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Abstract

In this paper we introduce a class of mathematical objects called
extensors and develop some aspects of their theory with considerable
detail. We give special names to several particular but important
cases of extensors. The extension, adjoint and generalization oper-
ators are introduced and their properties studied. For the so-called
(1,1)-extensors we define the concept of determinant, and their prop-
erties are investigated. Some preliminary applications of the theory of
extensors are presented in order to show the power of the new concept
in action. An useful formula for the inversion of (1, 1)-extensors is
obtained.
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1 Introduction

In this second paper of a series of seven we introduce the so-called extensors,
and develop some aspects of their theory with considerable detail. We give
special names and study in detail some important cases of extensors which
will appear frequently in future developments of ours theories. The extension,
adjoint and generalization operators are introduced and their main proper-
ties are determined. In particular, the generalization operator plays a crucial
role in our theory of covariant derivative operators on smooth manifolds to
be presented in a forthcoming series of papers. We define moreover the con-
cept of determinant of a (1,1)-extensor (a scalar which is an characteristic
invariant associated to the extensor), and obtain their basic properties which
are very similar, but not identical, to the classical determinat of a real square
matrix. We present some preliminary applications of the concept of extensor



which will be useful later. In particular, we present the concept of the chang-
ing basis extensor, and derive also an interesting formula for the inversion
of (1,1)-extensors. Some related, but not equivalent material, appears in (

[11,[3])-

2 General k-Extensors

Let V be a real vector space of finite dimension, and let V* be its dual space.
Denote by APV the space of p-vectors over V. Recall that if dim V' = n, then
dim APV = (Z)

As defined in paper I [4] a multivector over V is simply a formal sum of
scalar, vector,. . ., pseudovector and pseudoscalar. The space of these objects
has been denoted by AV, ie, AV=R+V +---+ A"V +A"V. Recall
that if dlm V= n then d1m A V = 2"

Let /\ V. /\ V to /\ V be k+1 subspaces of A V such that each of them
k

<o
is any sum of homogeneous subspaces of AV, and AV be either any sum
of homogeneous subspaces of AV or the trivial subspace {O} A multilinear

mapping from the cartesian product /\ Vx.-x /\ V to /\ V will be called
a general k-extensor over V, i.e., t: /\V X oo X /\V — /\V such that for
1 k

<
any aj,a; € R and Xj, X} € AV
j

too X+ X5, ) =gt Xy, ) Fagt(, XL, (1)

for each 7 with 1 < j < k.

It should be noticed that the linear operators on V, A’V or AV which
appear in ordinary linear algebra are particular cases of 1-extensors over V.
A covariant k-tensor over V is just being a k-extensor over V.

In this way, the concept of general k-extensor generalizes and unifies both
of the well-known concepts of linear operator and covariant k-tensor. These
mathematical objects are of the same nature!

The set of general k-extensors over V, denoted by the suggestive notation

< < <&

k-ext(AV,---,AV, A\ V), has a natural structure of real vector space. Its
1 k



dimension is given by noticeable formula

< <

dimk-ext(/\u...,/\v;;\w:dim/\v---dim;\Vdim;\V (2)
1 k 1 k

We shall need to consider only some particular cases of these general k-
extensors over V. So, special names and notations will be given for them.
We will equip V' with an arbitrary (but fixed, once and for all) euclidean
metric Gg. And as usual we will denote the scalar product of multivectors
X,Y € AV with respect to the euclidean metric structure (V, Gg), namely
X o Y, by the more simple notation X - Y.
E

Let {e;} be any basis for V, and {e’} be its euclidean reciprocal basis for
V, ie., e - = 5";.

2.1 (p,q)-Extensors

Let p and ¢ be two integer numbers with 0 < p,q¢ < n. A linear mapping
which sends p-vectors to g-vectors will be called a (p, q)-extensor over V. The
space of them, namely 1-ext(A”V; A?V), will be denoted by extl(V) for
short. By using eq.(2) we get

dim extd(V) = (Z) (Z) (3)

For instance, we see that the (1, 1)-extensors over V are just the linear
operators on V.

The set of (Z) (Z) extensors belonging to ext{(V'), namely g/t-7»;
defined by

k1...kq
;

gltdvibtka (XY = (e AL AN EP) - X AL A e (4)

for all X € APV, is a (p, ¢)-extensor basis for ext(V').
This set of extensors are indeed linearly independent, and for each ¢ €
extd(V) there exist (;) (Z) real numbers, say t;, ;... k., given by

tjl---jp;kl---kq = t(ejl A A Gjp) - (ekl Ao A ekq) (5)

such that
11

L J1.---Jpik1...k
t= Eatjl...]p;kl...kqg P 1. (6)
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Such ;. k.5, Will be called the j; ... jp; k1 ... kg-th covariant components
of t with respect to the (p, q)-extensor basis {git-Iviki-ka},

Of course, there are still other (p, g)-extensor bases for ext{(V) besides
the ones given by eq.(4) which can be constructed with the vector bases
{e;} and {e’} of V. Indeed, there are 2Pt of such (p, ¢)-extensor bases for
extd (V). For instance, if we use the basis (p, ¢)-extensors &, ...k, and the
real numbers t/tJ»ik1ka defined by

gjl---jp.;kl--.-kq (X) = (€j1. AN 6ij) . X@kl ARRAN (7)
A A s S

we get an expansion formula for ¢ € extf(V) analogous to that given by
eq.(6), i.e.,
t= b ©)

Such /t-Jeik1-ka are called the j; ... jp; k1 . . . k-th contravariant components
of ¢ with respect to the (p, ¢)-extensor basis {€;,. j, k.. .k, }-

2.2 Extensors

A linear mapping which sends multivectors to multivectors will be simply
called an eztensor over V. They are the linear operators on A V. For the
space of extensors over V, namely l-ext(AV;AV), we will use the short
notation ext(V). By using eq.(2) we get

dimezt(V) = 22" (10)

For instance, we will see that the so-called Hodge star operator is just
being a well-defined extensor over V' which can be also thought as (p, n — p)-
extensor over V. The so-called extended of ¢t € exti(V) is just being an
extensor over V] i.e., t € ext(V).

There are 2"2" extensors over V, namely /¥, given by!

el (X)) = (ef - X)eX, (11)

for all X € AV, which set extensor bases for ext(V).

1.J and K are colective indices. Recall, for example, that: ey = 1,e;,,€;, Aej,, .. (e =
1,ef1,ef1 Aef2, .. ) and v(J) = 0,1,2,... for J = 0,1, j1j2,- - ., where all index 71, jo, . . .
runs from 1 to n.



In fact they are lineary independent, and for each ¢ € ext(V') there exist
2"2" real numbers, say t;.x, given by

tJ;K:t(eJ) €K (12)
such that

11 K
t:;; mmtj;](cf . (13)

Such ¢,k will be called the J; K-th covariant components of ¢ with respect
to the extensor basis {e’¥}.

We notice that exactly (2"t — 1)? extensor bases for ext(V) can be con-
structed from the vector bases {e;} and {e’} of V. For instance, whenever
the basis extensors €,k and the real numbers t7K defined by

€J;K(X) = (€J'X)€K, (14)
tHE = t(e!)- e (15)

are being used, an expansion formula for ¢ € ext(V') analogous to that given
by eq.(13) can be obtained, i.e.,

11 .
! :XJIXK: S () (16)

Such t7 are called the J; K-th contravariant components of t with respect
to the extensor basis {e .k}

2.3 Elementary k-Extensors

A multilinear mapping which takes k-uple of vectors into g-vectors will be
called an elementary k-extensor over Vof degree q. The space of them,
namely k-ext(V,...,V; \?V), will be denoted by k-ext?(V). It is easy to
verify by using eq.(2) that

dim k-ext? (V) = n* (n) : (17)
q
It should be noticed that a elementary k-extensor over V of degree 0 is

just being a covariant k-tensor over V, i.e., k-ext’(V) = T},(V). It is easily
realized that 1-ext?(V) = exti (V).



The elementary k-extensors of degrees 0,1, 2, ... etc. are sometimes said
to be scalar, vector, bivector, ... etc. elementary k-extensors.
There are n* (Z) elementary k-extensors of degree g belonging to k-ext?(V),

namely g/t>Jkik1ke - defined by

gitrdiikieka gy ) = (g e L LL (g - @) A LA eRe, (18)
for all (vy,...,vx) €V X --- x V, which set elementary k-extensor of degree
—————
k copies

q bases for k-ext?(V).
In fact they are linearly independent, and for all ¢ € k-ext?(V') there are
nk (Z) real numbers, say t;, . % ..k, glven by

bituskrky = (€505 -5 €5,) - (e Ao Aeg,) (19)

such that .
t= at]‘l,...,jk;kl...kq€j1""’j’°;k1"'k"- (20)
Such ;.. i iki..k, Will be called the ji,...,Jk; k1. .. kg-th covariant compo-

nents of t with respect to the bases {gft»kiki--ka}

We notice that exactly 2¥*9 elementary k-extensors of degree ¢ bases for
k-ext?(V) can be constructed from the vector bases {e;} and {e’} of V.
For instance, we might define the basis elementary k-extensor of degree ¢
Ej1yjushr.k, and the real numbers ¢/1--7#3k1-ka by the following equations

€1kt kg (Ula s 7vk) = (Ul : ejl) s (Uk : ejk)ekl ARRRWA €kq> (21)
Ptk = (6B i) (AL Aek).  (22)

Then, we might have other expansion formula for ¢ € k-ext?(V) than that
given by eq.(20), i.e.,

1. .
t = at]l,...,Jk,lc1...Icqgjl,m’jk;klmkq_ (23)
Such ¢it-kiki-ka are called the jy, ..., Jjk; k1 ... ke-th contravariant compo-

nents of t with respect to the basis {€;,, . juik1. ko }-

Note that 1-ext? (V) = exth (V).

A completely skew-symmetric k-extensor over V of degree p (k > 2), i.e.,
© € k-ext?(V) such that for any v;,v; € V with 1 <i < j <k,

O,y Viye oy Vs oo, ) = —O(V1, .., V), Uiy, Ug) (24)

7



will be called a k-exform over V' of degree p.

The vector space of k-exforms over V' of degree p will be denoted by
k-ex fP(V).

It is also convenient to define a 0-exform of degree p to be a p-vector (i.e.,
0-exfP(V) = AP V) and an l-exform of degree p to be a 1-extensor of degree
p (i.e., l-ex fP(V) = l-ext?(V)).

If dim V' = n, then dim k-ex f*(V) = (}) (7).

kJ \p
The k-exforms of degree 0,1,2,... etc. are said to be ‘scalar k-exforms’,
vector k-exforms’, ‘bivector k-exforms’,. .. etc.

Note that a scalar k-exform is just a k-form, i.e., k-exf'(V) = A V.
In this way, we see that the concept of k-exform generalizes the concept of
k-form.

3 Projectors

<&
Let AV be either any sum of homogeneous subspaces® of A V or the trivial

<
subspace {0}. Associated to /A°V, a noticeable extensor from AV to AV,
namely ();\V, can defined by

Xy, = (X)), +--+(X),,, if/’\vz/\flv+---+/\p”v. (25)
A 0, it AV ={0}

<
Such <>/0\V € l-ext(AV; A\ V) will be called the A\° V-projector extensor.

o <&
We notice that if AV is any homogeneous subspace of AV, i.e., AV =
/\’ V, then the projector extensor is reduced to the so-called p-part operator,

fe, ()o =(),-

AV

<
We now summarize the fundamental properties for the A V-projector
extensorg.

<
Let AV and AV be two subspaces of A V. If each of them is either any
1 2

<o
ZNote that for such a subspace AV there are v integers p1, ...,p, (0 < p1 < -+ <
<
p, <n)such that A V=AP"V+---+ AP V.



sum of homogeneous subspaces of A V' or the trivial subspace {0}, then

<<X>/°\V> = <X>/°\Vﬂ/°\v (26)

/O\V 1 2
<X>;\V+<X>;\V = <X>;\VU/°\V- (27)

Let A V be either any sum of homogeneous subspaces of A V' or the trivial
subspace {0}. It holds

(X)e Y =X-(¥) . (28)

<
In this sense we might say that the concept of A V-projector extensor is
just a well-done generalization of the concept of p-part operator.

4 The Extension Operator

Let {e;} be any basis for V, and {&7} be its dual basis for V*. As we know,
{e7} is the unique 1-form basis associated to the vector basis {e;} such that
€j(€i) = 5?

The linear mapping ext;(V) > ¢ — t € ext(V) such that for any X €

AV :if X = Xo+ ) X, then
k=1

"1 . .
HX) = Xot D0 1 Xe(eh, o e)tes) Ao AL(es,) (29)
k=1

will be called the extension operator. We call t the extended of t. It is the
well-known outermorphism of t in the ordinary linear algebra.

The extension operator is well-defined since it does not depend on the
choice of {e;}.

We summarize now the basic properties satisfied by the extension opera-
tor.

el The extension operator is grade-preserving, i.e.,

it X e /\"V, then t(X) e \"V. (30)

9



It is an obvious result which follows from eq.(29).
e2 Forany a € R, v €V and v, A ... Av, € A¥V it holds

tla) = a, (31)
tlv) = t(v), (32)
I(’Ul VAYAN U]c) = t(’l)l) VAR t(Uk) (33)

Proof.

The first statement trivially follows from eq.(29). The second one can
easily be deduced from eq.(29) by recalling the elementary expansion for-
mula for vectors and the linearity of extensors. In order to prove the third
statement we will use the remarkable formulas: v; A ... A v (w!, ..., W) =
ekt (v) . wP(v;,) and wy A .. A wy, = €,.5,w1 A ... A wg, where
Vi,...,0 €V, wy,...,w; €V and w',...,w* € V*, and the combinato-
rial formula e* €i,..i, = k!. By recalling the elementary expansion formula
for vectors and the linearity of extensors we have that

1 . .
toy Ao Avg) = i A A(E e )E(e ) A A t(ey,)
1. .
= Ee”"'zkeh(vil) e (v )t(e ) AL A t(ej)
1 . .
= thmzkt(vil) /\ ... /\ t(vik),

== t(’l)l) VAN /\t(’l)k) |
e3 For any X, Y € AV it holds
X AY) =t(X) ALY). (34)

It is an immediate result which follows from eq.(33).

We emphasize that the three fundamental properties as given by eq.(31),
eq.(32) and eq.(34) together are completely equivalent to the extension pro-
cedure as defined by eq.(29).

We present next some important properties of the extension operator.

e4 Let us take s,t € ext (V). Then, the following result holds

sot=sot. (35)

Proof.

10



It is enough to present the proofs for scalars and simple k-vectors.
For a € R, by using eq.(31), we get

sot(a) = a= s(a) = s(t(a)) = sot(a).

For a simple k-vector v; A ... Ay € /\k V, by using eq.(33), we get

sot(vy A...Avg) = sot(vy)A...ANsot(vg) =s(t(v1)) A... A s(t(vg))
= s(t(v) A...At(vg)) = s(t(vr A ..o Awg)),
= §O§(’U1/\.../\’Uk).

Next we can easily generalize to multivectors by linearity of extensors. It

yields
sot(X)=s0t(X). m

e5 Let us take t € ext}(V) with inverse t7! € exti(V), ie., t71ot =
tot™' =iy. Then, (t7') € ext(V) is the inverse of ¢ € ext(V), i.e.,

O~ =) (36)

Indeed, by using eq.(35) and the obvious property i, = ip v, we have that

tlot=tot ' =iy =t )ot=to(t™") =ipv.

It means that the inverse of the extended of t equals the extended of the
inverse of t.

In accordance with the corollary above we might use a more simple no-
tation ="' to denote both of (£)~! and (¢71).

e6 Let {e;} be any basis for V, and {e’} its euclidean reciprocal basis
for V, ie., e - e = (5;?. There are two interesting and useful formulas for
calculating the extended of ¢ € ext;(V), i.e.,

HX) = 1- X+Z eﬁ CNER) - Xt(e )AL Ate;)  (37)

- 1-X+Zy(ejl/\.../\ejk)-Xt(ejl)/\.../\t(ejk). (38)
=1

11



5 Standard Adjoint Operator

< <
Let as above A V and AV be two subspaces of A V such that each of them
1 2

is either any sum of homogeneous subspaces of A V. Let {e;} and {e’} be
two euclidean reciprocal bases to each other for V, i.e., e; - e = 6?.

<& <
The standard adjoint operator is the linear mapping 1-ext(AV; A V) >
1 2

< < <
t — t' € l-ext(AV; A V) such that for any Y € AV :
2 1 2

tHy) = t((1) V) Y+ Z %t(@ﬁ AL .ej’“>/<>\v) Yej, AN...ej (39)

A
1 1
- t ].o Y —t N L €5 ) 'YJI/\...J’“ 40
((Wg,) Y+ X gllen Aeeeeid ) Vel Aeh, ()
or into a more compact notation by employing the colective index J,
1
] — - J .
thy) = ZJ: V(J)!t(<e dpov) - Yes (41)
1 J
= 2 ayttedn) v (42)

We call t! the standard adjoint extensor of t. It should be noticed the use of
<

the A\ V-projector extensor.
1

The standard adjoint operator is well-defined since the sums appearing
in each of places above do not depend on the choice of {e,}.

< <
Let us take X € AV and Y € A V. A straightforward calculation yields
1 2
1
gt = — t({e’ . )
X-tNY) = EJ V(J)!t(@ >/\YV) Y(X -ey)

- U3 e

= H(X)pev) Y,

ie.,

X-tI(Y)=t(X) Y. (43)

12



It is a generalization of the well-known property which holds for linear oper-
ators.

Let us take ¢ € l-ext(A;V;\; V) and u € l-ext(A,V; A5 V). We can
note that wot € l-ext(A]V;A\;s V) and tf o ul € 1-ext(A\; V; \;V). Then,
let us take X € A7V and Z € A3V, by using eq.(43) we have that

X -(wot)(Z)=(uot)(X)-Z=t(X)-u'(Z) =X -t oul)(2).
Hence, we get
(uot)t =t oul. (44)

Let us take ¢ € 1-ext(A\°V; \° V) with inverse t 71 € 1-ext(A°V; \° V),
ie,t™l ot =tot™ = ipey, where ipoy € l-ext(A°V;A\°V) is the so-
called identity function for A°V. By using eq.(44) and the obvious property
iNy = i;\ov, we have that

tlot=tot '=ipey=>thot ) =t ot =ipey,
hence,
=N, (45)

i.e., the inverse of the adjoint of ¢ equals the adjoint of the inverse of t.
In accordance with the above corollary it is possible to use a more simple
symbol, say t*, to denote both of (t/)~! and (¢71).

Let us take ¢ € exti (V). We note that t € ext(V) and (t') € ext(V). A
straightforward calculation by using eqs.(37) and (38) yields

() = 1-Y+Zki(eﬁ/\...ejk)-th(ejl)A...tT(ejk)

13



Hence, we get

" =" (46)
This means that the extension operator commutes with the adjoint operator.
In accordance with the property above we may use a more simple notation

t' to denote without ambiguities both of (¢') and (2)*.
In many apphcatlons the adjoint operator is used for the cases where

/\V A’V and /\V A"V are homogenous subspaces of A V. In this

partlcular case the adjoint operator is simply a linear mapping acting on
these vector spaces of extensors, namely ext?(V) 2t — t' € extd(V). We
have from eq.(41) and eq.(42) the simple formulas

1 . .
() = e Aeees,) V(e AL ) (47)
1
— Ht(eil A ___ejp) 'Y(ejl A ...ejp), (48)

for all Y € A?V, where Einstein’s convention has been used.

6 The Generalization Operator

Let {ex} be any basis for V, and {e*} be its euclidean reciprocal basis for V,
as we know, ey - ¢! = 6%.
The linear mapping ext} (V) 3 t —¢€ ext(V) such that for any X € AV

£ (X) = t(e") A (epuX) = t(ex) A (€F2X) (49)

will be called the generalization operator. We call ¢ the generalized of t.

The generalization operator is well-defined since it does not depend on
the choice of {ex}.

We present now some important properties which are satisfied by the
generalization operator.

gl The generalization operator is grade-preserving, i.e.,

k k
if X € /\"V, then ¢ (X)e /\ V. (50)

14



g2 The grade involution™ € ext(V), reversion™ € ext(V'), and conjugation
- € ext(V) commute with the generalization operator, i.e.,

X = (%), (51)
(%) = 1 (X), (52)
X = (%) (53)

They are immediate consequences of the grade-preserving property.
g3 Forany « € R, v € V and X,Y € AV it holds

E (@) = 0, (54)
tv) = tW), (55)
E(X/\Y) = E(X)/\Y+X/\£(Y). (56)

The proof of eq.(54) and eq.(55) are left to the reader. Hint: v_a = 0 and
vow = v - w. Now, the identities: as(X AY) = (auX)AY + X A (asY) and
aAnX =XA a, with a € V and X,Y € AV, allow us to prove the property
given by eq.(56).

We can prove that the basic properties given by eq.(54), eq.(55) and
eq.(56) together are completely equivalent to the generalization procedure as
defined by eq.(49).

g4 The generalization operator commutes with the adjoint operator, i.e.,

(1) =(t"), (57)
or put it on another way, the adjoint of the generalized of t is just the gen-
eralized of the adjoint of t.

Proof. A straightforward calculation, by using eq.(43) and the multivector
identities: X - (aAY) = (auX)AY and X - (auY) = (aAX) Y, witha € V
and X,Y € AV, gives

('(X0)-Y = Xt (1)
= (e]: A (H(e)aX)) Y = (e A (t(e!) - eFepuX)) - Y
= (e -t1(eM)ej A (euX)) - Y = (t1(e¥) A (e,uX)) - Y
= () (X)Y.

15



Hence, by non-degeneracy of the euclidean scalar product, the required result
follows. H

In accordance with the above property we might use a more simple symbol
t' to mean (¢)' and (¢) .

g5 The symmetric (skew-symmetric) part of the generalized of ¢ is just
the generalized of the symmetric (skew-symmetric) part of ¢, i.e.,

(1)x = (t2)- (58)

This property follows immediately from eq.(57).
We see also that it is possible to use the more simple notation ¢ to mean
~+
(t)j: and (ti)

g6 The Nskew-symmetric part of the generalized of ¢ can be factorized by

the noticeable formula?
1
t (X)= §biv[t] x X, (59)

where biv[t] = t(e*) A ey is an characteristic invariant of t, the so-called
bivector of t.
Proof. By using eq.(58), the well-known identity t_(a) = 3biv[t] X a and the
remarkable multivector identity B x X = (B x e¥) A (e,1X), with B € AV
and X € AV, we have that

b(X) = (eh) A (epaX) = (%biv[t] X eF) A (epuX) = %biv[t] < X.m

g7 A noticeable formula holds for the skew-symmetric part of the gener-
alized of ¢. For all X, Y € AV

b(XxY)=t (X)«Y+Xst (V), (60)

~ ~

where * is any product either (A), (-), (5,1) or (Clifford product).
In order to prove this property we should use eq.(59) and the noticeable
multivector identity Bx (X *Y) = (Bx X)*Y + X *(BxY), with Be AV

Recall that X x Y = (XY - Y X).

16



and X,Y € A V. By taking into account eq.(54) we can see that the following
property for the euclidean scalar product of multivectors holds

t(X)Y+X ¢t (Y)=0 (61)

~

It is consistent with the well-known property: the adjoint of a skew-symmetric
extensor equals minus the extensor!

7 Determinant

We now define a characteristic scalar associated to any (1, 1)-extensor t. It
is the unique real number, denoted by det[t], such that

t(I) = det[{], (62)

for all non-zero pseudoscalar I. It will be called the determinant of t.

It is a well-defined scalar invariant since it does not depend on the choice
of I.

We present now some of the most important properties satisfied by the
determinant.

d1 Let t and u be two (1, 1)-extensors. It holds

det[u o #] = det[u] det[{]. (63)

Take a non-zero pseudoscalar I € A" V. Then, by using eq.(35) and
eq.(62) we can write that

detfuot]l = wot(l)=wuot(l)=u(t(l))
= wu(det[t]]) = det[t]u(]),
= det[t] det[u]].

d2 Let us take ¢t € ext (V) with inverse ¢t ! € ext}(V). It holds
det[t™"] = (det[t])". (64)
Indeed, by using eq.(63) and the obvious property det[iyy] = 1, we have

that
tlot=tot ' =iy = detlt ' det[t] = det[f]det[t '] = 1.
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It means that the determinant of the inverse equals the inverse of the deter-
minant.

Due to the above corollary it is often convenient to use the short notation
det ~" [t] for both of det[t~'] and (det[t])~".
d3 Let us take ¢ € ext] (V). It holds

det[t] = det]t]. (65)

Indeed, take a non-zero I € A" V. Then, by using eq.(62), eq.(43) and eq.(46),
we have that

det[tI- I =tI(I)- T =1-t(I) = I -det[t]] = det[t]] - I,

from where the expected result follows.

Let {e;} be any basis for V, and {e’} be its euclidean reciprocal basis
for V, ie., e - e = 5;?. There are two interesting and useful formulas for
calculating det[t], i.e.,

det[t] = tlerA...Aep)-(e'A...N€M), (66)
= tle' A AE) (1 A Aey). (67)

They follow from eq.(62) by using (e1 A...Ae,) - (e' A...Ae") =1 which
is an immediate consequence of the formula for the euclidean scalar product
of simple k-vectors and the reciprocity property of {e;} and {e*}.

Each of eq.(66) and eq.(67) is completely equivalent to the definition of
determinant given by eq.(62).

8 Some Applications

Theorem 1 Let ({b}, {b*}) and ({ex}, {€*}) be two pairs of euclidean bases
for V. There exists an unique invertible (1,1)-extensor f such that

er = flbk), (68)
ef = f(F) foreach k=1,...,n. (69)

And, reciprocally given an arbitrary invertible (1,1)-extensor, say f, it is

possible construct from a pair of reciprocal bases, say ({by}, {b*}), with the
above formulas another pair of reciprocal bases, say ({ex}, {€}).
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Proof. Since each one of the sets {e;} and {e*} is a basis of V, there must
be exactly two invertible (1, 1)-extensors over V, say f; and fs, such that

ex. = fi(be),
e® = fo(bF) foreach k =1,...,n.

It is not difficult to see that f; and f, are given by

n

filo) = D (b - v)e;,

J=1
n

) = ) ¥ -v)e.

j=1
Due to the reciprocity property of ({ex}, {e*}) we have
Fu(br) - fo(6) = 6 = by - fl o fob) = 8 = fl o fult) =¥,

for each 1 =1,...,n. Thus, fio fo =iy.

Now, let us choose f; = f. Then, it must be fo = f* (recall that f* =
(fH~' = (f~HT), and so the first statement follows.

To prove the second statement we must check that {ej} and {e*} given by
eqs.(68) and (69) satisfy the reciprocity property. Indeed, by using eq.(43),
we can write

er-€ = flbg)  frO) =bp-flof () =bp -0 =6 m

8.1 Orthonormal Bases

It should be noted that if f is an orthogonal (1,1)-eztensor (i.e., ff = f71,
or equivalently f = f* (the adjoint of f being taken with respect to the
euclidean scalar product), then {ey}, as defined in eq.(68), is an orthonormal
basis for V, i.e., e;-ex = &, if and only if {b;} is an orthonormal basis for V,

i.e., bj . bk = 5jk- Indeed, €j € = f(bj) . f(bk) = fJr 9] f(b]) . bk = bj . bk = 5jk-
8.2 Changing Basis Extensor

Theorem 1 implies that for two arbitrary pairs of reciprocal bases of V,
say ({ex},{e"}) and ({e,}, {€*}), there must be an unique invertible (1,1)-
extensor over V, say ¢, such that

eler) = e, (70)
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e*(ef) = ¥, (71)

Indeed, there are exactly two invertible (1, 1)-extensors, say f and f,
such that ey = f(bg), e¥ = f*(b*) and e}, = f'(by), e = f™*(b*) for each k =
1,...,n. From these equations we get e}, = f'o f~'(ex) and e* = f* o fT(eF).
It means that there is an unique invertible (1, 1)-extensor which satisfies
eqs.(70) and (71). Such one is given by ¢ = f'o f1.

Such ¢ € exti(V) will be called the changing basis extensor relative to
({ex}, {€*}) and ({e,},{e¥'}) (in this order!).

The changing basis extensor ¢, as is not difficult to see, can be defined
equivalently by
e(v) = (e’ - v)el. (72)

1

Also, we can easily see that e, can be alternatively defined by

e (W) = (e - v)es, (73)
and, by using eq.(43), a straightforward calculation yields

elv) = (& -v)e, (74)

e*(v) = (es-v)e”. (75)

As we know, the vector bases {ex} and {e}} induce the k-vector bases
{eg Ao Aej t and {€} A... A€} }. From eq.(70) by using eq.(33) it follows
that

gley Nooihej) =€ Ao Ne, . (76)

Analogously for the vector bases {e’} and {e’'} it holds

e (&AL NETR) = AL N, (77)

8.3 Inversion of a Non-singular (1, 1)-Extensor

We will end this section presenting an useful formula for the inversion of a
non-singular (1, 1)—extensor.

Let us take t € ext{(V). If ¢ is non-singular, i.e., det[t] # 0, then there
exists its inverse t~' € ext] (V) which is given by

t7'(v) = det [ttt (v )T, (78)

where I € A"V is any non-zero pseudoscalar.
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Proof. We must prove that ¢~! given by the formula above satisfies both of
conditions t ' ot =14y and tot™! =iy

Let I € A"V be a non-zero pseudoscalar. Take v € V, by using the
extensor identities* tf(¢(v)I)I~ = t(¢'(vI)I~!) = det[t]v, we have that

ttot(w) =t Yt(w)) = det '[t]tT (t(v) )]t = det ' [t] det[t]v = iy (v).
And

tot ) =t(t '(v)) = det ' [t]t(tT (wI)I ) = det 7 [t] det[t]v = iy (v). W

9 Conclusions

We introduced and developed some aspects of the theory of extensors, and
made preliminary applications of it. The concept of extensor when used
together with the euclidean Clifford algebra (as introduced in [4], paper I
of this series) permits an intrinsic formulation of the key concepts of linear
algebra theory, and plays a crucial role in our study of more sophisticated
concepts which are developed in subsequent papers of the present series. And
also in some forthcoming new series of papers.
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