
ALMOST SUMMING MAPPINGS

DANIEL PELLEGRINO

Abstra
t. We introdu
e a general de�nition of almost p-summing mappings

and give several 
on
rete examples of su
h mappings. Some known results are


onsiderably generalized and we present various situations in whi
h the spa
e

of almost p-summing multilinear mappings 
oin
ides with the whole spa
e of


ontinuous multilinear mappings.

1. Introdu
tion

The rapid development of the theory of absolutely summing linear mappings has

lead to the study of innumerous new 
lasses of multilinear mappings and polynomi-

als between Bana
h spa
es (see [10℄,[7℄,[3℄,[1℄). Re
ently, Botelho [3℄ and Botelho-

Braunss-Junek [2℄ introdu
ed the 
on
ept of almost p-summing multilinear map-

pings and gave the �rst examples and properties of su
h mappings. The re
ent work

of Matos [8℄, 
on
erning absolutely summing arbitrary mappings, turns natural to

ask whether it is possible to follow the same line of thought with almost p-summing

mappings. In this paper we will present a more general de�nition of almost p-

summing mappings, several examples and a natural version of a Dvoretzky-Rogers

Theorem for this kind of appli
ations. It will be shown that almost p-summing

multilinear mappings are mu
h more 
ommon than it was known until now. For

example, we prove that every 
ontinuous n-linear mapping from C(K)� :::�C(K)

into a Bana
h spa
e F is almost 2-summing, generalizing a re
ent result obtained

in [2℄. This paper also analyzes the 
onne
tions of almost p-summing mappings and

type/
otype and provides various examples of analyti
 almost p-summing mappings.

2. Absolutely summing mappings

Throughout this paper E;E

1

; :::; E

n

; F will stand for Bana
h spa
es. For p 2

[1;1[; the linear spa
e of all sequen
es (x

j

)

1

j=1

in E su
h that

k(x

j

)

1

j=1

k

p

= (

1

X

j=1

kx

j

k

p

)

1

p

<1

will be denoted by l

p

(E): We will denote by l

w

p

(E) the linear subspa
e of l

p

(E)

formed by the sequen
es (x

j

)

1

j=1

in E su
h that (< '; x

j

>)

1

j=1

2 l

p

(K ); for every


ontinuous linear fun
tional ' : E ! K : We also de�ne k:k

w;p

in l

w

p

(E) by

k(x

j

)

1

j=1

k

w;p

:= sup

'2B

E

0

(

1

X

j=1

j< '; x

j

>j

p

)

1

p

:
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The linear subspa
e of l

w

p

(E) of all sequen
es (x

j

)

1

j=1

2 l

w

p

(E); su
h that

lim

m!1

k(x

j

)

1

j=m

k

w;p

= 0

will be denoted by l

u

p

(E). The sequen
es in l

u

p

(E) are 
alled un
onditionally p-

summable.

The multilinear theory of absolutely summing mappings was �rst sket
hed by

Piets
h in [14℄ and has been broadly explored (see [11℄, [10℄, [6℄). The next de�nition


an be found in [10℄.

De�nition 1. A multilinear mapping T : E

1

�:::�E

n

! F is absolutely (p; q

1

; :::; q

n

)-

summing if

(T (x

(1)

j

; :::; x

(n)

j

))

1

j=1

2 l

p

(F )

for every (x

(s)

j

)

1

j=1

2 l

w

q

s

(E), s = 1; :::; n: An n-homogeneous polynomial P : E ! F

is absolutely (p; q)-summing if

(P (x

j

))

1

j=1

2 l

p

(F )

whenever (x

j

)

1

j=1

2 l

w

q

(E):

It is worth observing that, in De�nition 1, there is no di�eren
e if we 
onsider

l

u

q

s

(E) (l

u

q

(E)) instead of l

w

q

s

(E) (l

w

q

(E)) (see [10, Proposition 2.4℄ for polynomials,

and the multilinear 
ase is analogous).

The following well known 
hara
terization 
an be found in [4, Theorem 1.2(ii)℄,

and is sometimes useful.

Theorem 1. Let T : E

1

� ::: � E

n

! F be a multilinear mapping. The following

statements are equivalent:

(1) T is absolutely (p; q

1

; :::; q

n

)-summing.

(2) There exists L > 0 su
h that for every natural k and any x

(l)

j

2 E

l

;

(2.1) (

k

X

j=1

kT (x

(1)

j

; :::; x

(n)

j

)k

p

)

1

p

� Lk(x

(1)

j

)

k

j=1

k

w;q

1

:::k(x

(n)

j

)

k

j=1

k

w;q

n

:

The least L > 0 for whi
h inequality (2.1) always holds de�nes a norm for

the spa
e of absolutely (p; q

1

; :::; q

n

)-summing multilinear mappings. This norm

will be denoted by k:k

as(p;q)

: A 
hara
terization for n-homogeneous polynomials is

analogous.

Inspired on the work of Matos [9℄, we introdu
e the following 
on
ept, whi
h

generalizes De�nition 1, as we will see later.

De�nition 2. An arbitrary mapping f :E ! F is absolutely (p; q)-summing at a if

there exist M

a

> 0; Æ

a

> 0 and r

a

> 0 so that

k

X

j=1

kf(a + x

j

)� f(a)k

p

�M

a

k(x

j

)

k

j=1

k

r

a

w;q

for all k and k(x

j

)

k

j=1

k

w;q

< Æ

a

:

Theorem 2. If F has 
otype q, E is an L

1;�

spa
e and f : E ! F is analyti
 at

a, then f is absolutely (q; 2)-summing at a.
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Proof. Sin
e f is analyti
 at a, there are C � 0 and 
 > 0 su
h that

k

1

k!

^

d

k

f(a)k � C


k

for every k:

A re
ent result of D. Perez (see [13℄) states that whenever ea
h E

j

is an L

1;�

j

spa
e, every 
ontinuous n-linear (n � 2) mapping T , from E

1

� :::�E

n

into K ; is

absolutely (1; 2; :::; 2)-summing and

(2.2) kTk

as(1;2;:::;2)

� K

G

3

n�2

2

kTk

n

Y

j=1

�

j

:

Using the polynomial version of this result, it is not hard to prove that (see

[12, Theorem 4℄) whenever F has �nite 
otype q, every bounded n-homogeneous

(n � 2) polynomial P : E ! F is absolutely (q; 2)-summing and kPk

as(q;2)

�

C

q

(F )K

G

3

n�2

2

kPk�

n

; where C

q

(F ) and K

G

are the 
otype's 
onstant of F and

Grothendie
k's 
onstant, respe
tively.

For n = 1, we still have L(E;F ) = L

as(q;2)

(E;F ); whi
h is a parti
ular 
ase of a

result due to Dubinsky-Pe l
zy�nski-Rosenthal (
ase q = 2) and Maurey (
ase q > 2)

(see [5, Theorem 11.14 (a) and (b) ℄). So, for every natural n, there exist positive

D and D

1

so that

k

1

k!

^

d

k

f(a)k

as(q;2)

� D

1

D

k

k

1

k!

^

d

k

f(a)k:

Hen
e, if Æ

a

is the radius of 
onvergen
e of f around a, then, whenever (x

j

)

m

j=1

is

su
h that k(x

j

)

m

j=1

k

w;1

� minf

1

2D

; Æ

a

g; we have

(

m

X

j=1

kf(a + x

j

)� f(a)k

q

)

1

q

=

m

X

j=1

(k

1

X

k=1

1

k!

^

d

k

f(a)(x

j

)k

q

)

1

q

�

1

X

k=1

[

m

X

j=1

k

1

k!

^

d

k

f(a)(x

j

)k

q

℄

1

q

�

1

X

k=1

k

1

k!

^

d

k

f(a)k

as(q;2)

k(x

j

)

m

j=1

k

k

w;2

� D

1

k(x

j

)

m

j=1

k

w;2

1

X

k=1

D

k

2

k�1

D

k�1

= 2DD

1

k(x

j

)

m

j=1

k

w;2

:

�

Several other results 
on
erning absolutely summing analyti
 mappings 
an be

found in [6℄ and [12℄.

Proposition 1. If f : E ! F is absolutely (p; q)-summing at a, then f is so that

(f(a + x

j

)� f(a))

1

j=1

2 l

p

(F ) whenever (x

j

)

1

j=1

is un
onditionally q-summable.

Proof. Let f be (p; q)-summing at a. For any (x

j

)

1

j=1

2 l

u

p

(E), we have

lim

k;m!1

(

m

X

j=k

kf((a + x

j

)� f(a)k

p

)

1

p

� lim

k;m!1

C

a

k(x

j

)

m

j=k

k

r

a

w;p

= 0

and, by the 
ompleteness of l

p

(F ); we obtain (f(a + x

j

)� f(a))

1

j=1

2 l

p

(F ).�

An immediate out
ome of Proposition 1 is that De�nition 2 applied for n-

homogeneous polynomials and the usual de�nition of absolutely (p; q)-summing
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polynomials 
oin
ides at a = 0. In order to prove that De�nition 2 for n-linear

mappings a
tually generalizes the standard de�nition (De�nition 1) of absolutely

(p; q

1

; :::; q

n

)-summing multilinear mappings for q

1

= ::: = q

n

= q, we need the

following Lemma, whi
h is a simple 
onsequen
e of the Open Mapping Theorem.

Lemma 1. l

u

q

(E

1

� :::�E

n

) is isomorphi
 to l

u

q

(E

1

)� ::::� l

u

q

(E

n

):

Proposition 2. An n-linear mapping T is (p; q; :::; q)-summing in the usual sense

if, and only if, it is absolutely (p; q)-summing at the origin in the sense of De�nition

2.

Proof. Consider an absolutely (p; q)-summing (in the sense of De�nition 2, at

the origin) n-linear mapping, T : E

1

� ::: � E

n

! F . Then, given (x

(1)

j

)

1

j=1

2

l

u

q

(E

1

); ::::; (x

(n)

j

)

1

j=1

2 l

u

q

(E

n

); we have (x

(1)

j

; :::; x

(n)

j

)

1

j=1

2 l

u

q

(E

1

�::::�E

n

): Hen
e,

by Proposition 1, (T (x

(1)

j

; ::::; x

(n)

j

))

1

j=1

2 l

p

(F ): Thus, by the usual de�nition, it

follows that T is absolutely (p; q; :::; q)-summing .

Conversely, 
onsider an absolutely (p; q; :::; q)-summing n-linear mapping T in

the usual meaning. Then, if x

(l)

1

; :::; x

(l)

k

2 E

l

; l = 1; :::; n; we have

(

k

X

j=1

k(T (x

(1)

j

; :::; x

(n)

j

)k

p

)

1

p

� Ck(x

(1)

j

)

k

j=1

k

w;q

::::k(x

(n)

j

)

k

j=1

k

w;q

:

Therefore, sin
e l

u

q

(E

1

� ::::�E

n

) is isomorphi
 to l

u

q

(E

1

)� ::::� l

u

q

(E

n

); it follows

that there exists C

1

> 0 so that, for every k,

k(x

(1)

j

; :::; x

(n)

j

)

k

j=1

k

w;q

� C

1

(k(x

(1)

j

)

k

j=1

k

w;q

+ ::: + k(x

(n)

j

)

k

j=1

k

w;q

)

and

k(x

(1)

j

; :::; x

(n)

j

)

k

j=1

k

n

w;q

� C

n

1

(k(x

(1)

j

)

k

j=1

k

w;q

+ ::: + k(x

(n)

j

)

k

j=1

k

w;q

)

n

� C

n

1

(k(x

(1)

j

)

k

j=1

k

w;q

:::k(x

(n)

j

)

k

j=1

k

w;q

)

�

C

n

1

C

(

k

X

j=1

k(T (x

(1)

j

; :::; x

(n)

j

)k

p

)

1

p

and so T is absolutely (p; q)-summing in the sense of De�nition 2. �

3. Almost summing mappings

Considering the Radema
her fun
tions (r

j

(t))

1

j=1

; we say that the sequen
e

(x

j

)

1

j=1

of points of E is almost un
onditionally summable if

1

P

j=1

r

j

(t)x

j

2 L

p

([0; 1℄; E)

for some; and then for all p, 0 < p <1:

De�nition 3. (Botelho [3℄) An n-linear mapping T : E

1

� :::�E

n

! F is said to

be almost (p

1

; :::; p

n

)-summing if there exists C � 0 su
h that

(

1

Z

0

k

k

X

j=1

T (x

(1)

j

; :::; x

(n)

j

)r

j

(t)k

2

dt)

1

2

� Ck(x

(1)

j

)

k

j=1

k

w;p

1

:::k(x

(n)

j

)

k

j=1

k

w;p

n

for every k and any x

(l)

j

in E

l

; l = 1; :::; n and j = 1; :::; k: An n-homogeneous poly-

nomial P : E ! F is said almost p-summing when

_

P is almost (p; :::; p)-summing.

The spa
e of all almost p-summing polynomials is denoted by P

al;p

(

n

E;F ):
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Theorem 3. ([2, Theorem 3.3℄)For 1 � p � 2n and P 2 P

al;p

(

n

E;F ); the following

properties are equivalent:

(i) P is almost p-summing.

(ii) P maps un
onditionally p-summable sequen
es in E into almost un
ondi-

tionally summable sequen
es in F .

The following de�nition is a natural generalization of De�nition 3 and allows us

to give examples of analyti
 almost p-summing mappings.

De�nition 4. A mapping f : E ! F is said to be almost p-summing at a 2 E if

there exist C

a

> 0, �

a

> 0 and r

a

> 0 su
h that

(

1

Z

0

k

k

X

j=1

(f(a + x

j

)� f(a))r

j

(t)k

2

dt)

1

2

� C

a

k(x

j

)

k

j=1

k

r

a

w;p

for every natural k, any x

1

; :::; x

k

in E and k(x

j

)

k

j=1

k

w;p

< �

a

: If f is almost p-

summing at every a 2 E, we say that f is almost p-summing everywhere:

It is worth observing that if f is almost p-summing at a, then f is 
ontinuous

at a: The spa
e of all polynomials from E into F whi
h are almost p-summing

everywhere will be denoted by P

al;p(E)

(

n

E;F ):

Proposition 3. If f : E ! F is almost p-summing at a, then f is so that

(f(a+ x

j

)� f(a))

1

j=1

is almost un
onditionally summable whenever (x

j

)

1

j=1

is un-


onditionally p-summable.

Proof. Analogous to the proof of Proposition 1.

An immediate out
ome of Theorem 3 and Proposition 3 is that De�nitions 4 and

3 
oin
ides for n-homogeneous polynomials and a = 0. The proof that De�nition 4,

for a = 0; generalizes De�nition 3, for multilinear mappings and p

1

= ::: = p

n

= p,

is similar to the proof of Proposition 2.

Proposition 4. If P 2 P(

n

E;F ), then P 2 P

al;p(E)

(

n

E;F ) ,

_

P 2 L

al;p(E)

(

n

E;F ):

Proof. Suppose that P 2 P

al;p(E)

(

n

E;F ): Then, by the polarization formula,

_

P (a

1

+ x

(1)

j

; :::; a

n

+ x

(n)

j

)�

_

P (a

1

; :::; a

n

) =

= [

1

n!2

n

X

e

i

=1;�1

e

1

:::e

n

P (e

1

(a

1

+ x

(1)

j

) + ::: + e

n

(a

n

+ x

(n)

j

)℄�

� [

1

n!2

n

X

e

i

=1;�1

e

1

:::e

n

P (e

1

a

1

+ ::: + e

n

a

n

)℄

=

1

n!2

n

X

e

i

=1;�1

e

1

:::e

n

[P ((e

1

a

1

+ ::: + e

n

a

n

) + (e

1

x

(1)

j

+ ::: + e

n

x

(n)

j

))�

� P (e

1

a

1

+ ::: + e

n

a

n

)℄:

For any (x

(1)

j

)

k

j=1

; :::; (x

(n)

j

)

k

j=1

, in order to simplify notation, we will write

A = (

1

Z

0

k

k

X

j=1

(

_

P (a

1

+ x

(1)

j

; :::; a

n

+ x

(n)

j

)�

_

P (a

1

; :::; a

n

))r

j

(t)k

2

dt)

1

2

:
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Lemma 1 asserts that there exists D > 0 so that

(k(x

(1)

j

)

k

j=1

k

w;p

+ ::: + k(x

(n)

j

)

k

j=1

k

w;p

) � Dk(x

(1)

j

; :::; x

(n)

j

)

k

j=1

k

w;p

for every k: Now suppose

k(x

(1)

j

; :::; x

(n)

j

)

k

j=1

k

w;p

<

1

D

min

e

i

=�1;1

f1; �

e

1

a

1

+:::+e

n

a

n

g;

where the �

e

1

a

1

+:::+e

n

a

n

are given by De�nition 4 applied to P . Then, for any 
hoi
e

of �1 and 1 for e

j

; we have

k(e

1

x

(1)

j

+ ::: + e

n

x

(n)

j

)

k

j=1

k

w;p

< min

e

i

=�1;1

f1; �

e

1

a

1

+:::+e

n

a

n

g:

Therefore,

A = (

1

Z

0

k

k

X

j=1

1

n!2

n

X

e

i

=1;�1

e

1

:::e

n

[P ((e

1

a

1

+ :::e

n

a

n

) + (e

1

x

(1)

j

+ ::: + e

n

x

(n)

j

))�

� P (e

1

a

1

+ ::: + e

n

a

n

)℄r

j

(t)k

2

dt)

1

2

�

1

n!2

n

X

e

i

=1;�1

(

1

Z

0

k

k

X

j=1

e

1

:::e

n

[P ((e

1

a

1

+ ::: + e

n

a

n

) + (e

1

x

(1)

j

+ ::: + e

n

x

(n)

j

))�

� P (e

1

a

1

+ ::: + e

n

a

n

)℄r

j

(t)k

2

dt)

1

2

�

1

n!2

n

X

e

i

=1;�1

C

e

1

a

1

+:::+e

n

a

n

k(e

1

x

(1)

j

+ ::: + e

n

x

(n)

j

)

k

j=1

k

r

(e

1

a

1

+:::+e

n

a

n

)

w;p

�

1

n!2

n

X

e

i

=1;�1

C

e

1

a

1

+:::+e

n

a

n

(k(x

(1)

j

)

k

j=1

k

w;p

+ ::: + k(x

(n)

j

)

k

j=1

k

w;p

)

r

(e

1

a

1

+:::+e

n

a

n

)

�

1

n!2

n

X

e

i

=1;�1

C

e

1

a

1

+:::+e

n

a

n

D

r

(e

1

a

1

+:::+e

n

a

n

)

k(x

(1)

j

; :::; x

(n)

j

)

k

j=1

k

r

(e

1

a

1

+:::+e

n

a

n

)

w;p

� D

1

k(x

(1)

j

; :::; x

(n)

j

)

k

j=1

k

minfr

(e

1

a

1

+:::+e

n

a

n

)

g

w;p

if k(x

(1)

j

; :::; x

(n)

j

)

k

j=1

k

w;p

< Æ =

1

D

min

e

i

=�1;1

f1; �

e

1

a

1

+:::+e

n

a

n

g:The 
onverse is ob-

vious. �

Naturally, the 
on
epts of type and 
otype give us the next Proposition.

Proposition 5. If F has type q, then every absolutely (q; p)-summing mapping (at

a) is almost p-summing at a: On the other hand, if F has �nite 
otype r, then every

almost p-summing mapping (at a) is (r; p)-summing at a.

Corollary 1. If F is a Hilbert spa
e and E is an L

1

spa
e, then every f : E ! F;

analyti
 at a, is almost 2-summing at a. In parti
ular, under the same hypothesis,

every entire mapping f : E ! F is almost 2-summing everywhere.

Proof. Sin
e 
otF = 2; by Proposition 2, f is absolutely (2; 2)-summing at a:

Besides, sin
e F has type 2, then f is almost 2-summing at a, by Proposition 5.�

In order to give the other examples of analyti
 almost summing mappings, the

next Proposition will be useful.

Proposition 6. If f is su
h that there exist C; Æ; r > 0 so that

k(f(a + x

j

)� f(a))

k

j=1

k

w;1

� Ck(x

j

)

k

j=1

k

r

w;p
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for any natural k; every x

1

; :::; x

k

in E and k(x

j

)

k

j=1

k

w;p

< Æ; then f is almost

p-summing at a.

Proof.

1

Z

0

k

k

X

j=1

(f(a + x

j

)� f(a))r

j

(t)k

2

dt)

1

2

� sup

t2[0;1℄

k

k

X

j=1

(f(a + x

j

)� f(a))r

j

(t)k =

= sup

t2[0;1℄

sup

'2B

E

�

j< ';

k

X

j=1

(f(a + x

j

)� f(a))r

j

(t) >j

� k(f(a + x

j

)� f(a))

k

j=1

k

w;1

� Ck(x

j

)

k

j=1

k

r

w;p

for k(x

j

)

k

j=1

k

w;p

< Æ:�

In [3, Corollary 6.3℄ it is stated that regardless of the positive integer n, every

absolutely (1; 2)-summing n-homogeneous polynomial is almost 2-summing. It is

worth remarking that, when f is a polynomial, a = 0 and p = 2, Proposition 6 is a

signi�
ant improvement of [3, Corollary 6.3℄, sin
e in Proposition 6 we just need a

weak estimate whereas in [3, Corollary 6.3℄ we need a norm estimate. As we will see

later in Corollary 3, the aforementioned Proposition is the key of innumerous new

Coin
iden
e Theorems whi
h will generalize the few Coin
iden
e Theorems known

until now (see [3, Proposition 7.1℄,[2, Proposition 5.1℄). The next Corollary give

other examples of almost p-summing analyti
 mappings.

Corollary 2. Let E be an L

1;�

spa
e and F be an arbitrary Bana
h spa
e. Every

mapping g : E ! F; analyti
 at a, su
h that dg(a) = 0 is almost 2-summing at a.

Proof. Let C and 
 be su
h that

k

1

k!

^

d

k

g(a)k � C


k

for every k � 1:

Then, for any bounded linear fun
tional '; de�ned on F; we obtain

k

1

k!

^

d

k

'g(a)k = k'

1

k!

^

d

k

g(a)k � C


k

k'k for every k � 1:

By (2.2) we have

k

1

k!

^

d

k

'g(a)k

as(1;2)

� K

G

3

k�2

2

�

k

C


k

k'k for every k � 2:

Therefore, de�ning Æ

a

as the radius of 
onvergen
e of g around a, if we assume

(x

j

)

m

j=1

su
h that

k(x

j

)

m

j=1

k

w;2

� Æ = minf

1

(2

p

3�
)

; Æ

a

g;
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we obtain

m

X

j=1

j 'g(a + x

j

)� 'g(a) j�

1

X

k=2

k

1

k!

^

d

k

'g(a)k

as(1;2)

k(x

j

)

m

j=1

k

k

w;2

= k(x

j

)

m

j=1

k

w;2

1

X

k=2

k

1

k!

^

d

k

'g(a)k

as(1;2)

k(x

j

)

m

j=1

k

k�1

w;2

� k(x

j

)

m

j=1

k

w;2

1

X

k=2

K

G

3

k�2

2

�

k

C


k

k'k

(2

p

3�
)

k�1

� Dk(x

j

)

m

j=1

k

w;2

for every ' 2 B

F

�and every m. Therefore,

k(g(a + x

j

)� g(a))

m

j=1

k

w;1

� Dk(x

j

)

m

j=1

k

w;2

regardless of the k(x

j

)

m

j=1

k

w;p

< Æ , and x

1

; :::; x

m

: Now, Proposition 6 yields the

result. �

In [2, Proposition 5.1℄ it is shown that if E is an L

1

spa
e then L(

2

E;K ) =

L

al;2

(

2

E;K ): Next 
orollary shows that the aforementioned result is still valid for

ve
tor valued n-linear mappings, for every n � 2.

Corollary 3. If E is an L

1

spa
e and n � 2, then for every Bana
h spa
e F we

have

(3.1) P

al;2

(

n

E;F ) = P(

n

E;F ) and L(

n

E;F ) = L

al;2

(

n

E;F ):

Proof. Sin
e every s
alar valued n-linear (n � 2) mapping de�ned on L

1

spa
es

is absolutely (1; 2; :::; 2)-summing, it is not hard to prove, using (2.2), that if E is

an L

1;�

spa
e, then, regardless of the Bana
h spa
e F , we have

(3.2) k(T (x

(1)

j

; :::; x

(n)

j

)

m

j=1

k

w;1

� �

n

K

G

3

n�2

2

kTk k(x

(1)

j

)

m

j=1

k

w;2

:::k(x

(n)

j

)

m

j=1

k

w;2

for every 
ontinuous n-linear mapping T : E�:::�E ! F: Then, using the estimates

of Proposition 6, we have

1

Z

0

k

m

X

j=1

T (x

(1)

j

; :::; x

(n)

j

)r

j

(t)k

2

dt)

1

2

� k(T (x

(1)

j

; :::; x

(n)

j

)

m

j=1

k

w;1

and by De�nition 3 and (3.2), the proof is done. The polynomial 
ase is analogous.�

4. A Dvoretzky-Rogers Theorem for almost p-summing polynomials

The Theorem of Dvoretzky-Rogers for absolutely summing linear operators has

natural versions for absolutely summing multilinear mappings and polynomials (see

[9℄). A linear Dvoretzky-Rogers Theorem for almost p-summing mappings 
an be

found in [2, Ex 4.1℄ and tells us that if p > 1, then L

al;p

(E;E) 6= L(E;E) for every

in�nite dimensional Bana
h spa
e E: In this se
tion, we will show that we also have

multilinear and polynomial versions for this result.

Lemma 2. If P 2 P

al;p(E)

(

n

E;F ) then, regardless of the a 2 E; dP (a) is almost

p-summing at the origin.

Proof. (Adaptation of Lemma 6.1 of [9℄).We have the following estimates for

dP (a)(x):

dP (a)(x) =

n

n!2

n

X

(e

i

=1;�1);i=1;:::;n

e

1

e

2

:::e

n

P (e

1

x + (e

2

+ ::: + e

n

)a)
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=

n

n!2

n

X

(e

i

=1;�1);i=2;:::;n

(e

2

:::e

n

P (x + (e

2

+ ::: + e

n

)a)� (e

2

:::e

n

P (�x + (e

2

+ ::: + e

n

)a))

=

n

n!2

n

(

X

(e

i

=1;�1);i=2;:::;n

e

2

:::e

n

[P (x + (e

2

+ ::: + e

n

)a)� P ((e

2

+ ::: + e

n

)a)℄)�

�

n

n!2

n

(

X

(e

i

=1;�1);i=2;:::;n

e

2

:::e

n

[P (�x + (e

2

+ ::: + e

n

)a)� P ((e

2

+ ::: + e

n

)a)℄)

Therefore, de�ning Q

e

2

:::e

n

(x) = e

2

:::e

n

[P (x+ (e

2

+ :::+ e

n

)a)�P ((e

2

+ :::+ e

n

)a)℄

we have

1

Z

0

k

k

X

j=1

dP (a)(x

j

)r

j

(t)k

2

dt)

1

2

=

= (

1

Z

0

k

k

X

j=1

n

n!2

n

X

(e

i

=1;�1);i=2;:::;n

(Q

e

2

:::e

n

(x

j

)�Q

e

2

:::e

n

(�x

j

))r

j

(t)k

2

dt)

1

2

�

n

n!2

n

X

(e

i

=1;�1);i=2;:::;n

(

1

Z

0

k

k

X

j=1

(Q

e

2

:::e

n

(x

j

)�Q

e

2

:::e

n

(�x

j

))r

j

(t)k

2

dt)

1

2

�

n

n!2

n

f

X

(e

i

=1;�1);i=2;:::;n

[(

1

Z

0

k

k

X

j=1

Q

e

2

:::e

n

(x

j

)r

j

(t)k

2

dt)

1

2

+

+ (

1

Z

0

k

k

X

j=1

Q

e

2

:::e

n

(�x

j

)r

j

(t)k

2

dt)

1

2

℄g

�

n

n!2

n

X

(e

i

=1;�1);i=2;:::;n

2C

(e

2

+:::+e

n

)a

k(x

j

)

k

j=1

k

r

(e

2

+:::+e

n

)a

w;p

� Dk(x

j

)

k

j=1

k

minfr

(e

2

:::e

n

)a

g

w;p

for k(x

j

)

k

j=1

k

w;p

< Æ and 0 < Æ < minf1; �

(e

2

+:::+e

n

)a

g: �

Theorem 4. (Dvoretzky-Rogers for almost p-summing polynomials) If dimE <1,

then for p � 2 we have

P

al;p(E)

(

n

E;E) = P(

n

E;E):

If dimE = 1 and p > 1, then P

al;p(E)

(

n

E;E) 6= P(

n

E;E): The multilinear version

is also valid.

Proof. If dimE <1, let us 
onsider fe

1

; :::; e

n

g and f'

1

; :::; '

n

g basis for E and

E

0

so that '

j

(e

k

) = Æ

jk

: Given an n-homogeneous polynomial P from E into E,

we have

P (x) =

_

P (

m

X

j=1

'

j

(x)e

j

)

n

=

m

X

j

1

;:::;j

n

=1

'

j

1

(x):::'

j

n

(x)

_

P (e

j

1

; :::; e

j

n

):

Sin
e every �nite type n-homogeneous bounded polynomial is almost p-summing

(at zero) for p � 2n (see [2, Proposition 3.1 (ii)℄), it is not hard to prove that P is

almost p-summing everywhere; for p � 2.
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On the other hand, suppose that E is an in�nite dimensional Bana
h spa
e.

It suÆ
es to 
onsider the 
ase 1 < p � 2: Choose a non null 
ontinuous linear

fun
tional ' 2 E�and a =2 Ker': De�ne

P (x) = '(x)

n�1

x:

If we had P almost p-summing everywhere, we would have, by Lemma 2, dP (a)

almost p-summing (at zero). Sin
e ' is almost p-summing and

dP (a)(x) = (n� 1)'(a)

n�2

'(x)a + '(a)

n�1

x;

we would have '(a)

n�1

x almost p-summing. Sin
e '(a) 6= 0, we would have that

id

E

is almost p-summing, and it is a 
ontradi
tion. �

Example 1. It is worth observing that by Corollary 3, for n � 2, we have

P

al;2

(

n




0

; 


0

) = P(

n




0

; 


0

)

whereas Theorem 4 asserts that P

al;2(


0

)

(

n




0

; 


0

) 6= P(

n




0

; 


0

):
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