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Abstrat

In this paper we introdue the onept of metri Cli�ord algebra

C`(V; g) for a n-dimensional real vetor spae V endowed with a metri

extensor g whose signature is (p; q), with p+q = n. The metri Cli�ord

produt on C`(V; g) appears as a well-de�ned deformation (indued

by g) of an eulidean Cli�ord produt on C`(V ). Assoiated with the

metri extensor g; there is a gauge metri extensor h whih odi�es

all the geometri information just ontained in g: The preise form of

suh h is here determined. Moreover, we present and give a proof of

the so-alled golden formula, whih is important in many appliations

that naturally appear in ours studies of multivetor funtions, and

di�erential geometry and theoretial physis.
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1 Introdution

This is paper IV of a series of seven. Here, we introdue the onept of a

metri Cli�ord algebra for a n-dimensional real vetor spae V endowed with

a metri extensor g of an arbitrary signature (p; q); with p + q = n: The

novelty, regarding previous presentations of the subjet as, e.g., in ( [1℄-[3℄),

is that a metri Cli�ord produt appears as a well-de�ned deformation of

an eulidean Cli�ord produt. More important, we show that assoiated to

any metri extensor g there is a gauge metri extensor h (de�ned `modulus'

a gauge) suh that g = h

y

Æ � Æ h; where � is a standard orthogonal metri

extensor over V with the same signature as g: This theorem for the deom-

position of g (whih is somewhat analogous to Silvester's theorem) will play

a fundamental role in the intrinsi formulation of the di�erential geometry

on smooth manifolds. The paper ends with the proof of the so-alled golden

formula, whih will show worth to deserve that name. We introdue also the

onepts of standard and metri Hodge (star) operators, and �nd a formula

onneting them.
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2 Metri Cli�ord Algebra of Multivetors

2.1 Metri Salar Produt

Let us onsider

V

V endowed with the eulidean salar produt assoiated to

any �xed basis for V denoted by fb

k

g, as in previous papers of this series

([4℄-[5℄), i.e., the b-salar produt on

V

V .

Now, take a (1; 1)-extensor over V; say g; adjoint symmetri (g = g

y

) and

non-degenerate (det[g℄ 6= 0). It will be alled a metri extensor over V:

We an de�ne another salar produt of multivetors X; Y 2

V

V by

X �

g

Y = g(X) � Y; (1)

where g is the extended of g: It will be alled ametri salar produt generated

by g: Or, g-salar produt, for short.

As we an see, this salar produt is a well-de�ned salar produt on

V

V .

It is symmetri, satis�es the distributive laws, has the mixed assoiativity

property and is non-degenerate, i.e., X �

g

Y = 0 for all X; implies Y = 0:

All the properties just mentioned above are immediate onsequenes of

the orresponding ones for the b-salar produt. But, a g-salar produt is

not neessarily positive de�nite.

We present now some of the most important properties of the g-salar

produt of multivetors.

g1 For any �; � 2 R

� �

g

� = �� (real produt). (2)

g2 For any X

j

2

V

j

V and Y

k

2

V

k

V

X

j

�

g

Y

k

= 0; if j 6= k: (3)

g3 For any simple k-vetors v

1

^ : : : v

k

2

V

k

V and w

1

^ : : : w

k

2

V

k

V

(v

1

^ : : : v

k

) �

g

(w

1

^ : : : w

k

) = det

2

6

4

v

1

�

g

w

1

: : : v

1

�

g

w

k

: : : : : : : : :

v

k

�

g

w

1

: : : v

k

�

g

w

k

3

7

5

; (4)
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where (as before) by det

�

v

p

�

g

w

q

�

we denote the lassial k�k determinant.

Eqs.(2-4) follow without diÆulties from the orresponding properties of

the b-salar produt, by taking into aount that g(�) = � with � 2 R;

the grade-preserving property of the outermorphisms (i.e., of the extension

operator [5℄), and that g(v

1

^ : : : v

k

) = g(v

1

) ^ : : : g(v

k

) with v

1

; : : : ; v

k

2 V:

g4 For any X; Y 2

V

V

b

X �

g

Y = X �

g

b

Y ; (5)

e

X �

g

Y = X �

g

e

Y : (6)

The proof is immediate and left to the reader. Hint: take into aount

that

[

g(X) = g(

b

X) and

℄

g(X) = g(

e

X) with X 2

V

V:

2.2 Metri Reiproal Bases

Let (fe

k

g; fe

k

g) be an arbitrary pair of b-reiproal bases of V; i,e., e

k

�e

l

= Æ

l

k

:

Theorem 1 Take an invertible (1; 1)-extensor over V; say f: We an on-

strut two bases for V; say fE

k

g and fE

k

g; by the following formulas

E

k

= f(e

k

); (7)

E

k

= g

�1

Æ f

�

(e

k

) for eah k = 1; : : : ; n: (8)

These bases satisfy the metri salar produt onditions

E

k

�

g

E

l

= Æ

l

k

: (9)

Reiproally, given two arbitrary bases fE

k

g and fE

k

g whih satisfy eq.(9),

there exists an unique invertible (1; 1)-extensor f suh that the eqs.(7) and

(8) hold.

Proof. Sine fe

k

g and fe

k

g are bases for V and, f and g are invertible

(1; 1)-extensors over V , it follows that the n vetors E

1

; : : : ; E

n

2 V and the

n vetors E

1

; : : : ; E

n

2 V must also determine two well-de�ned bases for V .

Now, a straightforward alulation gives

E

k

�

g

E

l

= g Æ f(e

k

) � g

�1

Æ f

�

(e

l

) = e

k

� f

y

Æ g Æ g

�1

Æ f

�

(e

l

) = e

k

� e

l

= Æ

l

k

;
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and the �rst statement follows.

Now, fe

k

g and fe

k

g are bases for V; and fE

k

g and fE

k

g are supposed

to be also bases for V: Then, there must exist exatly two invertible (1; 1)-

extensors over V; say f

1

and f

2

; suh that

E

k

= f

1

(e

k

);

E

k

= f

2

(e

k

) for eah k = 1; : : : ; n:

It is easy to hek that f

1

and f

2

are given by

f

1

(v) = (e

s

� v)E

s

;

f

2

(v) = (e

s

� v)E

s

:

But, using eq.(9) we have

f

1

(e

k

) �

g

f

2

(e

l

) = Æ

l

k

) e

k

� f

y

1

Æ g Æ f

2

(e

l

) = Æ

l

k

) f

y

1

Æ g Æ f

2

(e

l

) = e

l

;

for eah l = 1; : : : ; n. Thus, f

y

1

Æ g Æ f

2

= i

V

.

Then, hoosing f

1

= f and f

2

= g

�1

Æf

�

; the seond statement follows.

Two bases fE

k

g and fE

k

g satisfying E

k

�

g

E

l

= Æ

l

k

are said to be a pair of

metri reiproal bases, and we say that fE

k

g is the metri reiproal basis

of fE

k

g.

We end this setion presenting two interesting and useful formulas for the

expansion of multivetors in terms of a g-salar produt.

Proposition 2 Let (fE

k

g; fE

k

g) be any pair of metri reiproal bases for

V; i.e., E

k

�

g

E

l

= Æ

l

k

: We have the following two expansion formulas. For all

X 2

V

V

X = X �

g

1+

n

X

k=1

1

k!

X �

g

(E

j

1

^ : : : E

j

k

)(E

j

1

^ : : : E

j

k

) (10)

and

X = X �

g

1+

n

X

k=1

1

k!

X �

g

(E

j

1

^ : : : E

j

k

)(E

j

1

^ : : : E

j

k

): (11)

The proof is left to the reader. (Hint: use eq.(1), eq.(7), eq.(8) and

some of the properties of extension operator, and take also into aount

the expansion formula for multivetors in the eulidean Cli�ord algebra as

de�ned in [4℄ (paper I of this series) .
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2.3 Metri Interior Algebras

We de�ne now the metri left and right ontrated produts of multivetors

X; Y 2

V

V; denoted respetively by y

g

and x

g

;

X y

g

Y = g(X)yY; (12)

X x

g

Y = Xxg(Y ): (13)

When no onfusion arises we all y

g

and x

g

the g-ontrated produts, for short.

These g-ontrated produts y

g

and x

g

are internal laws on

V

V: Both of

them satisfy the distributive laws (on the left and on the right) but they are

not assoiative produts.

The vetor spae

V

V endowed with the g-ontrated produt either y

g

or x

g

is a non-assoiative algebra. They are alled metri interior algebras of

multivetors. Or, g-interior algebras, for short.

We present now some of the basi properties of the metri interior alge-

bras.

mi1 For any �; � 2 R and X 2

V

V

� y

g

� = � x

g

� = �� (real produt), (14)

� y

g

X = X x

g

� = �X (multipliation by salars). (15)

mi2 For any X

j

2

V

j

V and Y

k

2

V

k

V with j � k

X

j

y

g

Y

k

= (�1)

j(k�j)

Y

k

x

g

X

j

: (16)

mi3 For any X

j

2

V

j

V and Y

k

2

V

k

V

X

j

y

g

Y

k

= 0; if j > k; (17)

X

j

x

g

Y

k

= 0; if j < k: (18)

mi4 For any X

k

; Y

k

2

V

k

V

X

k

y

g

Y

k

= X

k

x

g

Y

k

=

f

X

k

�

g

Y

k

= X

k

�

g

e

Y

k

: (19)
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mi5 For any v 2 V and X; Y 2

V

V

v y

g

(X ^ Y ) = (v y

g

X) ^ Y +X ^ (v y

g

Y ): (20)

All these properties easily follow from the orresponding properties of

the eulidean interior algebras, one we take into aount the properties of

extension operator [4℄.

Proposition 3 For all X; Y; Z 2

V

V it holds

(X y

g

Y ) �

g

Z = Y �

g

(

e

X ^ Z); (21)

(X x

g

Y ) �

g

Z = X �

g

(Z ^

e

Y ): (22)

These properties are ompletely equivalent to the de�nitions of the right

and left ontrated produts given in eqs.(12-13), and an be proved without

diÆulties by using the properties of extension operator [4℄.

Proposition 4 For all X; Y; Z 2 �V it holds

X y

g

(Y y

g

Z) = (X ^ Y ) y

g

Z; (23)

(X x

g

Y ) x

g

Z = X x

g

(Y ^ Z): (24)

Proof. We prove only the �rst statement. Take X; Y; Z 2

V

V . Using

the multivetor identity Ay(ByC) = (A^B)yC and a property of extension

operator, we have

X y

g

(Y y

g

Z) = g(X)y(g(Y )yZ) = (g(X) ^ g(Y ))yZ

= g(X ^ Y )yZ = (X ^ Y ) y

g

Z:

2.4 Metri Cli�ord Algebra

We de�ne a metri Cli�ord produt of X; Y 2

V

V assoiated to g by the

following axioms:

A1 For all � 2 R and X 2

V

V

�

g

X = X� equals multipliation of multivetor X by salar �:
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A2 For all v 2 V and X 2

V

V

v

g

X = v y

g

X + v ^X and X

g

v = X x

g

v +X ^ v:

A3 For all X; Y; Z 2

V

V

X

g

(Y

g

Z) = (X

g

Y )

g

Z:

This metri Cli�ord produt is an internal law on

V

V: It is assoiative

(by the axiom A3) and satis�es the distributive laws (on the left and on the

right) whih follow from the orresponding distributive laws of the eulidean

ontrated and exterior produts [4℄.

V

V endowed with this metri Cli�ord produt is an assoiative algebra.

It will be alled a metri Cli�ord algebra of multivetors generated by g, or

simply, g-Cli�ord algebra. It will be denoted by C`(V; g):

We present now some of the most basi properties whih hold in C`(V; g).

lg1 For any v 2 V and X 2

V

V

v y

g

X =

1

2

(v

g

X �

b

X

g

v) and X x

g

v =

1

2

(X

g

v � v

g

b

X); (25)

v ^X =

1

2

(v

g

X +

b

X

g

v) and X ^ v =

1

2

(X

g

v + v

g

b

X): (26)

lg2 For any X; Y 2

V

V

X �

g

Y =

�

e

X

g

Y

�

0

=

�

X

g

e

Y

�

0

: (27)

lg3 For X; Y; Z 2

V

V

(X

g

Y ) �

g

Z = Y �

g

(

e

X

g

Z) = X �

g

(Z

g

e

Y ); (28)

X �

g

(Y

g

Z) = (

e

Y

g

X) �

g

Z = (X

g

e

Z) �

g

Y: (29)

lg4 For any X; Y 2

V

V

\

X

g

Y =

b

X

g

b

Y ; (30)

^

X

g

Y =

e

Y

g

e

X: (31)
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lg5 Let I 2

V

n

V; then for any v 2 V and X 2

V

V

I

g

(v ^X) = (�1)

n�1

v y

g

(I

g

X): (32)

Eq.(32) will be alled the metri duality identity, or g-duality identity, for

short.

3 Eigenvalues and Eigenvetors

Let t be a (1; 1)-extensor over V: A salar � 2 R and a non-zero vetor v 2 V

are said to be an eigenvalue and an eigenvetor of t; respetively, if and only

if

t(v) = �v: (33)

We say that � and v are naturally to be assoiated to eah other. This

means that, if � 2 R is an eigenvalue of t; then there is some non-zero v 2 V

(the assoiated eigenvetor of t) suh that eq.(33) holds, and if a non-zero

v 2 V is an eigenvetor of t; then there is some � 2 R (the assoiated

eigenvalue of t) suh that eq.(33) is satis�ed.

A salar � 2 R is an eigenvalue of t if and only if it satis�es the following

algebrai equation of degree n

det[�i

V

� t℄ = 0; (34)

where i

V

2 ext

1

1

(V ) is the known identity (1; 1)-extensor over V:

Theorem 5 For any adjoint symmetri (1; 1)-extensor s; i.e., s = s

y

; there

exists a set of n eigenvetors of s whih is a b-orthonormal basis for V:

This means that there are exatly n linearly independent non-zero vetors

v

1

; : : : ; v

n

2 V and n salars �

1

; : : : ; �

n

2 R suh that

s(v

k

) = �

k

v

k

; for eah k = 1; : : : ; n

and fv

k

g is a basis for V whih satis�es v

j

� v

k

= Æ

jk

:

Corollary 6 All eigenvalues of a metri extensor g (i.e., g 2 ext

1

1

(V ); g = g

y

and det[g℄ 6= 0) are non-zero real numbers.
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Proof. We �rst alulate det[g℄ by using fv

k

g; taking into aount the eigen-

value equation of g and realling that, in this ase, the eulidean reiproal

vetors v

k

are equal to the vetors v

k

;

det[g℄ = (g(v

1

) ^ : : : g(v

n

)) � (v

1

^ : : : v

n

)

= (�

1

v

1

^ : : : �

n

v

n

) � (v

1

^ : : : v

1

)

= �

1

: : : �

n

(v

1

^ : : : v

1

) � (v

1

^ : : : v

1

)

det[g℄ = �

1

: : : �

n

: (35)

Sine det[g℄ 6= 0; all �

1

; : : : ; �

n

must be non-zero real numbers.

The integer number s = p�q, where p; q are non negative integer numbers,

respetively the numbers of positive and negative eigenvalues of t and p+q =

n; is alled the signature of t. We already have used (and will ontinue to do

so) the usual onvention of physiists and denote the signature of g by the

pair (p; q).

4 Gauge Metri Extensor

Lemma 7 Any b-orthogonal symmetri (1; 1)-extensor over V; say �; (i.e.,

� = �

�

and � = �

y

) an only have eigenvalues �1.

Proof. If � 2 R is an eigenvalue of �; there is an non-zero v 2 V; the

assoiated eigenvetor of �; suh that �(v) = �v: And, the orthogonality and

symmetry of � yield �

2

= i

V

:

Thus, we have that v = �

2

v: Sine v 6= 0; it follows that 1� �

2

= 0; i.e.,

� = �1:

Lemma 8 Let fb

k

g be the �duial basis for V (i.e., b

j

�

b

b

k

= Æ

jk

): We an

onstrut a �duial b-orthogonal metri extensor over V; say � 2 ext

1

1

(V );

(i.e., � = �

�

and � = �

y

; det[�℄ 6= 0) with signature (p; q) and whih b-

orthonormal basis of V; made of the eigenvetors of �; is exatly fb

k

g:

Suh a (1; 1)-extensor over V is given by

�(v) =

p

X

j=1

(v � b

j

)b

j

�

p+q

X

j=p+1

(v � b

j

)b

j

: (36)
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Proof. We �rst shall prove that � has p eigenvalues +1 with assoiated

eigenvetors b

1

; : : : ; b

p

and q eigenvalues �1 with assoiated eigenvetors

b

p+1

; : : : ; b

p+q

:

Take b

k

with k = 1; : : : ; p we have

�(b

k

) =

p

X

j=1

(b

k

� b

j

)b

j

�

p+q

X

j=p+1

(b

k

� b

j

)b

j

=

p

X

j=1

Æ

kj

b

j

�

p+q

X

j=p+1

0b

j

= b

k

;

and, for b

k

with k = p+ 1; : : : ; p+ q; it yields

�(b

k

) =

p

X

j=1

(b

k

� b

j

)b

j

�

p+q

X

j=p+1

(b

k

� b

j

)b

j

=

p

X

j=1

0b

j

�

p+q

X

j=p+1

Æ

kj

b

j

= �b

k

:

Then, we have

�(b

k

) =

�

b

k

; k = 1; : : : ; p

�b

k

; k = p+ 1; : : : ; p+ q

: (37)

Now, we shall prove that � as de�ned above is a metri extensor over V;

i.e., � = �

y

and det[�℄ 6= 0:

Take v; w 2 V then

�

y

(v) � w = v � �(w) = v � (

p

X

j=1

(w � b

j

)b

j

�

p+q

X

j=p+1

(w � b

j

)b

j

)

=

p

X

j=1

(v � b

j

)(w � b

j

)�

p+q

X

j=p+1

(v � b

j

)(w � b

j

)

= (

p

X

j=1

(v � b

j

)b

j

�

p+q

X

j=p+1

(v � b

j

)b

j

) � w = �(v) � w;

i.e., �

y

= �.

We alulate the determinant of � by using the fundamental formula with

fb

k

g; i.e., det[�℄ = �(b

1

)^ : : : �(b

n

) � (b

1

^ : : : b

n

): Reall that, in this ase, the

b-reiproal basis vetors b

k

oinide with b

k

for k = 1; : : : ; n:

det[�℄

= (�(b

1

) ^ : : : �(b

p

) ^ �(b

p+1

) ^ : : : �(b

p+q

)) � (b

1

^ : : : b

p

^ b

p+1

^ : : : b

p+q

)

= (b

1

^ : : : b

p

^ (�1)

q

b

p+1

^ : : : b

p+q

) � (b

1

^ : : : b

p

^ b

p+1

^ : : : b

p+q

);

11



i.e., det[�℄ = (�1)

q

:

Next, we shall prove that �

2

= i

V

; i.e., �

�1

= �.

Take v 2 V then

� Æ �(v) =

n

X

k=1

(v � b

k

)� Æ �(b

k

)

=

n

X

k=1

(v � b

k

)

�

�(b

k

) k = 1; : : : ; p

��(b

k

) k = p+ 1; : : : ; p+ q

=

n

X

k=1

(v � b

k

)b

k

= v;

i.e., �

2

= i

V

:

This lemma allows us to onstrut, assoiated to the �duial basis fb

k

g; a

�duial b-orthogonal metri extensor � 2 ext

1

1

(V ) with signature (p; q). Suh

a (1; 1)-extensor over V has p eigenvalues +1 and q eigenvalues �1; and their

orresponding assoiated eigenvetors are the vetors of fb

k

g:

Theorem 9 For any metri extensor g 2 ext

1

1

(V ) whose signature is (p; q);

there exists an invertible extensor h 2 ext

1

1

(V ) suh that

g = h

y

Æ � Æ h; (38)

where � 2 ext

1

1

(V ) is just the �duial b-orthogonal metri extensor with sig-

nature (p; q); as onsidered in eq.(36).

Suh a (1; 1)-extensor over V is given by

h(a) =

n

X

j=1

q

j�

j

j(a � v

j

)b

j

; (39)

where �

1

; : : : �

n

2 R are the eigenvalues of g and v

1

; : : : ; v

n

2 V are the

orresponding assoiated eigenvetors of g:

Proof. First we need alulate the adjoint extensor of h:

Take a; b 2 V then

h

y

(a) � b = a � h(b) = a � (

n

X

j=1

q

j�

j

j(b � v

j

)b

j

)

= (

n

X

j=1

q

j�

j

j(a � b

j

)v

j

) � b;

12



i.e., h

y

(a) =

n

P

j=1

p

j�

j

j(a � b

j

)v

j

:

Now, let a 2 V: A straightforward alulation yields

h

y

Æ � Æ h(a) =

n

X

j=1

n

X

k=1

q

j�

j

�

k

j�(b

j

) � b

k

(a � v

j

)v

k

=

p

X

j=1

p

X

k=1

q

j�

j

�

k

j�(b

j

) � b

k

(a � v

j

)v

k

+

p

X

j=1

p+q

X

k=p+1

q

j�

j

�

k

j�(b

j

) � b

k

(a � v

j

)v

k

+

p+q

X

j=p+1

p

X

k=1

q

j�

j

�

k

j�(b

j

) � b

k

(a � v

j

)v

k

+

p+q

X

j=p+1

p+q

X

k=p+1

q

j�

j

�

k

j�(b

j

) � b

k

(a � v

j

)v

k

;

and, by taking into aount eq.(37) we have

h

y

Æ � Æ h(a) =

p

X

j=1

p

X

k=1

q

j�

j

�

k

jÆ

jk

(a � v

j

)v

k

+ 0

+0�

p+q

X

j=p+1

p+q

X

k=p+1

q

j�

j

�

k

jÆ

jk

(a � v

j

)v

k

=

p

X

j=1

j�

j

j (a � v

j

)v

j

�

p+q

X

j=p+1

j�

j

j (a � v

j

)v

j

=

p

X

j=1

�

j

(a � v

j

)v

j

+

p+q

X

j=p+1

�

j

(a � v

j

)v

j

=

n

X

j=1

�

j

(a � v

j

)v

j

:

On the last step we have used that the signature of g is (p; q); i.e., g has p

positive eigenvalues and q negative eigenvalues.

And, by using the eigenvalues equation of g; i.e., g(v

j

) = �

j

v

j

for eah

j = 1; : : : ; n; we have

h

y

Æ � Æ h(a) =

n

X

j=1

(a � v

j

)g(v

j

) = g(

n

X

j=1

(a � v

j

)v

j

) = g(a);

13



i.e., h

y

Æ � Æ h = g:

Finally, sine

det[g℄ = det[h

y

Æ�Æh℄ = det[h

y

℄ det[�℄ det[h℄ = det[�℄ det

2

[h℄ = (�1)

q

det

2

[h℄;

and det[g℄ 6= 0; then det[h℄ 6= 0; and so h is an invertible (1; 1)-extensor.

It should be noted that h satisfying eq.(38) is not unique. If there is some

h 2 ext

1

1

(V ) whih satis�es eq.(38), then h

0

� �Æh; where � is a �-orthogonal

(1; 1)-extensor over V (i.e., �

y

Æ � Æ � = �)

1

, also satis�es eq.(38).

Indeed, we have h

0y

Æ � Æ h

0

= (� Æ h)

y

Æ � Æ � Æ h = h

y

Æ �

y

Æ � Æ � Æ h =

h

y

Æ � Æ h = g:

In general, an invertible extensor h 2 ext

1

1

(V ) whih satis�es eq.(38) will

be said to be a gauge metri extensor for the metri extensor g:

4.1 Gauge Metri Bases

Let fe

k

g and fe

k

g be two b-reiproal bases to eah other for the vetor spae

V; i.e., e

k

�e

l

= Æ

l

k

: Sine h; a gauge metri extensor over V; is non-degenerate,

i.e., det[h℄ 6= 0, it follows that the n vetors h(e

1

); : : : ; h(e

n

) 2 V and the n

vetors h

�

(e

1

); : : : ; h

�

(e

n

) 2 V will be also well-de�ned bases for V:

As the reader an easily prove (fh(e

k

)g; fh

�

(e

k

)g) is also a pair of b-

reiproal bases of V; i.e.,

h(e

k

) � h

�

(e

l

) = Æ

l

k

: (40)

Two other remarkable properties of these bases are:

h(e

j

) �

�

h(e

k

) = g(e

j

) � e

k

� g

jk

; (41)

h

�

(e

j

) �

�

�1

h

�

(e

k

) = g

�1

(e

j

) � e

k

� g

jk

: (42)

These bases fh(e

k

)g and fh

�

(e

k

)g will be said to be a pair of gauge metri

bases for V:

Theorem 10 Given n non-zero real numbers �

1

; : : : ; �

n

and a b-orthogonal

(1; 1)-extensor l over V (i.e., l = l

�

), we an onstrut an invertible (1; 1)-

extensor h over V using the following formula

h(v) =

n

X

j=1

�

j

(l(v) � b

j

)b

j

: (43)

1

As the reader an prove without diÆulties, a �-orthogonal (1; 1)-extensor � preserves

the �-salar produts, i.e., for all v; w 2 V : �(v) �

�

�(w) = v �

�

w:

14



Then, the (1; 1)-extensor g over V de�ned by

g = h

y

Æ � Æ h; (44)

where � 2 ext

1

1

(V ) is just the �duial b-orthogonal metri extensor over V

with signature (p; q); as onsidered in eq.(36).

The p positive real numbers �

2

1

; : : : ; �

2

p

are the eigenvalues of g with the

assoiated eigenvetors l

y

(b

1

); : : : ; l

y

(b

p

) of g; and the q negative real numbers

��

2

p+1

; : : : ;��

2

p+q

are the eigenvalues of g with the assoiated eigenvetors

l

y

(b

p+1

); : : : ; l

y

(b

p+q

) of g:

The set of n non-zero vetors fl

y

(b

1

); : : : ; l

y

(b

p

); l

y

(b

p+1

); : : : ; l

y

(b

p+q

)g is

a b-orthonormal basis of V; made of the eigenvetors of g:

The signature of g is also (p; q):

Proof. We �rst must hek that g is symmetri and non-degenerate. Using

eq.(44) we have

g

y

= h

y

Æ �

y

Æ (h

y

)

y

= h

y

Æ � Æ h = g;

thus, g = g

y

; i.e., g is symmetri.

We now alulate det[g℄;

det[g℄ = det[h

y

℄ det[�℄ det[h℄ = det[h℄ det[�℄ det[h℄ = (�1)

q

det

2

[h℄:

But, it is possible to alulate det[h℄ by using a trik. We shall evaluate

det[h Æ l

y

℄ in two di�erent ways.

First, using eq.(43) and the b-orthogonality of l; i.e., l

�1

= l

y

; we have

h Æ l

y

(v) =

n

X

j=1

�

j

(a � b

j

)b

j

:

Senondly, using the fundamental formula for the determinant of a (1; 1)-

extensor (see [5℄) we have,

det[h Æ l

y

℄ = (h Æ l

y

(b

1

) ^ : : : h Æ l

y

(b

n

)) � (b

1

^ : : : b

n

)

= (�

1

b

1

^ : : : �

n

b

n

) � (b

1

^ : : : b

n

)

= �

1

: : : �

n

:

Now, taking into aount that det[l℄ = �1 and property (d1) of the

determinant (see [5℄) we get,

det[h Æ l

y

℄ = det[h℄ det[l

y

℄ = det[h℄ det[l℄ = � det[h℄:
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Thus, we have det[h℄ = ��

1

: : : �

n

. And, therefore det[g℄ = (�1)

q

�

2

1

: : : �

2

n

:

Sine �

1

; : : : ; �

n

are non-zero real numbers, det[g℄ 6= 0; i.e., g is non-degenerate.

The proof of the �rst statement is then omplete.

In order to prove the seond statement, related to the eigenvalues and

eigenvetors of g; we shall use the following equations: h Æ l

y

(b

k

) = �

k

b

k

(just

used above), h

y

(b

k

) = �

k

l

y

(b

k

) (obtained from eq.(43)) and the eigenvalue

equation of �; i.e., �(b

k

) =

�

b

k

; k = 1; : : : ; p

�b

k

; k = p+ 1; : : : ; p+ q

:

We have

g Æ l

y

(b

k

) = h

y

Æ � Æ h Æ l

y

(b

k

) = h

y

Æ �(�

k

b

k

) = �

k

h

y

Æ �(b

k

)

=

�

�

k

h

y

(b

k

); k = 1; : : : ; p

��

k

h

y

(b

k

); k = p+ 1; : : : ; p+ q

g Æ l

y

(e

k

) =

�

�

2

k

l

y

(b

k

); k = 1; : : : ; p

��

2

k

l

y

(b

k

); k = p+ 1; : : : ; p+ q

:

This establishes the seond statement.

From the eulidean b-orthogonality of l it follows easily that the eigen-

vetors of g; are b-orthonormal. It is also obvious that the signature of g is

also (p; q): Thus, the third and fourth statement are proved.

5 The Golden Formula

Proposition 11 Let h be any gauge operator for g; i.e., g = h

y

Æ � Æ h; and

let �

g

mean either ^ (exterior produt), �

g

(g-salar produt), y

g

x

g

(g-ontrated

produts) or

g

(g-Cli�ord produt), and analogously for �

�

. The g-metri

produts �

g

and the �-metri produts �

�

are related by the following remarkable

formula. For all X; Y 2

V

V

h(X �

g

Y ) = h(X) �

�

h(Y ); (45)

where h denotes the extended of h. Eq.(45) will be alled the golden formula

Proof.

By realling the fundamental properties for the outermorphism of an op-

erator: t(X ^ Y ) = t(X) ^ t(Y ) and t(�) = �; we have that the multivetor

identity above holds for the exterior produt, i.e.,

X ^ Y = h

�1

[h(X) ^ h(Y )℄ (46)
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and for the g-salar produt and the �-salar produt, i.e.,

X �

g

Y = h

�1

[h(X) �

�

h(Y )℄: (47)

By using the multivetor identities for an invertible operator: t

y

(X)yY =

t

�1

[Xyt(Y )℄ andXxt

y

(Y ) = t

�1

[t(X)xY ℄; and the gauge equation g = h

y

Æ�Æh

we an easily prove that the multivetor identity above holds for the g-

ontrated produt and the �-ontrated produt, i.e.,

X y

g

Y = h

�1

[h(X) y

�

h(Y )℄ (48)

X x

g

Y = h

�1

[h(X) x

�

h(Y )℄: (49)

To prove eq.(48) see that we an write

X y

g

Y = h

y

Æ � Æ h(X)yY = h

�1

[� Æ h(X)yh(Y )℄ = h

�1

[h(X) y

�

h(Y )℄;

where the de�nitions of y

g

and y

�

have been used. The proof of eq.(49) is

ompletely analogous, the de�nitions of x

g

and x

�

should be used.

In order to prove that the multivetor identity above holds for the g-

Cli�ord produt and the �-Cli�ord produt, i.e.,

X

g

Y = h

�1

[h(X)

�

h(Y )℄; (50)

we �rst must prove four partiular ases of it.

Take � 2 R and X 2

V

V: By using the axioms of the g and � Cli�ord

produts: �

g

X = X

g

� = �X and �

�

X = X

�

� = �X; we an write

�

g

X = �X = h

�1

[�h(X)℄ = h

�1

[�

�

h(X)℄;

i.e.,

�

g

X = h

�1

[h(�)

�

h(X)℄: (51)

Analogously, we have

X

g

� = h

�1

[h(X)

�

h(�)℄: (52)
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Take v 2 V and X 2

V

V: By using the axioms of the g and � Cli�ord

produts: v

g

X = v y

g

X + v ^X and v

�

X = v y

�

X + v ^X; and eqs.(48)

and (46) we an write

v

g

X = v y

g

X + v ^X = h

�1

[h(v) y

�

h(X)℄ + h

�1

[h(v) ^ h(X)℄;

i.e.,

v

g

X = h

�1

[h(v)

�

h(X)℄: (53)

From the axioms of the g and � Cli�ord produts: X

g

v = X x

g

v +X ^ v

and X

�

v = X x

�

v +X ^ v, and eqs.(49) and (46) we get

X

g

v = h

�1

[h(X)

�

h(v)℄: (54)

Take v

1

; v

2

; : : : ; v

k

2 V: By using k � 1 times eq.(53) we have indeed

v

1

g

v

2

� � �

g

v

k

= h

�1

[h(v

1

)

�

h(v

2

� � �

g

v

k

)℄

= h

�1

[h(v

1

)

�

h(v

2

) � � �

�

h(v

k

)℄;

v

1

g

v

2

� � �

g

v

k

= h

�1

[h(v

1

)

�

h(v

2

) � � �

�

h(v

k

)℄: (55)

Take v

1

; v

2

; : : : ; v

k

2 V and X 2

V

V: By using k � 1 times eq.(53) and

eq.(55) we have indeed

(v

1

g

v

2

� � �

g

v

k

)

g

X = h

�1

[h(v

1

)

�

h(

g

v

2

� � �

g

v

k

g

X)℄

= h

�1

[h(v

1

)

�

h(v

2

) � � �

�

h(v

k

)

�

h(X)℄;

(v

1

g

v

2

� � �

g

v

k

)

g

X = h

�1

[h(v

1

g

v

2

� � �

g

v

k

)

�

h(X)℄: (56)

We now an prove the general ase of eq.(50). We shall use an expansion

formula for multivetors: X = X

0

+

n

P

k=1

1

k!

X

j

1

:::j

k

e

j

1

� � �

g

e

j

k

; where fe

j

g is a

basis of V; eq.(51) and eq.(56). We an write

X

g

Y = X

0

g

Y+

n

X

k=1

1

k!

X

j

1

:::j

k

(e

j

1

� � �

g

e

j

k

)

g

Y
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= h

�1

[h(X

0

)

�

h(Y )℄ + h

�1

[

n

X

k=1

1

k!

X

j

1

:::j

k

h(e

j

1

� � �

g

e

j

k

)

�

h(Y )℄

= h

�1

[h(X

0

+

n

X

k=1

1

k!

X

j

1

:::j

k

e

j

1

� � �

g

e

j

k

)

�

h(Y )℄;

X

g

Y = h

�1

[h(X)

�

h(Y )℄:

Hene, eq.(46), eq.(47), eqs.(48) and (49), and eq.(50) have set the golden

formula.

6 Metri Adjoint Operators

Let g be a metri operator on V; i.e., g 2 ext

1

1

(V ) suh that g = g

y

and

det[g℄ 6= 0: To eah t 2 1-ext(

�

V

1

V ;

�

V

2

V ). We de�ne the metri adjoint

operator t

y(g)

2 1-ext(

�

V

2

V ;

�

V

1

V ) by

t

y(g)

= g

�1

Æ t

y

Æ g: (57)

As we an easily see, t

y(g)

is the unique extensor from

�

V

2

V to

�

V

1

V whih

satis�es the following property: for any X 2

�

V

1

V and Y 2

�

V

2

V

X �

g

t

y(g)

(Y ) = t(X) �

g

Y: (58)

This is the `metri version' of the fundamental property given by the formula

t

y

(X) � Y = X � t(Y ) in the paper II of this series.

Finally, we notie the very important formula that

det[t

y(g)

℄ = det[t

y

℄ = det[t℄: (59)

7 Standard Hodge Extensor

Let (fe

j

g; fe

j

g) be a pair of b-reiproal bases to eah other for V; i.e.,

e

j

�

b

e

k

= Æ

k

j

: Assoiated to them we de�ne a non-zero pseudosalar

� =

p

e

^

� e

^

e

^

(60)
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where e

^

� e

1

^ : : : ^ e

n

2

V

n

V and e

^

� e

1

^ : : : ^ e

n

2

V

n

V: Note that

e

^

� e

^

> 0; sine the salar produt is positive de�nite. It will be alled a

standard volume pseudosalar for V: It has the fundamental property

� � � = �ye� = �e� = 1; (61)

it follows from the equation e

^

� e

^

= 1.

From eq.(61), we an get an expansion formula for pseudosalars

I = (I � � )� : (62)

The extensor ? 2 ext(V ) whih is de�ned by ? :

V

V !

V

V suh that

?X =

e

Xy� =

e

X�; (63)

will be alled a standard Hodge extensor on V:

It should be notied that if X 2

V

p

V; then ?X 2

V

n�p

V: It means that

? an be also de�ned as a (p; n� p)-extensor over V:

The extensor over V; ?

�1

:

V

V !

V

V suh that

?

�1

X = �x

e

X = �

e

X (64)

is the inverse extensor of ?:

Indeed, take X 2

V

V: Eq.(61) gives ?

�1

Æ?X = �e�X = X; and ?Æ?

�1

X =

Xe�� = X; i.e., ?

�1

Æ ? = ? Æ ?

�1

= i

V

V

; where i

V

V

2 ext(V ) is the so-alled

identity funtion for

V

V:

Let us take X; Y 2

V

V: Using the multivetor identity (XA) � Y =

X � (Y

e

A) and eq.(61) we get

(?X) � (?Y ) = X � Y: (65)

It means that the standard Hodge extensor preserves the eulidean salar

produt.

Let us take X; Y 2

V

p

V: By using eq.(62) together with the multivetor

identity (X ^ Y ) � Z = Y � (

e

XyZ); and eq.(65) we get

X ^ (?Y ) = (X � Y )� : (66)

This identity is ompletely equivalent to the de�nition of standard Hodge

extensor given by eq.(63).

Take X 2

V

p

V and Y 2

V

n�p

V: By using the multivetor identity

(XyY ) � Z = Y � (

e

X ^ Z) and eq.(62) we get

((?X) � Y )� = X ^ Y: (67)
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8 Metri Hodge Extensor

Let g be a metri extensor over V of signature (p; q); i.e., g 2 ext

1

1

(V ) suh

that g = g

y

and det[g℄ 6= 0. It has p positive and q negative eigenvalues.

Assoiated to a pair (fe

j

g, fe

j

g) of b-reiproal bases we an de�ne another

non-zero pseudosalar

�

g

=

s

�

�

�

�

e

^

�

g

e

^

�

�

�

�

e

^

=

p

jdet[g℄j� : (68)

It will be alled a metri volume pseudosalar for V: It has the fundamental

property

�

g

�

g

�1

�

g

= �

g

y

g

�1

~�

g

= �

g

g

�1

~�

g

= (�1)

q

: (69)

It follows from eq.(61) by taking into aount the de�nition of determinant

of a linear operator on V; and realling that sgn(det[g℄) = (�1)

q

:

An expansion formula for the pseudosalars an be obtained from eq.(69),

i.e.,

I = (�1)

q

(I �

g

�1

�

g

)�

g

: (70)

The extensor ?

g

2 ext(V ) whih is de�ned by ?

g

:

V

V !

V

V suh that

?

g

X =

e

X y

g

�1

�

g

=

e

X

g

�1

�

g

; (71)

will be alled a metri Hodge extensor on V: It should be notied that the

de�nition of ?

g

needs the use of both the g and g

�1

metri Cli�ord algebras,

a non trivial fat.

It is lear that if X 2

V

p

V; then ?

g

X 2

V

n�p

V:

The extensor over V; ?

g

�1

:

V

V !

V

V suh that

?

g

�1

X = (�1)

q

�

g

x

g

�1

e

X = (�1)

q

�

g

g

�1

e

X; (72)

is the inverse extensor of ?

g

:

Indeed, take X 2 �V: By using eq.(69), we verify that ?

g

�1

Æ ?

g

X =

(�1)

q

�

g

g

�1

~�

g

g

�1

X = X; and ?

g

Æ ?

g

�1

X = (�1)

q

X

g

�1

~�

g

g

�1

�

g

= X; i.e.,

?

g

�1

Æ? =?

g

Æ ?

g

�1

= i

V

V

:
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Take X; Y 2

V

V: The identity (X

g

�1

A) �

g

�1

Y = X �

g

�1

(Y

g

�1

e

A) and

eq.(69) yield

(?

g

X) �

g

�1

(?

g

Y ) = (�1)

q

X �

g

�1

Y: (73)

Take X; Y 2

V

p

V: Eq.(70), the identity (X ^Y ) �

g

�1

Z = Y �

g

�1

(

e

X y

g

�1

Z)

and eq.(73) allow us to get

X ^ (?

g

Y ) = (X �

g

�1

Y )�

g

: (74)

This remarkable property is ompletely equivalent to the de�nition of the

metri Hodge extensor.

Take X 2

V

p

V and Y 2

V

n�p

V: The use of identity (X y

g

�1

Y ) �

g

�1

Z =

Y �

g

�1

(

e

X ^ Z) and eq.(70) yield

((?

g

X) �

g

�1

Y )�

g

= (�1)

q

X ^ Y: (75)

It might as well be asked what is the relationship between the standard

and metri Hodge extensors as de�ned above.

Take X 2

V

V: By using eq.(68), the multivetor identity for an invertible

(1; 1)-extensor t

�1

(X)yY = t

y

(Xyt

�

(Y )) and the de�nition of determinant of

a (1; 1)-extensor, we have

?

g

X = g

�1

(

e

X)y

p

jdet[g℄j� =

p

jdet[g℄jg(

e

Xyg

�1

(� ))

=

p

jdet[g℄j

det[g℄

g(

e

Xy�) =

sgn(det[g℄)

p

jdet[g℄j

g Æ ?(X);

ie.,

?

g

=

(�1)

q

p

jdet[g℄j

g Æ ?: (76)

Eq.(76) is the formula whih relates

2

?

g

with ?:

We reall that for any metri operator g 2 ext

1

1

(V ) there exists a non-

degenerate operator h 2 ext

1

1

(V ) suh that

g = h

y

Æ � Æ h; (77)

2

It is a very important formula and good use of it will be done in our theory of the

gravitational �eld to be presented in another series of papers.
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where � 2 ext

1

1

(V ) is an orthogonal metri operator with the same signature

as g. Suh a h is alled a gauge operator for g:

The g and g

�1

metri ontrated produts y

g

and y

g

�1

are related to the

�-metri ontrated produt y

�

(reall that � = �

�1

) by the following formulas

h(X y

g

Y ) = h(X) y

�

h(Y ); (78)

h

�

(X y

g

�1

Y ) = h

�

(X) y

�

h

�

(Y ): (79)

We an also get a notieable formula whih relates a g-metri Hodge

extensor with a �-metri Hodge extensor.

Now, take X 2

V

V: By using eq.(79), eq.(68), the de�nition of determi-

nant of a (1; 1)-extensor, eq.(77) and the equation �

�

= � ; we have

?

g

X = h

y

(h

�

(

e

X) y

�

h

�

(�

g

)) =

p

jdet[g℄jh

y

(h

�

(

e

X) y

�

det[h

�

℄�)

= jdet[h℄j det[h

�

℄h

y

(

^

h

�

(X) y

�

�

�

) = sgn(det[h℄)h

y

Æ ?

�

Æh

�

(X);

i.e.,

?

g

= sgn(det[h℄)h

y

Æ ?

�

Æh

�

: (80)

Eq. (80) is the formula whih relates ?

g

with ?

�

:

9 Conlusions

We showed that any metri Cli�ord produt on C`(V; g) an be onsidered as

deformation of the eulidean Cli�ord produt on C`(V ); indued by the met-

ri extensor g. We also proved that any metri extensor g is deomposable

in terms of a gauge metri extensor h and a �duial b-orthogonal extensor �

whih has the same signature as g: Although h is not unique, sine two h

'

s

satisfying that property di�er only by a omposition with a general trans-

formation � whih is a �-orthogonal (1; 1)-extensor. For the ase that V

is 4-dimensional and � is a Lorentzian metri extensor (i.e., with signature

(1; 3)), � is just a general Lorentz transformation. The paper ontains a

proof of the non trivial golden formula, whih as the future papers will show,

really deserves its name. Indeed, the formula is a key in our theory of the

intrinsi formulation of di�erential geometry on arbitrary manifolds that we
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will present in future papers, and also �nd appliations in some some prob-

lems of Theoretial Physis as, e.g., in geometri theories of gravitation and

Lagrangian formulation of the theory of multivetor and extensor �elds.
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