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Abstrat

This paper is an introdution to the theory of multivetor fun-

tions of a real variable. The notions of limit, ontinuity and derivative

for these objets are given. The theory of multivetor funtions of a

real variable, even being similar to the usual theory of vetor funtions

of a real variable, has some subtle issues whih make its presentation

worhtwhile.We refer in partiular to the derivative rules involving ex-

terior and Cli�ord produts, and also to the rule for derivation of a

omposition of an ordinary salar funtion with a multivetor funtion

of a real variable.
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1 Introdution

This is paper V of a series of seven. Here, we develop a theory of multivetor

funtions of a real variable following analogous steps to the elementary theory

of vetor funtions of a real variable. We introdue the notions of limit and

ontinuity, and study the onept of derivative. There are subtle points

that are emphasized whose understanding is ruial for the development of

a theory of multivetor funtions of a multivetor variable (as onstruted

in paper VI of the present series). We give the omplete proofs for the

derivative rules involving all the suitable produts of multivetor funtions

of a real variable, and for the omposition of an ordinary salar funtion with

a multivetor funtion of a real variable.

2 Multivetor Funtions of a Real Variable

Any mapping whih takes real numbers of S � R to multivetors of

V

V

will be alled a multivetor funtion of a real variable over V: In partiular,

X : S !

V

p

V is said to be a p-vetor funtion of a real variable. And, the

speial ases p = 0; p = 1; p = 2; : : : ; et. are named as a salar, vetor,

bivetor,: : : ; et. funtion of a real variable, respetively.

2.1 Limit Notion

We begin by realling the fundamental onept of Æ-neighborhood for a real

number �

0

.

Take any real Æ > 0: The set

1

N

�

0

(Æ) = f� 2 R= j�� �

0

j < Æg; learly

a subset of R; is usually alled a Æ-neighborhood of �

0

: The set N

0

�

0

(Æ) =

1

The symbol j j denotes as usual the absolute value (or, module) funtion.
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N

�

0

(Æ) � f�

0

g; i.e., N

0

�

0

(Æ) = f� 2 R= 0 < j�� �

0

j < Æg; is said to be a

redued Æ-neighborhood of �

0

:

We reall now the important onept of luster point and interior point

of S � R:

A real number �

0

is said to be a luster point of S if and only if for every

N

�

0

(Æ) : N

0

�

0

(Æ) \ S 6= ;; i.e., all redued Æ-neighborhood of �

0

ontains at

least one real number of S:

A real number �

0

is said to be a interior point of S if and only if

there exists N

�

0

(Æ) suh that N

�

0

(Æ) � S; i.e., any real number of some

Æ-neighborhood of �

0

belongs also to S.

Note that all interior point of S is also luster point of S:

If the set of interior point of S oinides with S; i.e., all real number of S

is also interior point of S; then S is said to be an open subset of R:

Next we introdue the onept of norm of a multivetor X:

Assume that

V

V has been endowed with an eulidean salar produt (�),

as e.g., by taking any �xed basis fb

k

g for V and its dual basis f�

k

g for V

�

;

et. See paper I of this series [1℄. As we already know, the eulidean salar

produt is always de�nite positive, i.e., for all X 2

V

V : X � X � 0 and

X �X = 0 if and only if X = 0:

This property of the salar produt permit us to introdue the norm of

a multivetor X as being the non-negative real number kXk given by

kXk =

p

X �X: (1)

We read kXk as the norm of X:

The norm of multivetors satis�es the following two usual inequalities:

n1 The Cauhy-Shwarz inequality, i.e., for all X; Y 2

V

V

jX � Y j � kXk kY k : (2)

n2 The triangular inequality, i.e., for all X; Y 2

V

V

kX + Y k � kXk+ kY k : (3)

The �rst inequality follows from the fat that (�) is positive de�nite. The

seond one is an immediate onsequene of the �rst one.

Take S � R: Let X : S !

V

V be any multivetor funtion of a real

variable and take �

0

2 S to be a luster point of S:

A multivetor L is said to be the limit of X(�) for � approahing to �

0

if and only if for every real " > 0 there exists some real Æ > 0 suh that if
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for all � 2 S and 0 < j�� �

0

j < Æ; then kX(�)� Lk < ": It is denoted by

lim

�!�

0

X(�) = L:

In partiular, a salar funtion of a real variable is just an ordinary real

funtion and, as we an see, the above de�nition of limit is redued to the

ordinary de�nition of limit whih appears in real analysis.

Proposition 1 Let X : S !

V

V and Y : S !

V

V be two multivetor

funtions of a real variable. If there exist lim

�!�

0

X(�) and lim

�!�

0

Y (�); then

there exists lim

�!�

0

(X + Y )(�) and

lim

�!�

0

(X + Y )(�) = lim

�!�

0

X(�)+ lim

�!�

0

Y (�): (4)

Proof. Let lim

�!�

0

X(�) = L

1

and lim

�!�

0

Y (�) = L

2

: Then, we must prove that

lim

�!�

0

(X + Y )(�) = L

1

+ L

2

:

Given an arbitrary real " > 0; sine lim

�!�

0

X(�) = L

1

and lim

�!�

0

Y (�) = L

2

;

there are two real numbers Æ

1

> 0 and Æ

2

> 0 suh that

kX(�)� L

1

k <

"

2

; for � 2 S and 0 < j�� �

0

j < Æ

1

;

kY (�)� L

2

k <

"

2

; for � 2 S and 0 < j�� �

0

j < Æ

2

:

Thus, there is a real Æ = minfÆ

1

; Æ

2

g suh that

kX(�)� L

1

k <

"

2

and kY (�)� L

2

k <

"

2

;

for � 2 S and 0 < j�� �

0

j < Æ: Hene, by using eq.(3) it follows that

k(X + Y )(�)� (L

1

+ L

2

)k = kX(�)� L

1

+ Y (�)� L

2

k

� kX(�)� L

1

k+ kY (�)� L

2

k

<

"

2

+

"

2

= ";

for � 2 S and 0 < j�� �

0

j < Æ:

Therefore, for any " > 0 there exists a Æ > 0 suh that if � 2 S and

0 < j�� �

0

j < Æ; then k(X + Y )(�)� (L

1

+ L

2

)k < ":
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Proposition 2 Let � : S ! R and X : S !

V

V be an ordinary real

funtion and a multivetor funtion of a real variable. If there exist lim

�!�

0

�(�)

(the ordinary limit) and lim

�!�

0

X(�); then there exists lim

�!�

0

(�X)(�) and

lim

�!�

0

(�X)(�) = lim

�!�

0

�(�) lim

�!�

0

X(�): (5)

Proof. Let lim

�!�

0

�(�) = �

0

and lim

�!�

0

X(�) = X

0

: Then, we must prove that

lim

�!�

0

(�X)(�) = �

0

X

0

:

First, sine lim

�!�

0

�(�) = �

0

it an be found a Æ

1

> 0 suh that

j�(�)� �

0

j < 1; whenever � 2 S and 0 < j�� �

0

j < Æ

1

;

i.e.,

j�(�)j < 1 + j�

0

j ; whenever � 2 S and 0 < j�� �

0

j < Æ

1

:

Where the triangular inequality for real numbers j�j � j�j � j�� �j was

used.

Now, taken an arbitrary " > 0; sine lim

�!�

0

�(�) = �

0

and lim

�!�

0

X(�) = X

0

;

they an be found a Æ

2

> 0 and a Æ

3

> 0 suh that

j�(�)� �

0

j <

"

2(1 + kX

0

k)

; whenever � 2 S and 0 < j�� �

0

j < Æ

2

;

kX(�)�X(�

0

)k <

"

2(1 + j�

0

j)

; whenever � 2 S and 0 < j�� �

0

j < Æ

3

:

Thus, given an arbitrary " > 0 there is a Æ = minfÆ

1

; Æ

2

; Æ

3

g suh that

j�(�)j < 1 + j�

0

j ;

j�(�)� �

0

j <

"

2(1 + kX

0

k)

;

kX(�)�X

0

)k <

"

2(1 + j�

0

j)

;

for � 2 S and 0 < j�� �

0

j < Æ: Hene, it follows that

k(�X)(�)� �

0

X

0

k = k�(�)(X(�)�X

0

) + (�(�)� �

0

)X

0

k

� j�(�)j kX(�)�X

0

k+ j�(�)� �

0

j kX

0

k

< j�(�)j kX(�)�X

0

k+ j�(�)� �

0

j (1 + kX

0

k)

< (1 + j�

0

j)

"

2(1 + j�

0

j)

+

"

2(1 + kX

0

k)

(1 + kX

0

k) = ";
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for � 2 S and 0 < j�� �

0

j < Æ. In the proof above we use some properties

of the norm of multivetors.

Therefore, for any " > 0 there exists a Æ > 0 suh that if � 2 S and

0 < j�� �

0

j < Æ; then k(�X)(�)� �

0

X

0

k < ":

Lemma 3 There exists lim

�!�

0

X(�) if and only if there exist any one of the

ordinary limits, either lim

�!�

0

X

J

(�) or lim

�!�

0

X

J

(�): It holds

lim

�!�

0

X(�) =

X

J

1

�(J)!

lim

�!�

0

X

J

(�)e

J

=

X

J

1

�(J)!

lim

�!�

0

X

J

(�)e

J

: (6)

Proof. It is an immediate onsequene of eqs.(4) and (5).

Proposition 4 Let X : S !

V

V and Y : S !

V

V be two multivetor

funtions of a real variable. We an de�ne the produts X � Y : S !

V

V

suh that (X �Y )(�) = X(�) �Y (�) where � holds for either (^); (�); (yx) or

(Cli�ord produt): If there exist lim

�!�

0

X(�) and lim

�!�

0

Y (�); then there exists

lim

�!�

0

(X � Y )(�) and

lim

�!�

0

(X � Y )(�) = lim

�!�

0

X(�)� lim

�!�

0

Y (�): (7)

Proof. It is an immediate onsequene of eq.(6).

2.2 Continuity Notion

Take S � R: A multivetor funtion of a real variable X : S !

V

V is said

to be ontinuous at �

0

2 S if and only if there exists

2

lim

�!�

0

X(�) and

lim

�!�

0

X(�) = X(�

0

): (8)

Lemma 5 The multivetor funtion � 7! X(�) is ontinuous at �

0

if and

only if whihever omponent salar funtion either � 7! X

J

(�) or � 7! X

J

(�)

is ontinuous at �

0

:

2

See that �

0

has to be luster point of S:
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Proposition 6 Let X : S !

V

V and Y : S !

V

V be two ontinuous

funtions at �

0

2 S:

The addition X + Y : S !

V

V suh that (X + Y )(�) = X(�) + Y (�)

and the produts X � Y : S !

V

V suh that (X � Y )(�) = X(�) � Y (�);

where � means either (^); (�); (yx) or (Cli�ord produt); are also ontinuous

funtions at �

0

:

Proof. It is an immediate onsequene of eqs.(4) and (7).

Proposition 7 Let � : S ! R and X : R !

V

V be two ontinuous fun-

tions, the �rst one at �

0

2 S and the seond one at �(�

0

) 2 R:

The omposition X Æ � : S !

V

V suh that X Æ �(�) = X(�(�)) is a

ontinuous funtion at �

0

:

2.3 Derivative

Take S � R be an open set of R. A multivetor funtion of a real variable

X : S !

V

V is said to be derivable at �

0

2 S if and only if there exists

lim

�!�

0

X(�)�X(�

0

)

�� �

0

: This multivetor-limit is usually alled the derivative of

X at �

0

2 S; and often denoted by X

0

(�

0

); i.e.,

X

0

(�

0

) = lim

�!�

0

X(�)�X(�

0

)

�� �

0

: (9)

So that, the derivability of X at �

0

means the existene of derivative of

X at �

0

:

Lemma 8 Assoiated to any multivetor funtion X; derivable at �

0

; there

exists a multivetor funtion �

�

0

; ontinuous at �

0

; suh that

�

�

0

(�

0

) = 0 (10)

and for all � 2 S it holds

X(�) = X(�

0

) + (�� �

0

)X

0

(�

0

) + (�� �

0

)�

�

0

(�): (11)

Proof. Sine X is derivable at �

0

we an de�ne �

�

0

by

�

�

0

(�) =

8

<

:

0 for � = �

0

X(�)�X(�

0

)

�� �

0

�X

0

(�

0

) for � 6= �

0

:
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We see that �

�

0

(�

0

) = 0 and by taking limit of �

�

0

(�) for �! �

0

we have

lim

�!�

0

�

�

0

(�) = lim

�!�

0

(

X(�)�X(�

0

)

�� �

0

�X

0

(�

0

)) = X

0

(�

0

)�X

0

(�

0

) = 0:

It follows that �

�

0

is ontinuous at �

0

and so the �rst statement holds.

On another way, for � 6= �

0

we get the multivetor identity

X(�) = X(�

0

) + (�� �

0

)X

0

(�

0

) + (�� �

0

)�

�

0

(�)

but, for � = �

0

it is trivially true. Thus, the seond statement holds.

As happens in real analysis, derivability implies ontinuity. Indeed, by

taking limits for �! �

0

on both sides of eq.(11) we get lim

�!�

0

X(�) = X(�

0

):

2.3.1 Derivation Rules

Take two open subset of R; say S

1

and S

2

; suh that S

1

\ S

2

6= ;:

Theorem 9 Let S

1

3 � 7! X(�) 2

V

V and S

2

3 � 7! Y (�) 2

V

V be two

derivable funtions at �

0

2 S

1

\ S

2

:

The addition S

1

\ S

2

3 � 7! (X + Y )(�) 2 �V suh that (X + Y )(�) =

X(�) + Y (�) and the produts S

1

\ S

2

3 � 7! (X � Y )(�) 2 �V suh that

(X � Y )(�) = X(�) � Y (�); where � means either (^), (�); (yx) or (Cli�ord

produt); are also derivable funtions at �

0

:

The derivatives of X + Y and X � Y at �

0

are given by

(X + Y )

0

(�

0

) = X

0

(�

0

) + Y

0

(�

0

) (12)

and

(X � Y )

0

(�

0

) = X

0

(�

0

) � Y (�

0

) +X(�

0

) � Y

0

(�

0

): (13)

Proof. We only need to verify that

lim

�!�

0

(X + Y )(�)� (X + Y )(�

0

)

�� �

0

= X

0

(�

0

) + Y

0

(�

0

)

and that

lim

�!�

0

(X � Y )(�)� (X � Y )(�

0

)

�� �

0

= X

0

(�

0

) � Y (�

0

) +X(�

0

) � Y

0

(�

0

):
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First, we set the following multivetor identities whih hold for all � 6= �

0

(X + Y )(�)� (X + Y )(�

0

)

�� �

0

=

X(�)�X(�

0

)

�� �

0

+

Y (�)� Y (�

0

)

�� �

0

and

(X � Y )(�)� (X � Y )(�

0

)

�� �

0

=

X(�)�X(�

0

)

�� �

0

�Y (�

0

)+X(�)�

Y (�)� Y (�

0

)

�� �

0

:

Now, by taking limits for � ! �

0

on both sides of these multivetor

identities, using the equation

3

: lim

�!�

0

X(�) = X(�

0

); we get the expeted

results.

Theorem 10 Let � : S ! R and X : R !

V

V be two derivable funtions,

the �rst one at �

0

2 S and the seond one at �(�

0

) 2 R:

The omposition X Æ � : S !

V

V suh that X Æ �(�) = X(�(�)) is a

derivable funtion at �

0

and its derivative at �

0

is given by

(X Æ �)

0

(�

0

) = �

0

(�

0

)X

0

(�(�

0

)): (14)

Proof. We must prove that

lim

�!�

0

X Æ �(�)�X Æ �(�

0

)

�� �

0

= �

0

(�

0

)X

0

(�(�

0

)):

SineX is derivable at �(�

0

); there is a multivetor funtion � 7! �

�(�

0

)

(�);

ontinuous at �(�

0

); suh that for all � 2 R

X(�) = X(�(�

0

)) + (�� �(�

0

))X

0

(�(�

0

)) + (�� �(�

0

))�

�(�

0

)

(�);

where �

�(�

0

)

(�(�

0

)) = 0:

Now, the following multivetor identity (as an be easily shown) holds for

all � 6= �

0

,

X Æ �(�)�X Æ �(�

0

)

�� �

0

=

�(�)� �(�

0

)

�� �

0

X

0

(�(�

0

))+

�(�)� �(�

0

)

�� �

0

�

�(�

0

)

Æ�(�):

Now, by taking limits for � ! �

0

on both sides, using the equation

4

:

lim

�!�

0

�

�(�

0

)

Æ �(�) = 0; we get the required result.

3

We have used the fat that for X , derivability implies in ontinuity.

4

It was used that omposition of � with �

�(�

0

)

; where � is ontinuous at �

0

and �

�(�

0

)

is ontinuous at �(�

0

); is ontinuous at �

0

.
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3 Conlusions

In this paper we introdued the onept of multivetor funtions of a real

variable, and the notions of limit and ontinuity for them, and studied the

onept of derivative of these objets. Although our theory of multivetor

funtions of a real variable parallels the theory of vetor funtions of a real

variable, we believe that our presentation is worthwhile, sine it treats some

subtle points as, e.g., the derivative rules involving all the suitable produts of

the multivetor funtions of a real variable. The generalization of these ideas

towards a general theory of multivetor funtions of several real variables an

be done without great diÆulty.

The results developed in this paper are essential ingredients for papers

VI and VII of the present series of papers, where we obtain important results

onerning to the theory of multivetor funtions of a multivetor variable,

and to the theory of multivetor funtionals.

Before ending, we quote that the onept of multivetor funtions (of

real variable or multivetor variable) has been �rst introdued in [2℄, and

used together with the notion of multivetor funtionals by some authors,

in order to study problems ranging from linear algebra to appliations to

physial sienes and engineering (e.g., [3℄[4℄). We believe that our approah

is a real ontribution to those presentations of these subjets.
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