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Abstrat

Let V be a n-dimensional real vetor spae. In this paper we

introdue the onept of eulidean Cli�ord algebra C`(V;G

E

) for a

given eulidean struture on V , i.e., a pair (V;G

E

) where G

E

is a

eulidean metri for V (also alled an eulidean salar produt). Our

onstrution of C`(V;G

E

) has been designed to produe a powerful

omputational tool. We start introduing the onept of multivetors

over V . These objets are elements of a linear spae over the real �eld,

denoted by

V

V: We introdue moreover, the onepts of exterior and

eulidean salar produt of multivetors. This permits the introdu-

tion of two ontration operators on

V

V; and the onept of eulidean

interior algebras. Equipped with these notions an eulidean Cli�ord

produt is easily introdued. We worked out with onsiderable details

several important identities and useful formulas, to help the reader to

develope a skill on the subjet, preparing himself for the reading of

the following papers in this series.
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1 Introdution

This is the �rst paper of a series of seven. We introdue C`(V;G

E

), an

eulidean Cli�ord algebra of multivetors assoiated to an eulidean struture

on a n-dimensional real vetor spae V . By an eulidean struture we mean

a pair (V;G

E

) where G

E

is an eulidean metri on V: Our onstrution of

C`(V;G

E

) has been designed in order to produe a powerful omputational

tool. It starts by introduing the onept of multivetors over V . These

objets are elements of a linear spae over the real �eld, denoted by

V

V:

We introdue in

V

V , the onepts of exterior produt and eulidean salar

produt of multivetors. This permits the introdution of two ontration

operators on

V

V; and the onept of eulidean interior algebras. Equipped

with these notions an eulidean Cli�ord produt is introdued. We worked

out with onsiderable details several important identities and useful formulas,

to help the reader to develope a skill on the subjet, preparing himself for

the reading of the following papers in this series

1

(and also for the ones in

two forthoming series of papers). We have the following resume onerning

to the ontent of the other papers of the present series.

1

The papers in this series will be denoted when quoted within or in another paper in

the series by I, II, III,...
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In paper II we introdue the fresh onept of general extensors. The

theory of these objets is developed and the properties of some partiular

extensors that appear frequently in our theory of multivetor funtions and

multivetor funtionals (the subjet of papers V,VI and VII) are worked in

details.

In paper III we study the relationship between the onepts of a metri

tensor G (of arbitrary signature s = p � q ( or (p; q) as physiists say),

with p + q = n) for a n-dimensional vetor spae V and a metri extensor

g for that spae (with the same signature), showing the advantage of using

the later objet even in elementary linear algebra theory. It is worthwhile

to emphasize here that our introdution of the onept of metri extensor

plays a ruial role in our de�nition of metri Cli�ord algebras, whih are

introdued in paper IV. There, a metri Cli�ord produt is introdued by a

well-de�ned deformation (indued by g) of a given eulidean Cli�ord produt.

We introdue also the onept of gauge metri extensor h assoiated to a

metri extensor g; and present and prove the so-alled golden formula. The

gauge extensors

2

appear naturally in our theory of the di�erential geometry

on manifolds.

In papers V and VI we present a theory of multivetor funtions of a real

variable, and a theory of multivetor funtions of a p-vetor variable. The

notions of limit, ontinuity and di�erentiability are arefully studied. Par-

tiular emphasis is given to relate the basi onept of diretional derivative

with other types of derivatives suh as the generalized url, divergene and

gradient.

In paper VII we develop a theory of multivetor funtionals, a key onept

for the developments that we have in mind, and that has not been properly

studied until now.

In two future series of papers the material developed in the present se-

ries will be used as the expression and alulational tool of several di�erent

mathematial and physial theories. We quote here our theory of possible

di�erent kinds of ovariant derivatives operators for multivetor and exten-

sor �elds on arbitrary metri manifolds whih expliitly shows how these

di�erent possible ovariant derivative operators are related through the on-

ept of gauge extensors. In partiular, the onept of deformed derivative

operators will be seen to play a key rule in our formulation of families of

mathematially possible geometri theories of gravitation (using Cli�ord al-

2

More preisely, in di�erential geometry the key objets are gauge extensor �elds.
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gebras methods). We believe that our presentation of these theories have a

new avor in relation to old presentations of possible theories of gravitation

(of the Riemann-Cartan-Weyl types). Also, it will be seen that the onept

of multivetor funtionals (developed in paper VII) is a neessary one for a

presentation of a rigorous formulation of a Lagrangian theory for multivetor

and extensor �elds having support on an arbitrary manifold (or subsets of

it) representing spaetime.

3 4

Before starting our enterprise we reall that Cli�ord Algebras and their

appliations in Mathematial Physis are now respetable subjets of researh

whose wealth an be appreiate by an examination of the topis presented

in the last �ve international onferene on this subjet

5

([1℄,[6℄). We have

no intention to present here even a small history of the subjet, and we do

not laim even to have given any reasonable list of referenes on papers and

books on the subjet. Only a few points and referenes will be realled here

6

.

Cli�ord algebras

7

has been applied sine a long time ago for presentations

of Maxwell theory, see e.g., ([7℄-[10℄), of Dira theory, see e.g., ([11℄-[19℄)

and the theory of the gravitational �eld, see e.g., ([9℄,[21℄,[22℄). Hestenes in

1966 [7℄ wrote a small book on the subjet whih has been soure of inspi-

ration for many sientists and eventually spread unneessary misoneptions

on the subjet of Cli�ord algebras and their appliations in physis. In 1984

Hestenes and Sobzyk published a book

8

, emphasizing that Cli�ord algebras

3

The de�nition of a spaetime will be given at the appropriate plae.

4

Our approah immediately suggests possible improvements of the Einstein's gravita-

tional theory as well as other interpretations, where the gravitational �eld, ontrary to

what happens in Einstein's theory is understood as a physial �eld in the sense of Faraday.

5

The subjet has even a journal, Advanes in Applied Cli�ord Algebras , edited by

J. Keller and in publiation sine 1991. Keller is an enthusiasti of the appliations of

Cli�ord algebras in theoretial physis and ontributed with several beautiful papers to

the subjet. His ideas are niely desribed in his reent book [19℄.

6

We anteipately apologize to the author of any important ontribution on the subjet

that has not been quoted in our brief aount.

7

Formulations of Maxwell and Dira theories whih use only Cli�ord algebras (more

properly speaking Cli�ord bundles), and do not use the onept of extensor are inomplete

[20℄. These theories, e.g., annot apture the essential mathematial nature of the physial

onepts of energy-momentum and angular momentum assoiated with physial �elds (in

the sense of Faraday), sine they must be mathematially represented by extensor �elds.

In partiular, approahes to Dira theory whih do not use the onept of extensors are

inomplete, to say the less. On this issue, see ( [14℄-[18℄).

8

This book is essentially based on Sobzyk Ph.D. thesis presented at the Department

of Mathematis of the University of Arizona. We are grateful to Professor P. Lounesto
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leads naturally to a geometri alulus [23℄. Some of the ideas that we will

explore in papers I-VII have their inspiration on that book. However, it must

be emphasized that our approah di�ers substantially from the one of those

authors in many aspets as the reader an verify. In partiular, the theory of

multivetor funtionals and their derivatives with the full generality that the

subjet deserves appears in this series for the �rst time. Our exposition of

the di�erential geometry on manifolds (the subjet of a new series of papers),

with a general theory of onnetions using the onept of extensor �elds is

(we believe) a fresh approah to the subjet. Our theory is not based on the

onept of vetor manifolds used in [23℄ (whih presents some problems [24℄)

and an be applied rigorously to general manifolds of arbitrary topology

9

.

Our development of a Lagrangian theory of multivetor �elds

10

improves

preliminary presentations

11

, sine now we give a formulation valid for multi-

vetor �elds and extensor �elds over arbitrary Lorentzian manifolds equipped

with a general onnetion (not neessarily metri ompatible)

12

. We empha-

size also that our presentation of Einstein's gravitational theory (in a future

series of papers) using the multivetor-extensor alulus on manifolds will

demonstrates that preliminary attempts [22℄ towards a theory of the gravita-

tional �eld based on these onepts is paved with some serious mathematial

(and also physial) misoneptions (see also [25℄ in this respet) whih in-

validate them. We think that our presentation of the basi working ideas

about eulidean and metri Cli�ord algebras is reasonable self omplete for

our purposes. However, there is still more onerning Cli�ord algebra theory

that has not been developed or even quoted in this series of papers. These

results are important for many appliations ranging from pure and applied

mathematis to engineering and reent physial theories (see, e.g., [30℄ [31℄).

For readers that are newomers to the subjet we reommend the books

(Helsinki) for this important information.

9

A preliminary presentation of the general theory of onnetion using multivetor-

extensor alulus on Minkowski manifolds appears in [25℄.

10

In the paper dealing with the Lagrangian formalism for �elds we make use of the

onept of a spinor �eld that (roughly speaking) an be said to be an equivalene lass of

a sum of non homogenous multivetor �elds. A tentative de�nition of these objets appear

in [26℄, whih unfortunately ontains many misprints and some important errors. These

are orret in ( [31℄,[32℄).

11

See [27℄ for a list of referenes on the subjet.

12

It is also possible to present a theory of spinor �elds, where these objets are (loosely

speaking) represented by ertain equivalene lasses of multivetor �eds on an arbitrary

manifold. A rigorous presentation of that theory is given elsewhere ([28℄,[29℄).
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by Lounesto [32℄ and Porteous ([33℄,[34℄) for omplementary points of view

and material relative to the developments that follows.

2 The Eulidean Cli�ord Algebra of Multi-

vetors

Let V be a vetor spae over R with �nite dimension, i.e., dimV = n; where

n 2 N; and let V

�

be the dual vetor spae to V . Reall that dimV =

dimV

�

= n.

Let k be an integer number with 0 � k � n. The vetor spaes of k-

vetors and k-forms over V as usual will be denoted by

V

k

V and

V

k

V

�

,

respetively.

13

As well known, a 0-vetor an be identi�ed with a real number, i.e.,

V

0

V = R; an 1-vetor is the name of objets living on V; i.e.,

V

1

V = V;

and a k-vetor with 2 � k � n is preisely a skew-symmetri ontravariant

k-tensor over V . A 0-form is also a real number, i.e.,

V

0

V

�

= R. A 1-form

is a form (or ovetor) belonging to V

�

; i.e.,

V

1

V

�

= V

�

; and a k-form with

2 � k � n is exatly a skew-symmetri ovariant k-tensor over V: Reall that

dim

V

k

V = dim

V

k

V

�

=

�

n

k

�

.

The 0-vetors, 2-vetors,: : : ; (n� 1)-vetors and n-vetors are sometimes

alled salars, bivetors,: : : ; pseudovetors and pseudosalars, respetively.

The 0-forms, 2-forms,: : : ; (n � 1)-forms and n-forms are named as salars,

biforms,: : : ; pseudoforms and pseudosalars, respetively.

2.1 Multivetors

A formal sum of k-vetors over V with k running from 0 to n;

X = X

0

+X

1

+ � � �+X

n

; (1)

is alled a multivetor over V:

The set of multivetors over V has a natural struture of vetor spae

over R and is usually denoted by

V

V = R + V + � � �+

V

n

V: We have that

dim

V

V =

�

n

0

�

+

�

n

1

�

+ � � �+

�

n

n

�

= 2

n

:

13

If the reader is not familiar with exterior algebra he must onsult texts on the subjet.

See, e.g., ([35℄,[36℄[37℄). However, are must be taken when reading di�erent books whih

use di�erent de�nitions for the exterior produt and still use all the same symbol for that

di�erent produts. About this issue, see omments on Appendix A.
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2.1.1 k-Part, Grade Involution and Reversion Operators

Let k be an integer number with 0 � k � n: The linear mapping

V

V 3 X 7!

hXi

k

2

V

k

V suh that for any j with 0 � j � n : if j 6= k; then hXi

k

= 0;

i.e.,

hXi

k

= X

k

; (2)

for eah k = 0; 1; � � � ; n; is alled the k-part operator. hXi

k

is read as the

k-part of X:

It is evident that any multivetor an be written as sum of their k-parts

X =

n

X

k=0

hXi

k

: (3)

There are several important automorphisms (or antiautomorphisms) on

V

V . For what follows, we shall need to introdue some automorphisms that

are involutions on

V

V . We have:

i The linear mapping

V

V 3 X 7!

^

X 2

V

V suh that

^

X =

n

X

k=0

(�1)

k

hXi

k

; (4)

is alled the main automorphim operator or grade involution operator.

^

X is

alled the grade involution of X:

ii The linear mapping

V

V 3 X 7!

e

X 2

V

V suh that

e

X =

n

X

k=0

(�1)

1

2

k(k�1)

hXi

k

; (5)

is an antiautomorphism alled the reversion operator.

e

X is alled the reverse

of X:

Sine the main automorphisms and reversion operators are involutions

on the vetor spae of multivetors, we have that

b

^

X = X and

e

e

X = X:

Both involutions ommute with the k-part operator, i.e.,

d

hXi

k

=

D

^

X

E

k

and

℄

hXi

k

=

D

e

X

E

k

; for eah k = 0; 1; : : : ; n:

The omposition of the main automorphism with the reversion operator

(in any order) is alled the onjugate operator. The onjugate of X will be

denoted by

�

X. We have

�

X =

e

^

X =

b

~

X: (6)
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2.2 Exterior Algebra

We de�ne the exterior produt

14

of X

p

2

V

p

V and Y

q

2

V

q

V by

X

p

^ Y

q

=

(p+ q)!

p!q!

A(X

p


 Y

q

); (7)

where X

p


 Y

q

is the tensor produt of X

p

by Y

q

(see Appendix A) and A

is the antisymmetrization operator, i.e., a linear mapping A : T

k

V !

V

k

V

suh that

(i) for all � 2 R : A� = �;

(ii) for all v 2 V : Av = v;

(iii) for all t 2 T

k

V; with k � 2;

At(!

1

; : : : ; !

k

) =

1

k!

�

i

1

:::i

k

t(!

i

1

; : : : ; !

i

k

); (8)

where �

i

1

:::i

k

is the permutation symbol of order k;

�

i

1

:::i

k

=

8

<

:

1; if i

1

: : : i

k

is a even permutation of 1 : : : k

�1; if i

1

: : : i

k

is odd permutation of 1 : : : k

0; otherwise

(9)

Eq.(7), with p � 1 and q � 1 means that for !

1

; : : : ; !

p

; !

p+1

; : : : ; !

p+q

2

V

�

;

X

p

^ Y

q

(!

1

; : : : ; !

p

; !

p+1

; : : : ; !

p+q

)

=

1

p!q!

�

i

1

:::i

p

i

p+1

:::i

p+q

X

p

(!

i

1

; : : : ; !

i

p

)Y

q

(!

i

p+1

; : : : ; !

i

p+q

): (10)

From eq.(7) by using a well-known property of the antisymmetrization

operator, namely: A(At
 u) = A(t
Au) = A(t
 u); a notieable formula

for expressing simple k-vetors in terms of tensor produts of k vetors an

be easily dedued. It is

15

,

v

1

^ : : : ^ v

k

= �

j

1

:::j

k

v

j

1


 : : :
 v

j

k

: (11)

14

There are several di�erent de�nitions of the exterior produt in the literature di�ering

by fators and all using the same symbol.. This may lead to onfusion if are is not taken.

See Appendix A for some details.

15

Reall that �

j

1

:::j

k

� �

j

1

:::j

k

:

8



If !

1

; : : : ; !

k

2 V

�

; then

v

1

^ : : : ^ v

k

(!

1

; : : : ; !

k

) = �

j

1

:::j

k

!

1

(v

j

1

) : : : !

k

(v

j

k

): (12)

Now, we de�ne the exterior produt of multivetors X and Y as being

the mutivetor with omponents hX ^ Y i

k

suh that

hX ^ Y i

k

=

k

X

j=0

hXi

j

^ hY i

k�j

; (13)

for eah k = 0; 1; : : : ; n: Note that on the right side there appears the exterior

produt of j-vetors and (k � j)-vetors with 0 � j � n.

This exterior produt is an internal omposition law on

V

V . It is as-

soiative and satis�es the usual distributive laws (on the left and on the

right).

The vetor spae

V

V endowed with this exterior produt ^ is an asso-

iative algebra alled the exterior algebra of multivetors.

We reall now for future use some important properties of the exterior

algebra of multivetors:

ei For any �; � 2 R; X 2

V

V

� ^ � = � ^ � = �� (real produt), (14)

� ^X = X ^ � = �X (multipliation by salars). (15)

eii For any X

j

2

V

j

V and Y

k

2

V

k

V

X

j

^ Y

k

= (�1)

jk

Y

k

^X

j

: (16)

eiii For any X; Y 2

V

V

\

X ^ Y =

^

X ^

^

Y ; (17)

^

X ^ Y =

e

Y ^

e

X: (18)

2.3 Eulidean Salar Produt

Let G

E

be an eulidean metri for V , i.e., a mapping G

E

: V �V ! R whih

is a symmetri, non-degenerate and positive de�nite bilinear form over V;

G

E

(v; w) = G

E

(w; v) 8v; w 2 V (19)

If G

E

(v; w) = 0 8w 2 V; then v = 0 (20)

G

E

(v; v) > 0 8v 2 V and if G

E

(v; v) = 0; then v = 0: (21)

9



It is usual to write

G

E

(v; w) � v � w (22)

where v � w is said to be the salar produt of the vetors v; w 2 V .

This pratie forgets that any salar produt is relative to a given G

E

;

it is a fat whih will be important for the developments that follows, the

orret notation should be v �

G

E

w. Nevertheless, when no onfusion arises

we will follow the standard pratie.

The pair (V;G

E

) is alled an eulidean struture for V . Sometimes, an

eulidean struture is also alled an eulidean spae. It is very important

to realize that there are an in�nite of eulidean strutures for a real vetor

spae V . Two eulidean strutures (V;G

E

) and (V;G

0

E

) are equal if and only

if G

E

= G

0

E

.

Let B be the set of all basis of V . It means that a generi element of

B is an ordered set of linearly independent vetors of V , say (e

1

; e

2

; :::; e

n

);

whih will be denoted simply by fe

k

g in what follows.

Now, given an eulidean struture for V , we an immediately selet a

subset B

O

of B whose elements are of the orthonormal bases aording to

the eulidean struture. This means that if ff

k

g 2 B

O

, then

G

E

(f

i

; f

j

) � f

i

� f

j

= Æ

ij

; (23)

where Æ

ij

=

�

1; i = j = 1; 2; :::; n

0; i 6= j

: It is trivial to realize that any two

basis ff

k

g; ff

0

k

g 2 B

O

are related by a linear orthogonal transformation, i.e.,

f

0

k

= L

k

i

f

i

; where the matrix L whose entries are the real numbers L

k

i

is

orthogonal, i.e., L

t

L = LL

t

= 1:

One an eulidean struture (V;G

E

) has been set we an equip

V

p

V

with an eulidean salar produt of p-vetors.

V

V an be endowed with an

eulidean salar produt of multivetors.

Let fe

k

g be any basis of V; and f"

k

g be the dual basis of fe

k

g: As we know,

f"

k

g is the unique basis of V

�

suh that "

k

(e

j

) = Æ

k

j

: Assoiated to (V;G

E

)

we de�ne the salar produt of p-vetors X

p

; Y

p

2

V

p

V; namely X

p

� Y

p

2 R;

by the following axioms:

Ax-i For all �; � 2 R;

� � � = �� (real produt). (24)

Ax-ii For all X

p

; Y

p

2

V

p

V with p � 1;

X

p

� Y

p

= (

1

p!

)

2

X

p

("

I

)Y

p

("

J

) det [G

E

(e

I

; e

J

)℄ ; (25)

10



where we use (onveniently) the short notations

X

p

("

I

) � X

p

("

i

1

; : : : ; "

i

p

) =

X

p

i

1

:::i

p

; (26)

Y

p

("

J

) � Y

p

("

j

1

; : : : ; "

j

p

) =

Y

p

j

1

:::j

p

: (27)

X

p

("

i

1

; : : : ; "

i

p

) and Y

p

("

j

1

; : : : ; "

j

p

) are the omponents of X

p

and Y

p

with

respet to the p-vetor basis fe

j

1

^ : : : ^ e

j

p

g and 1 � j

1

< � � � j

p

� n; i.e.,

X

p

=

1

p!

X

p

("

i

1

; : : : ; "

i

p

)e

i

1

^ : : : e

i

p

and Y

p

=

1

p!

Y

p

("

j

1

; : : : ; "

j

p

)e

j

1

^ : : : e

j

p

:

(28)

Also,

det [G

E

(e

I

; e

J

)℄ � det

2

4

G

E

(e

i

1

; e

j

1

) : : : G

E

(e

i

1

; e

j

k

)

: : : : : : : : :

G

E

(e

i

k

; e

j

1

) : : : G

E

(e

i

k

; e

j

k

)

3

5

: (29)

Note that in eq.(25) the Einstein onvention for sums over the indies I �

i

1

; : : : ; i

p

= 1; : : : ; n and J � j

1

; : : : ; j

p

= 1; : : : ; n was used.

It is not diÆult to realize that the salar produt de�ned by the axioms

i-ii does not depend on the bases fe

k

g and f"

k

g for alulating it.

It is a well-de�ned eulidean salar produt on

V

p

V; sine it is symmetri,

satis�es the distributive laws, has the mixed assoiative property and is non-

degenerate, i.e., if X

p

�Y

p

= 0 fot all Y

p

; then X

p

= 0: It is also satisfying the

strong property of being positive de�nite, i.e., X

p

�X

p

� 0 for all X

p

and if

X

p

�X

p

= 0; then X

p

= 0:

So the salar produt on

V

p

V as de�ned by eqs.(24) and (25) will be

alled the eulidean salar produt of p-vetors assoiated to (V;G

E

):

Now, assoiated to (V;G

E

) we de�ne the salar produt of multivetors

X; Y 2

V

V; namely X � Y 2 R; by

X � Y =

n

X

k=0

hXi

k

� hY i

k

: (30)

Note that on the right side there appears the salar produt of k-vetors with

0 � k � n; as de�ned by eqs.(24) and (25).

By using eqs.(24) and (25) we an easily note that eq.(30) an be written

as

11



X � Y = hXi

0

hY i

0

+

n

X

k=1

(

1

k!

)

2

hXi

k

("

I

) hY i

k

("

J

) det [G

E

(e

I

; e

J

)℄ : (31)

Reall that in eq.(31) the Einstein onvention for sums over the indies I �

i

1

; : : : ; i

k

= 1; : : : ; n and J � j

1

; : : : ; j

k

= 1; : : : ; n was used.

It is very important here to notie that the salar produt as de�ned by

eq.(30) is a well-de�ned eulidean salar produt on

V

V: It is symmetri,

satis�es the distributive laws, has the mixed assoiative property and is non-

degenerate, i.e., if X � Y = 0 for all Y; then X = 0: In addition, it has also

the strong property of being positive de�nite, i.e., X �X � 0 for all X and if

X �X = 0; then X = 0:

So the salar produt on

V

V as de�ned by eq.(30) will be alled the

eulidean salar produt of multivetors assoiated to (V;G

E

):

Now, note that if we take any orthonormal basis ff

k

g with respet to

(V;G

E

); i.e., f

j

� f

k

= Æ

jk

; whose dual basis is f'

k

g; i.e., '

k

(f

j

) = Æ

k

j

; we

have that det[G

E

(f

I

; ; f

J

)℄ = �

j

1

:::j

k

i

1

:::i

k

= �

i

1

:::i

k

j

1

:::j

k

: Then, by taking into aount

16

that

1

k!

�

j

1

:::j

k

i

1

:::i

k

hXi

k

('

i

1

; : : : ; '

i

k

) = hXi

k

('

j

1

; : : : ; '

j

k

); we an easily see that

eq.(31) an be written as

X � Y = hXi

0

hY i

0

+

n

X

k=1

1

k!

n

X

j

1

:::j

k

=1

hXi

k

('

j

1

; : : : ; '

j

k

) hY i

k

('

j

1

; : : : ; '

j

k

):

(32)

It should be noted that eq.(32) in the partiular ase of vetors is redued

to

v � w =

n

X

j=1

'

j

(v)'

j

(w): (33)

We summarize now the basi properties of the eulidean salar produt

of multivetors.

16

Reall that �

j

1

:::j

k

i

1

:::i

k

is the so-alled generalized permutation symbol of order k;

�

j

1

:::j

k

i

1

:::i

k

= det

2

4

Æ

j

1

i

1

: : : Æ

j

k

i

1

: : : : : : : : :

Æ

j

1

i

k

: : : Æ

j

k

i

k

3

5

; with i

1

; : : : ; i

k

= 1; : : : ; n and j

1

; : : : ; j

k

= 1; : : : ; n:

12



esi For any �; � 2 R :

� � � = �� (real produt). (34)

esii For any v; w 2 V :

v � w = G

E

(v; w): (35)

It shows that eq.(30) ontains the salar produt of vetors.

esiii For any X

j

2

V

j

V and Y

k

2

V

k

V :

X

j

� Y

k

= 0; if j 6= k: (36)

The properties given by eq.(34), eq.(35) and eq.(36) follow diretly from

the de�nition given by eq.(30).

esiv For any simple k-vetors v

1

^ : : : v

k

2

V

k

V and w

1

^ : : : w

k

2

V

k

V :

(v

1

^ : : : v

k

) � (w

1

^ : : : w

k

) = det

2

4

v

1

� w

1

: : : v

1

� w

k

: : : : : : : : :

v

k

� w

1

: : : v

k

� w

k

3

5

: (37)

Proof.

We will use eq.(32). Then, by using eq.(12) and eq.(33), and realling the

k � k determinant formula, det [a

pq

℄ =

1

k!

�

p

1

:::p

k

�

q

1

:::q

k

a

p

1

q

1

: : : a

p

k

q

k

; we have

(v

1

^ : : : v

k

) � (w

1

^ : : : w

k

)

=

1

k!

n

X

j

1

:::j

k

=1

(v

1

^ : : : v

k

)('

j

1

; : : : ; '

j

k

)(w

1

^ : : : w

k

)('

j

1

; : : : ; '

j

k

)

=

1

k!

n

X

j

1

:::j

k

=1

�

p

1

:::p

k

�

q

1

:::q

k

'

j

1

(v

p

1

) : : : '

j

k

(v

p

k

)'

j

1

(w

q

1

) : : : '

j

k

(w

q

k

)

=

1

k!

�

p

1

:::p

k

�

q

1

:::q

k

n

X

j

1

=1

'

j

1

(v

p

1

)'

j

1

(w

q

1

) : : :

n

X

j

k

=1

'

j

k

(v

p

k

)'

j

k

(w

q

k

)

=

1

k!

�

p

1

:::p

k

�

q

1

:::q

k

(v

p

1

� w

q

1

) : : : (v

p

k

� w

q

k

);

= det [v

p

� w

q

℄ :
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Proposition 1 Let (fe

k

g; fe

k

g) be any pair of eulidean reiproal bases of

V; i.e., e

k

� e

l

� G

E

(e

k

; e

l

) = Æ

l

k

: For all X 2

V

V we have the following two

expansion formulas

X = X � 1+

n

X

k=1

1

k!

X � (e

j

1

^ : : : e

j

k

)(e

j

1

^ : : : e

j

k

) (38)

X = X � 1+

n

X

k=1

1

k!

X � (e

j

1

^ : : : e

j

k

)(e

j

1

^ : : : e

j

k

): (39)

Proof. We give here the proof for vetors and p-vetors, with p � 2.

For v 2 V; sine fe

k

g and fe

k

g are bases of V; there are unique real

numbers v

i

and v

i

with i = 1; : : : ; n suh that

v = v

i

e

i

= v

i

e

i

:

Let us alulate v�e

j

and v�e

j

: Then, by taking into aount the reiproity

ondition of (fe

k

g; fe

k

g), we get

v = (v � e

j

)e

j

= (v � e

j

)e

j

:

It is standard pratie to all v � e

j

and v � e

j

respetively the ontravariant

and ovariant j-th omponents of v.

For X 2

V

p

V; there are unique real numbers X

i

1

:::i

p

and X

i

1

:::i

p

with

i

1

; : : : ; i

p

= 1; : : : ; n suh that

X =

1

p!

X

i

1

:::i

p

e

i

1

^ : : : e

i

p

=

1

p!

X

i

1

:::i

p

e

i

1

^ : : : e

i

p

: (40)

Then, by taking for example the salar produts X � (e

j

1

^ : : : e

j

p

). By

using eq.(37), the reiproity ondition of (fe

k

g; fe

k

g) and the ombinatorial

formula

1

p!

�

j

1

:::j

p

i

1

:::i

p

X

i

1

:::i

p

= X

j

1

:::j

p

; we have

X � (e

j

1

^ : : : e

j

p

) =

1

p!

X

i

1

:::i

p

(e

i

1

^ : : : e

i

p

) � (e

j

1

^ : : : e

j

p

)

=

1

p!

X

i

1

:::i

p

det

2

4

e

i

1

� e

j

1

: : : e

i

1

� e

j

p

: : : : : : : : :

e

i

p

� e

j

1

: : : e

i

p

� e

j

p

3

5

=

1

p!

�

j

1

:::j

p

i

1

:::i

p

X

i

1

:::i

p

= X

j

1

:::j

p

;

14



i.e., X

j

1

:::j

p

= X � (e

j

1

^ : : : e

j

p

): Analogously, we an prove that X

j

1

:::j

p

=

X � (e

j

1

^ : : : e

j

p

).

Then, we get

X =

1

p!

X � (e

j

1

^ : : : e

j

p

)e

j

1

^ : : : e

j

p

=

1

p!

X � (e

j

1

^ : : : e

j

p

)e

j

1

^ : : : e

j

p

:

Hene, eqs.(38) and (39) follows from the statement above and essentially

from eq.(36).

2.4 b-Metri

Let fb

k

g be any but �xed basis of V; and let f�

k

g be a basis of V

�

dual to

fb

k

g; i.e., �

k

(b

j

) = Æ

k

j

: Assoiated to fb

k

g we an introdue an eulidean

metri on V; say G

E

b

; de�ned by

G

E

b

(v; w) = Æ

jk

�

j

(v)�

k

(w); (41)

i.e., G

E

b

= Æ

jk

�

j


 �

k

:

It is a well de�ned eulidean metri on V; sine G

E

b

2 T

2

(V ) is symmetri

non-degenerate and positive de�nite, as it is easy to verify. Suh G

E

b

will

be alled a �duial metri on V indued by fb

k

g; or for short, a b-metri.

The eulidean struture (V;G

E

b

) will be alled a �duial metri struture for

V indued by fb

k

g; or for short, a b-metri struture. The pair (V; fb

k

g)

ould be alled a �duial struture for V assoiated to fb

k

g; or for short, a

b-struture.

On another way of thinking we are equipping V with a positive de�nite

salar produt of vetors naturally indued by fb

k

g: We write

v �

b

w �G

E

b

(v; w): (42)

We present now two remarkable properties of a b-metri struture.

i The basis fb

k

g is orthonormal with respet to (V;G

E

b

); i.e.,

b

j

�

b

b

k

= Æ

jk

: (43)
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ii The salar produt of multivetors assoiated to (V;G

E

b

) is given by

the notieable formula

X �

b

Y = hXi

0

hY i

0

+

n

X

k=1

1

k!

n

X

j

1

:::j

k

=1

hXi

k

(�

j

1

; : : : ; �

j

k

) hY i

k

(�

j

1

; : : : ; �

j

k

):

(44)

We know that all b-metri struture is a well-de�ned eulidean struture.

However, it might as well be asked if any eulidean struture (V;G

E

) is some

b-metri struture (V;G

E

b

): The answer is YES.

Given an eulidean metri G

E

; by the Gram-Shmidt proedure, there is

an orthonormal basis fb

k

g with respet to (V;G

E

); i.e., b

j

� b

k

� G

E

(b

j

; b

k

) =

Æ

jk

; suh that the b-metri G

E

b

indued by fb

k

g oinides with G

E

: Indeed, if

f�

k

g is the dual basis of fb

k

g; then

G

E

b

(v; w) = Æ

jk

�

j

(v)�

k

(w) = G

E

(b

j

; b

k

)�

j

(v)�

k

(w)

= G

E

(�

j

(v)b

j

; �

k

(w)b

k

) = G

E

(v; w);

i.e., G

E

b

= G

E

2.4.1 b-Reiproal Bases

Let fe

k

g be any basis of V; and f"

k

g be its dual basis of V

�

; i.e., "

k

(e

j

) = Æ

k

j

:

Let us take a b-metri struture (V;G

E

b

): Assoiated to fe

k

g; it is possible to

de�ne another basis for V; say fe

k

g; given by

e

k

=

n

X

j=1

"

k

(b

j

)b

j

: (45)

Sine the set of the n forms "

1

; : : : ; "

n

2 V

�

; is a basis for V

�

, they are linearly

independent ovetors. It follows that the n vetors e

1

; : : : ; e

n

2 V are also

linearly independent and onstitutes a well-de�ned basis for V:

Proposition 2 The bases fe

k

g and fe

k

g satisfy the following b-salar prod-

ut onditions

e

k

�

b

e

l

= Æ

l

k

: (46)

16



Proof. Using eqs.(45) and (43), and the duality ondition of (fe

k

g; f"

k

g) we

have

e

k

�

b

e

l

=

n

X

j=1

"

l

(b

j

)(e

k

�

b

b

j

) = "

l

(

n

X

j=1

(e

k

�

b

b

j

)b

j

) = "

l

(e

k

) = Æ

l

k

:

It is notieable that fe

k

g given by eq.(45) is the unique basis of V whih

satis�es eq.(46). Suh a basis fe

k

g will be alled the b-reiproal basis of

fe

k

g. In what follows we say that fe

k

g and fe

k

g are b-reiproal bases to

eah other.

In partiular, the b-reiproal basis of fb

k

g is itself, i.e.,

b

k

= b

k

for eah k = 1; : : : ; n; (47)

It follows diretly from eq.(45) and the duality ondition of (fb

k

g; f�

k

g).

2.5 Eulidean Interior Algebras

Let us take an eulidean struture (V;G

E

): We an de�ne two kind of on-

trated produts for multivetors, namely y and x. If X; Y 2

V

V then

XyY 2

V

V and XxY 2

V

V suh that

(XyY ) � Z = Y � (

e

X ^ Z) (48)

(XxY ) � Z = X � (Z ^

e

Y ); (49)

for all Z 2

V

V .

These ontrated produts y and x are internal laws on

V

V: Both on-

trated produts satisfy distributive laws (on the left and on the right) but

they are not assoiative.

The vetor spae

V

V endowed with eah of these ontrated produts

(either y or x) is a non-assoiative algebra. They are alled the eulidean

interior algebras of multivetors.

We present now some of the most important properties of the ontrated

produts.

eip-i For any �; � 2 R and X 2

V

V :

�y� = �x� = �� (real produt), (50)

�yX = Xx� = �X (multipliation by salars). (51)
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eip-ii For any X

j

2

V

j

V and Y

k

2

V

k

V (j � k) :

X

j

yY

k

= (�1)

j(k�j)

Y

k

xX

j

. (52)

eip-iii For any X

j

2

V

j

V and Y

k

2

V

k

V :

X

j

yY

k

= 0; if j > k; (53)

X

j

xY

k

= 0; if j < k: (54)

eip-iv For any X

k

; Y

k

2

V

k

V :

X

k

yY

k

= X

k

xY

k

=

f

X

k

� Y

k

= X

k

�

e

Y

k

: (55)

eip-v For any v 2 V and X; Y 2

V

V :

vy(X ^ Y ) = (vyX) ^ Y +

b

X ^ (vyY ): (56)

2.6 Eulidean Cli�ord Algebra

We de�ne now an eulidean Cli�ord produt of multivetors X and Y relative

to a given eulidean struture (V;G

E

); denoted by juxtaposition, by the

following axioms:

Ax-i For all � 2 R and X 2

V

V : �X = X� equals the multipliation

of multivetor X by salar �:

Ax-ii For all v 2 V and X 2

V

V : vX = vyX + v ^ X and Xv =

Xxv +X ^ v:

Ax-iii For all X; Y; Z 2

V

V : X(Y Z) = (XY )Z:

The Cli�ord produt is an internal law on

V

V: It is assoiative (by the

axiom (Ax-iii)) and satis�es distributive laws (on the left and on the right).

The distributive laws follow from the orresponding distributive laws of the

ontrated and exterior produts.

The vetor spae of multivetors over V endowed with the Cli�ord prod-

ut is an assoiative algebra. It will be alled eulidean Cli�ord algebra of

multivetors and denoted by C`(V;G

E

).

Some important formulas whih hold in C`(V;G

E

) are the following.
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ea-i For any v 2 V and X 2

V

V :

vyX =

1

2

(vX �

b

Xv) (57)

and Xxv =

1

2

(Xv � v

b

X):

v ^X =

1

2

(vX +

b

Xv) (58)

and X ^ v =

1

2

(Xv + v

b

X):

ea-ii For any X; Y 2

V

V :

X � Y =

D

e

XY

E

0

=

D

X

e

Y

E

0

: (59)

ea-iii For any X; Y; Z 2

V

V :

(XY ) � Z = Y � (

e

XZ) = X � (Z

e

Y ); (60)

X � (Y Z) = (

e

Y X) � Z = (X

e

Z) � Y: (61)

ea-iv For any X; Y 2

V

V :

d

XY =

b

X

b

Y ; (62)

g

XY =

e

Y

e

X: (63)

ea-v Let I 2

V

n

V: Then, for any v 2 V and X 2

V

V :

I(v ^X) = (�1)

n�1

vy(IX): (64)

Eq.(64) is sometimes alled the duality identity and sine it appears in several

ontexts in what follows we prove it.

Proof. By using eq.(58), Iv = (�1)

n�1

vI and

b

I = (�1)

n

I where v 2 V and

I 2

V

n

V and, eqs.(62) and (57) we have

I(v ^X) =

1

2

(IvX + I

b

Xv) =

1

2

((�1)

n�1

vIX + (�1)

n

b

I

b

Xv)

= (�1)

n�1

1

2

(vIX �



IXv) = (�1)

n�1

vy(IX):

ea-vi For any X; Y; Z 2

V

V :

Xy(Y yZ) = (X ^ Y )yZ; (65)

(XxY )xZ = Xx(Y ^ Z): (66)
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Proof. We prove only eq.(65). The proof of eq.(66) is analogous and left to

the reader.

Let W 2

V

V . By using eq.(48) and eq.(18) we have

(Xy(Y yZ)) �W = (Y yZ) � (

e

X ^W ) = Z � ((

e

Y ^

e

X) ^W )

= Z � (

^

(X ^ Y ) ^W ) = ((X ^ Y )yZ) �W:

Hene, by the non-degeneray of the eulidean salar produt, the �rst state-

ment follows.

To end, we all the readers attention to the fat that all Cli�ord algebra

assoiated to all possible eulidean struture (V;G

E

) over the same vetor

spae V are equivalent eah to other, i.e., de�ne the same abstrat Cli�ord

algebra. Indeed all eulidean strutures for V are isomorphi to the eulidean

struture (R

n

; �), where � is the anonial salar produt on R

n

. The Cli�ord

algebra assoiated to the eulidean struture (R

n

; �) is onveniently denoted

([33℄[34℄) by R

n

.

3 Conlusions

The eulidean Cli�ord algebra

17

C`(V;G

E

) introdued above will serve as

our basi alulational tool for the development of the theories of multi-

vetor funtions and multivetor funtionals that we develop in this series of

papers, and also for many appliations that will be reported elsewhere. When

C`(V;G

E

) is used together with the onept of extensor (to be introdued in

paper II) we obtain a powerful formalism whih permits among other things

an intrinsi presentation (i.e., without the use of matries) of the prinipal

results of lassial linear algebra theory. Also, endowed V with an arbitrary

metri extensor g (of signature s = p � q or (p; q) as physiists like to say,

with p+ q = n) we an onstrut a metri Cli�ord algebra C`(V; g) as a well-

de�ned deformation of the eulidean Cli�ord algebra C`(V;G

E

); see paper

IV.

Appendix A

In the literature we an �nd several di�erent de�nitions (di�ering by

numerial fators (p!q! , (p + q)!; (p + q)!/ p!q!;) for the exterior produt

X

p

^ Y

q

in terms of some antisymmetrization of the tensor produt X

p


 Y

q

:

17

The lassi�ation of all eulidean algebras for arbitrary �nite dimensional spae and

their matrix representations an be found, e.g., in [30℄.
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Before ontinuing we reall that the tensor produt of t 2 T

p

V and u 2

T

q

V; namely t
 u 2 T

p+q

V; is de�ned by

(ti) for all �; � 2 T

0

V � R : �
 � = � 
 � = �� (real produt),

(tii) for all � 2 R; u 2 T

q

V : � 
 u = u
 � = �u (salar multipliation

of u by �), and

(tiii) for all t 2 T

p

V; u 2 T

q

V (p; q � 1) and !

1

; : : : ; !

p

; !

p+1

; : : : ; !

p+q

2

V

�

;

t
 u(!

1

; : : : ; !

p

; !

p+1

; : : : ; !

p+q

) = t(!

1

; : : : ; !

p

)u(!

p+1

; : : : ; !

p+q

) (A.1)

Now, the exterior algebra

V

V is de�ned in the modern approah to al-

gebrai strutures as the quotient

V

V = TV=I; where TV =

1

P

p=0

T

p

V is the

tensor algebra and I is the bilateral ideal generated by elements of the form

x 
 x. In this ase, it is neessary to de�ne the produt of X

p

2

V

p

V and

Y

q

2

V

q

V by

X

p

qa

^ Y

q

= A(X

p


 Y

q

); (A.2)

instead of eq.(7). This observation means that when reading books with

hapters on the theory of the exterior algebras or sienti� papers, it is ne-

essary to take are and to be sure about whih produt has been de�ned,

for otherwise great onfusion may arise. In partiular for not distinguish-

ing ^ as de�ned in eq.(7) from

qa

^ as de�ned by eq.(A.2) the following error

appears frequently. Let X

p

2

V

p

V; let fe

i

g be any basis of V and f"

i

g its

orresponding dual basis of V

�

; and onsider the p 1-forms !

1

; : : : ; !

p

2 V

�

.

Then, using the elementary expansions !

1

(e

j

1

)"

j

1

; : : : et., we have

X(!

1

; : : : ; !

p

) = X(!

1

(e

j

1

)"

j

1

; : : : ; !

p

(e

j

p

)"

j

p

)

= !

1

(e

j

1

) : : : !

p

(e

j

p

)X("

j

1

; : : : ; "

j

p

)

= X

j

1

:::j

p

e

j

1


 : : :
 e

j

p

(!

1

; : : : ; !

p

);

i.e.,

X = X

j

1

:::j

p

e

j

1


 : : :
 e

j

p

: (A.3)

The real numbers X("

j

1

; : : : ; "

j

p

) = X

j

1

:::j

p

are alled the j

1

: : : j

p

-th (on-

travariant) omponents of X relative to the basis fe

j

1


 : : :
 e

j

p

g of T

p

V:

Now, sine X 2

V

p

V is a ompletly antisymmetri tensor it must satisfy

AX = X; (A.4)
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and using the de�nition of the operator A (see eq.(8)) we get the identity

X

j

1

:::j

p

=

1

p!

�

j

1

:::j

p

i

1

:::i

p

X

i

1

:::i

p

; (A.5)

and of ourse the omponents X

j

1

:::j

p

are antisymmetri in all indies.

Using eq.(A.5) in eq.(A.3) we obtain,

X =

1

p!

�

j

1

:::j

p

i

1

:::i

p

X

i

1

:::i

p

e

j

1


 : : :
 e

j

p

: (A.6)

Now, if we use the de�nition of the exterior produt given by eq.(7), more

exatly an partiular ase of eq.(11), the well-known ombinatorial formula:

e

i

1

^ : : : ^ e

i

p

= �

j

1

:::j

p

i

1

:::i

p

e

j

1


 : : :
 e

j

p

; we see that eq.(A.6) an be written as

X =

1

p!

X

i

1

:::i

p

e

i

1

^ : : : ^ e

i

p

: (A.7)

Eq.(A.7) is the expansion that has been used in this paper and in all the

others of this series.

Now, if we use the de�nition of the exterior produt as given by eq.(A.2),

then by repeting the above alulations we get that X an be witten as

X = X

i

1

:::i

p

e

i

1

qa

^ : : :

qa

^ e

i

p

: (A.8)

To write X =

1

p!

X

i

1

:::i

p

e

i

1

qa

^ : : :

qa

^ e

i

p

instead of eq.(A.8) is learly wrong if

it is supposed that the meaning of X("

j

1

; : : : ; "

j

p

) is that X("

j

1

; : : : ; "

j

p

) =

X

j

1

:::j

p

as in eq.(A.3). This onfusion appears, e.g., in [36℄.
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