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Abstract

Let G be a semisimple real Lie group of non-compact type, K a

maximal compact subgroup and S ⊆ G a semigroup with nonempty

interior. We consider the ideal boundary ∂∞ (G/K) of the associated

symmetric space and the flag manifolds G/PΘ. We prove that the

asymptotic image ∂∞ (Sx0) ⊆ ∂∞ (G/K), where x0 ∈ G/K is any

given point, is the maximal invariant control set of S in ∂∞ (G/K).

Moreover there is a surjective projection π : ∂∞ (Sx0) →
⋃

Θ⊆Σ

CΘ,
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where CΘ is the maximal invariant control set for the action of S in

the flag manifold G/PΘ, with PΘ a parabolic subgroup. The points

that project over CΘ are exactly the points of type Θ in ∂∞ (Sx0) (in

the sense of the type of a cell in a Tits Building).

2000 Mathematics Subject Classification: Primary 20M20, 93B29; Sec-

ondary 22E46.

Key words : semigroups, semi-simple Lie groups, control sets, ideal bound-

ary.

1 Introduction

The concept of invariant control sets (i.c.s.) of a semigroup was first intro-

duced by Arnold and Kliemann ([A-K]). We consider the special instance

where G is a semisimple real Lie group of non-compact type with finite center

and S ⊆ G a semigroup with non-empty interior. If P ⊆ G is a parabolic

subgroup, the homogeneous space G/P is a compact manifold (the general-

ized flag manifolds). The study of invariant control sets for the left action of

S on G/P has been systematically used and developed by San Martin ([SM],

[SM-T]). One of the basic results in this context is the existence of a unique
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i.c.s., whose set of transitivity is given by the points fixed by elements in the

interior of S.

From another side, we have the concept of ideal boundary ∂∞ (X ) of

an Hadamard manifold X , that was first introduced by Eberlein and Oneil

([E-O]) as a way to compactify Hadamard manifolds. Later, the special case

of a symmetric space X = G/K (G is again a semisimple real Lie group of

non-compact type with finite center and K a maximal compact subgroup)

was exploited by M. Gromov ([B-G-S]) to the study of many important re-

sults, such as Marguli’s Lemma and Mostow’s Rigidity Theorem.

In this article we determine the i.c.s. of a semigroup S ⊆ G in the

ideal boundary ∂∞ (G/K): it is just the ideal boundary ∂∞ (Sx0), the set

of points in the ideal boundary ∂∞ (G/K) that belongs to the closure on

any orbit Sx0, where x0 is an arbitrary point of the symmetric space G/K

(Theorem 5). Moreover, we consider a minimal parabolic subgroup P ⊆ G

and the set {PΘ|Θ ⊆ Σ} of parabolic subgroups of G containing P (here Σ

is a simple root system determined by P ). Then, to each such Θ there is

a flag manifold G/PΘ and a (unique) i.c.s. CΘ ⊆ G/PΘ. All those i.c.s.

are incorporated in ∂∞ (Sx0) (Theorem 4) in the sense there is a surjective

projection π : ∂∞ (Sx0) →
⋃

Θ⊆Σ

CΘ.
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2 Basic Constructions

Let X be a symmetric space of non-compact type. We let G = Isom0 (X ) be

the identity component of the isometry group of X and K the stabilizer (in G)

of a point x0 ∈ X . Then X = G/K, G is a real semi-simple Lie group and K a

maximal compact subgroup of G. The choice of the base point is immaterial,

since their stabilizers are conjugated in G. In this section we introduce the

main concepts and notations concerning semisimple Lie algebras and groups

and associated symmetric space. The standard reference for this section is

[He].

2.1 Lie Algebra Structure

Since G is semi-simple the Cartan-Killing form

B (X,Y ) = Tr (adX ◦ adY)

is a non-degenerate bilinear form on g×g, where g is the Lie algebra of G. If

we denote by k the Lie algebra of K and by x its orthogonal complement we

get a Cartan decomposition g = k ⊕ x (direct sum), with [k,k] ⊆ k, [x,x] ⊆ k

and [k,x] ⊆ x. We get another Cartan decompositions if we consider another

maximal compact subgroup K ′ ⊂ G. All such subgroups are conjugated and
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so are its algebras: k′ = Ad (exp X) k = ad (X) (k) , for some X ∈ g.

A Cartan involution of g is an automorphism ν : g −→ g such that

ν (Xk + Xx) = Xk − Xx,

where Xk + Xx is the decomposition of X relative to a given Cartan decom-

position of g. The quadratic form

〈X,Y 〉 = −B (X, ν (Y ))

is a positive definite quadratic form on g invariant under the action of Ad (K).

We choose (and fix) a maximal abelian subalgebra a ⊂ x. The rank r (g)

is the dimension of a. The rank does not depend on the choices made of x or

a. The root space decomposition of g is given by

g = g0 ⊕
∑

λ∈Λ

gλ

where λ ∈ Hom (a, R) ,

gλ = {Y ∈ g| [H,Y ] = λ (H) Y , for all H ∈ a}

and

Λ = {λ ∈ Hom (a, R) |gλ 6= {0}} .

5



The λ’s in Λ are called roots of g and each gλ a root subspace. Each root λ ∈ Λ

determines an hyperplane Hλ = {H ∈ a|λ (H) = {0}}. Each component of

a \
⋃

λ∈Λ

Hλ

is said to be an open Weyl chamber. A Weyl chamber is the closure of an

open Weyl Chamber. A Weyl chamber a+ determines a set of positive roots

Π+ =
{
λ ∈ Λ|λ (H) ≥ 0 for every H ∈ a+

}

and of negative roots

Π− =
{
λ ∈ Λ|λ (H) ≤ 0 for every H ∈ a+

}

=
{
−λ|λ ∈ Π+

}

= −Π+.

It also determines a set of simple roots, that is, a linearly independent set

Σ = {λ1, λ2, ..., λr} of positive roots such that every root may be written as

a linear combination λ =
∑r

i=1 miλi with all the mi having the same signal:

mi ≥ 0 if λ ∈ Π+ and mi ≤ 0 if λ ∈ Π−. Geometrically, a root λ is simple

(relatively to a given chamber a+) if and only if Hλ ∩ a+ has dimension

r (g) − 1.

Given a subset Θ ⊂ Σ, the subspace

HΘ = {H ∈ a|λ (H) = 0 for all λ ∈ Θ} .
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is an abelian subalgebra of g and every abelian subalgebra is conjugated to

one of those subspaces. The intersection of HΘ with a closed Weyl chamber

a+ is said to be the Θ-wall aΘ of a+. In fact, this wall is determined by the

simple roots (relatively to a+) contained in Θ, that is, aΘ = aΘ∩Σ, where Σ

is the set of simple roots of the chamber a+. An open wall aΘ is the interior

of aΘ in a. We denote by a+
Θ the intersection HΘ ∩ a+ and call the closed

Θ-Weyl wall of a+. The open Θ-Weyl wall of a+ is the interior a+
Θ of a+

Θ in

HΘ.

A Weyl chamber a+ (alternatively, a set of positive roots Π+ or a set of

associated simple roots Σ) determines maximal nilpotent subalgebras

n± =
∑

λ∈Π±

gλ.

We denote by m the centralizer of a in k. A minimal parabolic subalgebra is

any algebra conjugated in g to

p = m ⊕ a ⊕ n+.

The subalgebras a, n+ and m are determined by the choice of a Weyl sector

a+. Since all such sectors are conjugated, so will be the minimal parabolic

subalgebras.

More generally, for a subset Θ ⊆ Σ we denote by pΘ the parabolic subal-
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gebra

pΘ = n− (Θ) ⊕ p.

Here n− (Θ) stands for the subalgebra spanned by the root spaces g−λ, for

λ ∈ 〈Θ〉, where 〈Θ〉 is the set of (positive) roots generated by Θ. Particularly,

p∅ = p and pΣ = g.

An Iwasawa decomposition of g is given by g = k⊕ a⊕n+. As in the case

of parabolic algebras, all Iwasawa decompositions are conjugated one to the

other.

2.2 The same structure at the Lie Group

All the facts and structure of the Lie algebra g may transposed to the Lie

group G by the exponential map and to the symmetric space X = G/K by

the projection π̃ : G → X . We denote by x0 the base point π̃ (Id). The

subspace x ⊂ g given by the Cartan decomposition is identified with the

tangent space of X at x0 by the map dπ̃|x : x → Tx0
X . Moreover, geodesics

in X with initial point x0 are defined as η (t) = exp (tY ) x0, for some unitary

vector Y ∈ x.

By defining A = exp a, K = exp k and N+ = exp n+, we get an Iwasawa

decomposition G = KAN+.
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Here A is a maximal abelian subgroup and N+ a maximal nilpotent sub-

group. A flat in X is an isometrically embedded Euclidean space. It can

be easily proved that flats in X containing the point x0 are associated (by

the exponential map) with commutative subalgebras of g. So, F = Ax0 is a

maximal flat in X . Since commutative subalgebras in g are all conjugated,

every maximal flat in X is of the form F ′ = gF = gAx0, with g ∈ G. The

rank of a symmetric space is the dimension of a maximal flat and, by the

preceding argument, it equals the dimension of A.

The structure of Weyl chambers in a Cartan subalgebra a is transferred

to the subgroup A = exp a and to flats F = Ax0 ⊂ X : if we denote by a+ a

Weyl chamber of a and by A+ = exp a+ its image in G, we shall call gA+x0

a Weyl sector, to any g ∈ G. The point gx0 ∈ gA+x0 is called the base point

of the sector. A sub-algebra HΘ gives rise to Θ-flats gFΘ := g exp (HΘ) x0.

In a similar way, we say that gA
+

Θx0 := g exp
(
a+

Θ

)
x0 is the Θ-wall of the

sector gA+x0.

A minimal parabolic subalgebra p = m ⊕ a ⊕ n+ determines a minimal

parabolic subgroup P = MAN+, where M = exp m is the normalizer of A in

K. The subgroup P is the normalizer of the algebra p via the adjoint action
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of G:

P = {g ∈ G|Ad (g) p = p} .

Similarly, a parabolic subalgebra pΘ = n− (Θ) ⊕ p determines a parabolic

subgroup

PΘ = {g ∈ G|Ad (g) pΘ = pΘ} .

The Weyl group of G is the quotient W = M/M ′, where M ′ := ZK (A) is

the centralizer of A in K. It is a finite group that acts simply transitively on

the set of Weyl chambers of a, respecting the incidence relation of walls.

Each parabolic subgroup determines a (compact) flag manifold BΘ =

G/PΘ that is realize as the set {Ad (g) pΘ|g ∈ G}. Since Cartan subalgebras

and subgroups are all conjugated, the same happens to roots systems deter-

mined by the groups A and gAg−1. So, if λ is a root determined by a, then

gλ is the root of Ad (g) a defined by the formula

gλ (H) = Ad (g) ◦ λ ◦ Ad
(
g−1

)
(H) , for all H ∈ Ad (g) a.

A parabolic subgroup is said to be of type Θ if it is determined by a set of

roots of the form g (Θ). By doing so, the flag manifold BΘ may be viewed

as the set of all type θ parabolic subgroups. Particularly, B := B∅ = G/P is

the set of all minimal parabolic subgroups.
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Parabolic subgroups are partially ordered by inclusion, with PΘ1
⊂ PΘ2

if Θ1 ⊂ Θ2. It follows there is a natural fibration

π̂Θ1

Θ2
: BΘ1

→ BΘ2

: gPΘ1
7→ gPΘ2

The set of all Weyl chambers and walls are also partially ordered by

inclusion, but it respect an order inverse to that determined in the set of

roots: aΘ2
⊂ aΘ1

if Θ1 ⊂ Θ2.

3 Ideal Boundary and Symmetric Spaces

The concept of ideal boundary was first introduced by P. Eberlein and B.

O’Neill ([E-O]). The approach adopted here is the one found in [B-G-S].

Although this concept may be defined for every metric space, this general

definition is highly non geometric and give us not much intuition to work

with. So we will restrict ourselves to a geometric definition that holds for a

sufficiently wide family of spaces, the so called Hadamard spaces.

3.1 Ideal Boundary

We must start with the definition of CAT inequalities:
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Let X be a geodesic metric space and X (ǫ) a surface of constant curva-

ture ǫ, that is, a sphere of radius 1
ǫ

when ǫ > 0, an Euclidean plane when

ǫ = 0 or an hyperbolic plane with curvature ǫ when ǫ < 0. Given a geodesic

triangle △(x, y, z) with vertices x, y and z in X , we can construct a compar-

ison triangle △̃(́x̃, ỹ, z̃) in X (ǫ) having sides of the same length as △, taking

just the care that, when ǫ > 0, △ has sides no longer than
π

2ǫ
. If for every

given triangle △(x, y, z) and any point a in the segment xy we have that

d (z, a) ≤ dǫ (z̃, ã) , where ã is the corresponding point at the segment x̃ỹ in

△̃ and dǫ is the metric in X (ǫ), we say that X satisfies CAT (ǫ). We note

that Riemannian manifolds with curvature bounded from above by ǫ satisfies

CAT (ǫ).

A Hadamard space (manifold) is a simply connected geodesic metric space

(manifold) satisfying CAT (ǫ).

We will now define the ideal boundary of an Hadamard space (X , d (·, ·)).

Two geodesic rays γ, β : R
+ −→ X are said to be asymptotic if there is

a constant a ≥ 0 such that d (γ (t) , β (t)) ≤ a, for every t ≥ 0. This defines

an equivalence relation in the set of all geodesic rays in X . We call the set

of equivalence classes of asymptotic geodesic rays the ideal boundary of X .

We denote this space by ∂∞X and the equivalence class determined by γ we
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denote by γ (∞).

A natural metric can be given to the ideal boundary:

1. Given η, ξ ∈ ∂∞X and x ∈ X , one can prove there are representatives

geodesic rays γ, β with γ (0) = β (0) = x and γ (∞) = η, β (∞) = ξ.

The function
1

t
d (γ (t) , β (t)) is a bounded convex function, hence it

limit exist and we define dl (η, ξ) = lim 1
t
d (γ (t) , β (t))

In case X happens to be a manifold, we can give it two more metrics:

2. Given η, ξ ∈ ∂∞X and x ∈ X , we choose as before representatives γ, β

with γ (0) = β (0) = x and γ (∞) = η, β (∞) = ξ and define∠x (η, ξ) to

be the angle between the geodesics γ and β at x. Then we define the

Tits metric by

dT (η, ξ) = sup
x∈X

∠x (η, ξ)

3. Since X is simply connected, given any class γ (∞) and any point x0 ∈

X there is one and only one geodesic ray β : R
+ −→ X with β (0) = x0

and β (∞) = γ (∞) , so that we can identify ∂∞X with the unit tangent

sphere and give it the usual metric of a unit sphere. We shall denote

this metric by dS (·, ·).
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The first two metrics not only determines the same topology, but are sur-

prisingly related ([B-G-S]) by the same relation we find between the extrinsic

and the intrinsic metric of a unit sphere embedded in R
n

dl (η, ξ) = 2 sin

(
dT (η, ξ)

2

)

while the sphere metric usually defines a different topology. Those topologies

coincide only when X is an Euclidean space. On the other hand the first one

is a discrete metric when the curvatures of X are bounded from above by

a constant C < 0, while the other is still the sphere one. The discreetness

of ∂∞X reflects the fact we can find a geodesic asymptotic to any two given

geodesic rays.

Let X be an Hadamard manifold. We may endow the We fix a point

x0 ∈ X and for a given η ∈ ∂∞X we choose the only geodesic ray η (s)

such that η (0) = x0 and η (∞) = η. Given a sequence of points (xn)∞n=1

of points of X , consider the sequence of geodesic rays (ηn (s))∞n=1 such that

ηn (0) = x0 and ηn (d (x0, xn)) = xn. We say that xn converges to η if

limn→∞ d (x0, xn) = ∞ and limn→∞ η′
n (0) = η′ (0), or equivalently, if

lim
n→∞

ηn (∞) = η

in (∂∞X , dS (·, ·)). If we define on the set X := X ∪ ∂∞X a topology that
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coincide with the metric topology on X and the sphere metric dS in ∂∞X ,

and such that ∂∞X is closed and convergence from points of X to a point in

∂∞X is defined as above, we turn it into a compact topological space.

The rest of this section will be devoted to the study of the ideal boundary

of a symmetric space X = G/K of non-compact type and rank at least 2.

For a subset C ⊂ X , we define its ideal boundary ∂∞C := ∂C ∩ ∂∞X ,

where ∂C stands for the usual boundary in X . If C is convex, then

∂∞C = {η (∞) |η (s) is a geodesic ray contained in C} .

Since every Weyl sector Bg = gA
+
x0 is convex, we have that

gA
+

(∞) = ∂∞

(
gA

+
x0

)

=
{
η (∞) |η (s) = g (exp sX) x0, X ∈ a+

}
.

This is called a Weyl chamber at infinity. The Weyl chambers at infinity are

either equal or disjoint.

Similar definitions hold also for walls at infinity and flats at infinity,

denoted by gA+
Θ (∞) and gA (∞) respectively. We will consider only closed

chambers gA
+

(∞) and walls at infinity:

gA
+

Θ (∞) = ∂∞

(
gA

+

Θx0

)

=
{
η (∞) |η (s) = g (exp sX) x0, X ∈ a+

Θ

}
.
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3.2 The Structure of Ideal Chambers

In order to prove our results, we must characterize the ideal points of a

symmetric space according to its parabolic type. To put it explicitly, we

define a map

π : ∂∞X →
⋃

Θ⊂Σ

G/PΘ,

as follows. Each η ∈ ∂∞X is of the form η (∞) with η (s) = (g exp sX) x0

with |X| = 1 and X ∈
◦⋃

Θ⊆Σa+
Θ, where we are considering the open chamber

and open walls, so that the union is disjoint. So, we associate to η the

parabolic subgroup π (η) := gPΘg−1 (where X ∈ a+
Θ). This association is

independent of the choice of g. Alternatively, we could associate to η the

(open) Weyl chamber or wall at infinity gAΘ0
(∞) that contains it.

We denote by ∂Θ
∞X the inverse image π−1 (G/PΘ), the set of all θ-singular

geodesic rays. We note that π−1 (G/P∅) = ∂∅
∞X is an open and dense subset

of ∂∞X , whenever we consider either the Tits metric or the spherical metric.

Also,
◦⋃

λ∈Σ∂
{λ}
∞ X is open and dense in ∂∞X\∂∅

∞X . In the same way, we

find that
◦⋃

Θ⊆Σ
|Θ|=k

∂Θ
∞X is open and dense in ∂∞X\

(
◦⋃

Φ⊆Σ
|Φ|<k

∂Φ
∞X

)
, where |Θ|

is just the cardinality of Θ and k ≤ r (g). Again, this fact is independent of

the metric topology we work with. The projection π : ∂∞X →
⋃

Θ⊆Σ G/PΘ
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splits as a set of projections

πΘ : ∂Θ
∞X → G/PΘ, Θ ⊆ Σ

Remark 1 This structure is actually a geometric realization of a spherical

Tits building. Shortly, the set of apartments is

A = {gA (∞) |g ∈ G}

= {All flats at infinity} ,

and the chambers and walls are given by

∆ =
{

gA
+

Θ (∞) |g ∈ G, Θ ⊆ Σ
}

= {All chambers and walls at infinity} .

Since for every pair of chambers or walls at infinity there is a flat at infinity

that contains both of them, the adjacency relation is just the usual one defined

in the flats at infinity. More details about this structure may be found in

([B-G-S, Appendix 5]).

4 Semigroups and Invariant Control Sets

Let X = G/L be an homogeneous manifold. We denote respectively by clD

and intD the closure and the interior of a subset D (of X or G, to be clearly
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understood from the context). A set S of (local) diffeomorphisms of M is a

semigroup if the composition of elements of S (with possible restrictions of

domains) is still in S. An invariant control set for S (an S-i.c.s.) is a subset

∅ 6= C ⊆ X satisfying the conditions:

(i) For all x ∈ C, cl Sx = cl C,

(ii) C is maximal with property (i).

For the simplicity of the presentation, we assume that G is a semisimple

Lie group of non-compact type and S a subsemigroup of G, even if some of

the results independ on the semisimplicity of G. Regarding the control sets

in a compact homogeneous space X = G/L we have the following:

Proposition 2 [SM, Proposition 2.1]Let X = G/L be a compact homoge-

neous space and S a subsemigroup of G with intS 6= ∅. Let C ⊂ X be an

S-i.c.s and let C0 = (int S) C. Then:

(i) C0 = int (Sx) for all x ∈ C0.

(ii) SC0 ⊂ C0 = Sy = (int S) y for all y ∈ C0.

(iii) C0 = {x ∈ C|∃g ∈ int S with gx = x}.
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(iv) C0 = {x ∈ C|∃g ∈ int S with g−1x ∈ C}.

(v) cl C0 = C.

Because of property (iii), C0 is called the set of transitivity of C.

The product MA is a closed subgroup of G. The homogeneous space

G/MA may be seen as the set of Weyl chambers in either g or Weyl chambers

in G with base point at the identity. Alternatively, it may be seen as the

choice of a Weyl chamber decomposition in each of the flats gAx0 of X . Each

Weyl chamber b = gMA is conjugated to the base chamber A+: b = gA+g−1.

We assume throughout that S has non-empty interior. Then, it has a

unique S invariant control set C ([SM, Theorem 3.1]). If we put

∆ =
{
b = gA+g−1 ∈ G/MA|b ∩ int S 6= ∅

}
,

we have the following:

Theorem 3 [SM-T, Theorem 3.1] Let C be the unique S-i.c.s. in G/P and

C0 be its set of transitivity. Let

p : G/MA → G/MAN+

be the canonical projection. Then

C0 = p (∆) .
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4.1 Ideal Boundary and Invariant Control Sets

In this section we consider sub-semigroups of a semisimple Lie group of non-

compact type G. Without loss of generality, we assume that G has finite

center. We assume also that S has non-empty interior and show how to

construct invariant control sets in the ideal boundary ∂∞ (X ) of the of the

associated symmetric space X = G/K. This is done simply by considering

the ideal boundary of an orbit of S in X , as stated in our main Theorem:

Theorem 4 Let S be a sub-semigroup of a semisimple Lie group G, with

non-empty interior. Consider the boundary of an orbit Sx0 in G/K and let

D be the ideal boundary ∂∞ (Sx0). Then D is the invariant control set of S.

Moreover, if CΘ be the unique S-i.c.s. in G/P = G/PΘ and DΘ = D∩∂Θ
∞ (X ).

Then,

πΘ
(
DΘ

)
= CΘ.

We start proving a particular instance of this theorem, the case Θ = ∅:

Theorem 5 Let S be a sub-semigroup of a semisimple Lie group G, with

non-empty interior. Let C be the unique S-i.c.s. in G/P = G/P∅. Consider

the boundary of an orbit Sx0 in G/K and let D be the ideal boundary ∂∞ (Sx0)
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and D∅ = D ∩ ∂∅
∞ (X ). Then,

π∅
(
D∅

)
= C.

Actually, we could consider the orbit of any point gx0 ∈ X instead of the

orbit Sx0:

Proposition 6 For any two points gx0, hx0 ∈ X , the ideal boundaries of the

orbit of S coincide, that is, ∂∞ (Sgx0) = ∂∞ (Shx0).

Proof. Given η ∈ ∂∞ (Sgx0), there is a sequence (si)
∞
i=1 , si ∈ S such

that limi→∞ sigx0 = η, the limit considered in X = X ∪ ∂∞x. But

d (sigx0, sihx0) = d (gx0, hx0)

is bounded, so that limi→∞ sihx0 = η.

The proof of Theorem 5 is build up from the next two lemmas.

Lemma 7 With the notation above defined,

C0 ⊆ π∅
(
D∅

)
.

Proof. Let b̃ ∈ C0. By Theorem 5 there is an b ∈ ∆ such that p (b) = b̃

and an element g ∈ b ∩ intS. We consider an open ball Br (g) ⊂ intS.

For each h ∈ b ∩ Br (g), we have some Yh ∈ g with ‖Yh‖ = 1 such that
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hx0 = exp (thYh) x0. Then, hn = exp (nthYh) ∈ b ∩ intS for every n ≥ 1 so

that hnx0 ⊂ Sx0. Moreover, if we put ηh (t) = exp (tYh) x0, we find that

lim
n→∞

hnx0 = lim
n→∞

ηh (nth) = ηh (∞) .

Since b is an open Weyl chamber, we get that ηh (∞) ∈ D∅ = D ∩ ∂∅
∞ (X )

and, from the fact that hn ∈ b follows that π∅ (ηh (∞)) = p (b) = b̃

Lemma 8 With the notation above defined, let int
(
D∅

)
stands for the in-

tersection of D∅ with the interior of D as a subset of ∂∞X . Then,

π∅
(
int

(
D∅

))
⊆ C0.

Proof. First of all we notice that D := ∂∞ (Sx0) = ∂∞ ((intS) x0). In-

deed, if hn is a point in the boundary of S, there is an interior point gn of

S which distance (in G) from hn at most 1, so that the sequences hnx0 and

gnx0 have bounded distance in X and one of them converges to an ideal point

if and only if the other one converges to the same ideal point.

Let η = η (∞) ∈ int
(
D∅

)
, and put η (t) = exp (tY0) x0, with ‖Y0‖ = 1,

with Y ∈ x. Since η ∈ D, there is a sequence (gn)∞n=1 , gn ∈ S such that

limn→∞ gnx0 = η. If we put gn = exp tnYn, with Yn ∈ x unitary, it means

that tn → ∞ and the angle θn = ∢ (Y0, Yn) between Y0 and Yn goes to
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0. Since ∂∞ (Sx0) = ∂∞ ((intS) x0), we may assume that gn ∈ intS. The

same reasoning used in Lemma 8 implies that ηn (t) = exp (tYn) x0 defines

an element ηn := ηn (∞) such that π∅ (ηn) ∈ C0.

On the other hand, since η is an interior point D, considering the spherical

metric in ∂∞X , the set

Bθ,r (η) = {exp (tY ) x0|t > r > 0; ∢ (Y0, Y ) < θ}

constitute a base for the neighborhoods of η in X . We may fix r = 0 and get

a base for the neighborhoods of η in ∂∞X . Since limn→∞ gnx0 = η, we find

that limn→∞ Yn = Y so that

lim
n→∞

ηn = η0.

but this implies that π∅ (η) ∈ C0, since the projection π∅ : ∂∅
∞ (X ) → G/P is

continuous.

Now we can gather together the previous lemmas and proof Theorem 5.

Proof (of Theorem 5). Since C0 = C, lemma 7 assures that

C0 = C ⊆ π∅
(
D∅

)
.

Since π∅ is continuous, we find that π∅
(
A

)
⊆ π∅ (A) for every subset A ⊆

∂∞ (X ) and the closures being taken respectively in ∂∞ (X ) and G/P∅. So,
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by lemma 8, we find that

π∅
(
int (D∅)

)
= π∅

((
D∅

))
⊆ C0 = C = C

and it follows that

π∅
(
D∅

)
= C

We can prove now our main theorem:

Proof of Theorem 4. We consider now another parabolic subgroup

PΘ, Θ ⊆ Σ. Again, the compacity of the manifold G/PΘ assures the existence

of a unique S-invariant control set CΘ ⊆ G/PΘ. It is known that CΘ = ρ (C),

where ρ : G/P → G/PΘ is the natural projection.

The closed Weyl chamber a+ is a cone generated by a family
{
H⊥

α

}
α∈Σ

of unit vectors where β
(
H⊥

α

)
= 0 whenever β 6= α. It means that H⊥

α

is contained in the intersection of all the hyperplanes orthogonal to Hβ for

every root β 6= α. Then, the open Weyl chamber may be described as

a+ =

{
∑

α∈Σ

cαH⊥
α |cα > 0 for every α ∈ Σ

}
.

Then, we may define a projection p : a+ → a+
Θ by

p

(
∑

α∈Σ

cαH⊥
α

)
=

∑

α∈Σ\Θ

cαH⊥
α .
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This projection is not orthogonal (relatively to the Cartan-Killing form) but

it is clearly surjective. Moreover, the diagram

∂∅
∞(X )

∂Θ
∞(X )

G/P∅

G/PΘ

✲

✲

❄ ❄

π∅

πΘ

pΘ ρΘ

is clearly commutative.

Since ∂∅
∞ (X ) is open and dense in

⋃
∅6=Θ⊆Σ ∂Θ

∞ (X ), the same thing hap-

pens to the ideal boundary of an orbit of the semigroup: ∂∅
∞ (Sx0) is open

and dense in ∂∞ (Sx0) and its border is contained in
⋃

∅6=Θ⊆Σ ∂Θ
∞ (Sx0), so

that

∂Θ
∞ (Sx0) ⊆ pΘ

(
∂∅
∞ (Sx0)

)

From this and the fact that the diagram 4.1 commutes, we find that

πΘ
(
∂Θ
∞ (Sx0)

)
⊆ πΘ

(
pΘ

(
∂∅
∞ (Sx0)

))

= ρΘ ◦ π∅
(
∂∅
∞ (Sx0)

)

= ρΘ (C)

= CΘ.
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Moreover, given b̃ ∈ (CΘ)0 (the set of transitivity of CΘ), by definition there

is an element g ∈ int (S) such that gb̃ = b̃. As we did before in lemma 7,

we find that gnx0 converges (in X ) to a point η = η (∞) ∈ ∂Θ
∞ (Sx0). The

theorem follows by taking the appropriates closures, as we did in the proof

of Theorem 5.

Example 9 If G is semisimple Lie group of non-compact type and rank 1,

then the Weyl sectors are one-dimensional, so that their asymptotic images

in ∂∞X have dimension 0, that is, they are just points. It follows that the

projection π : ∂∞X → G/P is actually a bijection so that the ideal boundary

and the Furstenberg boundary may be identified.

As a special case, we consider the group G = SL(2, R) and the semigroup

S = SL+(2, R) of the matrices with non-negative entries. The symmetric

space is just the hyperbolic plane. We consider the Lobatchevsky model,

the semiplane H
2 = z ∈ C|Im(z) > 0. Its ideal boundary is just the set

z ∈ C|Im(z) = 0 ∪∞. The group G acts on H
2 as Möbius transformations

A =




a b

c d


 : z → A(z) :=

az + b

cz + d
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If A ∈ SL+(2, R), the image of the point z = i

ai + b

ci + d
=

(ac + bd) + i(ad − bc)

c2 + d2

=
ac + bd + i

c2 + d2

has non-negative real part, so that ∂−∞(Si) ⊂ {0 ≤ t ∈ R} ∪∞.

From the other side, for any λ ≥ 0, t > 0, the matrices

At =




1

t
+λt λt

t t




belong to SL+(2, R) and limt→∞At(i) = (λ + 1
2t2

) + i
2t2

= λ, so that

{0 ≤ t ∈ R} ⊂ Si The ideal point ∞ is attained as the limit of the orbit of

the one-parameter subgroup of hyperbolic isometries

Bt =




t 0

0
1
t




Example 10 We consider the group SL(3, R). The associated symmetric

space X = Sl(3, R)/SO(3, R) is the space of all 3 × 3 symmetric positive

definite matrices. This space is 5-dimensional and its ideal boundary is thus

a 4-dimensional sphere. This boundary may be identified with a set of 2-

dimensional strips in R
3. We make this identification in way slightly differ-
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ent from the one presented in [B-G-S]. Since X = Sl(3, R)/SO(3, R) is an

Hadamard manifold, its ideal boundary is determined by the asymptotic im-

age of geodesic rays starting at the point x0 = Id3×3 (section 3). The tangent

vector η′(0) of a unit speed geodesic ray η : [0,∞] → X is a symmetric matrix

A with trace 0 and norm ‖A‖2 = Tr(AAT ) = 1. Since A is symmetric, it

has 3 eigenvalues a, b and c. The norm 1 and trace 0 conditions implies that

a2 + b2 + c2 = 1 and a + b + c = 0. We loose no generality by assuming that

|a| ≥ |b| ≥ |c|. Since A is symmetric, their eigenvectors va, vb and vc are

orthogonal. We associate to this ray the strip sη := (Rva + [−r, r]vb) ⊂ R
3,

where r := (b − c)/(a − b) ∈ [0,∞] equals 0 if b = c and ∞ if a = b. The

map : η 7→ sη is well defined and a bijection onto the space

Str := {Rv1+[−r, r]v2 ⊂ R
3| ‖v1‖ = ‖v2‖ = 1, v1 orthogonal to v2, r ∈ [0,∞]}

of all strips in R
3. We note that, being {va, vb, vc} an orthogonal base, at

least one of {±va,±vb,±vc} is contained in the positive quadrant

R
3
(+,+,+) := {(x1, x2, x3) ∈ R

3|x1, x2, x3 ≥ 0}

We consider now the set

sl+(3, R) := {(aij)
3
i,j=1 ∈ sl(3, R)| aij ≥ 0 for i 6= j}
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of all matrices with nonnegative entries (outside the diagonal) and trace

0. It is clearly a closed convex cone with non empty interior. So, its image

under the exponential map is a semigroup S with non empty interior ([Ho]).

We note that S is contained (but not equal) to the semigroup SL+(3, R) of

the matrices with nonnegative entries.

We claim that the invariant control set of S in ∂∞X , may be identified

with the set of strips

S(+,+,+) := {(Rva + [−r, r]vb) ∈ Str| : va ∈ R
3
(+,+,+)}.

Since the set of matrices in with different eigenvalues is open and dense

in S, we loose no generality by restricting ourselves to matrices A ∈ S with

eigenvalues of different absolute value.

Let us see that ∂∞(Sx0) ⊆ S(+,+,+). If we look at the projective space

P (R3) over R
3, the sequence (An)n∈N

determines a quasi-projective transfor-

mation in the sense of Goldsheid and Margulis ([G-M]). It follows that every

line Rv ∈ (P (R3) − P (Rvb + Rvc)) is attracted by the line Rva, since a is the

greatest (in absolute value) eigenvalue, that is,

lim
n→∞

An (Rv) = Rva

the limit being taken in P (R3) ([G-M], Corollary 2.4). However, any matrix
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A with nonnegative entries leaves the positive quadrant invariant. Actually,

it is the compression semigroup of this quadrant ([SM]). It follows that the

eigenvector va (or its opposite −va) must be contained in this quadrant and

so ∂∞(Sx0) ⊆ S(+,+,+).

To prove the other inclusion, we choose a pair of non zero orthogonal

vectors v1 and v2 such that v1 has nonnegative coordinates and a real num-

ber r. We are looking for a symmetric matrix A = (aij)
3
i,j=1 and constants

a, b, c ∈ R satisfying the following conditions:

1. A(v1) = av1, A(v2) = bv2, A(v1 × v2) = c(v1 × v2);

2. trace(A) = a + b + c = 0;

3. (a − b)r = b − c;

4. ‖A‖2 = a2 + b2 + c2 = 1;

5. a12, a13, a23 ≥ 0,

where v1 × v2 is just the vectorial product.

It is not difficult to see there is a matrix satisfying all the first 4 conditions.

What we will do is to show that the set of solutions of the first three conditions

projects surjectively onto the coordinate subspace W of sl(3, R), generated by

a12, a13, a23.
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Since A is assumed to be symmetric, the equations in the first condition

define a linear system with six variables that is soluble for each choice of

the constants a, b and c. We can solve it in the variables a11, a22 and a33,

keeping the variables a12, a13, a23 free. By doing so, the set of solutions is

a three dimensional affine subspace V1 of sl(3, R) such that the projection

into the coordinate subspace W is surjective, and it follows that we can find

solutions with nonnegative entries outside the diagonal1 (condition 5). The

next two conditions are also linear, so it reduces our choice of freedom and the

solution of the equations in the first three items is an affine one dimensional

subspace V2 contained in V1. But equations (2) and (3) are homogeneous and

this assures that the projection of V2 in the coordinate subspace W is still

surjective, so there are solutions of conditions 1, 2 and 3 with nonnegative

entries outside the diagonal (condition 5). But, if A′ and a′, b′, c′ are solutions

of our problem (ignoring the last condition), so are λA′ and λa′, λb′, λc′ for

every positive λ. A suitable choice of λ gives us the only solution satisfying

also condition (4).

Remark 11 As we saw in remark 1, the ideal boundary ∂∞ (X ) may be

1Actually, this projection fails to be surjective in one of the variables a12, a13 or a23

only when it assumes the constant value 0, still in the range of the nonnegativity condition
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considered, in a canonical way as the geometric realization of a spherical

Tits Building. With this structure, each connected component of ∂Θ
∞ (X ) is a

cell of type Θ in the building structure. This fact encourages the investigation

of invariant control sets semigroups of algebraic groups and (B,N) pairs in

general.
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