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Abstrat

In this paper we give a omparison between the formulation of the

onept of metri for a real vetor spae of �nite dimension in terms

of tensors and extensors. A nie property of metri extensors is that

they have inverses whih are also themselves metri extensors. This

property is not shared by metri tensors beause tensors do not have

inverses. We relate the de�nition of determinant of a metri extensor

with the lassial determinant of the orresponding matrix assoiated

to the metri tensor in a given vetor basis. Previous identi�ations

of these onepts are equivoated. The use of metri extensor permits

sophistiated alulations without the introdution of matrix repre-

sentations.
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1 Introdution

This is the third paper of a series of seven. Here, we explore the onept of

metri on a n-dimensional real vetor spae V by using the onepts of tensors

and extensors. We show that for eah metri tensor G, there is an unique

metri extensor g; and vie versa. The metri extensor is a fundamental tool

for future developments that we have in mind, and whih are going to be

presented in following papers of this series and subsequent series of papers.

Besides this fat, it is worth to emphasize here that the onept of metri

extensor has a prior status in the foundations of linear algebra relative to

its orresponding metri tensor. This is beause a metri extensor g has an

inverse g

�1

whih is of ourse itself a metri extensor. As a simple appliation

of this onept, we use g and g

�1

; to reall some results involving the well-

known metri isomorphism between V and V

�

indued by G:

2 Standard Isomorphism

Let fb

k

g be an arbitrary, but �xed, basis for V and f�

k

g its orresponding

dual basis for V

�

; i.e., �

k

(b

j

) = Æ

k

j

: There exists a linear isomorphism between

V and V

�

realized by the linear mappings V 3 v 7!�

b

(v) 2 V

�

and V

�

3

! 7!�

�1

�

(!) 2 V suh that

�

b

(v) =

n

X

k=1

�

k

(v)�

k

; (1)

�

�1

�

(!) =

n

X

k=1

!(b

k

)b

k

: (2)

2



A suggested by the notations, �

�1

�

is inverse mapping of �

b

:

Proof. The linearity property for both �

b

and �

�1

�

holds. We must prove that

�

�1

�

Æ �

b

= i

V

and �

b

Æ �

�1

�

= i

V

�

; where i

V

and i

V

�

are the identity mappings in

V and V

�

; respetively.

First take v 2 V; using the linearity property of �

�1

�

; eq.(2), the duality

ondition �

k

(b

j

) = Æ

k

j

and the elementary expansion for vetors, i.e., v =

�

k

(v)b

k;

we have

�

�1

�

Æ �

b

(v) =

n

X

k=1

�

k

(v)�

�1

(�

k

) =

n

X

k=1

�

k

(v)

n

X

s=1

Æ

k

s

b

s

= �

k

(v)b

k

= v;

hene, �

�1

�

Æ �

b

= i

V

.

Now take ! 2 V

�

; using the linearity property of �

b

; eq.(1), the duality

ondition �

k

(b

j

) = Æ

k

j

and the elementary expansion for forms, i.e., ! =

!(b

k

)�

k

; we have

�

b

Æ �

�1

�

(!) =

n

X

k=1

!(b

k

)�(b

k

) =

n

X

k=1

!(b

k

)

n

X

s=1

Æ

s

k

�

s

= !(b

k

)�

k

= !;

hene, �

b

Æ �

�1

�

= i

V

�

:

This linear isomorphism between V and V

�

indued by the pair of bases

(fb

k

g; f�

k

g) will be alled a standard isomorphism.

As introdued above this linear isomorphism is the unique satisfying the

following two onditions: �

b

(b

k

) = �

k

and �

�1

�

(�

k

) = b

k

:

2.1 b-Salar Produts

We reall from [1℄ (paper I on this series) that we an de�ne a b-salar produt

of vetors v; w 2 V by

v �

b

w =�

b

(v)(w) =

n

X

k=1

�

k

(v)�

k

(w): (3)

Also, a b-salar produt of forms ! and � an be de�ned by

! �

�

� = �(�

�1

�

(!)) =

n

X

k=1

!(b

k

)�(b

k

): (4)
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The produts de�ned by eq.(3) and eq.(4) are well-de�ned salar produts

in V and V

�

; assoiated with the arbitrary pair of bases (fb

k

g; f�

k

g), and

also these salar produts are positive de�nite, e.g., for the b-salar produt

of vetors: v �

b

v � 0 for all v; and v �

b

v = 0 if and only if v = 0:

The vetor basis fb

k

g and the form basis f�

k

g are both orthonormal in

eah of spaes V and V

�

; respetively, i.e.,

b

j

�

b

b

k

= Æ

jk

; (5)

�

j

�

b

�

k

= Æ

jk

: (6)

Proof. The use of eq.(3) and the duality ondition of (fb

k

g; f�

k

g) gives

b

j

�

b

b

k

=

n

X

p=1

�

p

(b

j

)�

p

(b

k

) =

n

X

p=1

Æ

p

j

Æ

p

k

= Æ

jk

;

by using eq.(4) and one again the duality ondition of (fb

k

g; f�

k

g) we get

�

j

�

b

�

k

=

n

X

q=1

�

j

(b

q

)�

k

(b

q

) =

n

X

q=1

Æ

j

q

Æ

k

q

= Æ

jk

:

In what follows we will use the simpli�ed notation (�) for the b-salar

produt (�

b

):

2.2 b-Reiproal Bases

Let (fe

k

g; f"

k

g) be any bases for V and V

�

, the seond one being dual basis

of the �rst one, i.e., "

k

(e

j

) = Æ

k

j

: Assoiated to it we an introdue another

pair of bases (fe

k

g; f"

k

g); the �rst one for V and the seond one for V

�

; given

by

e

k

= �

�1

("

k

) =

n

X

s=1

"

k

(b

s

)b

s

; (7)

"

k

= �(e

k

) =

n

X

s=1

�

s

(e

k

)�

s

: (8)

Sine � and �

�1

are linear mappings between V and V

�

; the n vetors

e

1

; : : : ; e

n

2 V and the n forms "

1

; : : : ; "

n

2 V

�

are linearly independent,

hene they are a vetor basis for V and a form basis for V

�

; respetively.

4



i. The pairs of bases (fe

k

g; fe

k

g) and (f"

k

g; f"

k

g) satisfy the remarkable

b-salar produt onditions

e

k

� e

l

= Æ

l

k

; (9)

"

k

� "

l

= Æ

k

l

: (10)

Proof. By straightforward alulation, employing eq.(3) and eq.(7), and the

duality ondition of (fe

k

g; f"

k

g) we have

e

k

� e

l

= e

l

� e

k

= �(e

l

)(e

k

) = � Æ �

�1

("

l

)(e

k

) = "

l

(e

k

) = Æ

l

k

;

and employing eq.(4) and eq.(8), and one again the duality ondition of

(fe

k

g; f"

k

g) we get

"

k

� "

l

= "

l

(�

�1

("

k

)) = "

l

(�

�1

Æ �(e

k

)) = "

l

(e

k

) = Æ

l

k

:

Due to the property expressed by eq.(9) the vetor bases fe

k

g and fe

k

g

are alled a b-reiproal bases of V: The form bases f"

k

g and f"

k

g beause

the property given by eq.(10) are alled a b-reiproal bases of V

�

:

ii. f"

k

g is dual basis of fe

k

g; i.e.,

"

k

(e

j

) = Æ

j

k

: (11)

Proof. The equations (8), (3) and (9) yield

"

k

(e

j

) = �(e

k

)(e

j

) = e

k

� e

j

= Æ

j

k

;

Also, the equations (7), (4) and (10) yield

"

k

(e

j

) = "

k

(�

�1

("

j

)) = "

j

� "

k

= Æ

j

k

:

3 2-Tensors vs. (1; 1)-Extensors

For any 2-tensor T 2 T

2

(V ); there exists an unique (1; 1)-extensor t 2

ext

1

1

(V ), suh that for all vetors v; w 2 V

T (v; w) = t(v) � w: (12)

Proof. We will prove that t(v) = T (v; e

k

)e

k

(or, also t(v) = T (v; e

k

)e

k

),

where (fe

k

g; fe

k

g) is an arbitrary pair of b-reiproal bases for V; satis�es

5



eq.(12). Indeed, by using an expansion formula for vetors [1℄ and the lin-

earity property of tensors, we have

t(v) � w = T (v; e

k

)e

k

� w = T (v; e

k

� we

k

) = T (v; w):

Now, t is unique. Indeed suppose that there is another t

0

2 ext

1

1

(V ) for

whih T (v; w) = t

0

(v) � w for arbitrary v and w. Then, using the expansion

formula for vetors it follows that

t

0

(v) = t

0

(v) � e

k

e

k

= T (v; e

k

)e

k

= t(v):

Thus, the existene and uniqueness of suh a (1; 1)-extensor satisfying

eq.(12) is established:

The above theorem means that there exists an unique linear isomorphism

between the vetor spaes T

2

(V ) and ext

1

1

(V ) suh that the jk-th ovariant

omponents of T with respet to fe

k

g equals the jk-matrix element of t with

respet to fe

k

g; i.e., T (e

j

; e

k

) = t(e

j

) � e

k

:

T is symmetri (or, skew-symmetri) if and only if t is adjoint symmetri

(or, adjoint skew-symmetri), i.e.,

T (v; w) = T (w; v); for all v; w 2 V , t = t

y

; (13)

or,

T (v; w) = �T (w; v); for all v; w 2 V , t = �t

y

: (14)

Let T

jk

be the jk-entries of the n�n real matrix assoiated to T with re-

spet to a basis fe

k

g; i.e., T

jk

= T (e

j

; e

k

): The lassial determinant det [T

jk

℄

and det[t℄ are related by the remarkable formula

1

det [T

jk

℄ = det[t℄(e

1

^ : : : ^ e

n

) � (e

1

^ : : : ^ e

n

): (15)

Proof. By de�nition of lassial determinant of n � n real matrix. Using

eq.(12), the formula (v

1

^ : : : v

k

) � (w

1

^ : : : w

k

) = �

s

1

:::s

k

v

1

�w

s

1

: : : v

k

�w

s

k

and

the property t(v

1

^: : :^v

k

) = t(v

1

)^: : : t(v

k

); where v

1

; : : : ; v

k

and w

1

; : : : ; w

k

are vetors. We have

jT

jk

j = �

s

1

:::s

n

T

1s

1

: : : T

ns

n

= �

s

1

:::s

n

T (e

1

; e

s

1

) : : : T (e

n

; e

s

n

)

= �

s

1

:::s

n

t(e

1

) � e

s

1

: : : t(e

n

) � e

s

n

= (t(e

1

) ^ : : : t(e

n

)) � (e

1

^ : : : e

n

)

= t(e

1

^ : : : e

n

) � (e

1

^ : : : e

n

);

1

Note that some previous papers that appeared in the literature and whih use the

onept of extensor [3℄ have made a wrong identi�ation between the lassial determinant

of the matrix formed with the elements T

jk

; and det[t℄.
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hene, by de�nition of det[t℄; i.e., t(I) = det[t℄I for all non-null pseudosalar

I; the required result follows.

The n�n real matrix T

jk

has inverse (i.e., there exists an unique n�n real

matrix whose jk-entries, say T

jk

; satisfying T

js

T

sk

= Æ

j

k

and T

js

T

sk

= Æ

k

j

)

if and only if t has inverse, say t

�1

(i.e., t

�1

is the unique (1; 1)-extensor

that satis�es t

�1

Æ t = t Æ t

�1

= i

V

). The real numbers T

jk

are equal to the

jk-matrix elements of t

�1

; i.e.,

T

jk

= t

�1

(e

j

) � e

k

: (16)

Proof. The �rst statement is an immediate onsequene of eq.(15). In

order to prove the seond statement we shall use the expansion formula for

v 2 V : v = v � e

s

e

s

; to get

T

js

T

sk

= t

�1

(e

j

) � e

s

t(e

s

) � e

k

= t(t

�1

(e

j

) � e

s

e

s

) � e

k

= t Æ t

�1

(e

j

) � e

k

= e

j

� e

k

;

hene, by the b-reiproity ondition of (fe

k

g; fe

k

g); i.e., e

k

� e

l

= Æ

l

k

; we have

that T

js

T

sk

= Æ

j

k

. Analogously it an be proved that T

js

T

sk

= Æ

k

j

:

4 Metri Isomorphism

We reall some de�nitions of the theory of ordinary linear algebra.

Let G be a (ovariant) metri tensor over V; i.e., G 2 T

2

(V ) suh that:

G is symmetri (G(v; w) = G(w; v)) and G is non-degenerate (det [G

jk

℄ 6= 0;

G

jk

= G(e

j

; e

k

) where fe

k

g is any basis for V ).

Aording to equations (12), (13) and (15) there exists a (1; 1)-extensor

over V; say g; symmetri (g = g

y

) and non-degenerate (det[g℄ 6= 0), suh

that for all v; w 2 V : G(v; w) = g(v) � w. By our previous nomenlature

g 2 ext

1

1

(V ) is alled a metri extensor over V:

This algebrai objet odi�es all the information ontained into the las-

sial onept of metri whih appears in ordinary linear algebra.

The well-de�ned 2-tensor over V

�

; G

�

2 T

2

(V ) suh that G

�

(!; �) =

G

jk

!(e

j

)�(e

k

); where G

jk

are the jk-entries of the inverse matrix of G

jk

=

G(e

j

; e

k

); is said to be the (ontravariant) metri tensor over V

�

:

There exists a linear isomorphism between V and V

�

realized by the linear

mappings V 3 v 7!�

G

(v) 2 V

�

and V

�

3 ! 7!�

G

�1

(!) 2 V suh that

�

G

(v)(w) = G(v; w); (17)
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�(�

G

�1

(!)) = G

�

(!; �): (18)

As the notations point out �

G

�1

; is the inverse mapping of �

G

:

Proof. The linearity property for both �

G

and �

G

�1

holds. We must prove that

�

G

�1

Æ �

G

= i

V

and �

G

Æ �

G

�1

= i

V

�

; where i

V

and i

V

�

are the identity funtions

in V and V

�

; respetively.

Let (fe

k

g; f"

k

g) be an arbitrary pair of dual basis (of V and V

�

), i.e.,

"

k

(e

j

) = Æ

k

j

: Reall the elementary expansions for vetors and forms, i.e.,

v = "

k

(v)e

k

and ! = !(e

k

)"

k

:

Take v 2 V and ! 2 V

�

; �

G

(v) and �

G

�1

(!). Some well-known formulas

involving the matrix elements of G and G

�

an be written as follows

�

G

(v) = �

G

(v)(e

k

)"

k

= G(v; e

k

)"

k

= G("

j

(v)e

j

; e

k

)"

k

= G(e

j

; e

k

)"

j

(v)"

k

;

�

G

(v) = G

jk

"

j

(v)"

k

: (19)

Also,

�

G

�1

(!) = "

k

(�

G

�1

(!))e

k

= G

�

(!; "

k

)e

k

= G

�

(!(e

j

)"

j

; "

k

)e

k

= G

�

("

j

; "

k

)!(e

j

)e

k

�

G

�1

(!) = G

jk

!(e

j

)e

k

: (20)

Next, take v 2 V . Using eq.(19), eq.(17) and the formula for expansion

of vetors we have

�

G

�1

Æ �

G

(v) = G

jk

�

G

(v)(e

j

)e

k

= G

jk

G(v; e

j

)e

k

= G

jk

G(e

s

; e

j

)"

s

(v)e

k

= G

jk

G

sj

"

s

(v)e

k

= Æ

k

s

"

s

(v)e

k

= "

k

(v)e

k

= v;

hene, �

G

�1

Æ �

G

= i

V

:

By the same way, taking an arbitrary ! 2 V

�

and employing eq.(20),

eq.(18) and the elementary expansion for forms, we �nally get �

G

Æ �

G

�1

=

i

V

�

:

The linear isomorphism between V and V

�

showed above, whih is in-

dued by the (ovariant) metri tensor G is usually alled a metri isomor-

phism.
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The inverse mappings �

G

and �

G

�1

an be written in suggestive forms in-

volving the (1; 1)-extensors g and g

�1

; and the inverse mappings � and �

�1

of

the standard isomorphism, i.e.,

�

G

= � Æ g; (21)

�

G

�1

= g

�1

Æ �

�1

: (22)

Proof. First take v 2 V; using equations (17), (12) and (7) we have

�

G

(v) = �

G

(v)(e

k

)"

k

= G(v; e

k

)"

k

= g(v) � e

k

"

k

= g(v) � e

k

�(e

k

) = �(g(v) � e

k

e

k

)

= � Æ g(v);

hene, �

G

= � Æ g:

Now, using the property: `inverse of omposition equals omposition of

inverse into reversed order', we �nally get

�

G

�1

= (� Æ g)

�1

= g

�1

Æ �

�1

:

5 Conlusions

We investigated the relationship between metri tensors and metri exten-

sors assoiated to a n-dimensional real vetor spae, and translated some

well known results of tensor theory using extensors. The results obtained,

speially eq.(15) that relates the lassial determinant of the matrix whose

entries are the omponents of a 2-tensor in a given vetor basis with the de-

terminant of the orresponding extensor, is important for many alulations

whih will appear in the next papers reporting ours studies on the theory

of multivetor funtions, and some problems of di�erential geometry and

theoretial physis. We emphasize moreover that even in elementary linear

algebra it is an advantage to use metri extensors instead of metri tensors

beause a metri extensor has an inverse

2

whih is itself a metri extensor.

Also, with the onept of metri extensor sophistiated alulations an be

done without the introdution of matrix representations.

2

Of ourse, a metri tensor has no inverse, see [1℄.
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