F

�

(x

1

) + (1� a)

s

F

�

(x

2

);  )

= a

s

�(F

�

(x

1

);  ) + (1� a)

s

�(F

�

(x

2

);  ):

Consequently,

S(F (ax

1

+ (1� a)x

2

); (�;  )) � a

s

S(F (x

1

); (�;  )) + (1� a)

s

S(F (x

2

); (�;  )):

Therefore, S(F (�); (�;  )) is s-
onvex. To prove the 
onverse it is enough to

show that

S(F (ax

1

+ (1� a)x

2

); (�;  )) � S(a

s

F (x

1

) + (1� a)

s

F (x

2

); (�;  ))

for all (�;  ) 2 [0; 1℄�R

n

, whi
h is a 
onsequen
e of the properties of the support

fun
tions of a fuzzy sets.2

4. Appli
ations

In this se
tion, we present some results on operations of s-
onvex fuzzy pro
esses

and study the s-
onvexity of fuzzy integral mean.

De�nition 4.1. Let F

1

; F

2

: R

m

! F(R

n

) two fuzzy pro
ess.

(1) The interse
tion of F

1

and F

2

, denoted by F

1

\ F

2

: R

m

! F(R

n

), is de�ned

by

(F

1

\ F

2

)(x) = F

1

(x) ^ F

2

(x):

(2) The addition of F

1

and F

2

, denoted by F

1

+ F

2

: R

m

! F(R

n

), is de�ned by

(F

1

+ F

2

)(x) = F

1

(x) + F

2

(x):

(3) The multipli
ation by s
alar �; denoted by �F

1

: R

m

! F(R

n

), is de�ned by

(�F )(x) = �(F (x)):
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Proposition 4.2. Let F

1

; F

2

: R

m

! F(R

n

) be two s-
onvex fuzzy pro
esses.

Then, F

1

\ F

2

is a s-
onvex fuzzy pro
ess.

Proof. Let x

1

; x

2

2 R

m

, a 2℄0; 1[ and y 2 R

n

arbitrary. Then,

((F

1

\ F

2

)(ax

1

+ (1� a)x

2

)) (y)

= (F

1

(ax

1

+ (1� a)x

2

) ^ F

2

(ax

1

+ (1� a)x

2

)) (y)

= min fF

1

(ax

1

+ (1� a)x

2

)(y); F

2

(ax

1

+ (1� a)x

2

)(y)g

� min

(

sup

a

s

y

1

+(1�a)

s

y

2

=y

min fF

1

(x

1

)(y

1

); F

1

(x

2

)(y

2

)g ;

sup

a

s

y

1

+(1�a)

s

y

2

=y

min fF

2

(x

1

)(y

1

); F

2

(x

2

)(y

2

)g

)

� sup

a

s

y

1

+(1�a)

s

y

2

=y

min fmin fF

1

(x

1

)(y

1

); F

1

(x

2

)(y

2

)g ;min fF

2

(x

1

)(y

1

); F

2

(x

2

)(y

2

)gg

= sup

a

s

y

1

+(1�a)

s

y

2

=y

min fF

1

(x

1

)(y

1

); F

1

(x

2

)(y

2

); F

2

(x

1

)(y

1

); F

2

(x

2

)(y

2

)g

= sup

a

s

y

1

+(1�a)

s

y

2

=y

min fminfF

1

(x

1

)(y

1

); F

2

(x

1

)(y

1

)g;minfF

1

(x

2

)(y

2

); F

2

(x

2

)(y

2

)gg

= sup

a

s

y

1

+(1�a)

s

y

2

=y

min f(F

1

(x

1

) ^ F

2

(x

1

))(y

1

); (F

1

(x

2

) ^ F

2

(x

2

))(y

2

)g

= sup

a

s

y

1

+(1�a)

s

y

2

=y

min f(F

1

\ F

2

)(x

1

)(y

1

); (F

1

\ F

2

)(x

2

)(y

2

)g

From the Theorem 3.1 we obtain that F is a s-
onvex fuzzy pro
ess.2

Proposition 4.3. Let F

1

; F

2

: R

m

! F(R

n

) be two s-
onvex fuzzy pro
esses and

� � 0. Then, F

1

+ �F

2

is a s-
onvex fuzzy pro
ess.

Proof. Let x

1

; x

2

2 R

m

and a 2℄0; 1[ arbitrary. Then,

(F

1

+ �F

2

)(ax

1

+ (1� a)x

2

)

= F

1

(ax

1

+ (1� a)x

2

) + �F

2

(ax

1

+ (1� a)x

2

)

� (a

s

F

1

(x

1

) + (1� a)

s

F

1

(x

2

)) + � (a

s

F

2

(x

1

) + (1� a)

s

F

2

(x

2

))

= (a

s

F

1

(x

1

) + a

s

�F

2

(x

1

)) + ((1� a)

s

F

1

(x

2

) + (1� a)

s

�F

2

(x

2

))

= a

s

(F

1

(x

1

) + �F

2

(x

1

)) + (1� a)

s

(F

1

(x

2

) + �F

2

(x

2

));

whi
h implies that

(F

1

+ �F

2

)(ax

1

+ (1� a)x

2

) � a

s

(F

1

+ �F

2

)(x

1

) + (1� a)

s

(F

1

+ �F

2

)(x

2

):
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Therefore, F

1

+ �F

2

is a s-
onvex fuzzy pro
ess.2

Remark 2. From above proposition, we have that the family of the s-fuzzy 
on-

vex pro
esses is a 
one.

In the following we will study the s-
onvexity of a fuzzy integral mean of F .

For de�nition and properties see [11℄.

De�nition 4.4. [11℄ Let F : [0; b℄ ! F(R

n

) an integrably bounded f.r.v. Then

the fuzzy mapping M

F

: (0; b℄ ! F(R

n

) de�ned by

M

F

(x) =

1

x

Z

x

0

F (t)dt ; 8x 2 (0; b℄;

is 
alled the fuzzy integral mean of F .

Remark 3. Observe that taking t = xs in the previous de�nition, the �-level of

M

F


an be written as [M

F

(x)℄

�

=

R

1

0

F

�

(xs)ds; i.e., M

F

(x) =

R

1

0

F (xs)ds:

Theorem 4.5. Let F : [0; b℄ ! F

C

(R

n

) be an integrably bounded f.r.v. If F is

s-
onvex, then so is M

F

:

Proof. Let F be s-
onvex, x

1

; x

2

2 [0; b℄ and a 2℄0; 1[. Then, using Remark 3

and Proposition 3.3, we obtain

[M

F

(ax

1

+ (1� a)x

2

)℄

�

=

Z

1

0

F

�

(ax

1

s+ (1� a)x

2

s)ds

�

Z

1

0

(a

s

F

�

(x

1

s) + (1� a)

s

F (x

2

s)) ds

= a

s

Z

1

0

F

�

(x

1

s)ds+ (1� a)

s

Z

1

0

F (x

2

s)ds

= a

s

[M

F

(x

1

)℄

�

+ (1� a)

s

[M

F

(x

2

)℄

�

for all � 2 [0; 1℄. Thus, M

F

is s-
onvex.2
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