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Abstra
t

In this paper we give a 
omparison between the formulation of the


on
ept of metri
 for a real ve
tor spa
e of �nite dimension in terms

of tensors and extensors. A ni
e property of metri
 extensors is that

they have inverses whi
h are also themselves metri
 extensors. This

property is not shared by metri
 tensors be
ause tensors do not have

inverses. We relate the de�nition of determinant of a metri
 extensor

with the 
lassi
al determinant of the 
orresponding matrix asso
iated

to the metri
 tensor in a given ve
tor basis. Previous identi�
ations

of these 
on
epts are equivo
ated. The use of metri
 extensor permits

sophisti
ated 
al
ulations without the introdu
tion of matrix repre-

sentations.
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1 Introdu
tion

This is the third paper of a series of seven. Here, we explore the 
on
ept of

metri
 on a n-dimensional real ve
tor spa
e V by using the 
on
epts of tensors

and extensors. We show that for ea
h metri
 tensor G, there is an unique

metri
 extensor g; and vi
e versa. The metri
 extensor is a fundamental tool

for future developments that we have in mind, and whi
h are going to be

presented in following papers of this series and subsequent series of papers.

Besides this fa
t, it is worth to emphasize here that the 
on
ept of metri


extensor has a prior status in the foundations of linear algebra relative to

its 
orresponding metri
 tensor. This is be
ause a metri
 extensor g has an

inverse g

�1

whi
h is of 
ourse itself a metri
 extensor. As a simple appli
ation

of this 
on
ept, we use g and g

�1

; to re
all some results involving the well-

known metri
 isomorphism between V and V

�

indu
ed by G:

2 Standard Isomorphism

Let fb

k

g be an arbitrary, but �xed, basis for V and f�

k

g its 
orresponding

dual basis for V

�

; i.e., �

k

(b

j

) = Æ

k

j

: There exists a linear isomorphism between

V and V

�

realized by the linear mappings V 3 v 7!�

b

(v) 2 V

�

and V

�

3

! 7!�

�1

�

(!) 2 V su
h that

�

b

(v) =

n

X

k=1

�

k

(v)�

k

; (1)

�

�1

�

(!) =

n

X

k=1

!(b

k

)b

k

: (2)
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A suggested by the notations, �

�1

�

is inverse mapping of �

b

:

Proof. The linearity property for both �

b

and �

�1

�

holds. We must prove that

�

�1

�

Æ �

b

= i

V

and �

b

Æ �

�1

�

= i

V

�

; where i

V

and i

V

�

are the identity mappings in

V and V

�

; respe
tively.

First take v 2 V; using the linearity property of �

�1

�

; eq.(2), the duality


ondition �

k

(b

j

) = Æ

k

j

and the elementary expansion for ve
tors, i.e., v =

�

k

(v)b

k;

we have

�

�1

�

Æ �

b

(v) =

n

X

k=1

�

k

(v)�

�1

(�

k

) =

n

X

k=1

�

k

(v)

n

X

s=1

Æ

k

s

b

s

= �

k

(v)b

k

= v;

hen
e, �

�1

�

Æ �

b

= i

V

.

Now take ! 2 V

�

; using the linearity property of �

b

; eq.(1), the duality


ondition �

k

(b

j

) = Æ

k

j

and the elementary expansion for forms, i.e., ! =

!(b

k

)�

k

; we have

�

b

Æ �

�1

�

(!) =

n

X

k=1

!(b

k

)�(b

k

) =

n

X

k=1

!(b

k

)

n

X

s=1

Æ

s

k

�

s

= !(b

k

)�

k

= !;

hen
e, �

b

Æ �

�1

�

= i

V

�

:

This linear isomorphism between V and V

�

indu
ed by the pair of bases

(fb

k

g; f�

k

g) will be 
alled a standard isomorphism.

As introdu
ed above this linear isomorphism is the unique satisfying the

following two 
onditions: �

b

(b

k

) = �

k

and �

�1

�

(�

k

) = b

k

:

2.1 b-S
alar Produ
ts

We re
all from [1℄ (paper I on this series) that we 
an de�ne a b-s
alar produ
t

of ve
tors v; w 2 V by

v �

b

w =�

b

(v)(w) =

n

X

k=1

�

k

(v)�

k

(w): (3)

Also, a b-s
alar produ
t of forms ! and � 
an be de�ned by

! �

�

� = �(�

�1

�

(!)) =

n

X

k=1

!(b

k

)�(b

k

): (4)
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The produ
ts de�ned by eq.(3) and eq.(4) are well-de�ned s
alar produ
ts

in V and V

�

; asso
iated with the arbitrary pair of bases (fb

k

g; f�

k

g), and

also these s
alar produ
ts are positive de�nite, e.g., for the b-s
alar produ
t

of ve
tors: v �

b

v � 0 for all v; and v �

b

v = 0 if and only if v = 0:

The ve
tor basis fb

k

g and the form basis f�

k

g are both orthonormal in

ea
h of spa
es V and V

�

; respe
tively, i.e.,

b

j

�

b

b

k

= Æ

jk

; (5)

�

j

�

b

�

k

= Æ

jk

: (6)

Proof. The use of eq.(3) and the duality 
ondition of (fb

k

g; f�

k

g) gives

b

j

�

b

b

k

=

n

X

p=1

�

p

(b

j

)�

p

(b

k

) =

n

X

p=1

Æ

p

j

Æ

p

k

= Æ

jk

;

by using eq.(4) and on
e again the duality 
ondition of (fb

k

g; f�

k

g) we get

�

j

�

b

�

k

=

n

X

q=1

�

j

(b

q

)�

k

(b

q

) =

n

X

q=1

Æ

j

q

Æ

k

q

= Æ

jk

:

In what follows we will use the simpli�ed notation (�) for the b-s
alar

produ
t (�

b

):

2.2 b-Re
ipro
al Bases

Let (fe

k

g; f"

k

g) be any bases for V and V

�

, the se
ond one being dual basis

of the �rst one, i.e., "

k

(e

j

) = Æ

k

j

: Asso
iated to it we 
an introdu
e another

pair of bases (fe

k

g; f"

k

g); the �rst one for V and the se
ond one for V

�

; given

by

e

k

= �

�1

("

k

) =

n

X

s=1

"

k

(b

s

)b

s

; (7)

"

k

= �(e

k

) =

n

X

s=1

�

s

(e

k

)�

s

: (8)

Sin
e � and �

�1

are linear mappings between V and V

�

; the n ve
tors

e

1

; : : : ; e

n

2 V and the n forms "

1

; : : : ; "

n

2 V

�

are linearly independent,

hen
e they are a ve
tor basis for V and a form basis for V

�

; respe
tively.

4



i. The pairs of bases (fe

k

g; fe

k

g) and (f"

k

g; f"

k

g) satisfy the remarkable

b-s
alar produ
t 
onditions

e

k

� e

l

= Æ

l

k

; (9)

"

k

� "

l

= Æ

k

l

: (10)

Proof. By straightforward 
al
ulation, employing eq.(3) and eq.(7), and the

duality 
ondition of (fe

k

g; f"

k

g) we have

e

k

� e

l

= e

l

� e

k

= �(e

l

)(e

k

) = � Æ �

�1

("

l

)(e

k

) = "

l

(e

k

) = Æ

l

k

;

and employing eq.(4) and eq.(8), and on
e again the duality 
ondition of

(fe

k

g; f"

k

g) we get

"

k

� "

l

= "

l

(�

�1

("

k

)) = "

l

(�

�1

Æ �(e

k

)) = "

l

(e

k

) = Æ

l

k

:

Due to the property expressed by eq.(9) the ve
tor bases fe

k

g and fe

k

g

are 
alled a b-re
ipro
al bases of V: The form bases f"

k

g and f"

k

g be
ause

the property given by eq.(10) are 
alled a b-re
ipro
al bases of V

�

:

ii. f"

k

g is dual basis of fe

k

g; i.e.,

"

k

(e

j

) = Æ

j

k

: (11)

Proof. The equations (8), (3) and (9) yield

"

k

(e

j

) = �(e

k

)(e

j

) = e

k

� e

j

= Æ

j

k

;

Also, the equations (7), (4) and (10) yield

"

k

(e

j

) = "

k

(�

�1

("

j

)) = "

j

� "

k

= Æ

j

k

:

3 2-Tensors vs. (1; 1)-Extensors

For any 2-tensor T 2 T

2

(V ); there exists an unique (1; 1)-extensor t 2

ext

1

1

(V ), su
h that for all ve
tors v; w 2 V

T (v; w) = t(v) � w: (12)

Proof. We will prove that t(v) = T (v; e

k

)e

k

(or, also t(v) = T (v; e

k

)e

k

),

where (fe

k

g; fe

k

g) is an arbitrary pair of b-re
ipro
al bases for V; satis�es

5



eq.(12). Indeed, by using an expansion formula for ve
tors [1℄ and the lin-

earity property of tensors, we have

t(v) � w = T (v; e

k

)e

k

� w = T (v; e

k

� we

k

) = T (v; w):

Now, t is unique. Indeed suppose that there is another t

0

2 ext

1

1

(V ) for

whi
h T (v; w) = t

0

(v) � w for arbitrary v and w. Then, using the expansion

formula for ve
tors it follows that

t

0

(v) = t

0

(v) � e

k

e

k

= T (v; e

k

)e

k

= t(v):

Thus, the existen
e and uniqueness of su
h a (1; 1)-extensor satisfying

eq.(12) is established:

The above theorem means that there exists an unique linear isomorphism

between the ve
tor spa
es T

2

(V ) and ext

1

1

(V ) su
h that the jk-th 
ovariant


omponents of T with respe
t to fe

k

g equals the jk-matrix element of t with

respe
t to fe

k

g; i.e., T (e

j

; e

k

) = t(e

j

) � e

k

:

T is symmetri
 (or, skew-symmetri
) if and only if t is adjoint symmetri


(or, adjoint skew-symmetri
), i.e.,

T (v; w) = T (w; v); for all v; w 2 V , t = t

y

; (13)

or,

T (v; w) = �T (w; v); for all v; w 2 V , t = �t

y

: (14)

Let T

jk

be the jk-entries of the n�n real matrix asso
iated to T with re-

spe
t to a basis fe

k

g; i.e., T

jk

= T (e

j

; e

k

): The 
lassi
al determinant det [T

jk

℄

and det[t℄ are related by the remarkable formula

1

det [T

jk

℄ = det[t℄(e

1

^ : : : ^ e

n

) � (e

1

^ : : : ^ e

n

): (15)

Proof. By de�nition of 
lassi
al determinant of n � n real matrix. Using

eq.(12), the formula (v

1

^ : : : v

k

) � (w

1

^ : : : w

k

) = �

s

1

:::s

k

v

1

�w

s

1

: : : v

k

�w

s

k

and

the property t(v

1

^: : :^v

k

) = t(v

1

)^: : : t(v

k

); where v

1

; : : : ; v

k

and w

1

; : : : ; w

k

are ve
tors. We have

jT

jk

j = �

s

1

:::s

n

T

1s

1

: : : T

ns

n

= �

s

1

:::s

n

T (e

1

; e

s

1

) : : : T (e

n

; e

s

n

)

= �

s

1

:::s

n

t(e

1

) � e

s

1

: : : t(e

n

) � e

s

n

= (t(e

1

) ^ : : : t(e

n

)) � (e

1

^ : : : e

n

)

= t(e

1

^ : : : e

n

) � (e

1

^ : : : e

n

);

1

Note that some previous papers that appeared in the literature and whi
h use the


on
ept of extensor [3℄ have made a wrong identi�
ation between the 
lassi
al determinant

of the matrix formed with the elements T

jk

; and det[t℄.
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hen
e, by de�nition of det[t℄; i.e., t(I) = det[t℄I for all non-null pseudos
alar

I; the required result follows.

The n�n real matrix T

jk

has inverse (i.e., there exists an unique n�n real

matrix whose jk-entries, say T

jk

; satisfying T

js

T

sk

= Æ

j

k

and T

js

T

sk

= Æ

k

j

)

if and only if t has inverse, say t

�1

(i.e., t

�1

is the unique (1; 1)-extensor

that satis�es t

�1

Æ t = t Æ t

�1

= i

V

). The real numbers T

jk

are equal to the

jk-matrix elements of t

�1

; i.e.,

T

jk

= t

�1

(e

j

) � e

k

: (16)

Proof. The �rst statement is an immediate 
onsequen
e of eq.(15). In

order to prove the se
ond statement we shall use the expansion formula for

v 2 V : v = v � e

s

e

s

; to get

T

js

T

sk

= t

�1

(e

j

) � e

s

t(e

s

) � e

k

= t(t

�1

(e

j

) � e

s

e

s

) � e

k

= t Æ t

�1

(e

j

) � e

k

= e

j

� e

k

;

hen
e, by the b-re
ipro
ity 
ondition of (fe

k

g; fe

k

g); i.e., e

k

� e

l

= Æ

l

k

; we have

that T

js

T

sk

= Æ

j

k

. Analogously it 
an be proved that T

js

T

sk

= Æ

k

j

:

4 Metri
 Isomorphism

We re
all some de�nitions of the theory of ordinary linear algebra.

Let G be a (
ovariant) metri
 tensor over V; i.e., G 2 T

2

(V ) su
h that:

G is symmetri
 (G(v; w) = G(w; v)) and G is non-degenerate (det [G

jk

℄ 6= 0;

G

jk

= G(e

j

; e

k

) where fe

k

g is any basis for V ).

A

ording to equations (12), (13) and (15) there exists a (1; 1)-extensor

over V; say g; symmetri
 (g = g

y

) and non-degenerate (det[g℄ 6= 0), su
h

that for all v; w 2 V : G(v; w) = g(v) � w. By our previous nomen
lature

g 2 ext

1

1

(V ) is 
alled a metri
 extensor over V:

This algebrai
 obje
t 
odi�es all the information 
ontained into the 
las-

si
al 
on
ept of metri
 whi
h appears in ordinary linear algebra.

The well-de�ned 2-tensor over V

�

; G

�

2 T

2

(V ) su
h that G

�

(!; �) =

G

jk

!(e

j

)�(e

k

); where G

jk

are the jk-entries of the inverse matrix of G

jk

=

G(e

j

; e

k

); is said to be the (
ontravariant) metri
 tensor over V

�

:

There exists a linear isomorphism between V and V

�

realized by the linear

mappings V 3 v 7!�

G

(v) 2 V

�

and V

�

3 ! 7!�

G

�1

(!) 2 V su
h that

�

G

(v)(w) = G(v; w); (17)

7



�(�

G

�1

(!)) = G

�

(!; �): (18)

As the notations point out �

G

�1

; is the inverse mapping of �

G

:

Proof. The linearity property for both �

G

and �

G

�1

holds. We must prove that

�

G

�1

Æ �

G

= i

V

and �

G

Æ �

G

�1

= i

V

�

; where i

V

and i

V

�

are the identity fun
tions

in V and V

�

; respe
tively.

Let (fe

k

g; f"

k

g) be an arbitrary pair of dual basis (of V and V

�

), i.e.,

"

k

(e

j

) = Æ

k

j

: Re
all the elementary expansions for ve
tors and forms, i.e.,

v = "

k

(v)e

k

and ! = !(e

k

)"

k

:

Take v 2 V and ! 2 V

�

; �

G

(v) and �

G

�1

(!). Some well-known formulas

involving the matrix elements of G and G

�


an be written as follows

�

G

(v) = �

G

(v)(e

k

)"

k

= G(v; e

k

)"

k

= G("

j

(v)e

j

; e

k

)"

k

= G(e

j

; e

k

)"

j

(v)"

k

;

�

G

(v) = G

jk

"

j

(v)"

k

: (19)

Also,

�

G

�1

(!) = "

k

(�

G

�1

(!))e

k

= G

�

(!; "

k

)e

k

= G

�

(!(e

j

)"

j

; "

k

)e

k

= G

�

("

j

; "

k

)!(e

j

)e

k

�

G

�1

(!) = G

jk

!(e

j

)e

k

: (20)

Next, take v 2 V . Using eq.(19), eq.(17) and the formula for expansion

of ve
tors we have

�

G

�1

Æ �

G

(v) = G

jk

�

G

(v)(e

j

)e

k

= G

jk

G(v; e

j

)e

k

= G

jk

G(e

s

; e

j

)"

s

(v)e

k

= G

jk

G

sj

"

s

(v)e

k

= Æ

k

s

"

s

(v)e

k

= "

k

(v)e

k

= v;

hen
e, �

G

�1

Æ �

G

= i

V

:

By the same way, taking an arbitrary ! 2 V

�

and employing eq.(20),

eq.(18) and the elementary expansion for forms, we �nally get �

G

Æ �

G

�1

=

i

V

�

:

The linear isomorphism between V and V

�

showed above, whi
h is in-

du
ed by the (
ovariant) metri
 tensor G is usually 
alled a metri
 isomor-

phism.
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The inverse mappings �

G

and �

G

�1


an be written in suggestive forms in-

volving the (1; 1)-extensors g and g

�1

; and the inverse mappings � and �

�1

of

the standard isomorphism, i.e.,

�

G

= � Æ g; (21)

�

G

�1

= g

�1

Æ �

�1

: (22)

Proof. First take v 2 V; using equations (17), (12) and (7) we have

�

G

(v) = �

G

(v)(e

k

)"

k

= G(v; e

k

)"

k

= g(v) � e

k

"

k

= g(v) � e

k

�(e

k

) = �(g(v) � e

k

e

k

)

= � Æ g(v);

hen
e, �

G

= � Æ g:

Now, using the property: `inverse of 
omposition equals 
omposition of

inverse into reversed order', we �nally get

�

G

�1

= (� Æ g)

�1

= g

�1

Æ �

�1

:

5 Con
lusions

We investigated the relationship between metri
 tensors and metri
 exten-

sors asso
iated to a n-dimensional real ve
tor spa
e, and translated some

well known results of tensor theory using extensors. The results obtained,

spe
ially eq.(15) that relates the 
lassi
al determinant of the matrix whose

entries are the 
omponents of a 2-tensor in a given ve
tor basis with the de-

terminant of the 
orresponding extensor, is important for many 
al
ulations

whi
h will appear in the next papers reporting ours studies on the theory

of multive
tor fun
tions, and some problems of di�erential geometry and

theoreti
al physi
s. We emphasize moreover that even in elementary linear

algebra it is an advantage to use metri
 extensors instead of metri
 tensors

be
ause a metri
 extensor has an inverse

2

whi
h is itself a metri
 extensor.

Also, with the 
on
ept of metri
 extensor sophisti
ated 
al
ulations 
an be

done without the introdu
tion of matrix representations.

2

Of 
ourse, a metri
 tensor has no inverse, see [1℄.
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