ALMOST SUMMING MAPPINGS

DANIEL PELLEGRINO

ABSTRACT. We introduce a general definition of almost p-summing mappings
and give several concrete examples of such mappings. Some known results are
considerably generalized and we present various situations in which the space
of almost p-summing multilinear mappings coincides with the whole space of
continuous multilinear mappings.

1. INTRODUCTION

The rapid development of the theory of absolutely summing linear mappings has
lead to the study of innumerous new classes of multilinear mappings and polynomi-
als between Banach spaces (see [10],[7],[3],[1]). Recently, Botelho [3] and Botelho-
Braunss-Junek [2] introduced the concept of almost p-summing multilinear map-
pings and gave the first examples and properties of such mappings. The recent work
of Matos [8], concerning absolutely summing arbitrary mappings, turns natural to
ask whether it is possible to follow the same line of thought with almost p-summing
mappings. In this paper we will present a more general definition of almost p-
summing mappings, several examples and a natural version of a Dvoretzky-Rogers
Theorem for this kind of applications. It will be shown that almost p-summing
multilinear mappings are much more common than it was known until now. For
example, we prove that every continuous n-linear mapping from C(K) x ... x C(K)
into a Banach space F' is almost 2-summing, generalizing a recent result obtained
in [2]. This paper also analyzes the connections of almost p-summing mappings and
type/cotype and provides various examples of analytic almost p-summing mappings.

2. ABSOLUTELY SUMMING MAPPINGS

Throughout this paper E, E, ..., E,, F' will stand for Banach spaces. For p €
[1,00[, the linear space of all sequences (z;)72; in £ such that

o0
1
)32l = O llzil17)7 < oo
j=1

will be denoted by I,(E). We will denote by [}’(E) the linear subspace of I,(E)
formed by the sequences (z;)72, in E such that (< ¢,z; >)52, € [,(K), for every
continuous linear functional ¢ : E — K. We also define ||.|,y,, in I}’ (E) by

[ee]

1
1(@)52 oy = sup (Y < o,z >[7)7.
pEBE: j=1
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The linear subspace of [;'(E) of all sequences ()32, € I;)(E), such that
i [[(27)3 oy = 0

will be denoted by [7(E). The sequences in [;(E) are called unconditionally p-
summable.

The multilinear theory of absolutely summing mappings was first sketched by
Pietsch in [14] and has been broadly explored (see [11], [10], [6]). The next definition
can be found in [10].

Definition 1. A multilinear mapping T : Ey x...xX E,, — F' is absolutely (p; q1,...,qn)-
summing if

(T(2\", .., i), € L,(F)
for every (:Eg-s));?il €l (E), s=1,...n. An n-homogeneous polynomial P : E — F
is absolutely (p; q)-summing if

(P(z;))521 € lp(F)
whenever ()22, € I} (E).
It is worth observing that, in Definition 1, there is no difference if we consider
Iy (E) (I3(E)) instead of I’ (E) (I;’(E)) (see [10, Proposition 2.4] for polynomials,
and the multilinear case is analogous).

The following well known characterization can be found in [4, Theorem 1.2(ii)],
and is sometimes useful.

Theorem 1. Let T : Ey X ... X E, — F be a multilinear mapping. The following
statements are equivalent:
(1) T is absolutely (p;qi, ..., qn)-summing.

(2) There exists L > 0 such that for every natural k and any a:;.l) € Ey,

k
21 OoITE, L) < LIS g @) g,
j=1

The least L > 0 for which inequality (2.1) always holds defines a norm for
the space of absolutely (p;qi, ..., qn)-summing multilinear mappings. This norm
will be denoted by ||.||las(piq)- A characterization for n-homogeneous polynomials is
analogous.

Inspired on the work of Matos [9], we introduce the following concept, which
generalizes Definition 1, as we will see later.

Definition 2. An arbitrary mapping f:E — F is absolutely (p, q)-summing at a if
there exist M, > 0, 6, > 0 and r, > 0 so that

k
Y lf(a+z5) = f(@)llP < Mal|(z)5- 1135,
j=1

for all k and ||(xj)f:1||w,q < Oa-

Theorem 2. If F' has cotype q, E is an L\ space and f : E — F' is analytic at
a, then f is absolutely (q;2)-summing at a.
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Proof. Since f is analytic at a, there are C' > 0 and ¢ > 0 such that

||—d’c f(a)|| < Cc* for every k.

A recent result of D. Perez (see [13]) states that whenever each Ej is an Lo »;
space, every continuous n-linear (n > 2) mapping T, from E; X ... X E,, into K is
absolutely (1;2, ...,2)-summing and

n
n—2
(2.2) 1 Tlas(1i2,...2) < K3 [ITI T M-
j=1
Using the polynomial version of this result, it is not hard to prove that (see
[12, Theorem 4]) whenever F' has finite cotype ¢, every bounded n-homogeneous
(n > 2) polynomial P : E — F is absolutely (¢;2)-summing and |[|P||qs2) <

C,(F)Kg3™ 5 ||P||/\”, where C,(F) and K¢ are the cotype’s constant of F and
Grothendieck’s constant, respectively.

For n = 1, we still have L(E; F) = Log(q;2) (E; F), which is a particular case of a
result due to Dubinsky-Pelczyniski-Rosenthal (case ¢ = 2) and Maurey (case ¢ > 2)
(see [5, Theorem 11.14 (a) and (b) ]). So, for every natural n, there exist positive
D and D; so that

II—dk F(@)las(q2) <D1D’“Il—dk fa)ll-

Hence, if 0, is the radius of convergence of f around a, then, whenever (z;)7
such that ||(z;)7; [|w,1 < min{5%,d,}, we have

Qo f(a+ ;) = F@)n)e Z ||Z )(;)ll)

Ty s

<> %d’“f(a)(wj)llqﬁ

k=1 j=1

N 1 /\k m k
< Z ||Ed f(a)||as(q;2)||(:Ej)j:1||w,2

k=1

< Dy|(2) s w2 Y ST = 2D D1 |(z5) =1 ||w,2-
k=1

O
Several other results concerning absolutely summing analytic mappings can be
found in [6] and [12].

Proposition 1. If f : E — F is absolutely (p; q)-summing at a, then f is so that
(fla+m;) = f(a)j2, € lp(F) whenever (x;)72, is unconditionally q-summable.

Proof. Let f be (p; ¢)-summing at a. For any (z;)32, € [;(E), we have

k,m—o00 4 k,m—o0

im (3 [f((a+m;) = f@I)7 < lim Call(@;)iellis, =0
k

and, by the completeness of [,(F), we obtain (f(a + z;) — f(a))32, € [,(F).0
An immediate outcome of Proposition 1 is that Definition 2 applied for n-
homogeneous polynomials and the usual definition of absolutely (p,q)-summing
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polynomials coincides at a = 0. In order to prove that Definition 2 for n-linear
mappings actually generalizes the standard definition (Definition 1) of absolutely
(p;q1, -+-s @n)-summing multilinear mappings for ¢ = ... = ¢, = ¢, we need the
following Lemma, which is a simple consequence of the Open Mapping Theorem.

Lemma 1. [/(Ey x ... x Ey) is isomorphic to Ii(E1) X ... x I (Ey).

Proposition 2. An n-linear mapping T is (p;q, ...,q)-summing in the usual sense
if, and only if, it is absolutely (p; q)-summing at the origin in the sense of Definition
2.

Proof. Consider an absolutely (p;¢)-summing (in the sense of Definition 2, at
the origin) n-linear mapping, T : E; X ... x E, — F. Then, given (x;l));?';l €
(B, ey (217)322, € 14(E,), we have (28, 2{™)% | € 1(Ey x....x E,). Hence,
by Proposition 1, (T(asg.l), . 5")))] . € l,(F). Thus, by the usual definition, it
follows that T is absolutely (p;q, ..., ¢)-summing .

Conversely, consider an absolutely (p;q, ..., ¢)-summing n-linear mapping T in

the usual meaning. Then, if xgl), ...,xg) e E,l=1,...,n, we have

k
ST @,z ™)) 7 < Ol g @)V g
j=1

Therefore, since I3 (Ey X .... x Ey) is isomorphic to IJ'(E1) x ... x I/ (Ey), it follows
that there exists C; > 0 so that, for every k,

@ 2™ g > CLll @) g + ooe + @) )
and

1, ™)1 > O g + e+ 1) )"
>cn(||< 5”>J g 1@V )

k
>4 i 2,2l
and so T is absolutely (p; q)—summlng in the sense of Definition 2. O

3. ALMOST SUMMING MAPPINGS

Considering the Rademacher functions (r;(t))32

521, we say that the sequence

(o)

(z7)32, of points of E is almost unconditionally summable if Z:l rj(t)z; € Ly([0,1], E)
]:

for some, and then for all p, 0 < p < co.

Definition 3. (Botelho [3]) An n-linear mapping T : Ey X ... x E,, — F is said to
be almost (p1, ..., pn)-summing if there exists C > 0 such that

1 g
n 1 n
( / N O T Y A ol [ S L O[5 A [
o J=t

for every k and any acg-l) inE,l=1,...,n and j =1,...,k. An n-homogeneous poly-

v
nomial P : E — F is said almost p-summing when P is almost (p, ..., p)-summing.
The space of all almost p-summing polynomials is denoted by Py p("E; F).
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Theorem 3. ([2, Theorem 3.3])For1 < p < 2n and P € Py ,("E; F), the following
properties are equivalent:

(i) P is almost p-summing.

(ii) P maps unconditionally p-summable sequences in E into almost uncondi-
tionally summable sequences in F.

The following definition is a natural generalization of Definition 3 and allows us
to give examples of analytic almost p-summing mappings.

Definition 4. A mapping f : E — F is said to be almost p-summing at a € E if
there exist C, > 0, €, > 0 and r, > 0 such that

TR 1
(/llz (a+a;) = fla)r;ONdD)= < Coll(z))j- i,
o =t

for every natural k, any 1, ...,z in E and ||(xj);?:1||w,p < €q. If f is almost p-
summing at every a € E, we say that f is almost p-summing everywhere.

It is worth observing that if f is almost p-summing at a, then f is continuous
at a. The space of all polynomials from F into F which are almost p-summing
everywhere will be denoted by Py () (" E; F).

Proposition 3. If f : E — F is almost p-summing at a, then f is so that
(fla+z;) — f(a))32, is almost unconditionally summable whenever (z;)32, is un-
conditionally p-summable.

Proof. Analogous to the proof of Proposition 1.

An immediate outcome of Theorem 3 and Proposition 3 is that Definitions 4 and
3 coincides for n-homogeneous polynomials and @ = 0. The proof that Definition 4,
for a = 0, generalizes Definition 3, for multilinear mappings and p; = ... = p, = p,
is similar to the proof of Proposition 2.

\%
Proposition 4. If P € P("E; F), then P € Py pg)("E; F) & P € Loy p(r)("E, F).
Proof. Suppose that P € Py ) (" E; F). Then, by the polarization formula,

P (M )y _ p _
Play +z;7,..,an + 7)) — P(a, ..., a,)

1 n
— n|2n Z e1...enP(er(ar +gj(1)) +---+€n(an+x§. ))]_
ei=1,—1
1
_ [n'Q" Z 61---€nP(61a1 4+ o+ enan)]
’ e;=1,—1
= nlan Z e1...en[P((€1a1 + ...+ enan) + (611'( ) +.+ enx( )))_

e;=1,—1
— P(e1ay + ... + enay)].
For any (z (1))] 1ser (T (n))] 1 , in order to simplify notation, we will write
1

oy v 1
= / 13" (Par + 2, yan + 28) = Plag, ...y an))r; ()] 2dt) 2.
j=1

0
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Lemma 1 asserts that there exists D > 0 so that

U Ny + oo+ 1@ o) < DIES, ey 285
for every k. Now suppose

1
1
||(a:§.), o gn))J 1||u,p<5 mlr% {1, €cra1+...4enan b

where the €¢,4,+...4¢,a, are given by Definition 4 applied to P. Then, for any choice
of —1 and 1 for e;, we have

1 .
||(€1:E§- )b+ ena:gn))?:lﬂw,p < min 1{1,631a1+___+enan}.

Therefore,
U
/ H Z nlan Z €1.. 6n 610/1 + ...enan) + (61:175-1) + ...+ enmgn)))—
0 e;=1,—1

— Plerar + ... + enan)]rj(t)H 2dt)®

1 n
< Z /” Zel en 61(11 + ... -I-enan) + (911'( ) + .. tenx ( )))

!
nl2n Nyl
1
— P(erar + ... + eqan)]r; ()]|?dt)?
1 1 T(eqa enan
= nl2n Z Cel“l*---+6nan||(911'§' ) + ... -I-enxg. ))] gyt )
e;=1,—1
< >, € (@Y g + ooe A N@SYE g p) 1o eman)
~ nl2n erart.tenan i Ji=tllw,p T - i )i=1llw,p
e;=1,—1
1 . ! et
S 2o Comtotenan Dcrmreenen @ a1
e;=1,—1
! in{T(erar 4. .4enan)}
<D ||( ( ) ,ajgn))?_lngjg T(erar+...+ )
if ||( (1) .,355'” )] wp <6 = mlne =—11{1, €era1+...4enan }-The converse is ob-
vious. D

Naturally, the concepts of type and cotype give us the next Proposition.

Proposition 5. If F' has type q, then every absolutely (q; p)-summing mapping (at
a) is almost p-summing at a. On the other hand, if F' has finite cotype r, then every
almost p-summing mapping (at a) is (r; p)-summing at a.

Corollary 1. If F is a Hilbert space and E is an Lo space, then every f : E — F,
analytic at a, is almost 2-summing at a. In particular, under the same hypothesis,
every entire mapping f : E — F is almost 2-summing everywhere.

Proof. Since cot F' = 2, by Proposition 2, f is absolutely (2;2)-summing at a.
Besides, since F' has type 2, then f is almost 2-summing at a, by Proposition 5.1

In order to give the other examples of analytic almost summing mappings, the
next Proposition will be useful.

Proposition 6. If f is such that there exist C, 6,7 > 0 so that
1(f(a+2;) = f(@)jillwa < Cll(z) 5= Iy
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for any natural k, every z1,...,x in E and ||(a:j);?:1||w,p < 0, then f is almost
p-summing at a.

Proof.
Loy ) k
/ll (f(a+z5) = fa))r;()|Pdt)= < SFP]||Z(f(a+xj)—f(a))rj(t)”:
) ia tefo,1] o
k
= S sup < o, ;(f(a +a;) — fla)r;(t) >

< I(f(a+25) = f(@)izillwa < Cll(z;)5=1 11,

for [|(2,)_y . < 6.0

In [3, Corollary 6.3] it is stated that regardless of the positive integer n, every
absolutely (1;2)-summing n-homogeneous polynomial is almost 2-summing. It is
worth remarking that, when f is a polynomial, a = 0 and p = 2, Proposition 6 is a
significant improvement of [3, Corollary 6.3], since in Proposition 6 we just need a
weak estimate whereas in [3, Corollary 6.3] we need a norm estimate. As we will see
later in Corollary 3, the aforementioned Proposition is the key of innumerous new
Coincidence Theorems which will generalize the few Coincidence Theorems known
until now (see [3, Proposition 7.1],[2, Proposition 5.1]). The next Corollary give
other examples of almost p-summing analytic mappings.

Corollary 2. Let E be an L ) space and F' be an arbitrary Banach space. Every
mapping g : E — F, analytic at a, such that dg(a) = 0 is almost 2-summing at a.

Proof. Let C and ¢ be such that
1 A
||Edkg(a)|| < Cck for every k > 1.

Then, for any bounded linear functional ¢, defined on F, we obtain

14 14
I5d"eg(a)ll = llp75d" (@)l < Cc*|lgl| for every k > 1.

By (2.2) we have

]. A k—
||Edk<pg(a)||as(1;2) < Ka3'z MO g|| for every k > 2.

Therefore, defining §, as the radius of convergence of g around a, if we assume
(zj)7L, such that

. 1
()71 llw,e < 6 = min{——=—,00},

(2V3A¢)
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we obtain

m
> legla+z)—¢ ZH dkwg Mas(y 1) 7o 152
]'_

= |l(z;)j~ 1||w22|| dkwg syl ()7 155

Ka3 5 MOk ||y
< l(z5) j= 1||w2z D”(mj)gn:1||w72
P 2\/_)\ k—1

for every ¢ € Br and every m. Therefore,

I(g(a + ;) = g(a))iZi llwy < DIl(;) 71 w2
regardless of the [|(z;)7L,[lwp < & , and 21, ..., 7p. Now, Proposition 6 yields the
result. O
In [2, Proposition 5.1] it is shown that if E is an L., space then L(2E;K) =
La1,2(?E;K). Next corollary shows that the aforementioned result is still valid for
vector valued n-linear mappings, for every n > 2.

Corollary 3. If E is an Lo space and n > 2, then for every Banach space F we
have

(3.1) Pu2("E;F) =P("E;F) and L("E; F) = Lo 2("E; F).

Proof. Since every scalar valued n-linear (n > 2) mapping defined on L, spaces
is absolutely (152, ...,2)-summing, it is not hard to prove, using (2.2), that if F is
an Lo x space, then, regardless of the Banach space F', we have

(32) (T, ™) [lon < N K3 T @) 2ol (@) a2

for every continuous n-linear mapping 7' : Ex...x E — F. Then, using the estimates
of Proposition 6, we have

1 m
n 1 n
/||ZT<a:§”,...,m§- Ny @12 E < NTESD, 2
o J=t

and by Definition 3 and (3.2), the proof is done. The polynomial case is analogous.(]

4. A DVORETZKY-ROGERS THEOREM FOR ALMOST p-SUMMING POLYNOMIALS

The Theorem of Dvoretzky-Rogers for absolutely summing linear operators has
natural versions for absolutely summing multilinear mappings and polynomials (see
[9]). A linear Dvoretzky-Rogers Theorem for almost p-summing mappings can be
found in [2, Ex 4.1] and tells us that if p > 1, then L4 ,(E; E) # L(E; E) for every
infinite dimensional Banach space E. In this section, we will show that we also have
multilinear and polynomial versions for this result.

Lemma 2. If P € Py pp)("E; F) then, regardless of the a € E, dP(a) is almost
p-summing at the origin.

Proof. (Adaptation of Lemma 6.1 of [9]).We have the following estimates for

dP(a)(z):

n
dP(a)(z) = —on Z eres...e, Plerz + (ea + ... + ey)a)
(ei=1,—1),i=1,...,n
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= n'r;n Z (ea...en P(x 4+ (e2 + ... + €n)a) — (ea...en, P(—z + (e2 + ... + €p)a))
(e;=1,—1),i=2,...,n

- n!’;n( 3y es.en[P(x + (€2 + . + en)a) — P((e2 + ... + en)a)])—
(e;=1,—1),i=2,...,n

_ #( > ez.n|P(—x + (2 + ... + €5)a) — P((ez + ... + e,)a)))

(ei=1,—1),i=2,...,n

Therefore, defining Q... (z) = es...en[P(x+ (e2 +... +en)a) — P((ea + ... + ep)a)]
we have

Lok
/IIEdP(a)(xj)rj(t)H?dt)% =

- 1S

n k 1
a Y (1R @ @) = Qa0 P

S Qe (@)~ Quare, (—2))ri ()] dr)

(ei=1,—1),i=2,...,n

~ nl2»
(ei=1,-1),i=2,...,n |

< n'zn{ Z /HZQe2 L)t £)12dt)? +

(ei=1,-1),i=2,...,n 7§
1

k
+ / 1S Qenen (—)rs (D)2d) 3]}
o =1

n
< —om > 2C(er 1 tenyall(@5)5y |2
T (ei=1,-1),i=2,...,n

Eoogmin{ries en)alt
< D||(zj)i lwp >

’(e2+ ~+en)a

for [|(z;)%_1[lwp < 6 and 0 < 0 < min{1; €yt e, )a}- O

Theorem 4. (Dvoretzky-Rogers for almost p-summing polynomials) If dim E < oo,
then for p < 2 we have

Ifdim E = oo and p > 1, then Py gy ("E; E) # P("E; E). The multilinear version
15 also valid.

Proof. If dim E < o0, let us consider {ey, ..., e, } and {p1, ..., o, } basis for E and

E' so that ¢;(er) = d;i. Given an n-homogeneous polynomial P from E into E,
we have
v m Y%
= P(Z (pj(x)ej)n = Z P (x)""pjn (x)P(ejw---aejn)'
j=1 Jiseerfn=1

Since every finite type n-homogeneous bounded polynomial is almost p-summing
(at zero) for p < 2n (see [2, Proposition 3.1 (ii)]), it is not hard to prove that P is
almost p-summing everywhere, for p < 2.
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On the other hand, suppose that E is an infinite dimensional Banach space.
It suffices to consider the case 1 < p < 2. Choose a non null continuous linear
functional ¢ € E'and a ¢ Kery. Define

P(z) = ()" 'z

If we had P almost p-summing everywhere, we would have, by Lemma 2, dP(a)
almost p-summing (at zero). Since ¢ is almost p-summing and

dP(a)(z) = (n — 1)p(a)"*p(z)a + p(a)" 'z,

we would have p(a)” "'z almost p-summing. Since ¢(a) # 0, we would have that

idg is almost p-summing, and it is a contradiction. O

Example 1. [t is worth observing that by Corollary 3, for n > 2, we have
Par2("co; co) = P("co; co)
whereas Theorem 4 asserts that Py »(c.)("co; co) # P("co; co)-
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