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Abstrat. We introdue the notion of s-onvex fuzzy proesses. We study their

properties and we give some appliations.

1. Introdution

In 1967, Rokafellar [1℄ introdued the notion of onvex proesses (see also [2℄).

These are set-valued maps whose graphs are losed onvex ones. For instane,

they an be see as the set-valued version of a ontinuous linear operator. Deriva-

tives of some set-valued maps are losed onvex proesses, whih is a desirable

property for a derivative (see [3℄). An important property of onvex proesses is

that it is possible transpose losed onvex proesses and use the bene�ts of duality

theory. And as it is well known, these fats are very useful in optimization theory

(see for instane [4℄, [5℄, [6℄, [7℄, [8℄).

The extension of this notion to the fuzzy framework was done by Mat loka

[9℄. Reently, Syan, Low and Wu [10℄ observed that Mat loka de�nition is very

strit. Therefore, they give other de�nition that extend the Mat loka de�nition.

In 2000 was introdued by the authors the onept M-onvex fuzzy mapping [11℄,

we observe that 1-onvex fuzzy mapping is oinident with de�nition of onvex

proess given in [10℄ (see Theorem 3.4, p. 195 in [10℄) for the ase m=1.

In 1978, Brekner introdued s-onvex funtions as a generalization of onvex

funtions [12℄, and in 1993 studied the set-valued version [13℄. We observe that

onvex proesses are one partiular ase of s-onvex set-valued maps. Also, in that

one work Brekner proved the fat important that the set-valued map is s-onvex
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if only if her support funtion is s-onvex funtion. Other works relationated are

[16℄, [17℄, [18℄.

In this work, we introdue the fuzzy version of the Brekner de�nition, and

we will all this generalization s-onvex fuzzy proess. Moreover we will prove the

equivalene with the s-onvexity of the fuzzy support funtion and we study some

properties.

The plan of the paper is as follows. In Setion 2, we introdue the notations,

de�nitions and preliminaries results used throughout the paper. In Setion 3

we establish the main results and �nally in Setion 4 we show some algebrai

properties and the onnetion with the fuzzy integral mean for fuzzy set-valued

map.

2. Preliminaries

Let R

n

be denote the n-dimensional Eulidean spae. Let s 2℄0; 1℄ and let f :

R

n

! R be a funtion suh that for all a 2 [0; 1℄ and for all x; y 2 R

n

the following

inequality holds

f((1� a)x + ay) � (1� a)

s

f(x) + a

s

f(y): (2.1)

Theses funtions are alled s-onvex and have been introdued by Brekner

[12℄, where also it is possible to �nd examples of s-onvex funtions.

Let P (R

n

) be denote the set of all nonempty subsets of R

n

; in [13℄ Brekner

generalized the notion of s-onvexity for a set-valued mapping F : R

m

! P (R

n

),

he say that F is s-onvex if the following relation is veri�ed

(1� a)

s

F (x) + a

s

F (y) � F ((1� a)x + ay) (2.2)

for all a 2 [0; 1℄ and all x; y 2 R

m

. We denote by K(R

m

) the subset of P (R

m

)

whose elements are ompat nonempty and by K



(R

m

) the subset K(R

m

) whose

elements are onvex. We reall that if A 2 K(R

m

), the support funtion �(A; �) :

R

m

! R is de�ned as

�(A;  ) = sup

a2A

<  ; a >; 8 2 R

m

:

It is important to remark that if A;B 2 K



(R

m

) then, as a diret onsequene

of the separation Hahn-Banah theorem, we obtain: �(A; �) = �(B; �) , A = B:

The generalization (2.2) is based on the s-onvexity of the funtion �(F (�);  ),

that is, F is s-onvex if and only if �(F (�);  ) is s-onvex for all  2 R

n

. The
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notion of s-onvex set-valued mapping was studied by several authors, inluding

Trif [14℄.

Now, we will give the extensions of the above results to the fuzzy ontext. A

fuzzy subset of R

n

is a funtion u : R

n

! [0; 1℄: Let F(R

n

) denote the set of all

nonempty fuzzy sets in R

n

. A fuzzy set u is alled onvex [15℄ if

u(�y

1

+ (1� �)y

2

) � minfu(y

1

); u(y

2

)g;

for all y

1

; y

2

2 supp (u) = fy / u(y) > 0g and � 2℄0; 1[.

We shall de�ne addition and salar multipliation on F(R

n

) by the usual

extension priniple:

(u+ v)(y) = sup

y

1

;y

2

:y

1

+y

2

=y

minfu(y

1

); v(y

2

)g

and

(�u)(y) =

�

u(

y

�

) if � 6= 0

�

f0g

(y) if � = 0:

We an de�ne an order � on F(R

n

) by setting

u � v , u(y) � v(y); 8y 2 R

n

:

We de�ne the intersetion of two fuzzy sets u; v, denoted by u ^ v, by

(u ^ v)(y) = minfu(y); v(y)g:

Let u 2 F(R

n

). For 0 < � � 1, we denote by [u℄

�

= fy 2 R

n

/ u(y) � �g the

�-level of u. [u℄

0

= supp (u) = fy 2 R

n

/ u(y) > 0g is alled the support of u.

A fuzzy set u : R

n

! [0; 1℄ is alled fuzzy ompat set if [u℄

�

is ompat for

all � 2 [0; 1℄. If u 2 F(R

n

) is onvex, then [u℄

�

is onvex for all � 2 [0; 1℄.

We denote by F

C

(R

n

) the spae of all fuzzy ompat onvex sets. Given

u; v 2 F

C

(R

n

), it is satis�ed that

(a) u � v , [u℄

�

� [v℄

�

8� 2 [0; 1℄

(b) [�u℄

�

= �[u℄

�

8� 2 R; 8� 2 [0; 1℄

() [u+ v℄

�

= [u℄

�

+ [v℄

�

8� 2 [0; 1℄.
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Any appliation F : R

m

! F

C

(R

n

) will be all a fuzzy proess. For eah

� 2 [0; 1℄ we de�ne the set-valued mapping F

�

: R

m

! K(R

n

) by

F

�

(x) = [F (x)℄

�

:

For any u 2 F

C

(R

n

) the support funtion of u; S(u; (�; �)) : [0; 1℄ � R

m

! R,

is de�ned as

S(u; (�;  )) = �([u℄

�

;  ):

For the details about support funtions see [19℄.

A fuzzy proess F : R

m

! F(R

n

) is alled onvex if satis�es the following

relation

F ((1� a)x

1

+ ax

2

)(y) � sup

y

1

;y

2

:(1�a)y

1

+ay

2

=y

minfF (x

1

)(y

1

); F (x

2

)(y

2

)g; (2.3)

for all x

1

; x

2

2 R

m

, a 2℄0; 1[ and y 2 R

n

. This notion of onvex fuzzy proesses

was reently introdued in [10℄.

Next we introdue the de�nition of s-onvex fuzzy proesses. This de�nition

is a generalization of the notion of s-onvexity of a set-valued mapping.

De�nition 2.1. Let s 2℄0; 1℄. A fuzzy proess F : R

m

! F(R

n

) is alled s-

onvex fuzzy proess, if for all a 2℄0; 1[ and for all x; y 2 R

m

it satis�es the

ondition

(1� a)

s

F (x) + a

s

F (y) � F ((1� a)x + ay):

Remark 1. Usually 1-onvex fuzzy proesses are simply alled onvex fuzzy pro-

esses (see [10℄).

Example 2.2. Let f : R

m

! R be a s-onvex funtion. Consider F : R

m

! F(R)

de�ned by

F (x) := �

[f(x);1[

;

where �

A

denotes the harateristi funtion of A.

Sine f is s-onvex , we have that

[f((1� a)x+ ay);1[ � [(1� a)

s

f(x);1[ +[a

s

f(y);1[

for all a 2℄0; 1[ and x; y 2 R

m

. Consequently,

F ((1� a)x + ay) = �

[f(((1�a)x+ay);1[

� �

f(1�a)

s

[f(x);1[g

+ �

fa

s

[f(y);1[g

= (1� a)

s

�

[f(x);1[

+ a

s

�

[f(y);1℄

= (1� a)

s

F (x) + a

s

F (y):
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Thus, F is s-onvex fuzzy proess.

3. Main results

In this Setion, we present some properties of a s-onvex fuzzy proess and we

give two haraterizations: the �rst is using the membership and the seond is

given using the onept of support funtion of a fuzzy set.

Theorem 3.1. Let F : R

m

! F(R

n

) be a fuzzy proess. F is a s-onvex fuzzy

proess if and only if

F (ax

1

+ (1� a)x

2

)(y) � sup

y

1

;y

2

:a

s

y

1

+(1�a)

s

y

2

=y

minfF (x

1

)(y

1

); F (x

2

)(y

2

)g (3.1)

for all x

1

; x

2

2 R

m

, a 2℄0; 1[ and y 2 R

n

.

Proof. Suppose that F is a s-onvex fuzzy proess. Let x

1

; x

2

2 R

m

, a 2℄0; 1[

and y 2 R

n

arbitrary. Then, from the De�nition 2.1, from the addition and salar

multipliation on F(R

n

); we have that

F (ax

1

+ (1� a)x

2

)(y)

� (a

s

F (x

1

) + (1� a)

s

F (x

2

))(y)

= sup

y

1

;y

2

:y

1

+y

2

=y

minfa

s

F (x

1

)(y

1

); (1� a)

s

F (x

2

)(y

2

)g

= sup

y

1

;y

2

:y

1

+y

2

=y

min

�

F (x

1

)

�

y

1

a

s

�

; F (x

2

)

�

y

2

(1� a)

s

��

= sup

y

1

;y

2

:a

s

y

1

+(1�a)

s

y

2

=y

minfF (x

1

)(y

1

); F (x

2

)(y

2

)g:

Consequently, (3.1) is satis�ed. Reiproally, let us suppose that (3.1) is sat-

is�ed. Then, for all x

1

; x

2

2 R

m

, a 2℄0; 1[ and y 2 R

n

, we have

F (ax

1

+ (1� a)x

2

)(y)

� sup

y

1

;y

2

:a

s

y

1

+(1�a)

s

y

2

=y

minfF (x

1

)(y

1

); F (x

2

)(y

2

)g

= sup

y

1

;y

2

:y

1

+y

2

=y

min

�

F (x

1

)

�

y

1

a

s

�

; F (x

2

)

�

y

2

(1� a)

s

��

= (a

s

F (x

1

) + (1� a)

s

F (x

2

))(y);

whih implies that F is s-onvex.2
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Proposition 3.2. Let F : R

m

! F(R

n

) be a fuzzy proess suh that

(1) F (x

1

+ x

2

) � F (x

1

) + F (x

2

) 8x

1

; x

2

2 R

m

;

(2) F (ax) = a

s

F (x) 8a > 0; 8x 2 R

m

.

Then, F is a s-onvex fuzzy proess.

Proof. Let x

1

; x

2

2 R

m

, a 2℄0; 1[ and y 2 R

n

arbitrary. Then, from the

addition and salar multipliation on F(R

n

); and from the onditions (1) and (2),

we have that

F (ax

1

+ (1� a)x

2

)(y)

� (F (ax

1

) + F ((1� a)x

2

))(y)

= sup

y

1

;y

2

:y

1

+y

2

=y

minfF (ax

1

)(y

1

); F ((1� a)x

2

)(y

2

)g

= sup

y

1

;y

2

:a

s

y

1

+(1�a)

s

y

2

=y

minfF (ax

1

)(a

s

y

1

); F ((1� a)x

2

)((1� a)

s

y

2

)g

= sup

y

1

;y

2

:a

s

y

1

+(1�a)

s

y

2

=y

minf(a

s

F (x

1

))(a

s

y

1

); ((1� a)

s

F (x

2

))((1� a)

s

y

2

)g

= sup

y

1

;y

2

:a

s

y

1

+(1�a)

s

y

2

=y

minfF (x

1

)(y

1

); F (x

2

)(y

2

)g:

Consequently,

F (ax

1

+ (1� a)x

2

)(y) � sup

y

1

;y

2

:a

s

y

1

+(1�a)

s

y

2

=y

minfF (x

1

)(y

1

); F (x

2

)(y

2

)g

for all x

1

; x

2

2 R

m

, a 2℄0; 1[ and y 2 R

n

,i.e. F satis�es the ondition (3.1) of the

Theorem 3.1. Therefore F is a s-onvex fuzzy proess.2

Proposition 3.3. A fuzzy proess F : R

m

! F

C

(R

n

) is s-onvex if and only if

F

�

is s-onvex for all � 2 [0; 1℄.

Proof. It is a onsequene of (a), (b) and ().2

Theorem 3.4. Let F : R

m

! F

C

(R

n

). F is a s-onvex fuzzy proess if and only

if S(F (�); (�;  )) is s-onvex for all (�;  ).
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Proof. Suppose that F is a s-onvex fuzzy proess. Let (�;  ) 2 [0; 1℄� R

m

,

x

1

; x

2

2 R

n

and a 2℄0; 1[ arbitrary. Then, from the Proposition 3.3 and properties

of the support funtion, we have that

S(F (ax

1

+ (1� a)x

2

); (�;  )) = �(F

�

(ax

1

+ (1� a)x

2

);  )

� �(a

s

F

�

(x

1

) + (1� a)

s

F

�

(x

2

);  )

= a

s

�(F

�

(x

1

);  ) + (1� a)

s

�(F

�

(x

2

);  ):

Consequently,

S(F (ax

1

+ (1� a)x

2

); (�;  )) � a

s

S(F (x

1

); (�;  )) + (1� a)

s

S(F (x

2

); (�;  )):

Therefore, S(F (�); (�;  )) is s-onvex. To prove the onverse it is enough to

show that

S(F (ax

1

+ (1� a)x

2

); (�;  )) � S(a

s

F (x

1

) + (1� a)

s

F (x

2

); (�;  ))

for all (�;  ) 2 [0; 1℄�R

n

, whih is a onsequene of the properties of the support

funtions of a fuzzy sets.2

4. Appliations

In this setion, we present some results on operations of s-onvex fuzzy proesses

and study the s-onvexity of fuzzy integral mean.

De�nition 4.1. Let F

1

; F

2

: R

m

! F(R

n

) two fuzzy proess.

(1) The intersetion of F

1

and F

2

, denoted by F

1

\ F

2

: R

m

! F(R

n

), is de�ned

by

(F

1

\ F

2

)(x) = F

1

(x) ^ F

2

(x):

(2) The addition of F

1

and F

2

, denoted by F

1

+ F

2

: R

m

! F(R

n

), is de�ned by

(F

1

+ F

2

)(x) = F

1

(x) + F

2

(x):

(3) The multipliation by salar �; denoted by �F

1

: R

m

! F(R

n

), is de�ned by

(�F )(x) = �(F (x)):

7



Proposition 4.2. Let F

1

; F

2

: R

m

! F(R

n

) be two s-onvex fuzzy proesses.

Then, F

1

\ F

2

is a s-onvex fuzzy proess.

Proof. Let x

1

; x

2

2 R

m

, a 2℄0; 1[ and y 2 R

n

arbitrary. Then,

((F

1

\ F

2

)(ax

1

+ (1� a)x

2

)) (y)

= (F

1

(ax

1

+ (1� a)x

2

) ^ F

2

(ax

1

+ (1� a)x

2

)) (y)

= min fF

1

(ax

1

+ (1� a)x

2

)(y); F

2

(ax

1

+ (1� a)x

2

)(y)g

� min

(

sup

a

s

y

1

+(1�a)

s

y

2

=y

min fF

1

(x

1

)(y

1

); F

1

(x

2

)(y

2

)g ;

sup

a

s

y

1

+(1�a)

s

y

2

=y

min fF

2

(x

1

)(y

1

); F

2

(x

2

)(y

2

)g

)

� sup

a

s

y

1

+(1�a)

s

y

2

=y

min fmin fF

1

(x

1

)(y

1

); F

1

(x

2

)(y

2

)g ;min fF

2

(x

1

)(y

1

); F

2

(x

2

)(y

2

)gg

= sup

a

s

y

1

+(1�a)

s

y

2

=y

min fF

1

(x

1

)(y

1

); F

1

(x

2

)(y

2

); F

2

(x

1

)(y

1

); F

2

(x

2

)(y

2

)g

= sup

a

s

y

1

+(1�a)

s

y

2

=y

min fminfF

1

(x

1

)(y

1

); F

2

(x

1

)(y

1

)g;minfF

1

(x

2

)(y

2

); F

2

(x

2

)(y

2

)gg

= sup

a

s

y

1

+(1�a)

s

y

2

=y

min f(F

1

(x

1

) ^ F

2

(x

1

))(y

1

); (F

1

(x

2

) ^ F

2

(x

2

))(y

2

)g

= sup

a

s

y

1

+(1�a)

s

y

2

=y

min f(F

1

\ F

2

)(x

1

)(y

1

); (F

1

\ F

2

)(x

2

)(y

2

)g

From the Theorem 3.1 we obtain that F is a s-onvex fuzzy proess.2

Proposition 4.3. Let F

1

; F

2

: R

m

! F(R

n

) be two s-onvex fuzzy proesses and

� � 0. Then, F

1

+ �F

2

is a s-onvex fuzzy proess.

Proof. Let x

1

; x

2

2 R

m

and a 2℄0; 1[ arbitrary. Then,

(F

1

+ �F

2

)(ax

1

+ (1� a)x

2

)

= F

1

(ax

1

+ (1� a)x

2

) + �F

2

(ax

1

+ (1� a)x

2

)

� (a

s

F

1

(x

1

) + (1� a)

s

F

1

(x

2

)) + � (a

s

F

2

(x

1

) + (1� a)

s

F

2

(x

2

))

= (a

s

F

1

(x

1

) + a

s

�F

2

(x

1

)) + ((1� a)

s

F

1

(x

2

) + (1� a)

s

�F

2

(x

2

))

= a

s

(F

1

(x

1

) + �F

2

(x

1

)) + (1� a)

s

(F

1

(x

2

) + �F

2

(x

2

));

whih implies that

(F

1

+ �F

2

)(ax

1

+ (1� a)x

2

) � a

s

(F

1

+ �F

2

)(x

1

) + (1� a)

s

(F

1

+ �F

2

)(x

2

):
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Therefore, F

1

+ �F

2

is a s-onvex fuzzy proess.2

Remark 2. From above proposition, we have that the family of the s-fuzzy on-

vex proesses is a one.

In the following we will study the s-onvexity of a fuzzy integral mean of F .

For de�nition and properties see [11℄.

De�nition 4.4. [11℄ Let F : [0; b℄ ! F(R

n

) an integrably bounded f.r.v. Then

the fuzzy mapping M

F

: (0; b℄ ! F(R

n

) de�ned by

M

F

(x) =

1

x

Z

x

0

F (t)dt ; 8x 2 (0; b℄;

is alled the fuzzy integral mean of F .

Remark 3. Observe that taking t = xs in the previous de�nition, the �-level of

M

F

an be written as [M

F

(x)℄

�

=

R

1

0

F

�

(xs)ds; i.e., M

F

(x) =

R

1

0

F (xs)ds:

Theorem 4.5. Let F : [0; b℄ ! F

C

(R

n

) be an integrably bounded f.r.v. If F is

s-onvex, then so is M

F

:

Proof. Let F be s-onvex, x

1

; x

2

2 [0; b℄ and a 2℄0; 1[. Then, using Remark 3

and Proposition 3.3, we obtain

[M

F

(ax

1

+ (1� a)x

2

)℄

�

=

Z

1

0

F

�

(ax

1

s+ (1� a)x

2

s)ds

�

Z

1

0

(a

s

F

�

(x

1

s) + (1� a)

s

F (x

2

s)) ds

= a

s

Z

1

0

F

�

(x

1

s)ds+ (1� a)

s

Z

1

0

F (x

2

s)ds

= a

s

[M

F

(x

1

)℄

�

+ (1� a)

s

[M

F

(x

2

)℄

�

for all � 2 [0; 1℄. Thus, M

F

is s-onvex.2
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