
ALMOST SUMMING MAPPINGS

DANIEL PELLEGRINO

Abstrat. We introdue a general de�nition of almost p-summing mappings

and give several onrete examples of suh mappings. Some known results are

onsiderably generalized and we present various situations in whih the spae

of almost p-summing multilinear mappings oinides with the whole spae of

ontinuous multilinear mappings.

1. Introdution

The rapid development of the theory of absolutely summing linear mappings has

lead to the study of innumerous new lasses of multilinear mappings and polynomi-

als between Banah spaes (see [10℄,[7℄,[3℄,[1℄). Reently, Botelho [3℄ and Botelho-

Braunss-Junek [2℄ introdued the onept of almost p-summing multilinear map-

pings and gave the �rst examples and properties of suh mappings. The reent work

of Matos [8℄, onerning absolutely summing arbitrary mappings, turns natural to

ask whether it is possible to follow the same line of thought with almost p-summing

mappings. In this paper we will present a more general de�nition of almost p-

summing mappings, several examples and a natural version of a Dvoretzky-Rogers

Theorem for this kind of appliations. It will be shown that almost p-summing

multilinear mappings are muh more ommon than it was known until now. For

example, we prove that every ontinuous n-linear mapping from C(K)� :::�C(K)

into a Banah spae F is almost 2-summing, generalizing a reent result obtained

in [2℄. This paper also analyzes the onnetions of almost p-summing mappings and

type/otype and provides various examples of analyti almost p-summing mappings.

2. Absolutely summing mappings

Throughout this paper E;E

1

; :::; E

n

; F will stand for Banah spaes. For p 2

[1;1[; the linear spae of all sequenes (x

j

)

1

j=1

in E suh that

k(x

j

)

1

j=1

k

p

= (

1

X

j=1

kx

j

k

p

)

1

p

<1

will be denoted by l

p

(E): We will denote by l

w

p

(E) the linear subspae of l

p

(E)

formed by the sequenes (x

j

)

1

j=1

in E suh that (< '; x

j

>)

1

j=1

2 l

p

(K ); for every

ontinuous linear funtional ' : E ! K : We also de�ne k:k

w;p

in l

w

p

(E) by

k(x

j

)

1

j=1

k

w;p

:= sup

'2B

E

0

(

1

X

j=1

j< '; x

j

>j

p

)

1

p

:
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The linear subspae of l

w

p

(E) of all sequenes (x

j

)

1

j=1

2 l

w

p

(E); suh that

lim

m!1

k(x

j

)

1

j=m

k

w;p

= 0

will be denoted by l

u

p

(E). The sequenes in l

u

p

(E) are alled unonditionally p-

summable.

The multilinear theory of absolutely summing mappings was �rst skethed by

Pietsh in [14℄ and has been broadly explored (see [11℄, [10℄, [6℄). The next de�nition

an be found in [10℄.

De�nition 1. A multilinear mapping T : E

1

�:::�E

n

! F is absolutely (p; q

1

; :::; q

n

)-

summing if

(T (x

(1)

j

; :::; x

(n)

j

))

1

j=1

2 l

p

(F )

for every (x

(s)

j

)

1

j=1

2 l

w

q

s

(E), s = 1; :::; n: An n-homogeneous polynomial P : E ! F

is absolutely (p; q)-summing if

(P (x

j

))

1

j=1

2 l

p

(F )

whenever (x

j

)

1

j=1

2 l

w

q

(E):

It is worth observing that, in De�nition 1, there is no di�erene if we onsider

l

u

q

s

(E) (l

u

q

(E)) instead of l

w

q

s

(E) (l

w

q

(E)) (see [10, Proposition 2.4℄ for polynomials,

and the multilinear ase is analogous).

The following well known haraterization an be found in [4, Theorem 1.2(ii)℄,

and is sometimes useful.

Theorem 1. Let T : E

1

� ::: � E

n

! F be a multilinear mapping. The following

statements are equivalent:

(1) T is absolutely (p; q

1

; :::; q

n

)-summing.

(2) There exists L > 0 suh that for every natural k and any x

(l)

j

2 E

l

;

(2.1) (

k

X

j=1

kT (x

(1)

j

; :::; x

(n)

j

)k

p

)

1

p

� Lk(x

(1)

j

)

k

j=1

k

w;q

1

:::k(x

(n)

j

)

k

j=1

k

w;q

n

:

The least L > 0 for whih inequality (2.1) always holds de�nes a norm for

the spae of absolutely (p; q

1

; :::; q

n

)-summing multilinear mappings. This norm

will be denoted by k:k

as(p;q)

: A haraterization for n-homogeneous polynomials is

analogous.

Inspired on the work of Matos [9℄, we introdue the following onept, whih

generalizes De�nition 1, as we will see later.

De�nition 2. An arbitrary mapping f :E ! F is absolutely (p; q)-summing at a if

there exist M

a

> 0; Æ

a

> 0 and r

a

> 0 so that

k

X

j=1

kf(a + x

j

)� f(a)k

p

�M

a

k(x

j

)

k

j=1

k

r

a

w;q

for all k and k(x

j

)

k

j=1

k

w;q

< Æ

a

:

Theorem 2. If F has otype q, E is an L

1;�

spae and f : E ! F is analyti at

a, then f is absolutely (q; 2)-summing at a.
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Proof. Sine f is analyti at a, there are C � 0 and  > 0 suh that

k

1

k!

^

d

k

f(a)k � C

k

for every k:

A reent result of D. Perez (see [13℄) states that whenever eah E

j

is an L

1;�

j

spae, every ontinuous n-linear (n � 2) mapping T , from E

1

� :::�E

n

into K ; is

absolutely (1; 2; :::; 2)-summing and

(2.2) kTk

as(1;2;:::;2)

� K

G

3

n�2

2

kTk

n

Y

j=1

�

j

:

Using the polynomial version of this result, it is not hard to prove that (see

[12, Theorem 4℄) whenever F has �nite otype q, every bounded n-homogeneous

(n � 2) polynomial P : E ! F is absolutely (q; 2)-summing and kPk

as(q;2)

�

C

q

(F )K

G

3

n�2

2

kPk�

n

; where C

q

(F ) and K

G

are the otype's onstant of F and

Grothendiek's onstant, respetively.

For n = 1, we still have L(E;F ) = L

as(q;2)

(E;F ); whih is a partiular ase of a

result due to Dubinsky-Pe lzy�nski-Rosenthal (ase q = 2) and Maurey (ase q > 2)

(see [5, Theorem 11.14 (a) and (b) ℄). So, for every natural n, there exist positive

D and D

1

so that

k

1

k!

^

d

k

f(a)k

as(q;2)

� D

1

D

k

k

1

k!

^

d

k

f(a)k:

Hene, if Æ

a

is the radius of onvergene of f around a, then, whenever (x

j

)

m

j=1

is

suh that k(x

j

)

m

j=1

k

w;1

� minf

1

2D

; Æ

a

g; we have

(

m

X

j=1

kf(a + x

j

)� f(a)k

q

)

1

q

=

m

X

j=1

(k

1

X

k=1

1

k!

^

d

k

f(a)(x

j

)k

q

)

1

q

�

1

X

k=1

[

m

X

j=1

k

1

k!

^

d

k

f(a)(x

j

)k

q

℄

1

q

�

1

X

k=1

k

1

k!

^

d

k

f(a)k

as(q;2)

k(x

j

)

m

j=1

k

k

w;2

� D

1

k(x

j

)

m

j=1

k

w;2

1

X

k=1

D

k

2

k�1

D

k�1

= 2DD

1

k(x

j

)

m

j=1

k

w;2

:

�

Several other results onerning absolutely summing analyti mappings an be

found in [6℄ and [12℄.

Proposition 1. If f : E ! F is absolutely (p; q)-summing at a, then f is so that

(f(a + x

j

)� f(a))

1

j=1

2 l

p

(F ) whenever (x

j

)

1

j=1

is unonditionally q-summable.

Proof. Let f be (p; q)-summing at a. For any (x

j

)

1

j=1

2 l

u

p

(E), we have

lim

k;m!1

(

m

X

j=k

kf((a + x

j

)� f(a)k

p

)

1

p

� lim

k;m!1

C

a

k(x

j

)

m

j=k

k

r

a

w;p

= 0

and, by the ompleteness of l

p

(F ); we obtain (f(a + x

j

)� f(a))

1

j=1

2 l

p

(F ).�

An immediate outome of Proposition 1 is that De�nition 2 applied for n-

homogeneous polynomials and the usual de�nition of absolutely (p; q)-summing
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polynomials oinides at a = 0. In order to prove that De�nition 2 for n-linear

mappings atually generalizes the standard de�nition (De�nition 1) of absolutely

(p; q

1

; :::; q

n

)-summing multilinear mappings for q

1

= ::: = q

n

= q, we need the

following Lemma, whih is a simple onsequene of the Open Mapping Theorem.

Lemma 1. l

u

q

(E

1

� :::�E

n

) is isomorphi to l

u

q

(E

1

)� ::::� l

u

q

(E

n

):

Proposition 2. An n-linear mapping T is (p; q; :::; q)-summing in the usual sense

if, and only if, it is absolutely (p; q)-summing at the origin in the sense of De�nition

2.

Proof. Consider an absolutely (p; q)-summing (in the sense of De�nition 2, at

the origin) n-linear mapping, T : E

1

� ::: � E

n

! F . Then, given (x

(1)

j

)

1

j=1

2

l

u

q

(E

1

); ::::; (x

(n)

j

)

1

j=1

2 l

u

q

(E

n

); we have (x

(1)

j

; :::; x

(n)

j

)

1

j=1

2 l

u

q

(E

1

�::::�E

n

): Hene,

by Proposition 1, (T (x

(1)

j

; ::::; x

(n)

j

))

1

j=1

2 l

p

(F ): Thus, by the usual de�nition, it

follows that T is absolutely (p; q; :::; q)-summing .

Conversely, onsider an absolutely (p; q; :::; q)-summing n-linear mapping T in

the usual meaning. Then, if x

(l)

1

; :::; x

(l)

k

2 E

l

; l = 1; :::; n; we have

(

k

X

j=1

k(T (x

(1)

j

; :::; x

(n)

j

)k

p

)

1

p

� Ck(x

(1)

j

)

k

j=1

k

w;q

::::k(x

(n)

j

)

k

j=1

k

w;q

:

Therefore, sine l

u

q

(E

1

� ::::�E

n

) is isomorphi to l

u

q

(E

1

)� ::::� l

u

q

(E

n

); it follows

that there exists C

1

> 0 so that, for every k,

k(x

(1)

j

; :::; x

(n)

j

)

k

j=1

k

w;q

� C

1

(k(x

(1)

j

)

k

j=1

k

w;q

+ ::: + k(x

(n)

j

)

k

j=1

k

w;q

)

and

k(x

(1)

j

; :::; x

(n)

j

)

k

j=1

k

n

w;q

� C

n

1

(k(x

(1)

j

)

k

j=1

k

w;q

+ ::: + k(x

(n)

j

)

k

j=1

k

w;q

)

n

� C

n

1

(k(x

(1)

j

)

k

j=1

k

w;q

:::k(x

(n)

j

)

k

j=1

k

w;q

)

�

C

n

1

C

(

k

X

j=1

k(T (x

(1)

j

; :::; x

(n)

j

)k

p

)

1

p

and so T is absolutely (p; q)-summing in the sense of De�nition 2. �

3. Almost summing mappings

Considering the Rademaher funtions (r

j

(t))

1

j=1

; we say that the sequene

(x

j

)

1

j=1

of points of E is almost unonditionally summable if

1

P

j=1

r

j

(t)x

j

2 L

p

([0; 1℄; E)

for some; and then for all p, 0 < p <1:

De�nition 3. (Botelho [3℄) An n-linear mapping T : E

1

� :::�E

n

! F is said to

be almost (p

1

; :::; p

n

)-summing if there exists C � 0 suh that

(

1

Z

0

k

k

X

j=1

T (x

(1)

j

; :::; x

(n)

j

)r

j

(t)k

2

dt)

1

2

� Ck(x

(1)

j

)

k

j=1

k

w;p

1

:::k(x

(n)

j

)

k

j=1

k

w;p

n

for every k and any x

(l)

j

in E

l

; l = 1; :::; n and j = 1; :::; k: An n-homogeneous poly-

nomial P : E ! F is said almost p-summing when

_

P is almost (p; :::; p)-summing.

The spae of all almost p-summing polynomials is denoted by P

al;p

(

n

E;F ):
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Theorem 3. ([2, Theorem 3.3℄)For 1 � p � 2n and P 2 P

al;p

(

n

E;F ); the following

properties are equivalent:

(i) P is almost p-summing.

(ii) P maps unonditionally p-summable sequenes in E into almost unondi-

tionally summable sequenes in F .

The following de�nition is a natural generalization of De�nition 3 and allows us

to give examples of analyti almost p-summing mappings.

De�nition 4. A mapping f : E ! F is said to be almost p-summing at a 2 E if

there exist C

a

> 0, �

a

> 0 and r

a

> 0 suh that

(

1

Z

0

k

k

X

j=1

(f(a + x

j

)� f(a))r

j

(t)k

2

dt)

1

2

� C

a

k(x

j

)

k

j=1

k

r

a

w;p

for every natural k, any x

1

; :::; x

k

in E and k(x

j

)

k

j=1

k

w;p

< �

a

: If f is almost p-

summing at every a 2 E, we say that f is almost p-summing everywhere:

It is worth observing that if f is almost p-summing at a, then f is ontinuous

at a: The spae of all polynomials from E into F whih are almost p-summing

everywhere will be denoted by P

al;p(E)

(

n

E;F ):

Proposition 3. If f : E ! F is almost p-summing at a, then f is so that

(f(a+ x

j

)� f(a))

1

j=1

is almost unonditionally summable whenever (x

j

)

1

j=1

is un-

onditionally p-summable.

Proof. Analogous to the proof of Proposition 1.

An immediate outome of Theorem 3 and Proposition 3 is that De�nitions 4 and

3 oinides for n-homogeneous polynomials and a = 0. The proof that De�nition 4,

for a = 0; generalizes De�nition 3, for multilinear mappings and p

1

= ::: = p

n

= p,

is similar to the proof of Proposition 2.

Proposition 4. If P 2 P(

n

E;F ), then P 2 P

al;p(E)

(

n

E;F ) ,

_

P 2 L

al;p(E)

(

n

E;F ):

Proof. Suppose that P 2 P

al;p(E)

(

n

E;F ): Then, by the polarization formula,

_

P (a

1

+ x

(1)

j

; :::; a

n

+ x

(n)

j

)�

_

P (a

1

; :::; a

n

) =

= [

1

n!2

n

X

e

i

=1;�1

e

1

:::e

n

P (e

1

(a

1

+ x

(1)

j

) + ::: + e

n

(a

n

+ x

(n)

j

)℄�

� [

1

n!2

n

X

e

i

=1;�1

e

1

:::e

n

P (e

1

a

1

+ ::: + e

n

a

n

)℄

=

1

n!2

n

X

e

i

=1;�1

e

1

:::e

n

[P ((e

1

a

1

+ ::: + e

n

a

n

) + (e

1

x

(1)

j

+ ::: + e

n

x

(n)

j

))�

� P (e

1

a

1

+ ::: + e

n

a

n

)℄:

For any (x

(1)

j

)

k

j=1

; :::; (x

(n)

j

)

k

j=1

, in order to simplify notation, we will write

A = (

1

Z

0

k

k

X

j=1

(

_

P (a

1

+ x

(1)

j

; :::; a

n

+ x

(n)

j

)�

_

P (a

1

; :::; a

n

))r

j

(t)k

2

dt)

1

2

:
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Lemma 1 asserts that there exists D > 0 so that

(k(x

(1)

j

)

k

j=1

k

w;p

+ ::: + k(x

(n)

j

)

k

j=1

k

w;p

) � Dk(x

(1)

j

; :::; x

(n)

j

)

k

j=1

k

w;p

for every k: Now suppose

k(x

(1)

j

; :::; x

(n)

j

)

k

j=1

k

w;p

<

1

D

min

e

i

=�1;1

f1; �

e

1

a

1

+:::+e

n

a

n

g;

where the �

e

1

a

1

+:::+e

n

a

n

are given by De�nition 4 applied to P . Then, for any hoie

of �1 and 1 for e

j

; we have

k(e

1

x

(1)

j

+ ::: + e

n

x

(n)

j

)

k

j=1

k

w;p

< min

e

i

=�1;1

f1; �

e

1

a

1

+:::+e

n

a

n

g:

Therefore,

A = (

1

Z

0

k

k

X

j=1

1

n!2

n

X

e

i

=1;�1

e

1

:::e

n

[P ((e

1

a

1

+ :::e

n

a

n

) + (e

1

x

(1)

j

+ ::: + e

n

x

(n)

j

))�

� P (e

1

a

1

+ ::: + e

n

a

n

)℄r

j

(t)k

2

dt)

1

2

�

1

n!2

n

X

e

i

=1;�1

(

1

Z

0

k

k

X

j=1

e

1

:::e

n

[P ((e

1

a

1

+ ::: + e

n

a

n

) + (e

1

x

(1)

j

+ ::: + e

n

x

(n)

j

))�

� P (e

1

a

1

+ ::: + e

n

a

n

)℄r

j

(t)k

2

dt)

1

2

�

1

n!2

n

X

e

i

=1;�1

C

e

1

a

1

+:::+e

n

a

n

k(e

1

x

(1)

j

+ ::: + e

n

x

(n)

j

)

k

j=1

k

r

(e

1

a

1

+:::+e

n

a

n

)

w;p

�

1

n!2

n

X

e

i

=1;�1

C

e

1

a

1

+:::+e

n

a

n

(k(x

(1)

j

)

k

j=1

k

w;p

+ ::: + k(x

(n)

j

)

k

j=1

k

w;p

)

r

(e

1

a

1

+:::+e

n

a

n

)

�

1

n!2

n

X

e

i

=1;�1

C

e

1

a

1

+:::+e

n

a

n

D

r

(e

1

a

1

+:::+e

n

a

n

)

k(x

(1)

j

; :::; x

(n)

j

)

k

j=1

k

r

(e

1

a

1

+:::+e

n

a

n

)

w;p

� D

1

k(x

(1)

j

; :::; x

(n)

j

)

k

j=1

k

minfr

(e

1

a

1

+:::+e

n

a

n

)

g

w;p

if k(x

(1)

j

; :::; x

(n)

j

)

k

j=1

k

w;p

< Æ =

1

D

min

e

i

=�1;1

f1; �

e

1

a

1

+:::+e

n

a

n

g:The onverse is ob-

vious. �

Naturally, the onepts of type and otype give us the next Proposition.

Proposition 5. If F has type q, then every absolutely (q; p)-summing mapping (at

a) is almost p-summing at a: On the other hand, if F has �nite otype r, then every

almost p-summing mapping (at a) is (r; p)-summing at a.

Corollary 1. If F is a Hilbert spae and E is an L

1

spae, then every f : E ! F;

analyti at a, is almost 2-summing at a. In partiular, under the same hypothesis,

every entire mapping f : E ! F is almost 2-summing everywhere.

Proof. Sine otF = 2; by Proposition 2, f is absolutely (2; 2)-summing at a:

Besides, sine F has type 2, then f is almost 2-summing at a, by Proposition 5.�

In order to give the other examples of analyti almost summing mappings, the

next Proposition will be useful.

Proposition 6. If f is suh that there exist C; Æ; r > 0 so that

k(f(a + x

j

)� f(a))

k

j=1

k

w;1

� Ck(x

j

)

k

j=1

k

r

w;p
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for any natural k; every x

1

; :::; x

k

in E and k(x

j

)

k

j=1

k

w;p

< Æ; then f is almost

p-summing at a.

Proof.

1

Z

0

k

k

X

j=1

(f(a + x

j

)� f(a))r

j

(t)k

2

dt)

1

2

� sup

t2[0;1℄

k

k

X

j=1

(f(a + x

j

)� f(a))r

j

(t)k =

= sup

t2[0;1℄

sup

'2B

E

�

j< ';

k

X

j=1

(f(a + x

j

)� f(a))r

j

(t) >j

� k(f(a + x

j

)� f(a))

k

j=1

k

w;1

� Ck(x

j

)

k

j=1

k

r

w;p

for k(x

j

)

k

j=1

k

w;p

< Æ:�

In [3, Corollary 6.3℄ it is stated that regardless of the positive integer n, every

absolutely (1; 2)-summing n-homogeneous polynomial is almost 2-summing. It is

worth remarking that, when f is a polynomial, a = 0 and p = 2, Proposition 6 is a

signi�ant improvement of [3, Corollary 6.3℄, sine in Proposition 6 we just need a

weak estimate whereas in [3, Corollary 6.3℄ we need a norm estimate. As we will see

later in Corollary 3, the aforementioned Proposition is the key of innumerous new

Coinidene Theorems whih will generalize the few Coinidene Theorems known

until now (see [3, Proposition 7.1℄,[2, Proposition 5.1℄). The next Corollary give

other examples of almost p-summing analyti mappings.

Corollary 2. Let E be an L

1;�

spae and F be an arbitrary Banah spae. Every

mapping g : E ! F; analyti at a, suh that dg(a) = 0 is almost 2-summing at a.

Proof. Let C and  be suh that

k

1

k!

^

d

k

g(a)k � C

k

for every k � 1:

Then, for any bounded linear funtional '; de�ned on F; we obtain

k

1

k!

^

d

k

'g(a)k = k'

1

k!

^

d

k

g(a)k � C

k

k'k for every k � 1:

By (2.2) we have

k

1

k!

^

d

k

'g(a)k

as(1;2)

� K

G

3

k�2

2

�

k

C

k

k'k for every k � 2:

Therefore, de�ning Æ

a

as the radius of onvergene of g around a, if we assume

(x

j

)

m

j=1

suh that

k(x

j

)

m

j=1

k

w;2

� Æ = minf

1

(2

p

3�)

; Æ

a

g;
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we obtain

m

X

j=1

j 'g(a + x

j

)� 'g(a) j�

1

X

k=2

k

1

k!

^

d

k

'g(a)k

as(1;2)

k(x

j

)

m

j=1

k

k

w;2

= k(x

j

)

m

j=1

k

w;2

1

X

k=2

k

1

k!

^

d

k

'g(a)k

as(1;2)

k(x

j

)

m

j=1

k

k�1

w;2

� k(x

j

)

m

j=1

k

w;2

1

X

k=2

K

G

3

k�2

2

�

k

C

k

k'k

(2

p

3�)

k�1

� Dk(x

j

)

m

j=1

k

w;2

for every ' 2 B

F

�and every m. Therefore,

k(g(a + x

j

)� g(a))

m

j=1

k

w;1

� Dk(x

j

)

m

j=1

k

w;2

regardless of the k(x

j

)

m

j=1

k

w;p

< Æ , and x

1

; :::; x

m

: Now, Proposition 6 yields the

result. �

In [2, Proposition 5.1℄ it is shown that if E is an L

1

spae then L(

2

E;K ) =

L

al;2

(

2

E;K ): Next orollary shows that the aforementioned result is still valid for

vetor valued n-linear mappings, for every n � 2.

Corollary 3. If E is an L

1

spae and n � 2, then for every Banah spae F we

have

(3.1) P

al;2

(

n

E;F ) = P(

n

E;F ) and L(

n

E;F ) = L

al;2

(

n

E;F ):

Proof. Sine every salar valued n-linear (n � 2) mapping de�ned on L

1

spaes

is absolutely (1; 2; :::; 2)-summing, it is not hard to prove, using (2.2), that if E is

an L

1;�

spae, then, regardless of the Banah spae F , we have

(3.2) k(T (x

(1)

j

; :::; x

(n)

j

)

m

j=1

k

w;1

� �

n

K

G

3

n�2

2

kTk k(x

(1)

j

)

m

j=1

k

w;2

:::k(x

(n)

j

)

m

j=1

k

w;2

for every ontinuous n-linear mapping T : E�:::�E ! F: Then, using the estimates

of Proposition 6, we have

1

Z

0

k

m

X

j=1

T (x

(1)

j

; :::; x

(n)

j

)r

j

(t)k

2

dt)

1

2

� k(T (x

(1)

j

; :::; x

(n)

j

)

m

j=1

k

w;1

and by De�nition 3 and (3.2), the proof is done. The polynomial ase is analogous.�

4. A Dvoretzky-Rogers Theorem for almost p-summing polynomials

The Theorem of Dvoretzky-Rogers for absolutely summing linear operators has

natural versions for absolutely summing multilinear mappings and polynomials (see

[9℄). A linear Dvoretzky-Rogers Theorem for almost p-summing mappings an be

found in [2, Ex 4.1℄ and tells us that if p > 1, then L

al;p

(E;E) 6= L(E;E) for every

in�nite dimensional Banah spae E: In this setion, we will show that we also have

multilinear and polynomial versions for this result.

Lemma 2. If P 2 P

al;p(E)

(

n

E;F ) then, regardless of the a 2 E; dP (a) is almost

p-summing at the origin.

Proof. (Adaptation of Lemma 6.1 of [9℄).We have the following estimates for

dP (a)(x):

dP (a)(x) =

n

n!2

n

X

(e

i

=1;�1);i=1;:::;n

e

1

e

2

:::e

n

P (e

1

x + (e

2

+ ::: + e

n

)a)



ALMOST SUMMING MAPPINGS 9

=

n

n!2

n

X

(e

i

=1;�1);i=2;:::;n

(e

2

:::e

n

P (x + (e

2

+ ::: + e

n

)a)� (e

2

:::e

n

P (�x + (e

2

+ ::: + e

n

)a))

=

n

n!2

n

(

X

(e

i

=1;�1);i=2;:::;n

e

2

:::e

n

[P (x + (e

2

+ ::: + e

n

)a)� P ((e

2

+ ::: + e

n

)a)℄)�

�

n

n!2

n

(

X

(e

i

=1;�1);i=2;:::;n

e

2

:::e

n

[P (�x + (e

2

+ ::: + e

n

)a)� P ((e

2

+ ::: + e

n

)a)℄)

Therefore, de�ning Q

e

2

:::e

n

(x) = e

2

:::e

n

[P (x+ (e

2

+ :::+ e

n

)a)�P ((e

2

+ :::+ e

n

)a)℄

we have

1

Z

0

k

k

X

j=1

dP (a)(x

j

)r

j

(t)k

2

dt)

1

2

=

= (

1

Z

0

k

k

X

j=1

n

n!2

n

X

(e

i

=1;�1);i=2;:::;n

(Q

e

2

:::e

n

(x

j

)�Q

e

2

:::e

n

(�x

j

))r

j

(t)k

2

dt)

1

2

�

n

n!2

n

X

(e

i

=1;�1);i=2;:::;n

(

1

Z

0

k

k

X

j=1

(Q

e

2

:::e

n

(x

j

)�Q

e

2

:::e

n

(�x

j

))r

j

(t)k

2

dt)

1

2

�

n

n!2

n

f

X

(e

i

=1;�1);i=2;:::;n

[(

1

Z

0

k

k

X

j=1

Q

e

2

:::e

n

(x

j

)r

j

(t)k

2

dt)

1

2

+

+ (

1

Z

0

k

k

X

j=1

Q

e

2

:::e

n

(�x

j

)r

j

(t)k

2

dt)

1

2

℄g

�

n

n!2

n

X

(e

i

=1;�1);i=2;:::;n

2C

(e

2

+:::+e

n

)a

k(x

j

)

k

j=1

k

r

(e

2

+:::+e

n

)a

w;p

� Dk(x

j

)

k

j=1

k

minfr

(e

2

:::e

n

)a

g

w;p

for k(x

j

)

k

j=1

k

w;p

< Æ and 0 < Æ < minf1; �

(e

2

+:::+e

n

)a

g: �

Theorem 4. (Dvoretzky-Rogers for almost p-summing polynomials) If dimE <1,

then for p � 2 we have

P

al;p(E)

(

n

E;E) = P(

n

E;E):

If dimE = 1 and p > 1, then P

al;p(E)

(

n

E;E) 6= P(

n

E;E): The multilinear version

is also valid.

Proof. If dimE <1, let us onsider fe

1

; :::; e

n

g and f'

1

; :::; '

n

g basis for E and

E

0

so that '

j

(e

k

) = Æ

jk

: Given an n-homogeneous polynomial P from E into E,

we have

P (x) =

_

P (

m

X

j=1

'

j

(x)e

j

)

n

=

m

X

j

1

;:::;j

n

=1

'

j

1

(x):::'

j

n

(x)

_

P (e

j

1

; :::; e

j

n

):

Sine every �nite type n-homogeneous bounded polynomial is almost p-summing

(at zero) for p � 2n (see [2, Proposition 3.1 (ii)℄), it is not hard to prove that P is

almost p-summing everywhere; for p � 2.
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On the other hand, suppose that E is an in�nite dimensional Banah spae.

It suÆes to onsider the ase 1 < p � 2: Choose a non null ontinuous linear

funtional ' 2 E�and a =2 Ker': De�ne

P (x) = '(x)

n�1

x:

If we had P almost p-summing everywhere, we would have, by Lemma 2, dP (a)

almost p-summing (at zero). Sine ' is almost p-summing and

dP (a)(x) = (n� 1)'(a)

n�2

'(x)a + '(a)

n�1

x;

we would have '(a)

n�1

x almost p-summing. Sine '(a) 6= 0, we would have that

id

E

is almost p-summing, and it is a ontradition. �

Example 1. It is worth observing that by Corollary 3, for n � 2, we have

P

al;2

(

n



0

; 

0

) = P(

n



0

; 

0

)

whereas Theorem 4 asserts that P

al;2(

0

)

(

n



0

; 

0

) 6= P(

n



0

; 

0

):
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