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1 Introdu
tion

This is the paper VI in the present series. Here, we develop a theory of

multive
tor fun
tions of a p-ve
tor variable. For these obje
ts we investigate

with details the 
on
epts of limit and 
ontinuity, and formulate rigorously

the notion of derivation. As we will see, the 
on
ept of extensor introdu
ed

in [1℄ (paper II on this series) plays a 
ru
ial role in our theory of di�erentia-

bility. We introdu
e important derivative-like operators for these multive
tor

fun
tions, as e.g., the A-dire
tional derivative and the generalized 
on
epts

of 
url, divergen
e and gradient. The derivation rules for all suitable prod-

u
ts of multive
tor fun
tions of a p-ve
tor variable and for 
omposition of

multive
tor fun
tions are presented and proved.

2 Multive
tor Fun
tions of a p-Ve
tor Vari-

able

Let 


p

V be a subset of

V

p

V: Any mapping F : 


p

V !

V

V will be 
alled a

multive
tor fun
tion of a p-ve
tor variable over V: In parti
ular, F : 


p

V !

V

q

V is said to be a q-ve
tor fun
tion of a p-ve
tor variable, or a (p; q)-

fun
tion over V; for short. For the spe
ial 
ases q = 0; q = 1; q = 2; : : : et
.

we will employ the names of s
alar, ve
tor, bive
tor,: : : et
. fun
tion of a

p-ve
tor variable, respe
tively.

2.1 Limit Notion

We begin by introdu
ing the 
on
ept of Æ-neighborhood for a multive
tor A:
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Take any Æ > 0: The set

1

N

A

(Æ) = fX 2 �V / kX � Ak < Æg will be


alled a Æ-neighborhood of A:

The set N

A

(Æ) � fAg = fX 2

V

V / 0 < kX � Ak < Æg will be said to

be a redu
ed Æ-neighborhood of A:

We introdu
e now the 
on
epts of 
luster and interior points of 
V �

V

V .

A multive
tor X

0

2

V

V is said to be a 
luster point of 
V if and only if

for every N

X

0

(Æ) : (N

X

0

(Æ)�fX

0

g)\
V 6= ;; i.e., all redu
ed Æ-neighborhood

of X

0


ontains at least one multive
tor of 
V:

A multive
tor X

0

2

V

V is said to be an interior point of 
V if and only

if there exists N

X

0

(Æ) su
h that N

X

0

(Æ) � 
V; i.e., any multive
tor of some

Æ-neighborhood of X

0

belongs also to 
V:

It should be noted that any interior point of 
V is also a 
luster point

of 
V .

If the set of interior points of 
V 
oin
ides with 
V; then it is said to be

an open subset of

V

V:

Take 


p

V �

V

p

V and let F : 


p

V !

V

V be a multive
tor fun
tion of

a p-ve
tor variable and take X

0

2

V

p

V to be a 
luster point of 


p

V:

A multive
tor M is said to be the limit of F (X) for X approa
hing to

X

0

if and only if for every real " > 0 there exists some real Æ > 0 su
h that

if X 2 


p

V and 0 < kX �X

0

k < Æ; then kF (X)�Mk < ": It is denoted

by lim

X!X

0

F (X) =M:

In dealing with a s
alar fun
tion of a p-ve
tor variable, say �; the de�-

nition of lim

X!X

0

�(X) = � is redu
ed to: for every " > 0 there exists some

Æ > 0 su
h that j�(X)� �j < "; whenever X 2 


p

V and 0 < kX �X

0

k < Æ:

Proposition 1 Let F : 


p

V !

V

V and G : 


p

V !

V

V be two multive
tor

fun
tions of a p-ve
tor variable. If there exist lim

X!X

0

F (X) and lim

X!X

0

G(X);

then there exists lim

X!X

0

(F +G)(X) and

lim

X!X

0

(F +G)(X) = lim

X!X

0

F (X)+ lim

X!X

0

G(X): (1)

Proof. Let lim

X!X

0

F (X) =M

1

and lim

X!X

0

G(X) = M

2

: Then, we must prove

that lim

X!X

0

(F +G)(X) =M

1

+M

2

:

1

We re
alls that the two double bars k k denotes the norm of multive
tors, as de�ned in

[2℄, i.e., for all X 2 �V : kXk =

p

X �X; where (�) is any �xed eu
lidean s
alar produ
t.
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Taken a real " > 0; sin
e lim

X!X

0

F (X) =M

1

and lim

X!X

0

G(X) =M

2

; there

must be two real numbers Æ

1

> 0 and Æ

2

> 0 su
h that

kF (X)�M

1

k <

"

2

; for X 2 


p

V and 0 < kX �X

0

k < Æ

1

;

kG(X)�M

2

k <

"

2

; for X 2 


p

V and 0 < kX �X

0

k < Æ

2

:

Thus, there is a real Æ = minfÆ

1

; Æ

2

g su
h that

kF (X)�M

1

k <

"

2

and kG(X)�M

2

k <

"

2

;

for X 2 


p

V and 0 < kX �X

0

k < Æ: Hen
e, by using the triangular in-

equality for the norm of multive
tors, it follows that

k(F +G)(X)� (M

1

+M

2

)k = kF (X)�M

1

+G(X)�M

2

k

� kF (X)�M

1

k+ kG(X)�M

2

k

<

"

2

+

"

2

= ";

for X 2 


p

V and 0 < kX �X

0

k < Æ:

Therefore, for any " > 0 there is a Æ > 0 su
h that if X 2 


p

V and

0 < kX �X

0

k < Æ; then k(F +G)(X)� (M

1

+M

2

)k < ":

Proposition 2 Let � : 


p

V ! R and F : 


p

V !

V

V be a s
alar fun
tion

and a multive
tor fun
tion of a p-ve
tor variable. If there exist lim

X!X

0

�(X)

and lim

X!X

0

F (X); then there exists lim

X!X

0

(�F )(X) and

lim

X!X

0

(�F )(X) = lim

X!X

0

�(X) lim

X!X

0

F (X): (2)

Proof. Let lim

X!X

0

�(X) = �

0

and lim

X!X

0

F (X) = F

0

: Then, we must prove

that lim

X!X

0

(�F )(X) = �

0

F

0

:

First, sin
e lim

X!X

0

�(X) = �

0

it 
an be found a Æ

1

> 0 su
h that

j�(X)� �

0

j < 1; for X 2 


p

V and 0 < kX �X

0

k < Æ

1

;

i.e.,

j�(X)j < 1 + j�

0

j ; for X 2 


p

V and 0 < kX �X

0

k < Æ

1

:
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Where the triangular inequality for real numbers j�j � j�j � j�� �j was

used.

Now, taken a " > 0; sin
e lim

X!X

0

�(X) = �

0

and lim

X!X

0

F (X) = F

0

; they


an be found a Æ

2

> 0 and a Æ

3

> 0 su
h that

j�(X)� �

0

j <

"

2(1 + kF

0

k)

; for X 2 


p

V and 0 < kX �X

0

k < Æ

2

;

kF (X)� F

0

k <

"

2(1 + j�

0

j)

; for X 2 


p

V and 0 < kX �X

0

k < Æ

3

:

Thus, given a real " > 0 there is a real Æ = minfÆ

1

; Æ

2

; Æ

3

g su
h that

j�(X)j < 1 + j�

0

j ;

j�(X)� �

0

j <

"

2(1 + kF

0

k)

;

kF (X)� F

0

k <

"

2(1 + j�

0

j)

;

whenever X 2 


p

V and 0 < kX �X

0

k < Æ: Hen
e, using some properties of

the norm of multive
tors, it follows that

k(�F )(X)� �

0

F

0

k = k�(X)(F (X)� F

0

) + (�(X)� �

0

)F

0

k

� j�(X)j kF (X)� F

0

k+ j�(X)� �

0

j kF

0

k

< j�(X)j kF (X)� F

0

k+ j�(X)� �

0

j (1 + kF

0

k)

< (1 + j�

0

j)

"

2(1 + j�

0

j)

+

"

2(1 + kF

0

k)

(1 + kF

0

k) = ";

whenever X 2 


p

V and 0 < kX �X

0

k < Æ:

Therefore, for any " > 0 there is a Æ > 0 su
h that if X 2 


p

V and

0 < kX �X

0

k < Æ; then k(�F )(X)� �

0

F

0

k < ":

Lemma 3 There exists lim

X!X

0

F (X) if and only if there exist either lim

X!X

0

F

J

(X) or lim

X!X

0

F

J

(X): It holds

lim

X!X

0

F (X) =

X

J

1

�(J)!

lim

X!X

0

F

J

(X)e

J

=

X

J

1

�(J)!

lim

X!X

0

F

J

(X)e

J

: (3)

Proof. It is an immediate 
onsequen
e of eqs.(1) and (2).
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Proposition 4 Let F : 


p

V !

V

V and G : 


p

V !

V

V be two multive
tor

fun
tions of a p-ve
tor variable. We 
an de�ne the produ
ts F �G : 


p

V !

V

V su
h that (F �G)(X) = F (X) �G(X) where � holds for either (^); (�);

(yx) or (Cli�ord produ
t): If there exist lim

X!X

0

F (X) and lim

X!X

0

G(X); then

there exists lim

X!X

0

(F �G)(X) and

lim

X!X

0

(F �G)(X) = lim

X!X

0

F (X)� lim

X!X

0

G(X): (4)

Proof. It is an immediate 
onsequen
e of eq.(3).

2.2 Continuity Notion

Take 


p

V �

V

p

V: A multive
tor fun
tion of a p-ve
tor variable F : 


p

V !

V

V is said to be 
ontinuous at X

0

2 


p

V if and only if there exists

2

lim

X!X

0

F (X) and

lim

X!X

0

F (X) = F (X

0

): (5)

Lemma 5 The multive
tor fun
tion X 7! F (X) is 
ontinuous at X

0

if and

only if any 
omponent s
alar fun
tion, either X 7! F

J

(X) or X 7! F

J

(X)

is 
ontinuous at X

0

.

Proposition 6 Let F : 


p

V !

V

V and G : 


p

V !

V

V be two 
ontinuous

fun
tions at X

0

2 


p

V: Then, the addition F + G : 


p

V !

V

V su
h that

(F +G)(X) = F (X)+G(X) and the produ
ts F �G : 


p

V ! 
V su
h that

(F �G)(X) = F (X) �G(X); where � means either (^); (�); (yx) or (Cli�ord

produ
t); are also 
ontinuous fun
tions at X

0

:

Proof. It is an immediate 
onsequen
e of eqs.(1) and (4).

Proposition 7 Let G : 


p

V !

V

q

V and F :

V

q

V !

V

r

V be two


ontinuous fun
tions, the �rst one at X

0

2 


p

V and the se
ond one at

G(X

0

) 2

V

q

V: Then, the 
omposition F Æ G : 


p

V !

V

r

V su
h that

F ÆG(X) = F (G(X)) is a 
ontinuous fun
tion at X

0

:

2

Observe that X

0

has to be 
luster point of 


p

V .

6



2.3 Di�erentiability Notion

Let 


p

V be a subset of

V

p

V: A (p; q)-fun
tion over V; say F; is said to be

di�erentiable at X

0

2 


p

V if and only if there exists a (p; q)-extensor over

V; say f

X

0

; su
h that

lim

X!X

0

F (X)� F (X

0

)� f

X

0

(X �X

0

)

kX �X

0

k

= 0; (6)

i.e.,

lim

H!0

F (X

0

+H)� F (X

0

)� f

X

0

(H)

kHk

= 0: (7)

It is remarkable that if there is su
h a (p; q)-extensor f

X

0

; then it must

be unique.

Indeed, assume that there is another (p; q)-extensor

a

f

X

0

whi
h satis�es

lim

H!0

F (X

0

+H)� F (X

0

)�

a

f

X

0

(H)

kHk

= 0;

or equivalently,

lim

H!0













F (X

0

+H)� F (X

0

)�

a

f

X

0

(H)













kHk

= 0:

By using the triangular inequality whi
h is valid for the norm of multi-

ve
tors [1℄, it 
an be easily establish the following inequality

0 �













f

X

0

(H)�

a

f

X

0

(H)













kHk

�

kF (X

0

+H)� F (X

0

)� f

X

0

(H)k

kHk

+













F (X

0

+H)� F (X

0

)�

a

f

X

0

(H)













kHk

;

whi
h holds for all H 6= 0 (i.e., X 6= X

0

).

Now, taking the limits for H ! 0 (i.e., X ! X

0

) of these s
alar-valued

fun
tions of a p-ve
tor variable, we get

lim

H!0













f

X

0

(H)�

a

f

X

0

(H)













kHk

= 0:

7



This implies

3

that for every A 6= 0

lim

�!0













f

X

0

(�A)�

a

f

X

0

(�A)













k�Ak

= 0:

Then, it follows that for every A 6= 0













f

X

0

(A)�

a

f

X

0

(A)













kAk

= 0;

i.e., f

X

0

(A) =

a

f

X

0

(A): Now, for A = 0 this equality trivially holds. Therefore,

we have proved that f

X

0

=

a

f

X

0

.

The (p; q)-extensor f

X

0

will be 
alled the di�erential of the (p; q)-fun
tion

F at X

0

:

So that, the di�erentiability of F at X

0

2 


p

V implies the existen
e of

di�erential of F at X

0

2 


p

V:

Lemma 8 Asso
iated to any (p; q)-fun
tion F; di�erentiable at X

0

; there

exists a (p; q)-fun
tion '

X

0

; 
ontinuous at X

0;

su
h that

'

X

0

(X

0

) = 0 (8)

and for every X 2 


p

V it holds

F (X) = F (X

0

) + f

X

0

(X �X

0

) + kX �X

0

k'

X

0

(X): (9)

Proof. Sin
e the (p; q)-fun
tion F is di�erentiable at X

0

; we 
an de�ne an

auxiliary (p; q)-fun
tion '

X

0

by

'

X

0

(X) =

8

<

:

0 for X = X

0

F (X)� F (X

0

)� f

X

0

(X �X

0

)

kX �X

0

k

for X 6= X

0

:

It satis�es '

X

0

(X

0

) = 0 and, by taking limit of '

X

0

(X) for X ! X

0

; we

have

lim

X!X

0

'

X

0

(X) = lim

X!X

0

F (X)� F (X

0

)� f

X

0

(X �X

0

)

kX �X

0

k

= 0:

3

In order to see that, we 
an use a lemma: if lim

H!0

�(H) = 0; then lim

�!0

�(�A) = 0; for

all A 6= 0:

8



It follows that '

X

0

is 
ontinuous at X

0

and '

X

0

(X

0

) = 0:

Re
all now that for X 6= X

0

it follows the multive
tor identity

F (X) = F (X

0

) + f

X

0

(X �X

0

) + kX �X

0

k'

X

0

(X);

whi
h for X = X

0

it is trivially true.

As happens in the R

n


al
ulus, di�erentiability implies 
ontinuity. Indeed,

by taking limits for X ! X

0

on both sides of eq.(9), we get lim

X!X

0

F (X) =

F (X

0

):

2.3.1 Dire
tional Derivative

Sin
e 


p

V is an open subset of

V

p

V; any p-ve
tor X

0

belonging to 


p

V is an

interior point of 


p

V; i.e., there is some "-neighborhood of X

0

; say N

p

X

0

(");

su
h that N

p

X

0

(") � 


p

V:

Now, take a non-zero p-ve
tor A and 
hoose a real number � su
h that

0 < j�j <

"

kAk

: Then, from the obvious inequality k(X

0

+ �A)�X

0

k =

j�j kAk < " it follows that (X

0

+ �A) 2 N

p

X

0

("): Thus, (X

0

+ �A) 2 


p

V:

There exists lim

�!0

F (X

0

+ �A)� F (X

0

)

�

and it equals f

X

0

(A):

Indeed, by using eq.(9) we have

F (X

0

+ �A)� F (X

0

)

�

=

f

X

0

(�A) + k�Ak'

X

0

(X

0

+ �A)

�

= f

X

0

(A)� kAk'

X

0

(X

0

+ �A):

Now, by taking limits for � ! 0 on these q-ve
tor fun
tions of a real

variable, using the 
ontinuity of '

X

0

at X

0

and eq.(8), the required result

follows.

The A-dire
tional derivative of F at X

0

; 
onveniently denoted by F

0

A

(X

0

);

is de�ned to be

F

0

A

(X

0

) =lim

�!0

F (X

0

+ �A)� F (X

0

)

�

; (10)

i.e.,

F

0

A

(X

0

) =

d

d�

F (X

0

+ �A)

�

�

�

�

�=0

: (11)

9



The above observation yields a noti
eable multive
tor identity,

F

0

A

(X

0

) = f

X

0

(A) (12)

whi
h relates the A-dire
tional derivation with the di�erentiation.

Hen
e, be
ause of the linearity property for (p; q)-extensors it follows that

the A-dire
tional derivative of F at X

0

has the remarkable property: for any

�; � 2 R and A;B 2

V

p

V

F

0

�A+�B

(X

0

) = �F

0

A

(X

0

) + �F

0

B

(X

0

): (13)

Proposition 9 Let X : S ! �

q

V be any q-ve
tor fun
tion of a real variable

derivable at �

0

2 S: Then, X is di�erentiable at �

0

and the di�erential of X

at �

0

is X

�

0

2 ext

q

0

(V ) given by

X

�

0

(�) = X

0

(�

0

)�; (14)

where X

0

(�

0

) is the derivative of X at �

0

:

Proof. We only need to prove that

lim

�!�

0

X(�)�X(�

0

)�X

0

(�

0

)(�� �

0

)

j�� �

0

j

= 0:

Sin
e X is derivable at �

0

; there is a q-ve
tor fun
tion of real variable,

say �

�

0

; 
ontinuous at �

0

su
h that for all � 2 S

X(�) = X(�

0

) + (�� �

0

)X

0

(�

0

) + (�� �

0

)�

�

0

(�);

where �

�

0

(�

0

) = 0:

Hen
e, it follows that for all � 6= �

0

X(�)�X(�

0

)�X

0

(�

0

)(�� �

0

)

j�� �

0

j

= ��

�

0

(�):

Thus, by taking limits for �! �

0

on both sides, we get the expe
ted result.

From eqs.(12) and (14), it should be noted that the �-dire
tional deriva-

tive of X at �

0

is given by

X

0

�

(�

0

) = X

0

(�

0

)�: (15)
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2.3.2 Di�erentiation Rules

Take two open subset of

V

p

V; say 


p

1

V and 


p

2

V; su
h that 


p

1

V \


p

2

V 6= ;:

Theorem 10 Let F : 


p

1

V !

V

q

V and G : 


p

2

V !

V

q

V be two di�eren-

tiable fun
tions at X

0

2 


p

1

V \


p

2

V . Denote the di�erentials of F and G at

X

0

by f

X

0

and g

X

0

; respe
tively.

The addition F+G : 


p

1

V \


p

2

V ! �

q

V su
h that (F+G)(X) = F (X)+

G(X) and the produ
ts F �G : 


p

1

V \


p

2

V !

V

V su
h that (F �G)(X) =

F (X) �G(X); where � means either (^); (�); (yx) or (Cli�ord produ
t); are

also di�erentiable fun
tions at X

0

:

The di�erential of F +G at X

0

is f

X

0

+g

X

0

and the di�erentials of F �G

at X

0

are given by A 7! f

X

0

(A) �G(X

0

) + F (X

0

) � g

X

0

(A):

Proof. We must prove that s

X

0

= f

X

0

+ g

X

0

2 ext

q

p

(V ) satis�es

lim

X!X

0

(F +G)(X)� (F +G)(X

0

)� s

X

0

(X �X

0

)

kX �X

0

k

= 0:

And, p

X

0

(A) = f

X

0

(A) � G(X

0

) + F (X

0

) � g

X

0

(A); more general extensors

over V; verify

lim

X!X

0

(F �G)(X)� (F �G)(X

0

)� p

X

0

(X �X

0

)

kX �X

0

k

= 0:

Sin
e F and G are di�erentiable at X

0

; there are two (p; q)-fun
tions '

X

0

and  

X

0

; 
ontinuous at X

0

, su
h that for all X 2 


p

1

V \


p

2

V

F (X) = F (X

0

) + f

X

0

(X �X

0

) + kX �X

0

k'

X

0

(X);

G(X) = G(X

0

) + g

X

0

(X �X

0

) + kX �X

0

k 

X

0

(X);

where '

X

0

(X

0

) =  

X

0

(X

0

) = 0.

Hen
e, the following multive
tor identities whi
h hold for all X 6= X

0


an

be easily dedu
ed

(F +G)(X)� (F +G)(X

0

)� s

X

0

(X �X

0

)

kX �X

0

k

= '

X

0

(X) +  

X

0

(X)

and

11



(F �G)(X)� (F �G)(X

0

)� p

X

0

(X �X

0

)

kX �X

0

k

= '

X

0

(X) �G(X

0

) + F (X

0

) �  

X

0

(X)

+'

X

0

(X) � g

X

0

(X �X

0

) + f

X

0

(X �X

0

) �  

X

0

(X)

+

f

X

0

(X �X

0

) � g

X

0

(X �X

0

)

kX �X

0

k

+ kX �X

0

k'

X

0

(X) �  

X

0

(X):

Now, by taking limits for X ! X

0

on both sides of these multive
tor

identities

4

, we get the required results.

In a

ordan
e with eq.(12) all di�erentiation rule turns out to be an A-

dire
tional derivation rule.

For the addition of two di�erentiable fun
tions F and G we have

(F +G)

0

A

(X

0

) = (f

X

0

+ g

X

0

)(A) = f

X

0

(A) + g

X

0

(A);

i.e.,

(F +G)

0

A

(X

0

) = F

0

A

(X

0

) +G

0

A

(X

0

): (16)

For the produ
ts F �G we get

(F �G)

0

A

(X

0

) = f

X

0

(A) �G(X

0

) + F (X

0

) � g

X

0

(A);

i.e.,

(F �G)

0

A

(X

0

) = F

0

A

(X

0

) �G(X

0

) + F (X

0

) �G

0

A

(X

0

): (17)

Theorem 11 Take an open subset of

V

p

V; say 


p

V . Let G : 


p

V !

V

q

V

and F :

V

q

V !

V

r

V be two di�erentiable fun
tions, the �rst one at X

0

2




p

V and the se
ond one at G(X

0

) 2

V

q

V: Denote by g

X

0

and f

G(X

0

)

the

di�erentials of G at X

0

and of F at G(X

0

); respe
tively.

The 
omposition F Æ G : 


p

V !

V

r

V su
h that F Æ G(X) = F (G(X))

is also a di�erentiable fun
tion at X

0

: The di�erential of F Æ G at X

0

is

f

G(X

0

)

Æ g

X

0

:

Proof. We must prove that for f

G(X

0

)

Æ g

X

0

2 ext

r

p

(V ) it holds

lim

X!X

0

F ÆG(X)� F ÆG(X

0

)� f

G(X

0

)

Æ g

X

0

(X �X

0

)

kX �X

0

k

= 0:

4

For 
al
ulating some limits we have used an useful lemma. For any f 2 ext

q

p

(V ) there

exists a real number M � 0 su
h that for every X 2

V

p

V : kf(X)k �M kXk :

12



Sin
e G is di�erentiable at X

0

and F is di�erentiable at G(X

0

); there are

a (p; q)-fun
tion X 7!  

X

0

(X) and a (q; r)-fun
tion Y 7! '

G(X

0

)

(Y ); the �rst

one 
ontinuous at X

0

and the se
ond one 
ontinuous at G(X

0

); su
h that for

all X 2 


p

V and Y 2

V

q

V

G(X) = G(X

0

) + g

X

0

(X �X

0

) + kX �X

0

k 

X

0

(X);

F (Y ) = F (G(X

0

)) + f

G(X

0

)

(Y �G(X

0

)) + kY �G(X

0

)k'

G(X

0

)

(Y );

where  

X

0

(X

0

) = 0 and '

G(X

0

)

(G(X

0

)) = 0:

Hen
e, it follows easily a multive
tor identity whi
h holds for all X 6= X

0

F ÆG(X)� F ÆG(X

0

)� f

G(X

0

)

Æ g

X

0

(X �X

0

)

kX �X

0

k

= f

G(X

0

)

Æ  

X

0

(X) +

kG(X)�G(X

0

)k

kX �X

0

k

'

G(X

0

)

ÆG(X):

Now, by taking limits for X ! X

0

on both sides, using the equations:

lim

X!X

0

f

G(X

0

)

Æ  

X

0

(X) = 0 and lim

X!X

0

kG(X)�G(X

0

)k

kX �X

0

k

'

G(X

0

)

Æ G(X) = 0;

we get the expe
ted result.

This 
hain rule for di�erentiation turns out to be a 
hain rule for A-

dire
tional derivation.

For a di�erentiable G at X

0

and a di�erentiable F at G(X

0

) we have

(F ÆG)

0

A

(X

0

) = f

G(X

0

)

Æ g

X

0

(A) = f

G(X

0

)

(G

0

A

(X

0

));

(F ÆG)

0

A

(X

0

) = F

0

G

0

A

(X

0

)

(G(X

0

)): (18)

We study now two very important parti
ular 
ases of the general 
hain

rule for the A-dire
tional derivation:

For p > 0; q = 0 and r > 0; i.e., for the A-dire
tional derivative of the


omposition of � : 


p

V ! R with X : R !

V

r

V at X

0

2 


p

V; by using

eq.(18) and eq.(15), we have

(X Æ �)

0

A

(X

0

) = X

0

�

0

A

(X

0

)

(�(X

0

));

(X Æ �)

0

A

(X

0

) = X

0

(�(X

0

))�

0

A

(X

0

): (19)

For p = 0; q > 0 and r > 0; i.e., for the derivative of the 
omposition of

X : S !

V

q

V with F :

V

q

V !

V

r

V at �

0

2 S; by using eq.(15), eq.(18)

and eq.(13), we have

(F ÆX)

0

(�

0

)� = (F ÆX)

0

�

(�

0

) = F

0

X

0

�

(�

0

)

(X(�

0

));

(F ÆX)

0

(�

0

)� = F

0

X

0

(�

0

)�

(X(�

0

)): (20)
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2.3.3 Derivatives

Let (fe

k

g; fe

k

g) be a pair of re
ipro
al bases of V: Let F : 


p

V !

V

q

V be

any di�erentiable fun
tion at X

0

2 


p

V: De�ne the set �

p

V = fX 2 


p

V =

F is di�erentiable at Xg � 


p

V:

It follows that it must exist a well-de�ned fun
tion F

0

A

: �

p

V !

V

q

V

su
h that F

0

A

(X) equals the A-dire
tional derivative of F at ea
h X 2 �

p

V:

It is 
alled the A-dire
tional derivative fun
tion of F .

Then, we 
an de�ne exa
tly four derivative-like fun
tions for F , namely,

�F

0

: �

p

V !

V

q

V su
h that

�F

0

(X) =

1

p!

(e

j

1

^ : : : e

j

p

) � F

0

e

j

1

^:::e

j

p

(X)

=

1

p!

(e

j

1

^ : : : e

j

p

) � F

0

e

j

1

^:::e

j

p

(X); (21)

where � means either (^); (�); (y) or (Cli�ord produ
t):

Whi
hever �F

0

is a well-de�ned fun
tion asso
iated to F; sin
e �F

0

(X)

are multive
tors whi
h do not depend on the 
hoi
e of (fe

k

g; fe

k

g):

We will 
all ^F

0

; �F

0

; yF

0

and F

0

(i.e., � � (Cli�ord produ
t)) respe
tively

the (generalized) 
url, s
alar divergen
e, left 
ontra
ted divergen
e and gra-

dient of F: Sometimes the gradient of F is 
alled the standard derivative of

F:

On the real ve
tor spa
e of di�erentiable (p; q)-fun
tions over V we 
an

introdu
e exa
tly four derivative-like operators, namely, F 7! �

X

� F su
h

that

�

X

� F = �F

0

; (22)

i.e., for every X 2 �

p

V

�

X

� F (X) =

1

p!

(e

j

1

^ : : : e

j

p

) � F

0

e

j

1

^:::e

j

p

(X)

=

1

p!

(e

j

1

^ : : : e

j

p

) � F

0

e

j

1

^:::e

j

p

(X): (23)

The spe
ial 
ases �

X

^, �

X

�; �

X

y and �

X

(i.e., � � (Cli�ord produ
t)) will be


alled respe
tively the (generalized) 
url, s
alar divergen
e, left 
ontra
ted

divergen
e and gradient operator.
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For di�erentiable fun
tions it is also possible to introdu
e a remarkable

operator denoted by A � �

X

; and de�ned as follows

A � �

X

F (X) = (A �

1

p!

e

j

1

^ : : : e

j

p

)F

0

e

j

1

^:::e

j

p

(X);

= (A �

1

p!

e

j

1

^ : : : e

j

p

)F

0

e

j

1

^:::e

j

p

(X); (24)

i.e., by eq.(13)

A � �

X

F (X) = F

0

A

(X): (25)

The operator A � �

X

is 
alled the A-dire
tional derivative operator. It maps

F ! F

0

A

; i.e., A � �

X

F = F

0

A

:

Now, we write out the property expressed by eq.(13) using the operator

A � �

X

. We have,

(�A+ �B) � �

X

F (X

0

) = �A � �

X

F (X

0

) + �B � �

X

F (X

0

): (26)

We have then a suggestive operator identity

(�A + �B) � �

X

= �A � �

X

+ �B � �

X

: (27)

We have also rules holding for the A-dire
tional derivation of addition,

produ
ts and 
omposition of di�erentiable fun
tions, and eq.(16), eq.(17) and

eq.(18) 
an be written as:

A � �

X

(F +G)(X

0

) = A � �

X

F (X

0

) + A � �

X

G(X

0

); (28)

i.e., A � �

X

(F +G) = A � �

X

F + A � �

X

G.

A � �

X

(F �G)(X

0

) = A � �

X

F (X

0

) �G(X

0

) + F (X

0

) � A � �

X

G(X

0

); (29)

i.e., A � �

X

(F �G) = (A � �

X

F ) �G + F � (A � �

X

G):

If X 7! G(X) and Y 7! F (Y ); then

A � �

X

(F ÆG)(X

0

) = A � �

X

G(X

0

) � �

Y

F (G(X

0

)): (30)

3 Con
lusions

We studied in detail the 
on
epts of limit, 
ontinuity and di�erentiability

for multive
tor fun
tions of a p-ve
tor variable. Several types of derivatives
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for these obje
ts have been introdu
ed as, e.g., the A-dire
tional derivative

and the generalized 
url, divergen
e and gradient. We saw that the 
on
ept

of extensor plays a key role in the formulation of the notion of di�erentia-

bility, it implies the existen
e of the di�erential extensor. We have proved

the basi
 derivation rules for all suitable produ
ts of multive
tor fun
tions

and for 
omposition of multive
tor fun
tions. The generalization of these

results towards a formulation of a general theory of multive
tor fun
tions of

several multive
tor variables 
an be done easily. The 
on
ept of multive
tor

derivatives has been �rst introdu
ed in [3℄. We think that our presentation

is an improvement of that presentation, 
learing many issues.

In the following paper about multive
tor fun
tionals, we will see that the

gradient-derivative plays a key role in the formulation of derivation 
on
epts

for the so-
alled indu
ed multive
tor fun
tionals.
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