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Abstra
t

In this paper we introdu
e the 
on
ept of multive
tor fun
tionals.

We study some possible kinds of derivative operators that 
an a
t

in interesting ways on these obje
ts su
h as, e.g., the A-dire
tional

derivative and the generalized 
on
epts of 
url, divergen
e and gradi-

ent. The derivation rules are rigorously proved. Sin
e the subje
t of

this paper has not been developed in previous literature, we work out

in details several examples of derivation of multive
tor fun
tionals.
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1 Introdu
tion

This is the last paper (VII) of series of papers dealing with the theory of

multive
tor and extensor fun
tions and multive
tor fun
tionals. It is dedi-


ated to the introdu
tion of a key 
on
ept, that of multive
tor fun
tionals

and the study of their properties. Parti
ularly important is the 
on
ept of

indu
ed multive
tor fun
tionals. Several kinds of derivatives of multive
tor

fun
tionals, su
h as A-dire
tional derivative and generalized 
on
epts of 
url,

divergen
e and gradient are de�ned. Sin
e the subje
t of the present paper

has not been explored in the literature

1

, we present in se
tion 3 several ex-

amples worked in detail of 
al
ulations of di�erent types of derivatives for

multive
tor fun
tionals. Multive
tor fun
tionals are fundamental for the for-

mulation of the Lagrangian �eld theory of multive
tor and extensor �elds

on an arbitrary manifold, a subje
t that will be studied in a new series of

papers.

2 Multive
tor Fun
tionals

Any mapping whi
h sends general extensors over V into multive
tors over V

will be 
alled a general multive
tor fun
tional over V .

In parti
ular, the general fun
tionals with image-values belonging to

V

r

V

are said to be r-ve
tor fun
tionals of general extensor. For the 
ases r = 0;

r = 1; r = 2; : : : and r = n we speak about s
alar, ve
tor, bive
tor,: : : and

pseudos
alar fun
tionals, respe
tively.

1

For the best of our knowldge the only pla
e where the 
on
ept has been rudimentary

used was in [1℄. The 
on
ept has been used also in ([2℄,[3℄).
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For the appli
ations we have in mind we shall need only some parti
ular


ases of these general fun
tionals for whi
h we will give spe
ial names.

Any mapping F : ext

q

p

(V )!

V

r

V will be 
alled a r-ve
tor fun
tional of

a (p; q)-extensor. In a

ordan
e to what was said above, the 
ases for whi
h

F [t℄ belongs to R; V;

V

2

V; : : : and

V

n

V will be named respe
tively as s
alar,

ve
tor, bive
tor,: : : and pseudos
alar fun
tionals of a (p; q)-extensor.

2.1 Indu
ed Multive
tor Fun
tionals

Let F :

q

^

V � � � � �

q

^

V

| {z }

k fa
tors

!

V

r

V be any r-ve
tor fun
tion of k q-ve
tor

variables. Take some k-uple of p-ve
tors (A

1

; : : : ; A

k

):

Asso
iated to F and with respe
t to (A

1

; : : : ; A

k

) it is possible to 
onstru
t

a r-ve
tor fun
tional of a (p; q)-extensor, say F

(A

1

;:::;A

k

)

; given by

ext

q

p

(V ) 3 t 7! F

(A

1

;:::;A

k

)

[t℄ 2

^

r

V su
h that

F

(A

1

;:::;A

k

)

[t℄ = F [t(A

1

); : : : ; t(A

k

)℄: (1)

It will be 
alled the r-ve
tor fun
tional of a (p; q)-extensor indu
ed by F;

relative to (A

1

; : : : ; A

k

).

If F is di�erentiable on

^

q

V � � � � �

q

^

V

| {z }

k fa
tors

; then F

(A

1

;:::;A

k

)

is said to be

di�erentially-indu
ed by F with respe
t to (A

1

; : : : ; A

k

):

In this way if F

(A

1

;:::;A

k

)

is di�erentially-indu
ed, then there must exist

the standard derivatives of F with respe
t to ea
h p-ve
tor variable X

1

; : : :

and X

k

(the so-
alled partial derivatives of F ), i.e., �

X

1

F; : : : and �

X

kF; (see

[6℄).

Asso
iated to �

X

1

F; : : : and �

X

k
F with respe
t to (A

1

; : : : ; A

k

) we 
an

de�ne the following multive
tor fun
tionals of a (p; q)-extensor:

ext

q

p

(V ) 3 t 7! �

X

1

F [t(A

1

); : : : ; t(A

k

)℄ 2

^

V;

: : :

and

ext

q

p

(V ) 3 t 7! �

X

kF [t(A

1

); : : : ; t(A

k

)℄ 2

^

V: (2)
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We see that they are indu
ed by the partial derivatives of F with respe
t to

(A

1

; : : : ; A

k

):

2.1.1 Dire
tional Derivative

Take an arbitrary p-ve
tor A:We introdu
e the A-dire
tional derivative of the

di�erentially-indu
ed r-ve
tor fun
tional F

(A

1

;:::;A

k

)

as being the multive
tor

fun
tional F

0

(A

1

;:::;A

k

)A

given by

ext

q

p

(V ) 3 t 7! F

0

(A

1

;:::;A

k

)A

[t℄ 2 �V su
h that

F

0

(A

1

;:::;A

k

)A

[t℄ =

k

X

i=1

A � A

i

�

X

i
F [t(A

1

); : : : ; t(A

k

)℄: (3)

Note that the algebrai
 obje
t just de�ned asso
iated to F

(A

1

;:::;A

k

)

has

the property of linearity with respe
t to the dire
tion, i.e., for any �; � 2 R

and A;B 2

V

p

V

F

0

(A

1

;:::;A

k

)�A+�B

[t℄ = �F

0

(A

1

;:::;A

k

)A

[t℄ + �F

0

(A

1

;:::;A

k

)B

[t℄; (4)

as expe
ted to hold for a well-de�ned A-dire
tional derivative of F

(A

1

;:::;A

k

)

:

2.1.2 Derivatives

Let (fe

k

g; fe

k

g) be a pair of arbitrary re
ipro
al bases of V: It is also possible

to introdu
e four derivatives-like operators for the di�erentially-indu
ed r-

ve
tor fun
tionalF

(A

1

;:::;A

k

)

as the followingmultive
tor fun
tionals �F

0

(A

1

;:::;A

k

)

de�ned by

�F

0

(A

1

;:::;A

k

)

[t℄ =

1

p!

(e

j

1

^ : : : e

j

p

) � F

0

(A

1

;:::;A

k

)e

j

1

^:::e

j

p

[t℄ (5)

=

1

p!

(e

j

1

^ : : : e

j

p

) � F

0

(A

1

;:::;A

k

)e

j

1

^:::e

j

p

[t℄; (6)

where � means either (^); (�); (y) or (Cli�ord produ
t):

It should be noted that �F

0

(A

1

;:::;A

k

)

are well-de�ned multive
tor fun
tion-

als of (p; q)-extensor only asso
iated with F

(A

1

;:::;A

k

)

sin
e, by taking into

a

ount eq.(4), �F

0

(A

1

;:::;A

k

)

[t℄ are multive
tors whi
h do not depend on the


hoi
e of (fe

k

g; fe

k

g).

4



Re
all also that a straightforward 
al
ulation gives with the use eq.(3)

that

�F

0

(A

1

;:::;A

k

)

[t℄ =

1

p!

(e

j

1

^ : : : e

j

p

) � (

k

X

i=1

(e

j

1

^ : : : e

j

p

) � A

i

�

X

i
F [: : :℄)

= (

k

X

i=1

1

p!

(e

j

1

^ : : : e

j

p

) � A

i

e

j

1

^ : : : e

j

p

) � �

X

i
F [: : :℄

�F

0

(A

1

;:::;A

k

)

[t℄ =

k

X

i=1

A

i

� �

X

i
F [t(A

1

); : : : ; t(A

k

)℄: (7)

Eq.(7) shows expli
itly that �F

0

(A

1

;:::;A

k

)


an be intrinsi
ally de�ned without

using any pair of re
ipro
al bases of V .

The spe
ial 
ases: ^F

0

(A

1

;:::;A

k

)

; �F

0

(A

1

;:::;A

k

)

; yF

0

(A

1

;:::;A

k

)

and F

0

(A

1

;:::;A

k

)

(i.e.,

� �Cli�ord produ
t) will be 
alled respe
tively the 
url, s
alar divergen
e,

left 
ontra
ted divergen
e and gradient of F

(A

1

;:::;A

k

)

: Sometimes, F

0

(A

1

;:::;A

k

)

will be 
alled the standard derivative of F

(A

1

;:::;A

k

)

:

We introdu
e now on the real ve
tor spa
e of di�erentially-indu
ed r-

ve
tor fun
tionals of (p; q)-extensor the following four derivative-like opera-

tors �

t

� as follows

�

t

� F

(A

1

;:::;A

k

)

[t℄ = �F

0

(A

1

;:::;A

k

)

[t℄; (8)

i.e., by eq.(7)

�

t

� F

(A

1

;:::;A

k

)

[t℄ =

k

X

i=1

A

i

� �

X

i
F [t(A

1

); : : : ; t(A

k

)℄: (9)

The spe
ial 
ases: �

t

^; �

t

�; �

t

y and �

t

(i.e., � �Cli�ord produ
t) will

be 
alled respe
tively the (fun
tional) 
url, s
alar divergen
e, left 
ontra
ted

divergen
e and gradient operator. Sometimes, we will say that �

t

is the

standard derivative operator with respe
t to t.

�

t

^F

(A

1

;:::;A

k

)

[t℄; �

t

� F

(A

1

;:::;A

k

)

[t℄; �

t

yF

(A

1

;:::;A

k

)

[t℄ and �

t

F

(A

1

;:::;A

k

)

[t℄ (i.e.,

� �Cli�ord produ
t) will be named respe
tively as the 
url, s
alar diver-

gen
e, left 
ontra
ted divergen
e and gradient of F

(A

1

;:::;A

k

)

: The gradient of

F

(A

1

;:::;A

k

)

will be 
alled the standard derivative of F

(A

1

;:::;A

k

)

with respe
t to

t

5



It is still possible to de�ne the noti
eable derivative-like operator A � �

t

as follows

A � �

t

F

(A

1

;:::;A

k

)

[t℄ = (A �

1

p!

e

j

1

^ : : : e

j

p

)F

0

(A

1

;:::;A

k

)e

j

1

^:::e

j

p

[t℄ (10)

= (A �

1

p!

e

j

1

^ : : : e

j

p

)F

0

(A

1

;:::;A

k

)e

j

1

^:::e

j

p

[t℄; (11)

i.e., by eq.(4)

A � �

t

F

(A

1

;:::;A

k

)

[t℄ = F

0

(A

1

;:::;A

k

)A

[t℄: (12)

Eq.(12) means that A ��

t

is the A-dire
tional derivative operator whi
h maps

F

(A

1

;:::;A

k

)

7! F

0

(A

1

;:::;A

k

)A

:

It is often 
onvenient when doing 
al
ulations to employ some abuses

of notation for simplifying the handle of the fundamental formulas. Thus,

eqs.(3) and (9) will be usually written

A � �

t

F [t(A

1

); : : : ; t(A

k

)℄ =

k

X

i=1

A � A

i

�

t(A

i

)

F [t(A

1

); : : : ; t(A

k

)℄; (13)

�

t

� F [t(A

1

); : : : ; t(A

k

)℄ =

k

X

i=1

A

i

� �

t(A

i

)

F [t(A

1

); : : : ; t(A

k

)℄: (14)

No 
onfusion arises sin
e A��

t

and �

t

� denote derivation of r-ve
tor fun
tional

with respe
t to (p; q)-extensor t; and �

t(A

i

)

holds for derivation of r-ve
tor

fun
tion with respe
t to q-ve
tor t(A

i

).

It should be noted that by employing the abused notation we 
an re-write

eqs.(5) and (6) as

�

t

� F [: : :℄ =

1

p!

(e

j

1

^ : : : e

j

p

) � (e

j

1

^ : : : e

j

p

) � �

t

F [: : :℄ (15)

=

1

p!

(e

j

1

^ : : : e

j

p

) � (e

j

1

^ : : : e

j

p

) � �

t

F [: : :℄: (16)

2.1.3 A-Dire
tional Derivation Rules

Proposition 1 Take a real � and a multive
torM: If t 7! F [t(A

1

); : : : ; t(A

k

)℄

is any di�erentially-indu
ed r-ve
tor fun
tional of a (p; q)-extensor, then

A � �

t

(�F [: : :℄) = �A � �

t

F [: : :℄; (17)

A � �

t

(F [: : :℄M) = (A � �

t

F [: : :℄)M: (18)

6



Proof. It follows dire
tly from eq.(13) by using the derivation formulas:

�

X

i
(�F (: : :)) = ��

X

i
F (: : :) and �

X

i
(F (: : :)M) = (�

X

i
F (: : :))M:

Theorem 2 Let t 7! F [t(A

1

); : : : ; t(A

k

)℄ and t 7! G[t(A

1

); : : : ; t(A

k

)℄ be any

two di�erentially-indu
ed r-ve
tor fun
tionals of a (p; q)-extensor.

The addition t 7! (F + G)[t(A

1

); : : : ; t(A

k

)℄ is a di�erentially-indu
ed

r-ve
tor fun
tional of a (p; q)-extensor and the following rule holds

A � �

t

(F +G)[: : :℄ = A � �

t

F [: : :℄ + A � �

t

G[: : :℄: (19)

Proof. As we 
an see, it is an immediate 
onsequen
e of the derivation rule

�

X

i
(F +G)(: : :) = �

X

i
(F )(: : :) + �

X

i
G(: : :):

Theorem 3 Let t 7! �[t(A

1

); : : : ; t(A

k

)℄ and t 7! G[t(A

1

); : : : ; t(A

k

)℄ be any

di�erentially-indu
ed s
alar and r-ve
tor fun
tional of a (p; q)-extensor, re-

spe
tively.

The s
alar multipli
ation t 7! (�G)[t(A

1

); : : : ; t(A

k

)℄ is also a di�erentially-

indu
ed r-ve
tor fun
tional of a (p; q)-extensor and we have

A � �

t

(�G)[: : :℄ = (A � �

t

�[: : :℄)G[: : :℄ + �[: : :℄A � �

t

G[: : :℄: (20)

It is rightly a Leibnitz-like rule.

Proof. As the reader 
an easily prove, eq.(20) is an immediate 
onsequen
e

of the derivation rule �

X

i
(�G)(: : :) = (�

X

i
�(: : :))G(: : :)+�(: : :)�

X

i
G(: : :):

Theorem 4 Let t 7! 	[t(A

1

); : : : ; t(A

k

)℄ and � 7! �(�) be any di�erentially-

indu
ed s
alar fun
tional and a derivable ordinary real fun
tion, respe
tively.

Then, t 7! �(	[t(A

1

); : : : ; t(A

k

)℄) is a di�erentially-indu
ed s
alar fun
tional

and the following rule holds

A � �

t

�(	[: : :℄) = �

0

(	[: : :℄)A � �

t

	[: : :℄: (21)

It is an interesting and useful 
hain-like rule for A-dire
tional derivation

of a spe
ial type of s
alar fun
tionals.

Proof. Eq.(21) follows easily from eq.(13) by taking into a

ount the deriva-

tion rule �

X

i
� Æ	(: : :) = �

0

Æ	(: : :)�

X

i
	(: : :):

7



3 Examples

Example 5 Let h 2 ext

1

1

(V ) and take a; b; 
 2 V . Then,

a � �

h

(h(b) � h(
)) = a � b�

h(b)

(h(b) � h(
)) + a � 
�

h(
)

(h(b) � h(
))

= a � bh(
) + a � 
h(b);

a � �

h

(h(b) � h(
)) = h(a � b
 + a � 
b): (22)

Also,

a � �

h

(h(b) ^ h(
)) = a � b�

h(b)

(h(b) ^ h(
)) + a � 
�

h(
)

(h(b) ^ h(
))

= a � b(n� 1)h(
)� a � 
(n� 1)h(b)

= (n� 1)h(a � b
� a � 
b);

a � �

h

(h(b) ^ h(
)) = (n� 1)h(ay(b ^ 
)): (23)

In eqs.(22) and (23) we have used the derivative formulas �

x

(x � y) = y and

�

x

(x ^ y) = (n� 1)y, where n is the dimension of V:

The se
ond formula developed in this example has an interesting and

useful generalization, whi
h is:

The a-derivative of the k-ve
tor fun
tional ext

1

1

(V ) 3 h 7! h(a

1

^: : : a

k

) 2

V

k

V; with a

1

; : : : ; a

k

2 V; is given by

a � �

h

h(a

1

^ : : : a

k

) = (n� k + 1)h(ay(a

1

^ : : : a

k

)): (24)

Example 6 Let h 2 ext

1

1

(V ) and take b 2 V:

We shall 
al
ulate a � �

h

h(b) and a � �

h

h

y

(b): And, also �

h

� h(b) and

�

h

� h

y

(b):

First, we have

a � �

h

h(b) = a � b�

h(b)

h(b) = (a � b)n;

a � �

h

h(b) = n(a � b); (25)

were we used the derivative formula �

x

x = n: Thus,

�

h

� h(b) = e

j

� e

j

� �

h

h(b) = e

j

� n(e

j

� b) = b � n;

8



i.e.,

�

h

^ h(b) = �

h

h(b) = nb;

�

h

� h(b) = �

h

yh(b) = 0:

Now, by employing a tri
k we have

a � �

h

h

y

(b) = a � �

h

(h

y

(b) � e

j

e

j

) = a � �

h

(b � h(e

j

)e

j

):

Thus, by using eq.(18)

a � �

h

h

y

(b) = (

n

X

i=1

a � e

i

�

h(e

i

)

b � h(e

j

))e

j

=

n

X

i=1

a � e

i

bÆ

j

i

e

j

;

a � �

h

h

y

(b) = ba; (26)

were we used the derivative formula �

x

(b � x) = b: Thus,

�

h

� h

y

(b) = e

j

� e

j

� �

h

h

y

(b) = e

j

� (be

j

):

It follows that

�

h

^ h

y

(b) = e

j

^ (b � e

j

) + e

j

^ (b ^ e

j

) = b:

�

h

� h

y

(b) = e

j

� (b � e

j

) + e

j

� (b ^ e

j

) = 0:

�

h

yh

y

(b) = e

j

y(b � e

j

) + e

j

y(b ^ e

j

) = (e

j

� b)e

j

� (e

j

� e

j

)b = (1� n)b:

�

h

h

y

(b) = e

j

(2e

j

� b� e

j

b) = (2� n)b:

Example 7 Let t 2 ext

1

1

(V ): The tra
e of t; i.e., t 7! tr[t℄ = t(e

j

) � e

j

; is

a s
alar fun
tional and the bive
tor of t; i.e., t 7! biv[t℄ = t(e

j

) ^ e

j

; is a

bive
tor fun
tional, both of them asso
iated to t. We shall 
al
ulate a � �

t

tr[t℄

and a � �

t

biv[t℄: And, also �

t

� tr[t℄ and �

t

� biv[t℄:

First, we have

a � �

t

tr[t℄ =

n

X

i=1

a � e

i

�

t(e

i

)

(t(e

j

) � e

j

) =

n

X

i=1

a � e

i

Æ

j

i

e

j

;

a � �

t

tr[t℄ = a: (27)

We have used on
e again the derivative formula �

x

(x � y) = y: Hen
e,

�

t

� tr[t℄ = e

j

� e

j

� �

t

tr[t℄ = e

j

� e

j

;

9



i.e.,

�

t

^ tr[t℄ = 0;

�

t

� tr[t℄ = �

t

ytr[t℄ = �

t

tr[t℄ = n:

Now, we have also

a � �

t

biv[t℄ =

n

X

i=1

a � e

i

�

t(e

i

)

(t(e

j

) ^ e

j

) =

n

X

i=1

a � e

i

(n� 1)Æ

j

i

e

j

;

a � �

t

biv[t℄ = (n� 1)a; (28)

were we have used on
e again the derivative formula �

x

(x ^ y) = (n � 1)y:

Hen
e,

�

t

� biv[t℄ = (n� 1)e

j

� e

j

;

i.e.,

�

t

^ biv[t℄ = 0;

�

t

� biv[t℄ = �

t

ybiv[t℄ = �

t

biv[t℄ = (n� 1)n:

Example 8 Let h 2 ext

1

1

(V ) and take a non-zero I 2

V

n

V: We shall 
al-


ulate the a-dire
tional derivative of the pseudos
alar fun
tional h 7! h(I);

i.e., a � �

h

h(I):

By employing one of the expansion formulas for pseudos
alars (see [4℄),

eq.(17) and eq.(24) we have

a � �

h

h(I) = a � �

h

I � (e

1

^ : : : e

n

)h(e

1

^ : : : e

n

)

= I � (e

1

^ : : : e

n

)a � �

h

h(e

1

^ : : : e

n

)

= I � (e

1

^ : : : e

n

)h(ay(e

1

^ : : : e

n

));

a � �

h

h(I) = h(ayI) = h(aI): (29)

Example 9 Let h 2 ext

1

1

(V ) and take a non-zero I 2 �

n

V: The determinant

of h; i.e., h 7! det[h℄ su
h that h(I) = det[h℄I; is a 
hara
teristi
 s
alar

fun
tional of h: We shall 
al
ulate a � �

h

det[h℄ and �

h

� det[h℄:

By employing eq.(18) and eq.(29) we have

a � �

h

det[h℄ = (a � �

h

h(I))I

�1

= h(aI)I

�1

:

10



But, by taking into a

ount the extensor formula h

�1

(a) = det

�1

[h℄h

y

(aI)I

�1

(see[5℄) and re
alling that det[h

y

℄ = det[h℄ and h

�

= (h

y

)

�1

= (h

�1

)

y

we get

a � �

h

det[h℄ = det[h℄h

�

(a): (30)

Hen
e, it follows that

�

h

� det[h℄ = e

j

� e

j

� �

h

det[h℄ = det[h℄e

j

� h

�

(e

j

);

i.e.,

�

h

^ det[h℄ = � det[h℄h

�

(e

j

) ^ e

j

= det[h℄biv[h

�1

℄:

�

h

� det[h℄ = �

h

y det[h℄ = det[h℄h

�1

(e

j

) � e

j

= det[h℄tr[h

�1

℄:

�

h

det[h℄ = det[h℄e

j

h

�

(e

j

) = det[h℄(tr[h

�1

℄ + biv[h

�1

℄):

3.1 An Enlightening Dis
ussion

Let us 
onsider for example a di�erentially-indu
ed s
alar fun
tional of (1; 1)-

extensor t 7! �[t(a

1

)℄: We have the possibility for 
onstru
ting a di�eren-

tiable s
alar fun
tion of n� n real variables (t

11

; : : : ; t

1n

; : : : ; t

n1

; : : : ; t

nn

) 7!

b

�(t

11

; : : : ; t

1n

; : : : ; t

n1

; : : : ; t

nn

); de�ned by

b

�(t

11

; : : : ; t

1n

; : : : ; t

n1

; : : : ; t

nn

) = �[t

ij

(a

1

� e

i

)e

j

℄ (31)

where t

ij

= t(e

i

) � e

j

are the n� n matrix elements of t with respe
t to fe

k

g:

Eq.(31) shows that all information just 
ontained into the 
lassi
al real

fun
tion (t

11

; : : : ; t

nn

) 7!

b

�(t

11

; : : : ; t

nn

) whose real variables are t

pq

; is also


odi�ed into the s
alar fun
tional t 7! �[t(a

1

)℄:

We shall sear
h for the relationship whi
h exists between the ordinary

partial derivatives of

b

�(: : :) with respe
t to ea
h tensor 
ovariant 
omponent

2

t

pq

and the a-dire
tional derivative of �[: : :℄:

By using �

�

i

�(x(�

1

; : : : ; �

k

)) = �

�

i

x(�

1

; : : : ; �

k

) � �

x

�(x(�

1

; : : : ; �

k

)); a


hain-like derivation rule, we may write

�

b

�

�t

pq

(t

11

; : : : ; t

nn

) = �

t

pq

(t

ij

(a

1

� e

i

)e

j

) � �

x

�[t

ij

(a

1

� e

i

)e

j

℄

= Æ

pq

ij

(a

1

� e

i

)e

j

� �

t(a

1

)

�[t(a

1

)℄;

�

b

�

�t

pq

(t

11

; : : : ; t

nn

) = (a

1

� e

p

)e

q

� �

t(a

1

)

�[t(a

1

)℄: (32)

2

They are the n�n 
ovariant 
omponents of a 2-tensor T in biunivo
al 
orresponden
e

with the (1; 1)-extensor t; see [5℄, i.e., T

pq

� T (e

p

; e

q

) = t(e

p

) � e

q

� t

pq

:
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Now, Cli�ord multipli
ation by (a � e

p

)e

q

(and summing over p; q) on both

sides of eq.(32) yields

(a � e

p

)e

q

�

b

�

�t

pq

(t

11

; : : : ; t

nn

) = (a � a

1

)e

q

e

q

� �

t(a

1

)

�[t(a

1

)℄

= a � a

1

�

t(a

1

)

�[t(a

1

)℄;

(a � e

p

)e

q

�

b

�

�t

pq

(t

11

; : : : ; t

nn

) = a � �

t

�[t(a

1

)℄: (33)

That is the required result relating both

�

b

�

�t

pq

(t

11

; : : : ; t

nn

) and a � �

t

�[t(a

1

)℄:

It is still possible to �nd a relationship between

�

b

�

�t

pq

(t

11

; : : : ; t

nn

) and the

�-derivatives of �[t(a

1

)℄: From eq.(32) we have

e

p

� (e

q

�

b

�

�t

pq

(t

11

; : : : ; t

nn

)) = a

1

� (e

q

e

q

� �

t(a

1

)

�[t(a

1

)℄)

= a

1

� �

t(a

1

)

�[t(a

1

)℄;

e

p

� (e

q

�

b

�

�t

pq

(t

11

; : : : ; t

nn

)) = �

t

� �[t(a

1

)℄: (34)

That is the expe
ted identity whi
h relates both

�

b

�

�t

pq

(t

11

; : : : ; t

nn

) and

�

t

� �[t(a

1

)℄:

4 Con
lusions

In this paper we introdu
ed the key 
on
epts of a theory of multive
tor fun
-

tionals. We studied several aspe
ts of the notion of derivative that 
an be

applied to these obje
ts, as e.g., the A-dire
tional derivatives and the general-

ized 
on
epts of 
url, divergen
e and gradient. We worked in details several

examples where we 
al
ulate di�erent types of derivatives for multive
tor

fun
tionals. It is worth to said on
e again that these obje
ts play a de
isive

role in the development of a Lagrangian formalism for extensor �elds as it

will be seen in two future series of papers: geometri
 theories of gravitation

and Lagrangian formulation of the multive
tor and extensor �elds theory.
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