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Abstra
t

This paper is an introdu
tion to the theory of multive
tor fun
-

tions of a real variable. The notions of limit, 
ontinuity and derivative

for these obje
ts are given. The theory of multive
tor fun
tions of a

real variable, even being similar to the usual theory of ve
tor fun
tions

of a real variable, has some subtle issues whi
h make its presentation

worhtwhile.We refer in parti
ular to the derivative rules involving ex-

terior and Cli�ord produ
ts, and also to the rule for derivation of a


omposition of an ordinary s
alar fun
tion with a multive
tor fun
tion

of a real variable.
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1 Introdu
tion

This is paper V of a series of seven. Here, we develop a theory of multive
tor

fun
tions of a real variable following analogous steps to the elementary theory

of ve
tor fun
tions of a real variable. We introdu
e the notions of limit and


ontinuity, and study the 
on
ept of derivative. There are subtle points

that are emphasized whose understanding is 
ru
ial for the development of

a theory of multive
tor fun
tions of a multive
tor variable (as 
onstru
ted

in paper VI of the present series). We give the 
omplete proofs for the

derivative rules involving all the suitable produ
ts of multive
tor fun
tions

of a real variable, and for the 
omposition of an ordinary s
alar fun
tion with

a multive
tor fun
tion of a real variable.

2 Multive
tor Fun
tions of a Real Variable

Any mapping whi
h takes real numbers of S � R to multive
tors of

V

V

will be 
alled a multive
tor fun
tion of a real variable over V: In parti
ular,

X : S !

V

p

V is said to be a p-ve
tor fun
tion of a real variable. And, the

spe
ial 
ases p = 0; p = 1; p = 2; : : : ; et
. are named as a s
alar, ve
tor,

bive
tor,: : : ; et
. fun
tion of a real variable, respe
tively.

2.1 Limit Notion

We begin by re
alling the fundamental 
on
ept of Æ-neighborhood for a real

number �

0

.

Take any real Æ > 0: The set

1

N

�

0

(Æ) = f� 2 R= j�� �

0

j < Æg; 
learly

a subset of R; is usually 
alled a Æ-neighborhood of �

0

: The set N

0

�

0

(Æ) =

1

The symbol j j denotes as usual the absolute value (or, module) fun
tion.

2



N

�

0

(Æ) � f�

0

g; i.e., N

0

�

0

(Æ) = f� 2 R= 0 < j�� �

0

j < Æg; is said to be a

redu
ed Æ-neighborhood of �

0

:

We re
all now the important 
on
ept of 
luster point and interior point

of S � R:

A real number �

0

is said to be a 
luster point of S if and only if for every

N

�

0

(Æ) : N

0

�

0

(Æ) \ S 6= ;; i.e., all redu
ed Æ-neighborhood of �

0


ontains at

least one real number of S:

A real number �

0

is said to be a interior point of S if and only if

there exists N

�

0

(Æ) su
h that N

�

0

(Æ) � S; i.e., any real number of some

Æ-neighborhood of �

0

belongs also to S.

Note that all interior point of S is also 
luster point of S:

If the set of interior point of S 
oin
ides with S; i.e., all real number of S

is also interior point of S; then S is said to be an open subset of R:

Next we introdu
e the 
on
ept of norm of a multive
tor X:

Assume that

V

V has been endowed with an eu
lidean s
alar produ
t (�),

as e.g., by taking any �xed basis fb

k

g for V and its dual basis f�

k

g for V

�

;

et
. See paper I of this series [1℄. As we already know, the eu
lidean s
alar

produ
t is always de�nite positive, i.e., for all X 2

V

V : X � X � 0 and

X �X = 0 if and only if X = 0:

This property of the s
alar produ
t permit us to introdu
e the norm of

a multive
tor X as being the non-negative real number kXk given by

kXk =

p

X �X: (1)

We read kXk as the norm of X:

The norm of multive
tors satis�es the following two usual inequalities:

n1 The Cau
hy-S
hwarz inequality, i.e., for all X; Y 2

V

V

jX � Y j � kXk kY k : (2)

n2 The triangular inequality, i.e., for all X; Y 2

V

V

kX + Y k � kXk+ kY k : (3)

The �rst inequality follows from the fa
t that (�) is positive de�nite. The

se
ond one is an immediate 
onsequen
e of the �rst one.

Take S � R: Let X : S !

V

V be any multive
tor fun
tion of a real

variable and take �

0

2 S to be a 
luster point of S:

A multive
tor L is said to be the limit of X(�) for � approa
hing to �

0

if and only if for every real " > 0 there exists some real Æ > 0 su
h that if
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for all � 2 S and 0 < j�� �

0

j < Æ; then kX(�)� Lk < ": It is denoted by

lim

�!�

0

X(�) = L:

In parti
ular, a s
alar fun
tion of a real variable is just an ordinary real

fun
tion and, as we 
an see, the above de�nition of limit is redu
ed to the

ordinary de�nition of limit whi
h appears in real analysis.

Proposition 1 Let X : S !

V

V and Y : S !

V

V be two multive
tor

fun
tions of a real variable. If there exist lim

�!�

0

X(�) and lim

�!�

0

Y (�); then

there exists lim

�!�

0

(X + Y )(�) and

lim

�!�

0

(X + Y )(�) = lim

�!�

0

X(�)+ lim

�!�

0

Y (�): (4)

Proof. Let lim

�!�

0

X(�) = L

1

and lim

�!�

0

Y (�) = L

2

: Then, we must prove that

lim

�!�

0

(X + Y )(�) = L

1

+ L

2

:

Given an arbitrary real " > 0; sin
e lim

�!�

0

X(�) = L

1

and lim

�!�

0

Y (�) = L

2

;

there are two real numbers Æ

1

> 0 and Æ

2

> 0 su
h that

kX(�)� L

1

k <

"

2

; for � 2 S and 0 < j�� �

0

j < Æ

1

;

kY (�)� L

2

k <

"

2

; for � 2 S and 0 < j�� �

0

j < Æ

2

:

Thus, there is a real Æ = minfÆ

1

; Æ

2

g su
h that

kX(�)� L

1

k <

"

2

and kY (�)� L

2

k <

"

2

;

for � 2 S and 0 < j�� �

0

j < Æ: Hen
e, by using eq.(3) it follows that

k(X + Y )(�)� (L

1

+ L

2

)k = kX(�)� L

1

+ Y (�)� L

2

k

� kX(�)� L

1

k+ kY (�)� L

2

k

<

"

2

+

"

2

= ";

for � 2 S and 0 < j�� �

0

j < Æ:

Therefore, for any " > 0 there exists a Æ > 0 su
h that if � 2 S and

0 < j�� �

0

j < Æ; then k(X + Y )(�)� (L

1

+ L

2

)k < ":
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Proposition 2 Let � : S ! R and X : S !

V

V be an ordinary real

fun
tion and a multive
tor fun
tion of a real variable. If there exist lim

�!�

0

�(�)

(the ordinary limit) and lim

�!�

0

X(�); then there exists lim

�!�

0

(�X)(�) and

lim

�!�

0

(�X)(�) = lim

�!�

0

�(�) lim

�!�

0

X(�): (5)

Proof. Let lim

�!�

0

�(�) = �

0

and lim

�!�

0

X(�) = X

0

: Then, we must prove that

lim

�!�

0

(�X)(�) = �

0

X

0

:

First, sin
e lim

�!�

0

�(�) = �

0

it 
an be found a Æ

1

> 0 su
h that

j�(�)� �

0

j < 1; whenever � 2 S and 0 < j�� �

0

j < Æ

1

;

i.e.,

j�(�)j < 1 + j�

0

j ; whenever � 2 S and 0 < j�� �

0

j < Æ

1

:

Where the triangular inequality for real numbers j�j � j�j � j�� �j was

used.

Now, taken an arbitrary " > 0; sin
e lim

�!�

0

�(�) = �

0

and lim

�!�

0

X(�) = X

0

;

they 
an be found a Æ

2

> 0 and a Æ

3

> 0 su
h that

j�(�)� �

0

j <

"

2(1 + kX

0

k)

; whenever � 2 S and 0 < j�� �

0

j < Æ

2

;

kX(�)�X(�

0

)k <

"

2(1 + j�

0

j)

; whenever � 2 S and 0 < j�� �

0

j < Æ

3

:

Thus, given an arbitrary " > 0 there is a Æ = minfÆ

1

; Æ

2

; Æ

3

g su
h that

j�(�)j < 1 + j�

0

j ;

j�(�)� �

0

j <

"

2(1 + kX

0

k)

;

kX(�)�X

0

)k <

"

2(1 + j�

0

j)

;

for � 2 S and 0 < j�� �

0

j < Æ: Hen
e, it follows that

k(�X)(�)� �

0

X

0

k = k�(�)(X(�)�X

0

) + (�(�)� �

0

)X

0

k

� j�(�)j kX(�)�X

0

k+ j�(�)� �

0

j kX

0

k

< j�(�)j kX(�)�X

0

k+ j�(�)� �

0

j (1 + kX

0

k)

< (1 + j�

0

j)

"

2(1 + j�

0

j)

+

"

2(1 + kX

0

k)

(1 + kX

0

k) = ";
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for � 2 S and 0 < j�� �

0

j < Æ. In the proof above we use some properties

of the norm of multive
tors.

Therefore, for any " > 0 there exists a Æ > 0 su
h that if � 2 S and

0 < j�� �

0

j < Æ; then k(�X)(�)� �

0

X

0

k < ":

Lemma 3 There exists lim

�!�

0

X(�) if and only if there exist any one of the

ordinary limits, either lim

�!�

0

X

J

(�) or lim

�!�

0

X

J

(�): It holds

lim

�!�

0

X(�) =

X

J

1

�(J)!

lim

�!�

0

X

J

(�)e

J

=

X

J

1

�(J)!

lim

�!�

0

X

J

(�)e

J

: (6)

Proof. It is an immediate 
onsequen
e of eqs.(4) and (5).

Proposition 4 Let X : S !

V

V and Y : S !

V

V be two multive
tor

fun
tions of a real variable. We 
an de�ne the produ
ts X � Y : S !

V

V

su
h that (X �Y )(�) = X(�) �Y (�) where � holds for either (^); (�); (yx) or

(Cli�ord produ
t): If there exist lim

�!�

0

X(�) and lim

�!�

0

Y (�); then there exists

lim

�!�

0

(X � Y )(�) and

lim

�!�

0

(X � Y )(�) = lim

�!�

0

X(�)� lim

�!�

0

Y (�): (7)

Proof. It is an immediate 
onsequen
e of eq.(6).

2.2 Continuity Notion

Take S � R: A multive
tor fun
tion of a real variable X : S !

V

V is said

to be 
ontinuous at �

0

2 S if and only if there exists

2

lim

�!�

0

X(�) and

lim

�!�

0

X(�) = X(�

0

): (8)

Lemma 5 The multive
tor fun
tion � 7! X(�) is 
ontinuous at �

0

if and

only if whi
hever 
omponent s
alar fun
tion either � 7! X

J

(�) or � 7! X

J

(�)

is 
ontinuous at �

0

:

2

See that �

0

has to be 
luster point of S:
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Proposition 6 Let X : S !

V

V and Y : S !

V

V be two 
ontinuous

fun
tions at �

0

2 S:

The addition X + Y : S !

V

V su
h that (X + Y )(�) = X(�) + Y (�)

and the produ
ts X � Y : S !

V

V su
h that (X � Y )(�) = X(�) � Y (�);

where � means either (^); (�); (yx) or (Cli�ord produ
t); are also 
ontinuous

fun
tions at �

0

:

Proof. It is an immediate 
onsequen
e of eqs.(4) and (7).

Proposition 7 Let � : S ! R and X : R !

V

V be two 
ontinuous fun
-

tions, the �rst one at �

0

2 S and the se
ond one at �(�

0

) 2 R:

The 
omposition X Æ � : S !

V

V su
h that X Æ �(�) = X(�(�)) is a


ontinuous fun
tion at �

0

:

2.3 Derivative

Take S � R be an open set of R. A multive
tor fun
tion of a real variable

X : S !

V

V is said to be derivable at �

0

2 S if and only if there exists

lim

�!�

0

X(�)�X(�

0

)

�� �

0

: This multive
tor-limit is usually 
alled the derivative of

X at �

0

2 S; and often denoted by X

0

(�

0

); i.e.,

X

0

(�

0

) = lim

�!�

0

X(�)�X(�

0

)

�� �

0

: (9)

So that, the derivability of X at �

0

means the existen
e of derivative of

X at �

0

:

Lemma 8 Asso
iated to any multive
tor fun
tion X; derivable at �

0

; there

exists a multive
tor fun
tion �

�

0

; 
ontinuous at �

0

; su
h that

�

�

0

(�

0

) = 0 (10)

and for all � 2 S it holds

X(�) = X(�

0

) + (�� �

0

)X

0

(�

0

) + (�� �

0

)�

�

0

(�): (11)

Proof. Sin
e X is derivable at �

0

we 
an de�ne �

�

0

by

�

�

0

(�) =

8

<

:

0 for � = �

0

X(�)�X(�

0

)

�� �

0

�X

0

(�

0

) for � 6= �

0

:
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We see that �

�

0

(�

0

) = 0 and by taking limit of �

�

0

(�) for �! �

0

we have

lim

�!�

0

�

�

0

(�) = lim

�!�

0

(

X(�)�X(�

0

)

�� �

0

�X

0

(�

0

)) = X

0

(�

0

)�X

0

(�

0

) = 0:

It follows that �

�

0

is 
ontinuous at �

0

and so the �rst statement holds.

On another way, for � 6= �

0

we get the multive
tor identity

X(�) = X(�

0

) + (�� �

0

)X

0

(�

0

) + (�� �

0

)�

�

0

(�)

but, for � = �

0

it is trivially true. Thus, the se
ond statement holds.

As happens in real analysis, derivability implies 
ontinuity. Indeed, by

taking limits for �! �

0

on both sides of eq.(11) we get lim

�!�

0

X(�) = X(�

0

):

2.3.1 Derivation Rules

Take two open subset of R; say S

1

and S

2

; su
h that S

1

\ S

2

6= ;:

Theorem 9 Let S

1

3 � 7! X(�) 2

V

V and S

2

3 � 7! Y (�) 2

V

V be two

derivable fun
tions at �

0

2 S

1

\ S

2

:

The addition S

1

\ S

2

3 � 7! (X + Y )(�) 2 �V su
h that (X + Y )(�) =

X(�) + Y (�) and the produ
ts S

1

\ S

2

3 � 7! (X � Y )(�) 2 �V su
h that

(X � Y )(�) = X(�) � Y (�); where � means either (^), (�); (yx) or (Cli�ord

produ
t); are also derivable fun
tions at �

0

:

The derivatives of X + Y and X � Y at �

0

are given by

(X + Y )

0

(�

0

) = X

0

(�

0

) + Y

0

(�

0

) (12)

and

(X � Y )

0

(�

0

) = X

0

(�

0

) � Y (�

0

) +X(�

0

) � Y

0

(�

0

): (13)

Proof. We only need to verify that

lim

�!�

0

(X + Y )(�)� (X + Y )(�

0

)

�� �

0

= X

0

(�

0

) + Y

0

(�

0

)

and that

lim

�!�

0

(X � Y )(�)� (X � Y )(�

0

)

�� �

0

= X

0

(�

0

) � Y (�

0

) +X(�

0

) � Y

0

(�

0

):

8



First, we set the following multive
tor identities whi
h hold for all � 6= �

0

(X + Y )(�)� (X + Y )(�

0

)

�� �

0

=

X(�)�X(�

0

)

�� �

0

+

Y (�)� Y (�

0

)

�� �

0

and

(X � Y )(�)� (X � Y )(�

0

)

�� �

0

=

X(�)�X(�

0

)

�� �

0

�Y (�

0

)+X(�)�

Y (�)� Y (�

0

)

�� �

0

:

Now, by taking limits for � ! �

0

on both sides of these multive
tor

identities, using the equation

3

: lim

�!�

0

X(�) = X(�

0

); we get the expe
ted

results.

Theorem 10 Let � : S ! R and X : R !

V

V be two derivable fun
tions,

the �rst one at �

0

2 S and the se
ond one at �(�

0

) 2 R:

The 
omposition X Æ � : S !

V

V su
h that X Æ �(�) = X(�(�)) is a

derivable fun
tion at �

0

and its derivative at �

0

is given by

(X Æ �)

0

(�

0

) = �

0

(�

0

)X

0

(�(�

0

)): (14)

Proof. We must prove that

lim

�!�

0

X Æ �(�)�X Æ �(�

0

)

�� �

0

= �

0

(�

0

)X

0

(�(�

0

)):

Sin
eX is derivable at �(�

0

); there is a multive
tor fun
tion � 7! �

�(�

0

)

(�);


ontinuous at �(�

0

); su
h that for all � 2 R

X(�) = X(�(�

0

)) + (�� �(�

0

))X

0

(�(�

0

)) + (�� �(�

0

))�

�(�

0

)

(�);

where �

�(�

0

)

(�(�

0

)) = 0:

Now, the following multive
tor identity (as 
an be easily shown) holds for

all � 6= �

0

,

X Æ �(�)�X Æ �(�

0

)

�� �

0

=

�(�)� �(�

0

)

�� �

0

X

0

(�(�

0

))+

�(�)� �(�

0

)

�� �

0

�

�(�

0

)

Æ�(�):

Now, by taking limits for � ! �

0

on both sides, using the equation

4

:

lim

�!�

0

�

�(�

0

)

Æ �(�) = 0; we get the required result.

3

We have used the fa
t that for X , derivability implies in 
ontinuity.

4

It was used that 
omposition of � with �

�(�

0

)

; where � is 
ontinuous at �

0

and �

�(�

0

)

is 
ontinuous at �(�

0

); is 
ontinuous at �

0

.
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3 Con
lusions

In this paper we introdu
ed the 
on
ept of multive
tor fun
tions of a real

variable, and the notions of limit and 
ontinuity for them, and studied the


on
ept of derivative of these obje
ts. Although our theory of multive
tor

fun
tions of a real variable parallels the theory of ve
tor fun
tions of a real

variable, we believe that our presentation is worthwhile, sin
e it treats some

subtle points as, e.g., the derivative rules involving all the suitable produ
ts of

the multive
tor fun
tions of a real variable. The generalization of these ideas

towards a general theory of multive
tor fun
tions of several real variables 
an

be done without great diÆ
ulty.

The results developed in this paper are essential ingredients for papers

VI and VII of the present series of papers, where we obtain important results


on
erning to the theory of multive
tor fun
tions of a multive
tor variable,

and to the theory of multive
tor fun
tionals.

Before ending, we quote that the 
on
ept of multive
tor fun
tions (of

real variable or multive
tor variable) has been �rst introdu
ed in [2℄, and

used together with the notion of multive
tor fun
tionals by some authors,

in order to study problems ranging from linear algebra to appli
ations to

physi
al s
ien
es and engineering (e.g., [3℄[4℄). We believe that our approa
h

is a real 
ontribution to those presentations of these subje
ts.
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