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Abstrat

In this paper we introdue the onept of multivetor funtionals.

We study some possible kinds of derivative operators that an at

in interesting ways on these objets suh as, e.g., the A-diretional

derivative and the generalized onepts of url, divergene and gradi-

ent. The derivation rules are rigorously proved. Sine the subjet of

this paper has not been developed in previous literature, we work out

in details several examples of derivation of multivetor funtionals.
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1 Introdution

This is the last paper (VII) of series of papers dealing with the theory of

multivetor and extensor funtions and multivetor funtionals. It is dedi-

ated to the introdution of a key onept, that of multivetor funtionals

and the study of their properties. Partiularly important is the onept of

indued multivetor funtionals. Several kinds of derivatives of multivetor

funtionals, suh as A-diretional derivative and generalized onepts of url,

divergene and gradient are de�ned. Sine the subjet of the present paper

has not been explored in the literature

1

, we present in setion 3 several ex-

amples worked in detail of alulations of di�erent types of derivatives for

multivetor funtionals. Multivetor funtionals are fundamental for the for-

mulation of the Lagrangian �eld theory of multivetor and extensor �elds

on an arbitrary manifold, a subjet that will be studied in a new series of

papers.

2 Multivetor Funtionals

Any mapping whih sends general extensors over V into multivetors over V

will be alled a general multivetor funtional over V .

In partiular, the general funtionals with image-values belonging to

V

r

V

are said to be r-vetor funtionals of general extensor. For the ases r = 0;

r = 1; r = 2; : : : and r = n we speak about salar, vetor, bivetor,: : : and

pseudosalar funtionals, respetively.

1

For the best of our knowldge the only plae where the onept has been rudimentary

used was in [1℄. The onept has been used also in ([2℄,[3℄).
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For the appliations we have in mind we shall need only some partiular

ases of these general funtionals for whih we will give speial names.

Any mapping F : ext

q

p

(V )!

V

r

V will be alled a r-vetor funtional of

a (p; q)-extensor. In aordane to what was said above, the ases for whih

F [t℄ belongs to R; V;

V

2

V; : : : and

V

n

V will be named respetively as salar,

vetor, bivetor,: : : and pseudosalar funtionals of a (p; q)-extensor.

2.1 Indued Multivetor Funtionals

Let F :

q

^

V � � � � �

q

^

V

| {z }

k fators

!

V

r

V be any r-vetor funtion of k q-vetor

variables. Take some k-uple of p-vetors (A

1

; : : : ; A

k

):

Assoiated to F and with respet to (A

1

; : : : ; A

k

) it is possible to onstrut

a r-vetor funtional of a (p; q)-extensor, say F

(A

1

;:::;A

k

)

; given by

ext

q

p

(V ) 3 t 7! F

(A

1

;:::;A

k

)

[t℄ 2

^

r

V suh that

F

(A

1

;:::;A

k

)

[t℄ = F [t(A

1

); : : : ; t(A

k

)℄: (1)

It will be alled the r-vetor funtional of a (p; q)-extensor indued by F;

relative to (A

1

; : : : ; A

k

).

If F is di�erentiable on

^

q

V � � � � �

q

^

V

| {z }

k fators

; then F

(A

1

;:::;A

k

)

is said to be

di�erentially-indued by F with respet to (A

1

; : : : ; A

k

):

In this way if F

(A

1

;:::;A

k

)

is di�erentially-indued, then there must exist

the standard derivatives of F with respet to eah p-vetor variable X

1

; : : :

and X

k

(the so-alled partial derivatives of F ), i.e., �

X

1

F; : : : and �

X

kF; (see

[6℄).

Assoiated to �

X

1

F; : : : and �

X

k
F with respet to (A

1

; : : : ; A

k

) we an

de�ne the following multivetor funtionals of a (p; q)-extensor:

ext

q

p

(V ) 3 t 7! �

X

1

F [t(A

1

); : : : ; t(A

k

)℄ 2

^

V;

: : :

and

ext

q

p

(V ) 3 t 7! �

X

kF [t(A

1

); : : : ; t(A

k

)℄ 2

^

V: (2)
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We see that they are indued by the partial derivatives of F with respet to

(A

1

; : : : ; A

k

):

2.1.1 Diretional Derivative

Take an arbitrary p-vetor A:We introdue the A-diretional derivative of the

di�erentially-indued r-vetor funtional F

(A

1

;:::;A

k

)

as being the multivetor

funtional F

0

(A

1

;:::;A

k

)A

given by

ext

q

p

(V ) 3 t 7! F

0

(A

1

;:::;A

k

)A

[t℄ 2 �V suh that

F

0

(A

1

;:::;A

k

)A

[t℄ =

k

X

i=1

A � A

i

�

X

i
F [t(A

1

); : : : ; t(A

k

)℄: (3)

Note that the algebrai objet just de�ned assoiated to F

(A

1

;:::;A

k

)

has

the property of linearity with respet to the diretion, i.e., for any �; � 2 R

and A;B 2

V

p

V

F

0

(A

1

;:::;A

k

)�A+�B

[t℄ = �F

0

(A

1

;:::;A

k

)A

[t℄ + �F

0

(A

1

;:::;A

k

)B

[t℄; (4)

as expeted to hold for a well-de�ned A-diretional derivative of F

(A

1

;:::;A

k

)

:

2.1.2 Derivatives

Let (fe

k

g; fe

k

g) be a pair of arbitrary reiproal bases of V: It is also possible

to introdue four derivatives-like operators for the di�erentially-indued r-

vetor funtionalF

(A

1

;:::;A

k

)

as the followingmultivetor funtionals �F

0

(A

1

;:::;A

k

)

de�ned by

�F

0

(A

1

;:::;A

k

)

[t℄ =

1

p!

(e

j

1

^ : : : e

j

p

) � F

0

(A

1

;:::;A

k

)e

j

1

^:::e

j

p

[t℄ (5)

=

1

p!

(e

j

1

^ : : : e

j

p

) � F

0

(A

1

;:::;A

k

)e

j

1

^:::e

j

p

[t℄; (6)

where � means either (^); (�); (y) or (Cli�ord produt):

It should be noted that �F

0

(A

1

;:::;A

k

)

are well-de�ned multivetor funtion-

als of (p; q)-extensor only assoiated with F

(A

1

;:::;A

k

)

sine, by taking into

aount eq.(4), �F

0

(A

1

;:::;A

k

)

[t℄ are multivetors whih do not depend on the

hoie of (fe

k

g; fe

k

g).
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Reall also that a straightforward alulation gives with the use eq.(3)

that

�F

0

(A

1

;:::;A

k

)

[t℄ =

1

p!

(e

j

1

^ : : : e

j

p

) � (

k

X

i=1

(e

j

1

^ : : : e

j

p

) � A

i

�

X

i
F [: : :℄)

= (

k

X

i=1

1

p!

(e

j

1

^ : : : e

j

p

) � A

i

e

j

1

^ : : : e

j

p

) � �

X

i
F [: : :℄

�F

0

(A

1

;:::;A

k

)

[t℄ =

k

X

i=1

A

i

� �

X

i
F [t(A

1

); : : : ; t(A

k

)℄: (7)

Eq.(7) shows expliitly that �F

0

(A

1

;:::;A

k

)

an be intrinsially de�ned without

using any pair of reiproal bases of V .

The speial ases: ^F

0

(A

1

;:::;A

k

)

; �F

0

(A

1

;:::;A

k

)

; yF

0

(A

1

;:::;A

k

)

and F

0

(A

1

;:::;A

k

)

(i.e.,

� �Cli�ord produt) will be alled respetively the url, salar divergene,

left ontrated divergene and gradient of F

(A

1

;:::;A

k

)

: Sometimes, F

0

(A

1

;:::;A

k

)

will be alled the standard derivative of F

(A

1

;:::;A

k

)

:

We introdue now on the real vetor spae of di�erentially-indued r-

vetor funtionals of (p; q)-extensor the following four derivative-like opera-

tors �

t

� as follows

�

t

� F

(A

1

;:::;A

k

)

[t℄ = �F

0

(A

1

;:::;A

k

)

[t℄; (8)

i.e., by eq.(7)

�

t

� F

(A

1

;:::;A

k

)

[t℄ =

k

X

i=1

A

i

� �

X

i
F [t(A

1

); : : : ; t(A

k

)℄: (9)

The speial ases: �

t

^; �

t

�; �

t

y and �

t

(i.e., � �Cli�ord produt) will

be alled respetively the (funtional) url, salar divergene, left ontrated

divergene and gradient operator. Sometimes, we will say that �

t

is the

standard derivative operator with respet to t.

�

t

^F

(A

1

;:::;A

k

)

[t℄; �

t

� F

(A

1

;:::;A

k

)

[t℄; �

t

yF

(A

1

;:::;A

k

)

[t℄ and �

t

F

(A

1

;:::;A

k

)

[t℄ (i.e.,

� �Cli�ord produt) will be named respetively as the url, salar diver-

gene, left ontrated divergene and gradient of F

(A

1

;:::;A

k

)

: The gradient of

F

(A

1

;:::;A

k

)

will be alled the standard derivative of F

(A

1

;:::;A

k

)

with respet to

t

5



It is still possible to de�ne the notieable derivative-like operator A � �

t

as follows

A � �

t

F

(A

1

;:::;A

k

)

[t℄ = (A �

1

p!

e

j

1

^ : : : e

j

p

)F

0

(A

1

;:::;A

k

)e

j

1

^:::e

j

p

[t℄ (10)

= (A �

1

p!

e

j

1

^ : : : e

j

p

)F

0

(A

1

;:::;A

k

)e

j

1

^:::e

j

p

[t℄; (11)

i.e., by eq.(4)

A � �

t

F

(A

1

;:::;A

k

)

[t℄ = F

0

(A

1

;:::;A

k

)A

[t℄: (12)

Eq.(12) means that A ��

t

is the A-diretional derivative operator whih maps

F

(A

1

;:::;A

k

)

7! F

0

(A

1

;:::;A

k

)A

:

It is often onvenient when doing alulations to employ some abuses

of notation for simplifying the handle of the fundamental formulas. Thus,

eqs.(3) and (9) will be usually written

A � �

t

F [t(A

1

); : : : ; t(A

k

)℄ =

k

X

i=1

A � A

i

�

t(A

i

)

F [t(A

1

); : : : ; t(A

k

)℄; (13)

�

t

� F [t(A

1

); : : : ; t(A

k

)℄ =

k

X

i=1

A

i

� �

t(A

i

)

F [t(A

1

); : : : ; t(A

k

)℄: (14)

No onfusion arises sine A��

t

and �

t

� denote derivation of r-vetor funtional

with respet to (p; q)-extensor t; and �

t(A

i

)

holds for derivation of r-vetor

funtion with respet to q-vetor t(A

i

).

It should be noted that by employing the abused notation we an re-write

eqs.(5) and (6) as

�

t

� F [: : :℄ =

1

p!

(e

j

1

^ : : : e

j

p

) � (e

j

1

^ : : : e

j

p

) � �

t

F [: : :℄ (15)

=

1

p!

(e

j

1

^ : : : e

j

p

) � (e

j

1

^ : : : e

j

p

) � �

t

F [: : :℄: (16)

2.1.3 A-Diretional Derivation Rules

Proposition 1 Take a real � and a multivetorM: If t 7! F [t(A

1

); : : : ; t(A

k

)℄

is any di�erentially-indued r-vetor funtional of a (p; q)-extensor, then

A � �

t

(�F [: : :℄) = �A � �

t

F [: : :℄; (17)

A � �

t

(F [: : :℄M) = (A � �

t

F [: : :℄)M: (18)
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Proof. It follows diretly from eq.(13) by using the derivation formulas:

�

X

i
(�F (: : :)) = ��

X

i
F (: : :) and �

X

i
(F (: : :)M) = (�

X

i
F (: : :))M:

Theorem 2 Let t 7! F [t(A

1

); : : : ; t(A

k

)℄ and t 7! G[t(A

1

); : : : ; t(A

k

)℄ be any

two di�erentially-indued r-vetor funtionals of a (p; q)-extensor.

The addition t 7! (F + G)[t(A

1

); : : : ; t(A

k

)℄ is a di�erentially-indued

r-vetor funtional of a (p; q)-extensor and the following rule holds

A � �

t

(F +G)[: : :℄ = A � �

t

F [: : :℄ + A � �

t

G[: : :℄: (19)

Proof. As we an see, it is an immediate onsequene of the derivation rule

�

X

i
(F +G)(: : :) = �

X

i
(F )(: : :) + �

X

i
G(: : :):

Theorem 3 Let t 7! �[t(A

1

); : : : ; t(A

k

)℄ and t 7! G[t(A

1

); : : : ; t(A

k

)℄ be any

di�erentially-indued salar and r-vetor funtional of a (p; q)-extensor, re-

spetively.

The salar multipliation t 7! (�G)[t(A

1

); : : : ; t(A

k

)℄ is also a di�erentially-

indued r-vetor funtional of a (p; q)-extensor and we have

A � �

t

(�G)[: : :℄ = (A � �

t

�[: : :℄)G[: : :℄ + �[: : :℄A � �

t

G[: : :℄: (20)

It is rightly a Leibnitz-like rule.

Proof. As the reader an easily prove, eq.(20) is an immediate onsequene

of the derivation rule �

X

i
(�G)(: : :) = (�

X

i
�(: : :))G(: : :)+�(: : :)�

X

i
G(: : :):

Theorem 4 Let t 7! 	[t(A

1

); : : : ; t(A

k

)℄ and � 7! �(�) be any di�erentially-

indued salar funtional and a derivable ordinary real funtion, respetively.

Then, t 7! �(	[t(A

1

); : : : ; t(A

k

)℄) is a di�erentially-indued salar funtional

and the following rule holds

A � �

t

�(	[: : :℄) = �

0

(	[: : :℄)A � �

t

	[: : :℄: (21)

It is an interesting and useful hain-like rule for A-diretional derivation

of a speial type of salar funtionals.

Proof. Eq.(21) follows easily from eq.(13) by taking into aount the deriva-

tion rule �

X

i
� Æ	(: : :) = �

0

Æ	(: : :)�

X

i
	(: : :):

7



3 Examples

Example 5 Let h 2 ext

1

1

(V ) and take a; b;  2 V . Then,

a � �

h

(h(b) � h()) = a � b�

h(b)

(h(b) � h()) + a � �

h()

(h(b) � h())

= a � bh() + a � h(b);

a � �

h

(h(b) � h()) = h(a � b + a � b): (22)

Also,

a � �

h

(h(b) ^ h()) = a � b�

h(b)

(h(b) ^ h()) + a � �

h()

(h(b) ^ h())

= a � b(n� 1)h()� a � (n� 1)h(b)

= (n� 1)h(a � b� a � b);

a � �

h

(h(b) ^ h()) = (n� 1)h(ay(b ^ )): (23)

In eqs.(22) and (23) we have used the derivative formulas �

x

(x � y) = y and

�

x

(x ^ y) = (n� 1)y, where n is the dimension of V:

The seond formula developed in this example has an interesting and

useful generalization, whih is:

The a-derivative of the k-vetor funtional ext

1

1

(V ) 3 h 7! h(a

1

^: : : a

k

) 2

V

k

V; with a

1

; : : : ; a

k

2 V; is given by

a � �

h

h(a

1

^ : : : a

k

) = (n� k + 1)h(ay(a

1

^ : : : a

k

)): (24)

Example 6 Let h 2 ext

1

1

(V ) and take b 2 V:

We shall alulate a � �

h

h(b) and a � �

h

h

y

(b): And, also �

h

� h(b) and

�

h

� h

y

(b):

First, we have

a � �

h

h(b) = a � b�

h(b)

h(b) = (a � b)n;

a � �

h

h(b) = n(a � b); (25)

were we used the derivative formula �

x

x = n: Thus,

�

h

� h(b) = e

j

� e

j

� �

h

h(b) = e

j

� n(e

j

� b) = b � n;

8



i.e.,

�

h

^ h(b) = �

h

h(b) = nb;

�

h

� h(b) = �

h

yh(b) = 0:

Now, by employing a trik we have

a � �

h

h

y

(b) = a � �

h

(h

y

(b) � e

j

e

j

) = a � �

h

(b � h(e

j

)e

j

):

Thus, by using eq.(18)

a � �

h

h

y

(b) = (

n

X

i=1

a � e

i

�

h(e

i

)

b � h(e

j

))e

j

=

n

X

i=1

a � e

i

bÆ

j

i

e

j

;

a � �

h

h

y

(b) = ba; (26)

were we used the derivative formula �

x

(b � x) = b: Thus,

�

h

� h

y

(b) = e

j

� e

j

� �

h

h

y

(b) = e

j

� (be

j

):

It follows that

�

h

^ h

y

(b) = e

j

^ (b � e

j

) + e

j

^ (b ^ e

j

) = b:

�

h

� h

y

(b) = e

j

� (b � e

j

) + e

j

� (b ^ e

j

) = 0:

�

h

yh

y

(b) = e

j

y(b � e

j

) + e

j

y(b ^ e

j

) = (e

j

� b)e

j

� (e

j

� e

j

)b = (1� n)b:

�

h

h

y

(b) = e

j

(2e

j

� b� e

j

b) = (2� n)b:

Example 7 Let t 2 ext

1

1

(V ): The trae of t; i.e., t 7! tr[t℄ = t(e

j

) � e

j

; is

a salar funtional and the bivetor of t; i.e., t 7! biv[t℄ = t(e

j

) ^ e

j

; is a

bivetor funtional, both of them assoiated to t. We shall alulate a � �

t

tr[t℄

and a � �

t

biv[t℄: And, also �

t

� tr[t℄ and �

t

� biv[t℄:

First, we have

a � �

t

tr[t℄ =

n

X

i=1

a � e

i

�

t(e

i

)

(t(e

j

) � e

j

) =

n

X

i=1

a � e

i

Æ

j

i

e

j

;

a � �

t

tr[t℄ = a: (27)

We have used one again the derivative formula �

x

(x � y) = y: Hene,

�

t

� tr[t℄ = e

j

� e

j

� �

t

tr[t℄ = e

j

� e

j

;

9



i.e.,

�

t

^ tr[t℄ = 0;

�

t

� tr[t℄ = �

t

ytr[t℄ = �

t

tr[t℄ = n:

Now, we have also

a � �

t

biv[t℄ =

n

X

i=1

a � e

i

�

t(e

i

)

(t(e

j

) ^ e

j

) =

n

X

i=1

a � e

i

(n� 1)Æ

j

i

e

j

;

a � �

t

biv[t℄ = (n� 1)a; (28)

were we have used one again the derivative formula �

x

(x ^ y) = (n � 1)y:

Hene,

�

t

� biv[t℄ = (n� 1)e

j

� e

j

;

i.e.,

�

t

^ biv[t℄ = 0;

�

t

� biv[t℄ = �

t

ybiv[t℄ = �

t

biv[t℄ = (n� 1)n:

Example 8 Let h 2 ext

1

1

(V ) and take a non-zero I 2

V

n

V: We shall al-

ulate the a-diretional derivative of the pseudosalar funtional h 7! h(I);

i.e., a � �

h

h(I):

By employing one of the expansion formulas for pseudosalars (see [4℄),

eq.(17) and eq.(24) we have

a � �

h

h(I) = a � �

h

I � (e

1

^ : : : e

n

)h(e

1

^ : : : e

n

)

= I � (e

1

^ : : : e

n

)a � �

h

h(e

1

^ : : : e

n

)

= I � (e

1

^ : : : e

n

)h(ay(e

1

^ : : : e

n

));

a � �

h

h(I) = h(ayI) = h(aI): (29)

Example 9 Let h 2 ext

1

1

(V ) and take a non-zero I 2 �

n

V: The determinant

of h; i.e., h 7! det[h℄ suh that h(I) = det[h℄I; is a harateristi salar

funtional of h: We shall alulate a � �

h

det[h℄ and �

h

� det[h℄:

By employing eq.(18) and eq.(29) we have

a � �

h

det[h℄ = (a � �

h

h(I))I

�1

= h(aI)I

�1

:

10



But, by taking into aount the extensor formula h

�1

(a) = det

�1

[h℄h

y

(aI)I

�1

(see[5℄) and realling that det[h

y

℄ = det[h℄ and h

�

= (h

y

)

�1

= (h

�1

)

y

we get

a � �

h

det[h℄ = det[h℄h

�

(a): (30)

Hene, it follows that

�

h

� det[h℄ = e

j

� e

j

� �

h

det[h℄ = det[h℄e

j

� h

�

(e

j

);

i.e.,

�

h

^ det[h℄ = � det[h℄h

�

(e

j

) ^ e

j

= det[h℄biv[h

�1

℄:

�

h

� det[h℄ = �

h

y det[h℄ = det[h℄h

�1

(e

j

) � e

j

= det[h℄tr[h

�1

℄:

�

h

det[h℄ = det[h℄e

j

h

�

(e

j

) = det[h℄(tr[h

�1

℄ + biv[h

�1

℄):

3.1 An Enlightening Disussion

Let us onsider for example a di�erentially-indued salar funtional of (1; 1)-

extensor t 7! �[t(a

1

)℄: We have the possibility for onstruting a di�eren-

tiable salar funtion of n� n real variables (t

11

; : : : ; t

1n

; : : : ; t

n1

; : : : ; t

nn

) 7!

b

�(t

11

; : : : ; t

1n

; : : : ; t

n1

; : : : ; t

nn

); de�ned by

b

�(t

11

; : : : ; t

1n

; : : : ; t

n1

; : : : ; t

nn

) = �[t

ij

(a

1

� e

i

)e

j

℄ (31)

where t

ij

= t(e

i

) � e

j

are the n� n matrix elements of t with respet to fe

k

g:

Eq.(31) shows that all information just ontained into the lassial real

funtion (t

11

; : : : ; t

nn

) 7!

b

�(t

11

; : : : ; t

nn

) whose real variables are t

pq

; is also

odi�ed into the salar funtional t 7! �[t(a

1

)℄:

We shall searh for the relationship whih exists between the ordinary

partial derivatives of

b

�(: : :) with respet to eah tensor ovariant omponent

2

t

pq

and the a-diretional derivative of �[: : :℄:

By using �

�

i

�(x(�

1

; : : : ; �

k

)) = �

�

i

x(�

1

; : : : ; �

k

) � �

x

�(x(�

1

; : : : ; �

k

)); a

hain-like derivation rule, we may write

�

b

�

�t

pq

(t

11

; : : : ; t

nn

) = �

t

pq

(t

ij

(a

1

� e

i

)e

j

) � �

x

�[t

ij

(a

1

� e

i

)e

j

℄

= Æ

pq

ij

(a

1

� e

i

)e

j

� �

t(a

1

)

�[t(a

1

)℄;

�

b

�

�t

pq

(t

11

; : : : ; t

nn

) = (a

1

� e

p

)e

q

� �

t(a

1

)

�[t(a

1

)℄: (32)

2

They are the n�n ovariant omponents of a 2-tensor T in biunivoal orrespondene

with the (1; 1)-extensor t; see [5℄, i.e., T

pq

� T (e

p

; e

q

) = t(e

p

) � e

q

� t

pq

:

11



Now, Cli�ord multipliation by (a � e

p

)e

q

(and summing over p; q) on both

sides of eq.(32) yields

(a � e

p

)e

q

�

b

�

�t

pq

(t

11

; : : : ; t

nn

) = (a � a

1

)e

q

e

q

� �

t(a

1

)

�[t(a

1

)℄

= a � a

1

�

t(a

1

)

�[t(a

1

)℄;

(a � e

p

)e

q

�

b

�

�t

pq

(t

11

; : : : ; t

nn

) = a � �

t

�[t(a

1

)℄: (33)

That is the required result relating both

�

b

�

�t

pq

(t

11

; : : : ; t

nn

) and a � �

t

�[t(a

1

)℄:

It is still possible to �nd a relationship between

�

b

�

�t

pq

(t

11

; : : : ; t

nn

) and the

�-derivatives of �[t(a

1

)℄: From eq.(32) we have

e

p

� (e

q

�

b

�

�t

pq

(t

11

; : : : ; t

nn

)) = a

1

� (e

q

e

q

� �

t(a

1

)

�[t(a

1

)℄)

= a

1

� �

t(a

1

)

�[t(a

1

)℄;

e

p

� (e

q

�

b

�

�t

pq

(t

11

; : : : ; t

nn

)) = �

t

� �[t(a

1

)℄: (34)

That is the expeted identity whih relates both

�

b

�

�t

pq

(t

11

; : : : ; t

nn

) and

�

t

� �[t(a

1

)℄:

4 Conlusions

In this paper we introdued the key onepts of a theory of multivetor fun-

tionals. We studied several aspets of the notion of derivative that an be

applied to these objets, as e.g., the A-diretional derivatives and the general-

ized onepts of url, divergene and gradient. We worked in details several

examples where we alulate di�erent types of derivatives for multivetor

funtionals. It is worth to said one again that these objets play a deisive

role in the development of a Lagrangian formalism for extensor �elds as it

will be seen in two future series of papers: geometri theories of gravitation

and Lagrangian formulation of the multivetor and extensor �elds theory.
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