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1 Introdution

This is the paper VI in the present series. Here, we develop a theory of

multivetor funtions of a p-vetor variable. For these objets we investigate

with details the onepts of limit and ontinuity, and formulate rigorously

the notion of derivation. As we will see, the onept of extensor introdued

in [1℄ (paper II on this series) plays a ruial role in our theory of di�erentia-

bility. We introdue important derivative-like operators for these multivetor

funtions, as e.g., the A-diretional derivative and the generalized onepts

of url, divergene and gradient. The derivation rules for all suitable prod-

uts of multivetor funtions of a p-vetor variable and for omposition of

multivetor funtions are presented and proved.

2 Multivetor Funtions of a p-Vetor Vari-

able

Let 


p

V be a subset of

V

p

V: Any mapping F : 


p

V !

V

V will be alled a

multivetor funtion of a p-vetor variable over V: In partiular, F : 


p

V !

V

q

V is said to be a q-vetor funtion of a p-vetor variable, or a (p; q)-

funtion over V; for short. For the speial ases q = 0; q = 1; q = 2; : : : et.

we will employ the names of salar, vetor, bivetor,: : : et. funtion of a

p-vetor variable, respetively.

2.1 Limit Notion

We begin by introduing the onept of Æ-neighborhood for a multivetor A:
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Take any Æ > 0: The set

1

N

A

(Æ) = fX 2 �V / kX � Ak < Æg will be

alled a Æ-neighborhood of A:

The set N

A

(Æ) � fAg = fX 2

V

V / 0 < kX � Ak < Æg will be said to

be a redued Æ-neighborhood of A:

We introdue now the onepts of luster and interior points of 
V �

V

V .

A multivetor X

0

2

V

V is said to be a luster point of 
V if and only if

for every N

X

0

(Æ) : (N

X

0

(Æ)�fX

0

g)\
V 6= ;; i.e., all redued Æ-neighborhood

of X

0

ontains at least one multivetor of 
V:

A multivetor X

0

2

V

V is said to be an interior point of 
V if and only

if there exists N

X

0

(Æ) suh that N

X

0

(Æ) � 
V; i.e., any multivetor of some

Æ-neighborhood of X

0

belongs also to 
V:

It should be noted that any interior point of 
V is also a luster point

of 
V .

If the set of interior points of 
V oinides with 
V; then it is said to be

an open subset of

V

V:

Take 


p

V �

V

p

V and let F : 


p

V !

V

V be a multivetor funtion of

a p-vetor variable and take X

0

2

V

p

V to be a luster point of 


p

V:

A multivetor M is said to be the limit of F (X) for X approahing to

X

0

if and only if for every real " > 0 there exists some real Æ > 0 suh that

if X 2 


p

V and 0 < kX �X

0

k < Æ; then kF (X)�Mk < ": It is denoted

by lim

X!X

0

F (X) =M:

In dealing with a salar funtion of a p-vetor variable, say �; the de�-

nition of lim

X!X

0

�(X) = � is redued to: for every " > 0 there exists some

Æ > 0 suh that j�(X)� �j < "; whenever X 2 


p

V and 0 < kX �X

0

k < Æ:

Proposition 1 Let F : 


p

V !

V

V and G : 


p

V !

V

V be two multivetor

funtions of a p-vetor variable. If there exist lim

X!X

0

F (X) and lim

X!X

0

G(X);

then there exists lim

X!X

0

(F +G)(X) and

lim

X!X

0

(F +G)(X) = lim

X!X

0

F (X)+ lim

X!X

0

G(X): (1)

Proof. Let lim

X!X

0

F (X) =M

1

and lim

X!X

0

G(X) = M

2

: Then, we must prove

that lim

X!X

0

(F +G)(X) =M

1

+M

2

:

1

We realls that the two double bars k k denotes the norm of multivetors, as de�ned in

[2℄, i.e., for all X 2 �V : kXk =

p

X �X; where (�) is any �xed eulidean salar produt.

3



Taken a real " > 0; sine lim

X!X

0

F (X) =M

1

and lim

X!X

0

G(X) =M

2

; there

must be two real numbers Æ

1

> 0 and Æ

2

> 0 suh that

kF (X)�M

1

k <

"

2

; for X 2 


p

V and 0 < kX �X

0

k < Æ

1

;

kG(X)�M

2

k <

"

2

; for X 2 


p

V and 0 < kX �X

0

k < Æ

2

:

Thus, there is a real Æ = minfÆ

1

; Æ

2

g suh that

kF (X)�M

1

k <

"

2

and kG(X)�M

2

k <

"

2

;

for X 2 


p

V and 0 < kX �X

0

k < Æ: Hene, by using the triangular in-

equality for the norm of multivetors, it follows that

k(F +G)(X)� (M

1

+M

2

)k = kF (X)�M

1

+G(X)�M

2

k

� kF (X)�M

1

k+ kG(X)�M

2

k

<

"

2

+

"

2

= ";

for X 2 


p

V and 0 < kX �X

0

k < Æ:

Therefore, for any " > 0 there is a Æ > 0 suh that if X 2 


p

V and

0 < kX �X

0

k < Æ; then k(F +G)(X)� (M

1

+M

2

)k < ":

Proposition 2 Let � : 


p

V ! R and F : 


p

V !

V

V be a salar funtion

and a multivetor funtion of a p-vetor variable. If there exist lim

X!X

0

�(X)

and lim

X!X

0

F (X); then there exists lim

X!X

0

(�F )(X) and

lim

X!X

0

(�F )(X) = lim

X!X

0

�(X) lim

X!X

0

F (X): (2)

Proof. Let lim

X!X

0

�(X) = �

0

and lim

X!X

0

F (X) = F

0

: Then, we must prove

that lim

X!X

0

(�F )(X) = �

0

F

0

:

First, sine lim

X!X

0

�(X) = �

0

it an be found a Æ

1

> 0 suh that

j�(X)� �

0

j < 1; for X 2 


p

V and 0 < kX �X

0

k < Æ

1

;

i.e.,

j�(X)j < 1 + j�

0

j ; for X 2 


p

V and 0 < kX �X

0

k < Æ

1

:
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Where the triangular inequality for real numbers j�j � j�j � j�� �j was

used.

Now, taken a " > 0; sine lim

X!X

0

�(X) = �

0

and lim

X!X

0

F (X) = F

0

; they

an be found a Æ

2

> 0 and a Æ

3

> 0 suh that

j�(X)� �

0

j <

"

2(1 + kF

0

k)

; for X 2 


p

V and 0 < kX �X

0

k < Æ

2

;

kF (X)� F

0

k <

"

2(1 + j�

0

j)

; for X 2 


p

V and 0 < kX �X

0

k < Æ

3

:

Thus, given a real " > 0 there is a real Æ = minfÆ

1

; Æ

2

; Æ

3

g suh that

j�(X)j < 1 + j�

0

j ;

j�(X)� �

0

j <

"

2(1 + kF

0

k)

;

kF (X)� F

0

k <

"

2(1 + j�

0

j)

;

whenever X 2 


p

V and 0 < kX �X

0

k < Æ: Hene, using some properties of

the norm of multivetors, it follows that

k(�F )(X)� �

0

F

0

k = k�(X)(F (X)� F

0

) + (�(X)� �

0

)F

0

k

� j�(X)j kF (X)� F

0

k+ j�(X)� �

0

j kF

0

k

< j�(X)j kF (X)� F

0

k+ j�(X)� �

0

j (1 + kF

0

k)

< (1 + j�

0

j)

"

2(1 + j�

0

j)

+

"

2(1 + kF

0

k)

(1 + kF

0

k) = ";

whenever X 2 


p

V and 0 < kX �X

0

k < Æ:

Therefore, for any " > 0 there is a Æ > 0 suh that if X 2 


p

V and

0 < kX �X

0

k < Æ; then k(�F )(X)� �

0

F

0

k < ":

Lemma 3 There exists lim

X!X

0

F (X) if and only if there exist either lim

X!X

0

F

J

(X) or lim

X!X

0

F

J

(X): It holds

lim

X!X

0

F (X) =

X

J

1

�(J)!

lim

X!X

0

F

J

(X)e

J

=

X

J

1

�(J)!

lim

X!X

0

F

J

(X)e

J

: (3)

Proof. It is an immediate onsequene of eqs.(1) and (2).
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Proposition 4 Let F : 


p

V !

V

V and G : 


p

V !

V

V be two multivetor

funtions of a p-vetor variable. We an de�ne the produts F �G : 


p

V !

V

V suh that (F �G)(X) = F (X) �G(X) where � holds for either (^); (�);

(yx) or (Cli�ord produt): If there exist lim

X!X

0

F (X) and lim

X!X

0

G(X); then

there exists lim

X!X

0

(F �G)(X) and

lim

X!X

0

(F �G)(X) = lim

X!X

0

F (X)� lim

X!X

0

G(X): (4)

Proof. It is an immediate onsequene of eq.(3).

2.2 Continuity Notion

Take 


p

V �

V

p

V: A multivetor funtion of a p-vetor variable F : 


p

V !

V

V is said to be ontinuous at X

0

2 


p

V if and only if there exists

2

lim

X!X

0

F (X) and

lim

X!X

0

F (X) = F (X

0

): (5)

Lemma 5 The multivetor funtion X 7! F (X) is ontinuous at X

0

if and

only if any omponent salar funtion, either X 7! F

J

(X) or X 7! F

J

(X)

is ontinuous at X

0

.

Proposition 6 Let F : 


p

V !

V

V and G : 


p

V !

V

V be two ontinuous

funtions at X

0

2 


p

V: Then, the addition F + G : 


p

V !

V

V suh that

(F +G)(X) = F (X)+G(X) and the produts F �G : 


p

V ! 
V suh that

(F �G)(X) = F (X) �G(X); where � means either (^); (�); (yx) or (Cli�ord

produt); are also ontinuous funtions at X

0

:

Proof. It is an immediate onsequene of eqs.(1) and (4).

Proposition 7 Let G : 


p

V !

V

q

V and F :

V

q

V !

V

r

V be two

ontinuous funtions, the �rst one at X

0

2 


p

V and the seond one at

G(X

0

) 2

V

q

V: Then, the omposition F Æ G : 


p

V !

V

r

V suh that

F ÆG(X) = F (G(X)) is a ontinuous funtion at X

0

:

2

Observe that X

0

has to be luster point of 


p

V .
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2.3 Di�erentiability Notion

Let 


p

V be a subset of

V

p

V: A (p; q)-funtion over V; say F; is said to be

di�erentiable at X

0

2 


p

V if and only if there exists a (p; q)-extensor over

V; say f

X

0

; suh that

lim

X!X

0

F (X)� F (X

0

)� f

X

0

(X �X

0

)

kX �X

0

k

= 0; (6)

i.e.,

lim

H!0

F (X

0

+H)� F (X

0

)� f

X

0

(H)

kHk

= 0: (7)

It is remarkable that if there is suh a (p; q)-extensor f

X

0

; then it must

be unique.

Indeed, assume that there is another (p; q)-extensor

a

f

X

0

whih satis�es

lim

H!0

F (X

0

+H)� F (X

0

)�

a

f

X

0

(H)

kHk

= 0;

or equivalently,

lim

H!0









F (X

0

+H)� F (X

0

)�

a

f

X

0

(H)









kHk

= 0:

By using the triangular inequality whih is valid for the norm of multi-

vetors [1℄, it an be easily establish the following inequality

0 �









f

X

0

(H)�

a

f

X

0

(H)









kHk

�

kF (X

0

+H)� F (X

0

)� f

X

0

(H)k

kHk

+









F (X

0

+H)� F (X

0

)�

a

f

X

0

(H)









kHk

;

whih holds for all H 6= 0 (i.e., X 6= X

0

).

Now, taking the limits for H ! 0 (i.e., X ! X

0

) of these salar-valued

funtions of a p-vetor variable, we get

lim

H!0









f

X

0

(H)�

a

f

X

0

(H)









kHk

= 0:
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This implies

3

that for every A 6= 0

lim

�!0









f

X

0

(�A)�

a

f

X

0

(�A)









k�Ak

= 0:

Then, it follows that for every A 6= 0









f

X

0

(A)�

a

f

X

0

(A)









kAk

= 0;

i.e., f

X

0

(A) =

a

f

X

0

(A): Now, for A = 0 this equality trivially holds. Therefore,

we have proved that f

X

0

=

a

f

X

0

.

The (p; q)-extensor f

X

0

will be alled the di�erential of the (p; q)-funtion

F at X

0

:

So that, the di�erentiability of F at X

0

2 


p

V implies the existene of

di�erential of F at X

0

2 


p

V:

Lemma 8 Assoiated to any (p; q)-funtion F; di�erentiable at X

0

; there

exists a (p; q)-funtion '

X

0

; ontinuous at X

0;

suh that

'

X

0

(X

0

) = 0 (8)

and for every X 2 


p

V it holds

F (X) = F (X

0

) + f

X

0

(X �X

0

) + kX �X

0

k'

X

0

(X): (9)

Proof. Sine the (p; q)-funtion F is di�erentiable at X

0

; we an de�ne an

auxiliary (p; q)-funtion '

X

0

by

'

X

0

(X) =

8

<

:

0 for X = X

0

F (X)� F (X

0

)� f

X

0

(X �X

0

)

kX �X

0

k

for X 6= X

0

:

It satis�es '

X

0

(X

0

) = 0 and, by taking limit of '

X

0

(X) for X ! X

0

; we

have

lim

X!X

0

'

X

0

(X) = lim

X!X

0

F (X)� F (X

0

)� f

X

0

(X �X

0

)

kX �X

0

k

= 0:

3

In order to see that, we an use a lemma: if lim

H!0

�(H) = 0; then lim

�!0

�(�A) = 0; for

all A 6= 0:

8



It follows that '

X

0

is ontinuous at X

0

and '

X

0

(X

0

) = 0:

Reall now that for X 6= X

0

it follows the multivetor identity

F (X) = F (X

0

) + f

X

0

(X �X

0

) + kX �X

0

k'

X

0

(X);

whih for X = X

0

it is trivially true.

As happens in the R

n

alulus, di�erentiability implies ontinuity. Indeed,

by taking limits for X ! X

0

on both sides of eq.(9), we get lim

X!X

0

F (X) =

F (X

0

):

2.3.1 Diretional Derivative

Sine 


p

V is an open subset of

V

p

V; any p-vetor X

0

belonging to 


p

V is an

interior point of 


p

V; i.e., there is some "-neighborhood of X

0

; say N

p

X

0

(");

suh that N

p

X

0

(") � 


p

V:

Now, take a non-zero p-vetor A and hoose a real number � suh that

0 < j�j <

"

kAk

: Then, from the obvious inequality k(X

0

+ �A)�X

0

k =

j�j kAk < " it follows that (X

0

+ �A) 2 N

p

X

0

("): Thus, (X

0

+ �A) 2 


p

V:

There exists lim

�!0

F (X

0

+ �A)� F (X

0

)

�

and it equals f

X

0

(A):

Indeed, by using eq.(9) we have

F (X

0

+ �A)� F (X

0

)

�

=

f

X

0

(�A) + k�Ak'

X

0

(X

0

+ �A)

�

= f

X

0

(A)� kAk'

X

0

(X

0

+ �A):

Now, by taking limits for � ! 0 on these q-vetor funtions of a real

variable, using the ontinuity of '

X

0

at X

0

and eq.(8), the required result

follows.

The A-diretional derivative of F at X

0

; onveniently denoted by F

0

A

(X

0

);

is de�ned to be

F

0

A

(X

0

) =lim

�!0

F (X

0

+ �A)� F (X

0

)

�

; (10)

i.e.,

F

0

A

(X

0

) =

d

d�

F (X

0

+ �A)

�

�

�

�

�=0

: (11)

9



The above observation yields a notieable multivetor identity,

F

0

A

(X

0

) = f

X

0

(A) (12)

whih relates the A-diretional derivation with the di�erentiation.

Hene, beause of the linearity property for (p; q)-extensors it follows that

the A-diretional derivative of F at X

0

has the remarkable property: for any

�; � 2 R and A;B 2

V

p

V

F

0

�A+�B

(X

0

) = �F

0

A

(X

0

) + �F

0

B

(X

0

): (13)

Proposition 9 Let X : S ! �

q

V be any q-vetor funtion of a real variable

derivable at �

0

2 S: Then, X is di�erentiable at �

0

and the di�erential of X

at �

0

is X

�

0

2 ext

q

0

(V ) given by

X

�

0

(�) = X

0

(�

0

)�; (14)

where X

0

(�

0

) is the derivative of X at �

0

:

Proof. We only need to prove that

lim

�!�

0

X(�)�X(�

0

)�X

0

(�

0

)(�� �

0

)

j�� �

0

j

= 0:

Sine X is derivable at �

0

; there is a q-vetor funtion of real variable,

say �

�

0

; ontinuous at �

0

suh that for all � 2 S

X(�) = X(�

0

) + (�� �

0

)X

0

(�

0

) + (�� �

0

)�

�

0

(�);

where �

�

0

(�

0

) = 0:

Hene, it follows that for all � 6= �

0

X(�)�X(�

0

)�X

0

(�

0

)(�� �

0

)

j�� �

0

j

= ��

�

0

(�):

Thus, by taking limits for �! �

0

on both sides, we get the expeted result.

From eqs.(12) and (14), it should be noted that the �-diretional deriva-

tive of X at �

0

is given by

X

0

�

(�

0

) = X

0

(�

0

)�: (15)
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2.3.2 Di�erentiation Rules

Take two open subset of

V

p

V; say 


p

1

V and 


p

2

V; suh that 


p

1

V \


p

2

V 6= ;:

Theorem 10 Let F : 


p

1

V !

V

q

V and G : 


p

2

V !

V

q

V be two di�eren-

tiable funtions at X

0

2 


p

1

V \


p

2

V . Denote the di�erentials of F and G at

X

0

by f

X

0

and g

X

0

; respetively.

The addition F+G : 


p

1

V \


p

2

V ! �

q

V suh that (F+G)(X) = F (X)+

G(X) and the produts F �G : 


p

1

V \


p

2

V !

V

V suh that (F �G)(X) =

F (X) �G(X); where � means either (^); (�); (yx) or (Cli�ord produt); are

also di�erentiable funtions at X

0

:

The di�erential of F +G at X

0

is f

X

0

+g

X

0

and the di�erentials of F �G

at X

0

are given by A 7! f

X

0

(A) �G(X

0

) + F (X

0

) � g

X

0

(A):

Proof. We must prove that s

X

0

= f

X

0

+ g

X

0

2 ext

q

p

(V ) satis�es

lim

X!X

0

(F +G)(X)� (F +G)(X

0

)� s

X

0

(X �X

0

)

kX �X

0

k

= 0:

And, p

X

0

(A) = f

X

0

(A) � G(X

0

) + F (X

0

) � g

X

0

(A); more general extensors

over V; verify

lim

X!X

0

(F �G)(X)� (F �G)(X

0

)� p

X

0

(X �X

0

)

kX �X

0

k

= 0:

Sine F and G are di�erentiable at X

0

; there are two (p; q)-funtions '

X

0

and  

X

0

; ontinuous at X

0

, suh that for all X 2 


p

1

V \


p

2

V

F (X) = F (X

0

) + f

X

0

(X �X

0

) + kX �X

0

k'

X

0

(X);

G(X) = G(X

0

) + g

X

0

(X �X

0

) + kX �X

0

k 

X

0

(X);

where '

X

0

(X

0

) =  

X

0

(X

0

) = 0.

Hene, the following multivetor identities whih hold for all X 6= X

0

an

be easily dedued

(F +G)(X)� (F +G)(X

0

)� s

X

0

(X �X

0

)

kX �X

0

k

= '

X

0

(X) +  

X

0

(X)

and

11



(F �G)(X)� (F �G)(X

0

)� p

X

0

(X �X

0

)

kX �X

0

k

= '

X

0

(X) �G(X

0

) + F (X

0

) �  

X

0

(X)

+'

X

0

(X) � g

X

0

(X �X

0

) + f

X

0

(X �X

0

) �  

X

0

(X)

+

f

X

0

(X �X

0

) � g

X

0

(X �X

0

)

kX �X

0

k

+ kX �X

0

k'

X

0

(X) �  

X

0

(X):

Now, by taking limits for X ! X

0

on both sides of these multivetor

identities

4

, we get the required results.

In aordane with eq.(12) all di�erentiation rule turns out to be an A-

diretional derivation rule.

For the addition of two di�erentiable funtions F and G we have

(F +G)

0

A

(X

0

) = (f

X

0

+ g

X

0

)(A) = f

X

0

(A) + g

X

0

(A);

i.e.,

(F +G)

0

A

(X

0

) = F

0

A

(X

0

) +G

0

A

(X

0

): (16)

For the produts F �G we get

(F �G)

0

A

(X

0

) = f

X

0

(A) �G(X

0

) + F (X

0

) � g

X

0

(A);

i.e.,

(F �G)

0

A

(X

0

) = F

0

A

(X

0

) �G(X

0

) + F (X

0

) �G

0

A

(X

0

): (17)

Theorem 11 Take an open subset of

V

p

V; say 


p

V . Let G : 


p

V !

V

q

V

and F :

V

q

V !

V

r

V be two di�erentiable funtions, the �rst one at X

0

2




p

V and the seond one at G(X

0

) 2

V

q

V: Denote by g

X

0

and f

G(X

0

)

the

di�erentials of G at X

0

and of F at G(X

0

); respetively.

The omposition F Æ G : 


p

V !

V

r

V suh that F Æ G(X) = F (G(X))

is also a di�erentiable funtion at X

0

: The di�erential of F Æ G at X

0

is

f

G(X

0

)

Æ g

X

0

:

Proof. We must prove that for f

G(X

0

)

Æ g

X

0

2 ext

r

p

(V ) it holds

lim

X!X

0

F ÆG(X)� F ÆG(X

0

)� f

G(X

0

)

Æ g

X

0

(X �X

0

)

kX �X

0

k

= 0:

4

For alulating some limits we have used an useful lemma. For any f 2 ext

q

p

(V ) there

exists a real number M � 0 suh that for every X 2

V

p

V : kf(X)k �M kXk :

12



Sine G is di�erentiable at X

0

and F is di�erentiable at G(X

0

); there are

a (p; q)-funtion X 7!  

X

0

(X) and a (q; r)-funtion Y 7! '

G(X

0

)

(Y ); the �rst

one ontinuous at X

0

and the seond one ontinuous at G(X

0

); suh that for

all X 2 


p

V and Y 2

V

q

V

G(X) = G(X

0

) + g

X

0

(X �X

0

) + kX �X

0

k 

X

0

(X);

F (Y ) = F (G(X

0

)) + f

G(X

0

)

(Y �G(X

0

)) + kY �G(X

0

)k'

G(X

0

)

(Y );

where  

X

0

(X

0

) = 0 and '

G(X

0

)

(G(X

0

)) = 0:

Hene, it follows easily a multivetor identity whih holds for all X 6= X

0

F ÆG(X)� F ÆG(X

0

)� f

G(X

0

)

Æ g

X

0

(X �X

0

)

kX �X

0

k

= f

G(X

0

)

Æ  

X

0

(X) +

kG(X)�G(X

0

)k

kX �X

0

k

'

G(X

0

)

ÆG(X):

Now, by taking limits for X ! X

0

on both sides, using the equations:

lim

X!X

0

f

G(X

0

)

Æ  

X

0

(X) = 0 and lim

X!X

0

kG(X)�G(X

0

)k

kX �X

0

k

'

G(X

0

)

Æ G(X) = 0;

we get the expeted result.

This hain rule for di�erentiation turns out to be a hain rule for A-

diretional derivation.

For a di�erentiable G at X

0

and a di�erentiable F at G(X

0

) we have

(F ÆG)

0

A

(X

0

) = f

G(X

0

)

Æ g

X

0

(A) = f

G(X

0

)

(G

0

A

(X

0

));

(F ÆG)

0

A

(X

0

) = F

0

G

0

A

(X

0

)

(G(X

0

)): (18)

We study now two very important partiular ases of the general hain

rule for the A-diretional derivation:

For p > 0; q = 0 and r > 0; i.e., for the A-diretional derivative of the

omposition of � : 


p

V ! R with X : R !

V

r

V at X

0

2 


p

V; by using

eq.(18) and eq.(15), we have

(X Æ �)

0

A

(X

0

) = X

0

�

0

A

(X

0

)

(�(X

0

));

(X Æ �)

0

A

(X

0

) = X

0

(�(X

0

))�

0

A

(X

0

): (19)

For p = 0; q > 0 and r > 0; i.e., for the derivative of the omposition of

X : S !

V

q

V with F :

V

q

V !

V

r

V at �

0

2 S; by using eq.(15), eq.(18)

and eq.(13), we have

(F ÆX)

0

(�

0

)� = (F ÆX)

0

�

(�

0

) = F

0

X

0

�

(�

0

)

(X(�

0

));

(F ÆX)

0

(�

0

)� = F

0

X

0

(�

0

)�

(X(�

0

)): (20)
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2.3.3 Derivatives

Let (fe

k

g; fe

k

g) be a pair of reiproal bases of V: Let F : 


p

V !

V

q

V be

any di�erentiable funtion at X

0

2 


p

V: De�ne the set �

p

V = fX 2 


p

V =

F is di�erentiable at Xg � 


p

V:

It follows that it must exist a well-de�ned funtion F

0

A

: �

p

V !

V

q

V

suh that F

0

A

(X) equals the A-diretional derivative of F at eah X 2 �

p

V:

It is alled the A-diretional derivative funtion of F .

Then, we an de�ne exatly four derivative-like funtions for F , namely,

�F

0

: �

p

V !

V

q

V suh that

�F

0

(X) =

1

p!

(e

j

1

^ : : : e

j

p

) � F

0

e

j

1

^:::e

j

p

(X)

=

1

p!

(e

j

1

^ : : : e

j

p

) � F

0

e

j

1

^:::e

j

p

(X); (21)

where � means either (^); (�); (y) or (Cli�ord produt):

Whihever �F

0

is a well-de�ned funtion assoiated to F; sine �F

0

(X)

are multivetors whih do not depend on the hoie of (fe

k

g; fe

k

g):

We will all ^F

0

; �F

0

; yF

0

and F

0

(i.e., � � (Cli�ord produt)) respetively

the (generalized) url, salar divergene, left ontrated divergene and gra-

dient of F: Sometimes the gradient of F is alled the standard derivative of

F:

On the real vetor spae of di�erentiable (p; q)-funtions over V we an

introdue exatly four derivative-like operators, namely, F 7! �

X

� F suh

that

�

X

� F = �F

0

; (22)

i.e., for every X 2 �

p

V

�

X

� F (X) =

1

p!

(e

j

1

^ : : : e

j

p

) � F

0

e

j

1

^:::e

j

p

(X)

=

1

p!

(e

j

1

^ : : : e

j

p

) � F

0

e

j

1

^:::e

j

p

(X): (23)

The speial ases �

X

^, �

X

�; �

X

y and �

X

(i.e., � � (Cli�ord produt)) will be

alled respetively the (generalized) url, salar divergene, left ontrated

divergene and gradient operator.
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For di�erentiable funtions it is also possible to introdue a remarkable

operator denoted by A � �

X

; and de�ned as follows

A � �

X

F (X) = (A �

1

p!

e

j

1

^ : : : e

j

p

)F

0

e

j

1

^:::e

j

p

(X);

= (A �

1

p!

e

j

1

^ : : : e

j

p

)F

0

e

j

1

^:::e

j

p

(X); (24)

i.e., by eq.(13)

A � �

X

F (X) = F

0

A

(X): (25)

The operator A � �

X

is alled the A-diretional derivative operator. It maps

F ! F

0

A

; i.e., A � �

X

F = F

0

A

:

Now, we write out the property expressed by eq.(13) using the operator

A � �

X

. We have,

(�A+ �B) � �

X

F (X

0

) = �A � �

X

F (X

0

) + �B � �

X

F (X

0

): (26)

We have then a suggestive operator identity

(�A + �B) � �

X

= �A � �

X

+ �B � �

X

: (27)

We have also rules holding for the A-diretional derivation of addition,

produts and omposition of di�erentiable funtions, and eq.(16), eq.(17) and

eq.(18) an be written as:

A � �

X

(F +G)(X

0

) = A � �

X

F (X

0

) + A � �

X

G(X

0

); (28)

i.e., A � �

X

(F +G) = A � �

X

F + A � �

X

G.

A � �

X

(F �G)(X

0

) = A � �

X

F (X

0

) �G(X

0

) + F (X

0

) � A � �

X

G(X

0

); (29)

i.e., A � �

X

(F �G) = (A � �

X

F ) �G + F � (A � �

X

G):

If X 7! G(X) and Y 7! F (Y ); then

A � �

X

(F ÆG)(X

0

) = A � �

X

G(X

0

) � �

Y

F (G(X

0

)): (30)

3 Conlusions

We studied in detail the onepts of limit, ontinuity and di�erentiability

for multivetor funtions of a p-vetor variable. Several types of derivatives
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for these objets have been introdued as, e.g., the A-diretional derivative

and the generalized url, divergene and gradient. We saw that the onept

of extensor plays a key role in the formulation of the notion of di�erentia-

bility, it implies the existene of the di�erential extensor. We have proved

the basi derivation rules for all suitable produts of multivetor funtions

and for omposition of multivetor funtions. The generalization of these

results towards a formulation of a general theory of multivetor funtions of

several multivetor variables an be done easily. The onept of multivetor

derivatives has been �rst introdued in [3℄. We think that our presentation

is an improvement of that presentation, learing many issues.

In the following paper about multivetor funtionals, we will see that the

gradient-derivative plays a key role in the formulation of derivation onepts

for the so-alled indued multivetor funtionals.
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