Euclidean Clifford Algebra*

V. V. Fernández ${ }^{1 \dagger}$; A. M. Moya ${ }^{1 \ddagger}$ and W. A. Rodrigues Jr. ${ }^{2 \S}$
${ }^{1}$ Institute of Mathematics, Statistics and Scientific Computation
IMECC-UNICAMP CP 6065
13083-970 Campinas-SP, Brazil
${ }^{2}$ Department of Mathematics, University of Liverpool Liverpool, L69 3BX, UK

10/30/2001

Abstract

Let V be a n-dimensional real vector space. In this paper we introduce the concept of euclidean Clifford algebra $\mathcal{C} \ell\left(V, G_{E}\right)$ for a given euclidean structure on V, i.e., a pair (V, G_{E}) where G_{E} is a euclidean metric for V (also called an euclidean scalar product). Our construction of $\mathcal{C} \ell\left(V, G_{E}\right)$ has been designed to produce a powerful computational tool. We start introducing the concept of multivectors over V. These objects are elements of a linear space over the real field, denoted by ΛV. We introduce moreover, the concepts of exterior and euclidean scalar product of multivectors. This permits the introduction of two contraction operators on $\wedge V$, and the concept of euclidean interior algebras. Equipped with these notions an euclidean Clifford product is easily introduced. We worked out with considerable details several important identities and useful formulas, to help the reader to develope a skill on the subject, preparing himself for the reading of the following papers in this series.

[^0]
Contents

1 Introduction 2
2 The Euclidean Clifford Algebra of Multivectors 6
2.1 Multivectors 6
2.1.1 k-Part, Grade Involution and Reversion Operators 7
2.2 Exterior Algebra 8
2.3 Euclidean Scalar Product 9
$2.4 b$-Metric 15
2.4.1 b-Reciprocal Bases 16
2.5 Euclidean Interior Algebras 17
2.6 Euclidean Clifford Algebra 18
3 Conclusions 20

1 Introduction

This is the first paper of a series of seven. We introduce $\mathcal{C} \ell\left(V, G_{E}\right)$, an euclidean Clifford algebra of multivectors associated to an euclidean structure on a n-dimensional real vector space V. By an euclidean structure we mean a pair $\left(V, G_{E}\right)$ where G_{E} is an euclidean metric on V. Our construction of $\mathcal{C} \ell\left(V, G_{E}\right)$ has been designed in order to produce a powerful computational tool. It starts by introducing the concept of multivectors over V. These objects are elements of a linear space over the real field, denoted by ΛV. We introduce in ΛV, the concepts of exterior product and euclidean scalar product of multivectors. This permits the introduction of two contraction operators on ΛV, and the concept of euclidean interior algebras. Equipped with these notions an euclidean Clifford product is introduced. We worked out with considerable details several important identities and useful formulas, to help the reader to develope a skill on the subject, preparing himself for the reading of the following papers in this series ${ }^{1}$ (and also for the ones in two forthcoming series of papers). We have the following resume concerning to the content of the other papers of the present series.

[^1]In paper II we introduce the fresh concept of general extensors. The theory of these objects is developed and the properties of some particular extensors that appear frequently in our theory of multivector functions and multivector functionals (the subject of papers V,VI and VII) are worked in details.

In paper III we study the relationship between the concepts of a metric tensor G (of arbitrary signature $s=p-q$ (or (p, q) as physicists say), with $p+q=n$) for a n-dimensional vector space V and a metric extensor g for that space (with the same signature), showing the advantage of using the later object even in elementary linear algebra theory. It is worthwhile to emphasize here that our introduction of the concept of metric extensor plays a crucial role in our definition of metric Clifford algebras, which are introduced in paper IV. There, a metric Clifford product is introduced by a well-defined deformation (induced by g) of a given euclidean Clifford product. We introduce also the concept of gauge metric extensor h associated to a metric extensor g, and present and prove the so-called golden formula. The gauge extensors ${ }^{2}$ appear naturally in our theory of the differential geometry on manifolds.

In papers V and VI we present a theory of multivector functions of a real variable, and a theory of multivector functions of a p-vector variable. The notions of limit, continuity and differentiability are carefully studied. Particular emphasis is given to relate the basic concept of directional derivative with other types of derivatives such as the generalized curl, divergence and gradient.

In paper VII we develop a theory of multivector functionals, a key concept for the developments that we have in mind, and that has not been properly studied until now.

In two future series of papers the material developed in the present series will be used as the expression and calculational tool of several different mathematical and physical theories. We quote here our theory of possible different kinds of covariant derivatives operators for multivector and extensor fields on arbitrary metric manifolds which explicitly shows how these different possible covariant derivative operators are related through the concept of gauge extensors. In particular, the concept of deformed derivative operators will be seen to play a key rule in our formulation of families of mathematically possible geometric theories of gravitation (using Clifford al-

[^2]gebras methods). We believe that our presentation of these theories have a new flavor in relation to old presentations of possible theories of gravitation (of the Riemann-Cartan-Weyl types). Also, it will be seen that the concept of multivector functionals (developed in paper VII) is a necessary one for a presentation of a rigorous formulation of a Lagrangian theory for multivector and extensor fields having support on an arbitrary manifold (or subsets of it) representing spacetime. ${ }^{3}{ }^{4}$

Before starting our enterprise we recall that Clifford Algebras and their applications in Mathematical Physics are now respectable subjects of research whose wealth can be appreciate by an examination of the topics presented in the last five international conference on this subject ${ }^{5}$ ([1],[6]). We have no intention to present here even a small history of the subject, and we do not claim even to have given any reasonable list of references on papers and books on the subject. Only a few points and references will be recalled here ${ }^{6}$. Clifford algebras ${ }^{7}$ has been applied since a long time ago for presentations of Maxwell theory, see e.g., ([7]-[10]), of Dirac theory, see e.g., ([11]-[19]) and the theory of the gravitational field, see e.g., ([9],[21],[22]). Hestenes in 1966 [7] wrote a small book on the subject which has been source of inspiration for many scientists and eventually spread unnecessary misconceptions on the subject of Clifford algebras and their applications in physics. In 1984 Hestenes and Sobczyk published a book ${ }^{8}$, emphasizing that Clifford algebras

[^3]leads naturally to a geometric calculus [23]. Some of the ideas that we will explore in papers I-VII have their inspiration on that book. However, it must be emphasized that our approach differs substantially from the one of those authors in many aspects as the reader can verify. In particular, the theory of multivector functionals and their derivatives with the full generality that the subject deserves appears in this series for the first time. Our exposition of the differential geometry on manifolds (the subject of a new series of papers), with a general theory of connections using the concept of extensor fields is (we believe) a fresh approach to the subject. Our theory is not based on the concept of vector manifolds used in [23] (which presents some problems [24]) and can be applied rigorously to general manifolds of arbitrary topology ${ }^{9}$. Our development of a Lagrangian theory of multivector fields ${ }^{10}$ improves preliminary presentations ${ }^{11}$, since now we give a formulation valid for multivector fields and extensor fields over arbitrary Lorentzian manifolds equipped with a general connection (not necessarily metric compatible) ${ }^{12}$. We emphasize also that our presentation of Einstein's gravitational theory (in a future series of papers) using the multivector-extensor calculus on manifolds will demonstrates that preliminary attempts [22] towards a theory of the gravitational field based on these concepts is paved with some serious mathematical (and also physical) misconceptions (see also [25] in this respect) which invalidate them. We think that our presentation of the basic working ideas about euclidean and metric Clifford algebras is reasonable self complete for our purposes. However, there is still more concerning Clifford algebra theory that has not been developed or even quoted in this series of papers. These results are important for many applications ranging from pure and applied mathematics to engineering and recent physical theories (see, e.g., [30] [31]).

For readers that are newcomers to the subject we recommend the books

[^4]by Lounesto [32] and Porteous ([33],[34]) for complementary points of view and material relative to the developments that follows.

2 The Euclidean Clifford Algebra of Multivectors

Let V be a vector space over \mathbb{R} with finite dimension, i.e., $\operatorname{dim} V=n$, where $n \in N$, and let V^{*} be the dual vector space to V. Recall that $\operatorname{dim} V=$ $\operatorname{dim} V^{*}=n$.

Let k be an integer number with $0 \leq k \leq n$. The vector spaces of k vectors and k-forms over V as usual will be denoted by $\bigwedge^{k} V$ and $\bigwedge^{k} V^{*}$, respectively. ${ }^{13}$

As well known, a 0 -vector can be identified with a real number, i.e., $\bigwedge^{0} V=\mathbb{R}$, an 1-vector is the name of objects living on V, i.e., $\bigwedge^{1} V=V$, and a k-vector with $2 \leq k \leq n$ is precisely a skew-symmetric contravariant k-tensor over V. A 0 -form is also a real number, i.e., $\bigwedge^{0} V^{*}=\mathbb{R}$. A 1-form is a form (or covector) belonging to V^{*}, i.e., $\bigwedge^{1} V^{*}=V^{*}$, and a k-form with $2 \leq k \leq n$ is exactly a skew-symmetric covariant k-tensor over V. Recall that $\operatorname{dim} \bigwedge^{\bar{k}} V=\operatorname{dim} \bigwedge^{k} V^{*}=\binom{n}{k}$.

The 0 -vectors, 2 -vectors,..., $(n-1)$-vectors and n-vectors are sometimes called scalars, bivectors,..., pseudovectors and pseudoscalars, respectively. The 0 -forms, 2 -forms,..., ($n-1$)-forms and n-forms are named as scalars, biforms,..., pseudoforms and pseudoscalars, respectively.

2.1 Multivectors

A formal sum of k-vectors over V with k running from 0 to n,

$$
\begin{equation*}
X=X_{0}+X_{1}+\cdots+X_{n} \tag{1}
\end{equation*}
$$

is called a multivector over V.
The set of multivectors over V has a natural structure of vector space over \mathbb{R} and is usually denoted by $\bigwedge V=\mathbb{R}+V+\cdots+\bigwedge^{n} V$. We have that $\operatorname{dim} \bigwedge V=\binom{n}{0}+\binom{n}{1}+\cdots+\binom{n}{n}=2^{n}$.

[^5]
2.1.1 k-Part, Grade Involution and Reversion Operators

Let k be an integer number with $0 \leq k \leq n$. The linear mapping $\wedge V \ni X \mapsto$ $\langle X\rangle_{k} \in \Lambda^{k} V$ such that for any j with $0 \leq j \leq n$: if $j \neq k$, then $\langle X\rangle_{k}=0$, i.e.,

$$
\begin{equation*}
\langle X\rangle_{k}=X_{k}, \tag{2}
\end{equation*}
$$

for each $k=0,1, \cdots, n$, is called the k-part operator. $\langle X\rangle_{k}$ is read as the k-part of X.

It is evident that any multivector can be written as sum of their k-parts

$$
\begin{equation*}
X=\sum_{k=0}^{n}\langle X\rangle_{k} . \tag{3}
\end{equation*}
$$

There are several important automorphisms (or antiautomorphisms) on ΛV. For what follows, we shall need to introduce some automorphisms that are involutions on ΛV. We have:
i The linear mapping $\bigwedge V \ni X \mapsto \hat{X} \in \bigwedge V$ such that

$$
\begin{equation*}
\hat{X}=\sum_{k=0}^{n}(-1)^{k}\langle X\rangle_{k}, \tag{4}
\end{equation*}
$$

is called the main automorphim operator or grade involution operator. \hat{X} is called the grade involution of X.
ii The linear mapping $\bigwedge V \ni X \mapsto \widetilde{X} \in \bigwedge V$ such that

$$
\begin{equation*}
\widetilde{X}=\sum_{k=0}^{n}(-1)^{\frac{1}{2} k(k-1)}\langle X\rangle_{k}, \tag{5}
\end{equation*}
$$

is an antiautomorphism called the reversion operator. \widetilde{X} is called the reverse of X.

Since the main automorphisms and reversion operators are involutions on the vector space of multivectors, we have that $\hat{\hat{X}}=X$ and $\widetilde{\widetilde{X}}=X$. Both involutions commute with the k-part operator, i.e., $\widehat{\langle X\rangle}_{k}=\langle\hat{X}\rangle_{k}$ and $\widetilde{\langle X\rangle_{k}}=\langle\tilde{X}\rangle_{k}$, for each $k=0,1, \ldots, n$.

The composition of the main automorphism with the reversion operator (in any order) is called the conjugate operator. The conjugate of X will be denoted by \bar{X}. We have

$$
\begin{equation*}
\bar{X}=\widetilde{\hat{X}}=\widehat{\tilde{X}} \tag{6}
\end{equation*}
$$

2.2 Exterior Algebra

We define the exterior product ${ }^{14}$ of $X_{p} \in \bigwedge^{p} V$ and $Y_{q} \in \bigwedge^{q} V$ by

$$
\begin{equation*}
X_{p} \wedge Y_{q}=\frac{(p+q)!}{p!q!} \mathcal{A}\left(X_{p} \otimes Y_{q}\right) \tag{7}
\end{equation*}
$$

where $X_{p} \otimes Y_{q}$ is the tensor product of X_{p} by Y_{q} (see Appendix A) and \mathcal{A} is the antisymmetrization operator, i.e., a linear mapping $\mathcal{A}: T^{k} V \rightarrow \bigwedge^{k} V$ such that
(i) for all $\alpha \in \mathbb{R}: \mathcal{A} \alpha=\alpha$,
(ii) for all $v \in V: \mathcal{A} v=v$,
(iii) for all $t \in T^{k} V$, with $k \geq 2$,

$$
\begin{equation*}
\mathcal{A} t\left(\omega^{1}, \ldots, \omega^{k}\right)=\frac{1}{k!} \epsilon_{i_{1} \ldots i_{k}} t\left(\omega^{i_{1}}, \ldots, \omega^{i_{k}}\right) \tag{8}
\end{equation*}
$$

where $\epsilon_{i_{1} \ldots i_{k}}$ is the permutation symbol of order k,

$$
\epsilon_{i_{1} \ldots i_{k}}=\left\{\begin{array}{cc}
1, & \text { if } i_{1} \ldots i_{k} \text { is a even permutation of } 1 \ldots k \tag{9}\\
-1, & \text { if } i_{1} \ldots i_{k} \text { is odd permutation of } 1 \ldots k \\
0, & \text { otherwise }
\end{array}\right.
$$

Eq.(7), with $p \geq 1$ and $q \geq 1$ means that for $\omega^{1}, \ldots, \omega^{p}, \omega^{p+1}, \ldots, \omega^{p+q} \in$ V^{*},

$$
\begin{align*}
& X_{p} \wedge Y_{q}\left(\omega^{1}, \ldots, \omega^{p}, \omega^{p+1}, \ldots, \omega^{p+q}\right) \\
= & \frac{1}{p!q!} \epsilon_{i_{1} \ldots i_{p} i_{p+1} \ldots i_{p+q}} X_{p}\left(\omega^{i_{1}}, \ldots, \omega^{i_{p}}\right) Y_{q}\left(\omega^{i_{p+1}}, \ldots, \omega^{i_{p+q}}\right) . \tag{10}
\end{align*}
$$

From eq.(7) by using a well-known property of the antisymmetrization operator, namely: $\mathcal{A}(\mathcal{A} t \otimes u)=\mathcal{A}(t \otimes \mathcal{A} u)=\mathcal{A}(t \otimes u)$, a noticeable formula for expressing simple k-vectors in terms of tensor products of k vectors can be easily deduced. It is ${ }^{15}$,

$$
\begin{equation*}
v_{1} \wedge \ldots \wedge v_{k}=\epsilon^{j_{1} \ldots j_{k}} v_{j_{1}} \otimes \ldots \otimes v_{j_{k}} \tag{11}
\end{equation*}
$$

[^6]If $\omega^{1}, \ldots, \omega^{k} \in V^{*}$, then

$$
\begin{equation*}
v_{1} \wedge \ldots \wedge v_{k}\left(\omega^{1}, \ldots, \omega^{k}\right)=\epsilon^{j_{1} \ldots j_{k}} \omega^{1}\left(v_{j_{1}}\right) \ldots \omega^{k}\left(v_{j_{k}}\right) \tag{12}
\end{equation*}
$$

Now, we define the exterior product of multivectors X and Y as being the mutivector with components $\langle X \wedge Y\rangle_{k}$ such that

$$
\begin{equation*}
\langle X \wedge Y\rangle_{k}=\sum_{j=0}^{k}\langle X\rangle_{j} \wedge\langle Y\rangle_{k-j} \tag{13}
\end{equation*}
$$

for each $k=0,1, \ldots, n$. Note that on the right side there appears the exterior product of j-vectors and $(k-j)$-vectors with $0 \leq j \leq n$.

This exterior product is an internal composition law on ΛV. It is associative and satisfies the usual distributive laws (on the left and on the right).

The vector space $\wedge V$ endowed with this exterior product \wedge is an associative algebra called the exterior algebra of multivectors.

We recall now for future use some important properties of the exterior algebra of multivectors:
ei For any $\alpha, \beta \in \mathbb{R}, X \in \Lambda V$

$$
\begin{align*}
\alpha \wedge \beta & =\beta \wedge \alpha=\alpha \beta \text { (real product) } \tag{14}\\
\alpha \wedge X & =X \wedge \alpha=\alpha X \text { (multiplication by scalars). } \tag{15}
\end{align*}
$$

eii For any $X_{j} \in \bigwedge^{j} V$ and $Y_{k} \in \bigwedge^{k} V$

$$
\begin{equation*}
X_{j} \wedge Y_{k}=(-1)^{j k} Y_{k} \wedge X_{j} \tag{16}
\end{equation*}
$$

eiii For any $X, Y \in \Lambda V$

$$
\begin{align*}
& \widehat{X \wedge Y}=\hat{X} \wedge \hat{Y} \tag{17}\\
& \widetilde{X \wedge Y}=\tilde{Y} \wedge \widetilde{X} \tag{18}
\end{align*}
$$

2.3 Euclidean Scalar Product

Let G_{E} be an euclidean metric for V, i.e., a mapping $G_{E}: V \times V \rightarrow \mathbb{R}$ which is a symmetric, non-degenerate and positive definite bilinear form over V,

$$
\begin{align*}
G_{E}(v, w) & =G_{E}(w, v) \forall v, w \in V \tag{19}\\
\text { If } G_{E}(v, w) & =0 \forall w \in V \text {, then } v=0 \tag{20}\\
G_{E}(v, v) & \geqslant 0 \forall v \in V \text { and if } G_{E}(v, v)=0, \text { then } v=0 . \tag{21}
\end{align*}
$$

It is usual to write

$$
\begin{equation*}
G_{E}(v, w) \equiv v \cdot w \tag{22}
\end{equation*}
$$

where $v \cdot w$ is said to be the scalar product of the vectors $v, w \in V$.
This practice forgets that any scalar product is relative to a given G_{E}, it is a fact which will be important for the developments that follows, the correct notation should be $v \underset{G_{E}}{\dot{G}} w$. Nevertheless, when no confusion arises we will follow the standard practice.

The pair $\left(V, G_{E}\right)$ is called an euclidean structure for V. Sometimes, an euclidean structure is also called an euclidean space. It is very important to realize that there are an infinite of euclidean structures for a real vector space V. Two euclidean structures $\left(V, G_{E}\right)$ and $\left(V, G_{E}^{\prime}\right)$ are equal if and only if $G_{E}=G_{E}^{\prime}$.

Let \mathfrak{B} be the set of all basis of V. It means that a generic element of \mathfrak{B} is an ordered set of linearly independent vectors of V, say $\left(e_{1}, e_{2}, \ldots, e_{n}\right)$, which will be denoted simply by $\left\{e_{k}\right\}$ in what follows.

Now, given an euclidean structure for V, we can immediately select a subset \mathfrak{B}_{O} of \mathfrak{B} whose elements are of the orthonormal bases according to the euclidean structure. This means that if $\left\{f_{k}\right\} \in \mathfrak{B}_{O}$, then

$$
\begin{equation*}
G_{E}\left(f_{i}, f_{j}\right) \equiv f_{i} \cdot f_{j}=\delta_{i j} \tag{23}
\end{equation*}
$$

where $\delta_{i j}=\left\{\begin{array}{lc}1, & i=j=1,2, \ldots, n \\ 0, & i \neq j\end{array}\right.$. It is trivial to realize that any two basis $\left\{f_{k}\right\},\left\{f_{k}^{\prime}\right\} \in \mathfrak{B}_{O}$ are related by a linear orthogonal transformation, i.e., $f_{k}^{\prime}=L_{k}{ }^{i} f_{i}$, where the matrix \mathbf{L} whose entries are the real numbers $L_{k}{ }^{i}$ is orthogonal, i.e., $\mathbf{L}^{t} \mathbf{L}=\mathbf{L L}^{\mathbf{t}}=\mathbf{1}$.

Once an euclidean structure (V, G_{E}) has been set we can equip $\bigwedge^{p} V$ with an euclidean scalar product of p-vectors. ΛV can be endowed with an euclidean scalar product of multivectors.

Let $\left\{e_{k}\right\}$ be any basis of V, and $\left\{\varepsilon^{k}\right\}$ be the dual basis of $\left\{e_{k}\right\}$. As we know, $\left\{\varepsilon^{k}\right\}$ is the unique basis of V^{*} such that $\varepsilon^{k}\left(e_{j}\right)=\delta_{j}^{k}$. Associated to $\left(V, G_{E}\right)$ we define the scalar product of p-vectors $X_{p}, Y_{p} \in \bigwedge^{p} V$, namely $X_{p} \cdot Y_{p} \in \mathbb{R}$, by the following axioms:
$\mathbf{A x}$ - \mathbf{i} For all $\alpha, \beta \in \mathbb{R}$,

$$
\begin{equation*}
\alpha \cdot \beta=\alpha \beta \text { (real product). } \tag{24}
\end{equation*}
$$

Ax-ii For all $X_{p}, Y_{p} \in \Lambda^{p} V$ with $p \geq 1$,

$$
\begin{equation*}
X_{p} \cdot Y_{p}=\left(\frac{1}{p!}\right)^{2} X_{p}\left(\varepsilon^{I}\right) Y_{p}\left(\varepsilon^{J}\right) \operatorname{det}\left[G_{E}\left(e_{I}, e_{J}\right)\right] \tag{25}
\end{equation*}
$$

where we use (conveniently) the short notations

$$
\begin{align*}
X_{p}\left(\varepsilon^{I}\right) & \equiv X_{p}\left(\varepsilon^{i_{1}}, \ldots, \varepsilon^{i_{p}}\right)=\underset{p}{X_{1} \ldots i_{p}}, \tag{26}\\
Y_{p}\left(\varepsilon^{J}\right) & \equiv Y_{p}\left(\varepsilon^{j_{1}}, \ldots, \varepsilon^{j_{p}}\right)=Y_{p}^{j_{1} \ldots j_{p}} . \tag{27}
\end{align*}
$$

$X_{p}\left(\varepsilon^{i_{1}}, \ldots, \varepsilon^{i_{p}}\right)$ and $Y_{p}\left(\varepsilon^{j_{1}}, \ldots, \varepsilon^{j_{p}}\right)$ are the components of X_{p} and Y_{p} with respect to the p-vector basis $\left\{e_{j_{1}} \wedge \ldots \wedge e_{j_{p}}\right\}$ and $1 \leq j_{1}<\cdots j_{p} \leq n$, i.e.,

$$
\begin{equation*}
X_{p}=\frac{1}{p!} X_{p}\left(\varepsilon^{i_{1}}, \ldots, \varepsilon^{i_{p}}\right) e_{i_{1}} \wedge \ldots e_{i_{p}} \text { and } Y_{p}=\frac{1}{p!} Y_{p}\left(\varepsilon^{j_{1}}, \ldots, \varepsilon^{j_{p}}\right) e_{j_{1}} \wedge \ldots e_{j_{p}} \tag{28}
\end{equation*}
$$

Also,

$$
\operatorname{det}\left[G_{E}\left(e_{I}, e_{J}\right)\right] \equiv \operatorname{det}\left[\begin{array}{ccc}
G_{E}\left(e_{i_{1}}, e_{j_{1}}\right) & \ldots & G_{E}\left(e_{i_{1}}, e_{j_{k}}\right) \tag{29}\\
\ldots & \ldots & \ldots \\
G_{E}\left(e_{i_{k}}, e_{j_{1}}\right) & \ldots & G_{E}\left(e_{i_{k}}, e_{j_{k}}\right)
\end{array}\right]
$$

Note that in eq.(25) the Einstein convention for sums over the indices $I \equiv$ $i_{1}, \ldots, i_{p}=1, \ldots, n$ and $J \equiv j_{1}, \ldots, j_{p}=1, \ldots, n$ was used.

It is not difficult to realize that the scalar product defined by the axioms i-ii does not depend on the bases $\left\{e_{k}\right\}$ and $\left\{\varepsilon^{k}\right\}$ for calculating it.

It is a well-defined euclidean scalar product on $\bigwedge^{p} V$, since it is symmetric, satisfies the distributive laws, has the mixed associative property and is nondegenerate, i.e., if $X_{p} \cdot Y_{p}=0$ fot all Y_{p}, then $X_{p}=0$. It is also satisfying the strong property of being positive definite, i.e., $X_{p} \cdot X_{p} \geq 0$ for all X_{p} and if $X_{p} \cdot X_{p}=0$, then $X_{p}=0$.

So the scalar product on $\bigwedge^{p} V$ as defined by eqs.(24) and (25) will be called the euclidean scalar product of p-vectors associated to $\left(V, G_{E}\right)$.

Now, associated to (V, G_{E}) we define the scalar product of multivectors $X, Y \in \bigwedge V$, namely $X \cdot Y \in \mathbb{R}$, by

$$
\begin{equation*}
X \cdot Y=\sum_{k=0}^{n}\langle X\rangle_{k} \cdot\langle Y\rangle_{k} . \tag{30}
\end{equation*}
$$

Note that on the right side there appears the scalar product of k-vectors with $0 \leq k \leq n$, as defined by eqs.(24) and (25).

By using eqs.(24) and (25) we can easily note that eq.(30) can be written as

$$
\begin{equation*}
X \cdot Y=\langle X\rangle_{0}\langle Y\rangle_{0}+\sum_{k=1}^{n}\left(\frac{1}{k!}\right)^{2}\langle X\rangle_{k}\left(\varepsilon^{I}\right)\langle Y\rangle_{k}\left(\varepsilon^{J}\right) \operatorname{det}\left[G_{E}\left(e_{I}, e_{J}\right)\right] \tag{31}
\end{equation*}
$$

Recall that in eq.(31) the Einstein convention for sums over the indices $I \equiv$ $i_{1}, \ldots, i_{k}=1, \ldots, n$ and $J \equiv j_{1}, \ldots, j_{k}=1, \ldots, n$ was used.

It is very important here to notice that the scalar product as defined by eq.(30) is a well-defined euclidean scalar product on ΛV. It is symmetric, satisfies the distributive laws, has the mixed associative property and is nondegenerate, i.e., if $X \cdot Y=0$ for all Y, then $X=0$. In addition, it has also the strong property of being positive definite, i.e., $X \cdot X \geq 0$ for all X and if $X \cdot X=0$, then $X=0$.

So the scalar product on ΛV as defined by eq.(30) will be called the euclidean scalar product of multivectors associated to $\left(V, G_{E}\right)$.

Now, note that if we take any orthonormal basis $\left\{f_{k}\right\}$ with respect to $\left(V, G_{E}\right)$, i.e., $f_{j} \cdot f_{k}=\delta_{j k}$, whose dual basis is $\left\{\varphi^{k}\right\}$, i.e., $\varphi^{k}\left(f_{j}\right)=\delta_{j}^{k}$, we have that $\operatorname{det}\left[G_{E}\left(f_{I},, f_{J}\right)\right]=\epsilon_{i_{1} \ldots i_{k}}^{j_{1} \ldots j_{k}}=\epsilon_{j_{1} \ldots j_{k}}^{i_{1} \ldots i_{k}}$. Then, by taking into account ${ }^{16}$ that $\frac{1}{k!} \epsilon_{i_{1} \ldots i_{k}}^{j_{1} \ldots j_{k}}\langle X\rangle_{k}\left(\varphi^{i_{1}}, \ldots, \varphi^{i_{k}}\right)=\langle X\rangle_{k}\left(\varphi^{j_{1}}, \ldots, \varphi^{j_{k}}\right)$, we can easily see that eq.(31) can be written as

$$
\begin{equation*}
X \cdot Y=\langle X\rangle_{0}\langle Y\rangle_{0}+\sum_{k=1}^{n} \frac{1}{k!} \sum_{j_{1} \ldots j_{k}=1}^{n}\langle X\rangle_{k}\left(\varphi^{j_{1}}, \ldots, \varphi^{j_{k}}\right)\langle Y\rangle_{k}\left(\varphi^{j_{1}}, \ldots, \varphi^{j_{k}}\right) . \tag{32}
\end{equation*}
$$

It should be noted that eq.(32) in the particular case of vectors is reduced to

$$
\begin{equation*}
v \cdot w=\sum_{j=1}^{n} \varphi^{j}(v) \varphi^{j}(w) . \tag{33}
\end{equation*}
$$

We summarize now the basic properties of the euclidean scalar product of multivectors.

[^7]esi For any $\alpha, \beta \in \mathbb{R}$:
\[

$$
\begin{equation*}
\alpha \cdot \beta=\alpha \beta \text { (real product). } \tag{34}
\end{equation*}
$$

\]

esii For any $v, w \in V$:

$$
\begin{equation*}
v \cdot w=G_{E}(v, w) \tag{35}
\end{equation*}
$$

It shows that eq.(30) contains the scalar product of vectors.
esiii For any $X_{j} \in \bigwedge^{j} V$ and $Y_{k} \in \bigwedge^{k} V$:

$$
\begin{equation*}
X_{j} \cdot Y_{k}=0, \text { if } j \neq k \tag{36}
\end{equation*}
$$

The properties given by eq.(34), eq.(35) and eq.(36) follow directly from the definition given by eq.(30).
esiv For any simple k-vectors $v_{1} \wedge \ldots v_{k} \in \bigwedge^{k} V$ and $w_{1} \wedge \ldots w_{k} \in \bigwedge^{k} V$:

$$
\left(v_{1} \wedge \ldots v_{k}\right) \cdot\left(w_{1} \wedge \ldots w_{k}\right)=\operatorname{det}\left[\begin{array}{ccc}
v_{1} \cdot w_{1} & \ldots & v_{1} \cdot w_{k} \tag{37}\\
\ldots & \ldots & \ldots \\
v_{k} \cdot w_{1} & \ldots & v_{k} \cdot w_{k}
\end{array}\right] .
$$

Proof.

We will use eq.(32). Then, by using eq.(12) and eq.(33), and recalling the $k \times k$ determinant formula, $\operatorname{det}\left[a_{p q}\right]=\frac{1}{k!} \epsilon^{p_{1} \ldots p_{k}} \epsilon^{q_{1} \ldots q_{k}} a_{p_{1} q_{1}} \ldots a_{p_{k} q_{k}}$, we have

$$
\begin{aligned}
& \left(v_{1} \wedge \ldots v_{k}\right) \cdot\left(w_{1} \wedge \ldots w_{k}\right) \\
= & \frac{1}{k!} \sum_{j_{1} \ldots j_{k}=1}^{n}\left(v_{1} \wedge \ldots v_{k}\right)\left(\varphi^{j_{1}}, \ldots, \varphi^{j_{k}}\right)\left(w_{1} \wedge \ldots w_{k}\right)\left(\varphi^{j_{1}}, \ldots, \varphi^{j_{k}}\right) \\
= & \frac{1}{k!} \sum_{j_{1} \ldots j_{k}=1}^{n} \epsilon^{p_{1} \ldots p_{k}} \epsilon^{q_{1} \ldots q_{k}} \varphi^{j_{1}}\left(v_{p_{1}}\right) \ldots \varphi^{j_{k}}\left(v_{p_{k}}\right) \varphi^{j_{1}}\left(w_{q_{1}}\right) \ldots \varphi^{j_{k}}\left(w_{q_{k}}\right) \\
= & \frac{1}{k!} \epsilon^{p_{1} \ldots p_{k}} \epsilon^{q_{1} \ldots q_{k}} \sum_{j_{1}=1}^{n} \varphi^{j_{1}}\left(v_{p_{1}}\right) \varphi^{j_{1}}\left(w_{q_{1}}\right) \ldots \sum_{j_{k}=1}^{n} \varphi^{j_{k}}\left(v_{p_{k}}\right) \varphi^{j_{k}}\left(w_{q_{k}}\right) \\
= & \frac{1}{k!} \epsilon^{p_{1} \ldots p_{k}} \epsilon^{q_{1} \ldots q_{k}}\left(v_{p_{1}} \cdot w_{q_{1}}\right) \ldots\left(v_{p_{k}} \cdot w_{q_{k}}\right), \\
= & \operatorname{det}\left[v_{p} \cdot w_{q}\right] .
\end{aligned}
$$

Proposition 1 Let $\left(\left\{e_{k}\right\},\left\{e^{k}\right\}\right)$ be any pair of euclidean reciprocal bases of V, i.e., $e_{k} \cdot e^{l} \equiv G_{E}\left(e_{k}, e^{l}\right)=\delta_{k}^{l}$. For all $X \in \Lambda V$ we have the following two expansion formulas

$$
\begin{align*}
& X=X \cdot 1+\sum_{k=1}^{n} \frac{1}{k!} X \cdot\left(e^{j_{1}} \wedge \ldots e^{j_{k}}\right)\left(e_{j_{1}} \wedge \ldots e_{j_{k}}\right) \tag{38}\\
& X=X \cdot 1+\sum_{k=1}^{n} \frac{1}{k!} X \cdot\left(e_{j_{1}} \wedge \ldots e_{j_{k}}\right)\left(e^{j_{1}} \wedge \ldots e^{j_{k}}\right) \tag{39}
\end{align*}
$$

Proof. We give here the proof for vectors and p-vectors, with $p \geq 2$.
For $v \in V$, since $\left\{e_{k}\right\}$ and $\left\{e^{k}\right\}$ are bases of V, there are unique real numbers v^{i} and v_{i} with $i=1, \ldots, n$ such that

$$
v=v^{i} e_{i}=v_{i} e^{i}
$$

Let us calculate $v \cdot e^{j}$ and $v \cdot e_{j}$. Then, by taking into account the reciprocity condition of ($\left\{e_{k}\right\},\left\{e^{k}\right\}$), we get

$$
v=\left(v \cdot e^{j}\right) e_{j}=\left(v \cdot e_{j}\right) e^{j}
$$

It is standard practice to call $v \cdot e^{j}$ and $v \cdot e_{j}$ respectively the contravariant and covariant j-th components of v.

For $X \in \bigwedge^{p} V$, there are unique real numbers $X^{i_{1} \ldots i_{p}}$ and $X_{i_{1} \ldots i_{p}}$ with $i_{1}, \ldots, i_{p}=1, \ldots, n$ such that

$$
\begin{equation*}
X=\frac{1}{p!} X^{i_{1} \ldots i_{p}} e_{i_{1}} \wedge \ldots e_{i_{p}}=\frac{1}{p!} X_{i_{1} \ldots i_{p}} e^{i_{1}} \wedge \ldots e^{i_{p}} \tag{40}
\end{equation*}
$$

Then, by taking for example the scalar products $X \cdot\left(e^{j_{1}} \wedge \ldots e^{j_{p}}\right)$. By using eq.(37), the reciprocity condition of $\left(\left\{e_{k}\right\},\left\{e^{k}\right\}\right)$ and the combinatorial formula $\frac{1}{p!} \epsilon_{i_{1} \ldots i_{p}}^{j_{1} \ldots j_{p}} X^{i_{1} \ldots i_{p}}=X^{j_{1} \ldots j_{p}}$, we have

$$
\begin{aligned}
X \cdot\left(e^{j_{1}} \wedge \ldots e^{j_{p}}\right) & =\frac{1}{p!} X^{i_{1} \ldots i_{p}}\left(e_{i_{1}} \wedge \ldots e_{i_{p}}\right) \cdot\left(e^{j_{1}} \wedge \ldots e^{j_{p}}\right) \\
& =\frac{1}{p!} X^{i_{1} \ldots i_{p}} \operatorname{det}\left[\begin{array}{ccc}
e_{i_{1}} \cdot e^{j_{1}} & \ldots & e_{i_{1}} \cdot e^{j_{p}} \\
\ldots & \ldots & \ldots \\
e_{i_{p}} \cdot e^{j_{1}} & \ldots & e_{i_{p}} \cdot e^{j_{p}}
\end{array}\right] \\
& =\frac{1}{p!} \epsilon_{i_{1} \ldots i_{p}}^{j_{1} \ldots j_{p}} X^{i_{1} \ldots i_{p}}=X^{j_{1} \ldots j_{p}},
\end{aligned}
$$

i.e., $X^{j_{1} \ldots j_{p}}=X \cdot\left(e^{j_{1}} \wedge \ldots e^{j_{p}}\right)$. Analogously, we can prove that $X_{j_{1} \ldots j_{p}}=$ $X \cdot\left(e_{j_{1}} \wedge \ldots e_{j_{p}}\right)$.

Then, we get

$$
X=\frac{1}{p!} X \cdot\left(e^{j_{1}} \wedge \ldots e^{j_{p}}\right) e_{j_{1}} \wedge \ldots e_{j_{p}}=\frac{1}{p!} X \cdot\left(e_{j_{1}} \wedge \ldots e_{j_{p}}\right) e^{j_{1}} \wedge \ldots e^{j_{p}}
$$

Hence, eqs. (38) and (39) follows from the statement above and essentially from eq.(36).

$2.4 \quad b$-Metric

Let $\left\{b_{k}\right\}$ be any but fixed basis of V, and let $\left\{\beta^{k}\right\}$ be a basis of V^{*} dual to $\left\{b_{k}\right\}$, i.e., $\beta^{k}\left(b_{j}\right)=\delta_{j}^{k}$. Associated to $\left\{b_{k}\right\}$ we can introduce an euclidean metric on V, say G_{E}, defined by

$$
\begin{equation*}
\underset{b}{G_{E}}(v, w)=\delta_{j k} \beta^{j}(v) \beta^{k}(w) \tag{41}
\end{equation*}
$$

i.e., $G_{b}=\delta_{j k} \beta^{j} \otimes \beta^{k}$.

It is a well defined euclidean metric on V, since $G_{E} \in T_{2}(V)$ is symmetric non-degenerate and positive definite, as it is easy to verify. Such G_{b} will be called a fiducial metric on V induced by $\left\{b_{k}\right\}$, or for short, a b-metric. The euclidean structure $\left(V, G_{b}\right)$ will be called a fiducial metric structure for V induced by $\left\{b_{k}\right\}$, or for short, a b-metric structure. The pair $\left(V,\left\{b_{k}\right\}\right)$ could be called a fiducial structure for V associated to $\left\{b_{k}\right\}$, or for short, a b-structure.

On another way of thinking we are equipping V with a positive definite scalar product of vectors naturally induced by $\left\{b_{k}\right\}$. We write

$$
\begin{equation*}
v_{b} w \equiv G_{b}(v, w) . \tag{42}
\end{equation*}
$$

We present now two remarkable properties of a b-metric structure.
i The basis $\left\{b_{k}\right\}$ is orthonormal with respect to $\left(\underset{b}{\left(V, G_{E}\right)}\right.$, i.e.,

$$
\begin{equation*}
b_{j} \cdot b_{b}=\delta_{j k} . \tag{43}
\end{equation*}
$$

ii The scalar product of multivectors associated to $\left(V, G_{E}\right)$ is given by the noticeable formula

$$
\begin{equation*}
X \cdot \underset{b}{\cdot} Y=\langle X\rangle_{0}\langle Y\rangle_{0}+\sum_{k=1}^{n} \frac{1}{k!} \sum_{j_{1} \ldots j_{k}=1}^{n}\langle X\rangle_{k}\left(\beta^{j_{1}}, \ldots, \beta^{j_{k}}\right)\langle Y\rangle_{k}\left(\beta^{j_{1}}, \ldots, \beta^{j_{k}}\right) \tag{44}
\end{equation*}
$$

We know that all b-metric structure is a well-defined euclidean structure. However, it might as well be asked if any euclidean structure (V, G_{E}) is some b-metric structure $\left(V, G_{E}\right)$. The answer is YES.

Given an euclidean metric G_{E}, by the Gram-Schmidt procedure, there is an orthonormal basis $\left\{b_{k}\right\}$ with respect to $\left(V, G_{E}\right)$, i.e., $b_{j} \cdot b_{k} \equiv G_{E}\left(b_{j}, b_{k}\right)=$ $\delta_{j k}$, such that the b-metric G_{E} induced by $\left\{b_{k}\right\}$ coincides with G_{E}. Indeed, if $\left\{\beta^{k}\right\}$ is the dual basis of $\left\{b_{k}\right\}$, then

$$
\begin{aligned}
G_{E}(v, w) & =\delta_{j k} \beta^{j}(v) \beta^{k}(w)=G_{E}\left(b_{j}, b_{k}\right) \beta^{j}(v) \beta^{k}(w) \\
& =G_{E}\left(\beta^{j}(v) b_{j}, \beta^{k}(w) b_{k}\right)=G_{E}(v, w)
\end{aligned}
$$

i.e., $G_{b}=G_{E}$

2.4.1 b-Reciprocal Bases

Let $\left\{e_{k}\right\}$ be any basis of V, and $\left\{\varepsilon^{k}\right\}$ be its dual basis of V^{*}, i.e., $\varepsilon^{k}\left(e_{j}\right)=\delta_{j}^{k}$. Let us take a b-metric structure $\left(V, G_{b}\right)$. Associated to $\left\{e_{k}\right\}$, it is possible to define another basis for V, say $\left\{e^{k}\right\}$, given by

$$
\begin{equation*}
e^{k}=\sum_{j=1}^{n} \varepsilon^{k}\left(b_{j}\right) b_{j} . \tag{45}
\end{equation*}
$$

Since the set of the n forms $\varepsilon^{1}, \ldots, \varepsilon^{n} \in V^{*}$, is a basis for V^{*}, they are linearly independent covectors. It follows that the n vectors $e^{1}, \ldots, e^{n} \in V$ are also linearly independent and constitutes a well-defined basis for V.

Proposition 2 The bases $\left\{e_{k}\right\}$ and $\left\{e^{k}\right\}$ satisfy the following b-scalar product conditions

$$
\begin{equation*}
e_{k}{ }_{b} \cdot e^{l}=\delta_{k}^{l} . \tag{46}
\end{equation*}
$$

Proof. Using eqs.(45) and (43), and the duality condition of $\left(\left\{e_{k}\right\},\left\{\varepsilon^{k}\right\}\right)$ we have

$$
e_{k} \cdot e^{l}=\sum_{j=1}^{n} \varepsilon^{l}\left(b_{j}\right)\left(e_{k} \cdot b_{b}\right)=\varepsilon^{l}\left(\sum_{j=1}^{n}\left(e_{k} \cdot b_{b}\right) b_{j}\right)=\varepsilon^{l}\left(e_{k}\right)=\delta_{k}^{l} .
$$

It is noticeable that $\left\{e^{k}\right\}$ given by eq.(45) is the unique basis of V which satisfies eq.(46). Such a basis $\left\{e^{k}\right\}$ will be called the b-reciprocal basis of $\left\{e_{k}\right\}$. In what follows we say that $\left\{e_{k}\right\}$ and $\left\{e^{k}\right\}$ are b-reciprocal bases to each other.

In particular, the b-reciprocal basis of $\left\{b_{k}\right\}$ is itself, i.e.,

$$
\begin{equation*}
b^{k}=b_{k} \text { for each } k=1, \ldots, n, \tag{47}
\end{equation*}
$$

It follows directly from eq.(45) and the duality condition of $\left(\left\{b_{k}\right\},\left\{\beta^{k}\right\}\right)$.

2.5 Euclidean Interior Algebras

Let us take an euclidean structure $\left(V, G_{E}\right)$. We can define two kind of contracted products for multivectors, namely \lrcorner and \llcorner. If $X, Y \in \bigwedge V$ then $X\lrcorner Y \in \bigwedge V$ and $X\llcorner Y \in \bigwedge V$ such that

$$
\begin{align*}
& (X\lrcorner Y) \cdot Z=Y \cdot(\tilde{X} \wedge Z) \tag{48}\\
& (X\llcorner Y) \cdot Z=X \cdot(Z \wedge \widetilde{Y}) \tag{49}
\end{align*}
$$

for all $Z \in \Lambda V$.
These contracted products \lrcorner and \llcorner are internal laws on $\bigwedge V$. Both contracted products satisfy distributive laws (on the left and on the right) but they are not associative.

The vector space ΛV endowed with each of these contracted products (either \lrcorner or \llcorner) is a non-associative algebra. They are called the euclidean interior algebras of multivectors.

We present now some of the most important properties of the contracted products.
eip-i For any $\alpha, \beta \in \mathbb{R}$ and $X \in \Lambda V$:

$$
\begin{align*}
\alpha\lrcorner \beta & =\alpha\llcorner\beta=\alpha \beta \text { (real product) } \tag{50}\\
\alpha\lrcorner X & =X\llcorner\alpha=\alpha X \text { (multiplication by scalars). } \tag{51}
\end{align*}
$$

eip-ii For any $X_{j} \in \bigwedge^{j} V$ and $Y_{k} \in \bigwedge^{k} V(j \leq k)$:

$$
\begin{equation*}
\left.X_{j}\right\lrcorner Y_{k}=(-1)^{j(k-j)} Y_{k}\left\llcorner X_{j} .\right. \tag{52}
\end{equation*}
$$

eip-iii For any $X_{j} \in \bigwedge^{j} V$ and $Y_{k} \in \bigwedge^{k} V$:

$$
\begin{align*}
\left.X_{j}\right\lrcorner Y_{k} & =0, \text { if } j>k, \tag{53}\\
X_{j}\left\llcorner Y_{k}\right. & =0, \text { if } j<k . \tag{54}
\end{align*}
$$

eip-iv For any $X_{k}, Y_{k} \in \bigwedge^{k} V$:

$$
\begin{equation*}
\left.X_{k}\right\lrcorner Y_{k}=X_{k}\left\llcorner Y_{k}=\widetilde{X_{k}} \cdot Y_{k}=X_{k} \cdot \widetilde{Y}_{k} .\right. \tag{55}
\end{equation*}
$$

eip-v For any $v \in V$ and $X, Y \in \Lambda V$:

$$
\begin{equation*}
v\lrcorner(X \wedge Y)=(v\lrcorner X) \wedge Y+\widehat{X} \wedge(v\lrcorner Y) . \tag{56}
\end{equation*}
$$

2.6 Euclidean Clifford Algebra

We define now an euclidean Clifford product of multivectors X and Y relative to a given euclidean structure (V, G_{E}), denoted by juxtaposition, by the following axioms:

Ax-i For all $\alpha \in \mathbb{R}$ and $X \in \Lambda V: \alpha X=X \alpha$ equals the multiplication of multivector X by scalar α.

Ax-ii For all $v \in V$ and $X \in \Lambda V: v X=v\lrcorner X+v \wedge X$ and $X v=$ $X\llcorner v+X \wedge v$.

Ax-iii For all $X, Y, Z \in \wedge V: X(Y Z)=(X Y) Z$.
The Clifford product is an internal law on ΛV. It is associative (by the axiom (Ax-iii)) and satisfies distributive laws (on the left and on the right). The distributive laws follow from the corresponding distributive laws of the contracted and exterior products.

The vector space of multivectors over V endowed with the Clifford product is an associative algebra. It will be called euclidean Clifford algebra of multivectors and denoted by $\mathcal{C} \ell\left(V, G_{E}\right)$.

Some important formulas which hold in $\mathcal{C} \ell\left(V, G_{E}\right)$ are the following.
eca-i For any $v \in V$ and $X \in \Lambda V$:

$$
\begin{align*}
v\lrcorner X & =\frac{1}{2}(v X-\widehat{X} v) \tag{57}\\
\text { and } X\llcorner v & =\frac{1}{2}(X v-v \widehat{X}) . \\
v \wedge X & =\frac{1}{2}(v X+\widehat{X} v) \tag{58}\\
\text { and } X \wedge v & =\frac{1}{2}(X v+v \widehat{X}) .
\end{align*}
$$

eca-ii For any $X, Y \in \bigwedge V$:

$$
\begin{equation*}
X \cdot Y=\langle\tilde{X} Y\rangle_{0}=\langle X \tilde{Y}\rangle_{0} \tag{59}
\end{equation*}
$$

eca-iii For any $X, Y, Z \in \Lambda V$:

$$
\begin{align*}
(X Y) \cdot Z & =Y \cdot(\tilde{X} Z)=X \cdot(Z \tilde{Y}) \tag{60}\\
X \cdot(Y Z) & =(\tilde{Y} X) \cdot Z=(X \widetilde{Z}) \cdot Y \tag{61}
\end{align*}
$$

eca-iv For any $X, Y \in \Lambda V$:

$$
\begin{align*}
& \widehat{X Y}=\widehat{X} \widehat{Y} \tag{62}\\
& \widetilde{X Y}=\widetilde{Y} \bar{X} \tag{63}
\end{align*}
$$

eca-v Let $I \in \bigwedge^{n} V$. Then, for any $v \in V$ and $X \in \Lambda V$:

$$
\begin{equation*}
\left.I(v \wedge X)=(-1)^{n-1} v\right\lrcorner(I X) \tag{64}
\end{equation*}
$$

Eq.(64) is sometimes called the duality identity and since it appears in several contexts in what follows we prove it.
Proof. By using eq.(58), $I v=(-1)^{n-1} v I$ and $\widehat{I}=(-1)^{n} I$ where $v \in V$ and $I \in \bigwedge^{n} V$ and, eqs.(62) and (57) we have

$$
\begin{aligned}
I(v \wedge X) & =\frac{1}{2}(I v X+I \widehat{X} v)=\frac{1}{2}\left((-1)^{n-1} v I X+(-1)^{n} \widehat{I} \widehat{X} v\right) \\
& \left.=(-1)^{n-1} \frac{1}{2}(v I X-\widehat{I X} v)=(-1)^{n-1} v\right\lrcorner(I X) .
\end{aligned}
$$

eca-vi For any $X, Y, Z \in \Lambda V$:

$$
\begin{align*}
X\lrcorner(Y\lrcorner Z) & =(X \wedge Y)\lrcorner Z \tag{65}\\
(X\llcorner Y)\llcorner Z & =X\llcorner(Y \wedge Z) . \tag{66}
\end{align*}
$$

Proof. We prove only eq.(65). The proof of eq.(66) is analogous and left to the reader.

Let $W \in \Lambda V$. By using eq.(48) and eq.(18) we have

$$
\begin{aligned}
(X\lrcorner(Y\lrcorner Z)) \cdot W & =(Y\lrcorner Z) \cdot(\tilde{X} \wedge W)=Z \cdot((\tilde{Y} \wedge \widetilde{X}) \wedge W) \\
& =Z \cdot((\widetilde{X \wedge Y}) \wedge W)=((X \wedge Y)\lrcorner Z) \cdot W
\end{aligned}
$$

Hence, by the non-degeneracy of the euclidean scalar product, the first statement follows.

To end, we call the readers attention to the fact that all Clifford algebra associated to all possible euclidean structure (V, G_{E}) over the same vector space V are equivalent each to other, i.e., define the same abstract Clifford algebra. Indeed all euclidean structures for V are isomorphic to the euclidean structure $\left(\mathbb{R}^{n}, \bullet\right)$, where \bullet is the canonical scalar product on \mathbb{R}^{n}. The Clifford algebra associated to the euclidean structure $\left(\mathbb{R}^{n}, \bullet\right)$ is conveniently denoted $([33][34])$ by \mathbb{R}_{n}.

3 Conclusions

The euclidean Clifford algebra ${ }^{17} \mathcal{C} \ell\left(V, G_{E}\right)$ introduced above will serve as our basic calculational tool for the development of the theories of multivector functions and multivector functionals that we develop in this series of papers, and also for many applications that will be reported elsewhere. When $\mathcal{C} \ell\left(V, G_{E}\right)$ is used together with the concept of extensor (to be introduced in paper II) we obtain a powerful formalism which permits among other things an intrinsic presentation (i.e., without the use of matrices) of the principal results of classical linear algebra theory. Also, endowed V with an arbitrary metric extensor g (of signature $s=p-q$ or (p, q) as physicists like to say, with $p+q=n$) we can construct a metric Clifford algebra $\mathcal{C} \ell(V, g)$ as a welldefined deformation of the euclidean Clifford algebra $\mathcal{C} \ell\left(V, G_{E}\right)$, see paper IV.

Appendix A

In the literature we can find several different definitions (differing by numerical factors $(p!q!,(p+q)!,(p+q)!/ p!q!$,$) for the exterior product$ $X_{p} \wedge Y_{q}$ in terms of some antisymmetrization of the tensor product $X_{p} \otimes Y_{q}$.

[^8]Before continuing we recall that the tensor product of $t \in T^{p} V$ and $u \in$ $T^{q} V$, namely $t \otimes u \in T^{p+q} V$, is defined by
(ti) for all $\alpha, \beta \in T^{0} V \equiv \mathbb{R}: \alpha \otimes \beta=\beta \otimes \alpha=\alpha \beta$ (real product),
(tii) for all $\alpha \in \mathbb{R}, u \in T^{q} V: \alpha \otimes u=u \otimes \alpha=\alpha u$ (scalar multiplication of u by α), and
(tiii) for all $t \in T^{p} V, u \in T^{q} V(p, q \geq 1)$ and $\omega^{1}, \ldots, \omega^{p}, \omega^{p+1}, \ldots, \omega^{p+q} \in$ V^{*},

$$
\begin{equation*}
t \otimes u\left(\omega^{1}, \ldots, \omega^{p}, \omega^{p+1}, \ldots, \omega^{p+q}\right)=t\left(\omega^{1}, \ldots, \omega^{p}\right) u\left(\omega^{p+1}, \ldots, \omega^{p+q}\right) \tag{A.1}
\end{equation*}
$$

Now, the exterior algebra $\bigwedge V$ is defined in the modern approach to algebraic structures as the quotient $\bigwedge V=T V / I$, where $T V=\sum_{p=0}^{\infty} T^{p} V$ is the tensor algebra and I is the bilateral ideal generated by elements of the form $x \otimes x$. In this case, it is necessary to define the product of $X_{p} \in \Lambda^{p} V$ and $Y_{q} \in \Lambda^{q} V$ by

$$
\begin{equation*}
X_{p} \stackrel{q a}{\wedge} Y_{q}=\mathcal{A}\left(X_{p} \otimes Y_{q}\right) \tag{A.2}
\end{equation*}
$$

instead of eq.(7). This observation means that when reading books with chapters on the theory of the exterior algebras or scientific papers, it is necessary to take care and to be sure about which product has been defined, for otherwise great confusion may arise. In particular for not distinguishing \wedge as defined in eq.(7) from $\stackrel{q a}{\wedge}$ as defined by eq.(A.2) the following error appears frequently. Let $X_{p} \in \Lambda^{p} V$, let $\left\{e_{i}\right\}$ be any basis of V and $\left\{\varepsilon^{i}\right\}$ its corresponding dual basis of V^{*}, and consider the $p 1$-forms $\omega^{1}, \ldots, \omega^{p} \in V^{*}$. Then, using the elementary expansions $\omega^{1}\left(e_{j_{1}}\right) \varepsilon^{j_{1}}, \ldots$ etc., we have

$$
\begin{aligned}
X\left(\omega^{1}, \ldots, \omega^{p}\right) & =X\left(\omega^{1}\left(e_{j_{1}}\right) \varepsilon^{j_{1}}, \ldots, \omega^{p}\left(e_{j_{p}}\right) \varepsilon^{j_{p}}\right) \\
& =\omega^{1}\left(e_{j_{1}}\right) \ldots \omega^{p}\left(e_{j_{p}}\right) X\left(\varepsilon^{j_{1}}, \ldots, \varepsilon^{j_{p}}\right) \\
& =X^{j_{1} \ldots j_{p}} e_{j_{1}} \otimes \ldots \otimes e_{j_{p}}\left(\omega^{1}, \ldots, \omega^{p}\right),
\end{aligned}
$$

i.e.,

$$
\begin{equation*}
X=X^{j_{1} \ldots j_{p}} e_{j_{1}} \otimes \ldots \otimes e_{j_{p}} . \tag{A.3}
\end{equation*}
$$

The real numbers $X\left(\varepsilon^{j_{1}}, \ldots, \varepsilon^{j_{p}}\right)=X^{j_{1} \ldots j_{p}}$ are called the $j_{1} \ldots j_{p}$-th (contravariant) components of X relative to the basis $\left\{e_{j_{1}} \otimes \ldots \otimes e_{j_{p}}\right\}$ of $T^{p} V$.

Now, since $X \in \bigwedge^{p} V$ is a completly antisymmetric tensor it must satisfy

$$
\begin{equation*}
\mathcal{A} X=X, \tag{A.4}
\end{equation*}
$$

and using the definition of the operator \mathcal{A} (see eq.(8)) we get the identity

$$
\begin{equation*}
X^{j_{1} \ldots j_{p}}=\frac{1}{p!}{ }_{i_{1} \ldots i_{p}}^{j_{1} \ldots j_{p}} X^{i_{1} \ldots i_{p}}, \tag{A.5}
\end{equation*}
$$

and of course the components $X^{j_{1} \ldots j_{p}}$ are antisymmetric in all indices.
Using eq.(A.5) in eq.(A.3) we obtain,

$$
\begin{equation*}
X=\frac{1}{p!} \epsilon_{i_{1} \ldots i_{p}}^{j_{1} \ldots j_{p}} X^{i_{1} \ldots i_{p}} e_{j_{1}} \otimes \ldots \otimes e_{j_{p}} \tag{A.6}
\end{equation*}
$$

Now, if we use the definition of the exterior product given by eq.(7), more exactly an particular case of eq.(11), the well-known combinatorial formula: $e_{i_{1}} \wedge \ldots \wedge e_{i_{p}}=\epsilon_{i_{1} \ldots i_{p}}^{j_{1} \ldots j_{p}} e_{j_{1}} \otimes \ldots \otimes e_{j_{p}}$, we see that eq.(A.6) can be written as

$$
\begin{equation*}
X=\frac{1}{p!} X^{i_{1} \ldots i_{p}} e_{i_{1}} \wedge \ldots \wedge e_{i_{p}} \tag{A.7}
\end{equation*}
$$

Eq.(A.7) is the expansion that has been used in this paper and in all the others of this series.

Now, if we use the definition of the exterior product as given by eq.(A.2), then by repeting the above calculations we get that X can be witten as

$$
\begin{equation*}
X=X^{i_{1} \ldots i_{p}} e_{i_{1}}{ }^{q a} \wedge \stackrel{q a}{\wedge} e_{i_{p}} \tag{A.8}
\end{equation*}
$$

To write $X=\frac{1}{p!} X^{i_{1} \ldots i_{p}} e_{i_{1}}{ }^{q a} \wedge{ }^{q a} \wedge e_{i_{p}}$ instead of eq.(A.8) is clearly wrong if it is supposed that the meaning of $X\left(\varepsilon^{j_{1}}, \ldots, \varepsilon^{j_{p}}\right)$ is that $X\left(\varepsilon^{j_{1}}, \ldots, \varepsilon^{j_{p}}\right)=$ $X^{j_{1} \ldots j_{p}}$ as in eq.(A.3). This confusion appears, e.g., in [36].

Acknowledgement: V. V. Fernández is grateful to FAPESP for a posdoctoral fellowship. W. A. Rodrigues Jr. is grateful to CNPq for a senior research fellowship (contract 251560/82-8) and to the Department of Mathematics of the University of Liverpool for the hospitality. Authors are also grateful to Doctors. P. Lounesto, I. Porteous, and J. Vaz, Jr. for their interest on our research and for useful suggestions and discussions.

References

[1] Chisholm, J. S. R. and Common, A. K., Clifford Algebras and their Applications in Mathematical Physics (Canterbury, UK 1985), Reidel, Dordrecht, 1986.
[2] Micali, A., Boudet, R. and Helmestetter, J., Clifford Algebras and their Applications in Mathematical Physics (Deinze 1993), Fundamental Theories of Physics vol.47, Kluwer Academic Publishers, Dordrecht, 1992.
[3] Bracks, F., Delanghe, R. and Serras, H., (eds.), Clifford Algebras and their Applications in Mathematical Physics (Deinze 1993), Fundamental Theories of Physics vol. 55, Kluwer Academic Publishers, Dordrecht, 1993.
[4] Dietrich, V., Habetha, K. and Jank, G., (eds.), Clifford Algebras and their Applications in Mathematical Physics (Aachen 1996), Fundamental Theories of Physics vol. 94, Kluwer Academic Publishers, Dordrecht, 1998.
[5] Ablamowicz, R. and Fauser, B., (eds.), Clifford Algebras and their Applications in Mathematical Physics (Ixtapa-Zihuatanejo, Mexico 1999), vol.1, Algebra and Physics, Progress in Physics 18, Birkhäuser, Boston, Basel and Berlin, 2000.
[6] Ryan, J. and Spössig (eds.), Clifford Algebras and their Applications in Mathematical Physics (Ixtapa-Zihuatanejo, Mexico 1999), vol.2, Clifford Analysis, Progress in Physics 19, Birkhäuser, Boston, Basel and Berlin, 2000.
[7] Juvet, G., Opérateurs de Dirac et Équations de Maxwell, Comment. Math. Helv. 2, 225-235 (1930).
[8] Jancewicz, B., Multivectors and Clifford Algebra in Electrodynamics, World Scientific, Singapore, 1998.
[9] Hestenes, D., Spacetime Algebra, Gordon and Breach, New York, 1966, 1987, 1992.
[10] Baylis, W. E., Electrodynamics: A Modern Geometrical Approach, Birkhäuser, Boston, 1996.
[11] Kähler, E., Der Innere Differentialkalül, Rediconti di Matematica e delle sue Applicazioni (Roma) 21, 425-523 (1962).
[12] Hestenes, D., Real Spinor Fields, J. Math. Phys., 798-808, 1967.
[13] Oliveira, E. C. and Rodrigues, W. A. Jr., Dirac and Maxwell Equations in the Clifford and Spin-Clifford Bundles, Int. J. Theor. Phys. 29, 397412 (1990).
[14] De Leo, S. and Rodrigues, W. A. Jr., Quantum Mechanics From Complex to Complexified Quaternions, Int. J. Theor. Physics 36, 2725-2757 (1997).
[15] De Leo, S. and Rodrigues, W. A. Jr., Quaternionic Electron Theory: Dirac's Equation, Int. J. Theor. Phys. 37, 1511-1529 (1998).
[16] De Leo, S., Rodrigues, W. A. Jr., and Vaz, J., Jr., Complex Geometry and Dirac Equation, Int. J. Theor. Phys. 37, 2479-2495 (1998).
[17] De Leo, S. and Rodrigues, W. A. Jr., Quaternionic Electron Theory: Geometry, Algebra and Dirac's Spinors, Int. J. Theor. Phys. 37, 17071720 (1998).
[18] De Leo, S., Oziewicz, Z., Rodrigues, W. A. Jr., and J. Vaz, Jr, The Dirac-Hestenes Lagrangian, Int. J. Theor. Phys. 38, 2349-2369 (1999).
[19] Keller, J., Theory of the Electron, Fundamental Theory of Physics vol.115, Kluwer Academic Publishers, Dordrecht, 2001.
[20] Moya, A. M., Lagrangian Formalism for Multivector Fields on Spacetime, Ph.D. thesis in Applied Mathematics (in Portuguese), IMECCUNICAMP, Campinas-SP, Brazil, 1999.
[21] Rodrigues, W. A. Jr., and Souza, Q. A., The Clifford Bundle and the Nature of the Gravitational Field, Found. Phys. 23, 1465-1490 (1993).
[22] Lasenby, A., Doran, C. and Gull, S., Gravity, Gauge Theories and Geometric Algebras, Phil. Trans. R. Soc. 356, 487-582 (1998).
[23] Hestenes, D. and Sobczyk, G., Clifford Algebra to Geometrical Calculus, Reidel Publ. Co., Dordrecht, 1984.
[24] Sobczyk, G., Direct Integration, in Baylis, W. E. (ed.), Clifford (Geometric) Algebras with Applications in Physics, Mathematics and Engineering, pp. 53-64, Birkhäuser, Boston, 1999.
[25] Fernández, V. V, Moya, A. M., and Rodrigues, W. A. Jr., in R. Ablamowicz and B. Fauser (eds.), Clifford Algebras and their Applications in Mathematical Physics (Ixtapa-Zihuatanejo, Mexico 1999), vol.1, Algebra and Physics, Progress in Physics 18, pp 373-398, Birkhäuser, Boston, Basel and Berlin, 2000.
[26] Rodrigues, W. A. Jr., Souza, Q. A. G., Vaz, J. Jr., and Lounesto, P., Dirac-Hestenes Spinor Fields, in Riemann-Cartan Spacetimes, Int. J. Theor. Phys. 35, 1849-1900 (1996).
[27] Moya, A. M., Fernández, V. V., and Rodrigues, W. A. Jr., Lagrangian Formalism for Multiform Fields on Minkowski Spacetime, Int. J. Theor. Phys. 40, 299-311 (2001).
[28] Rodrigues, W. A. Jr., Algebraic and Dirac-Hestenes Spinors and Spinor Fields, to be submit. for publ. (2001).
[29] Rodrigues, W. A. Jr., The Bundles of Algebraic and Dirac-Hestenes Spinor Fields, to be submit. for publ. (2001).
[30] Pastraro, A., Gauge Geometrodynamics, Riv. N. Cimento 5,1-122 (1982).
[31] Nicolaescu, L. I., Notes on Seberg-Witten Theory, Graduate Studies in Mathematics 28, Am.Math. Soc.,Provisence, Rhode Island, 2000.
[32] Lounesto, P., Clifford Algebras and Spinors, London Math. Soc., Lecture Notes Series 239, Cambridge University Press, Cambridge, 1997.
[33] Porteous, I. R., Clifford Algebras and the Classical Groups, Cambridge Studies in Advanced Mathematics 50, Cambridge University Press, Cambridge, 1995.
[34] Porteous, I. R., Topological Geometry, Van Nostrand Reinhold, London, 1969; 2nd edition, Cambridge University Press, Cambridge, 1981.
[35] Sternberg, S., Lectures on Differential Geometry, Prentice-Hall, Englewood Cliffs, N. J., 1964.
[36] Been, I. M., and Tucker, R. W., An Introduction to Spinors and Geometry with Applications in Physics, Adam Hilger, Bristol and New York, 1987
[37] Naber, G. L., Topology, Geometry, and Gauge Fields. Interactions, Applied Mathematical Sciences 141, Springer Verlag, New York, 2000.

[^0]: *in publication: Advances in Applied Clifford Algebras 11(S3), 2001.
 ${ }^{\dagger} \mathrm{e}-\mathrm{mail}:$ vvf@ime.unicamp.br
 ${ }^{\ddagger}$ e-mail: moya@ime.unicamp.br
 §e-mail: walrod@ime.unicamp.br

[^1]: ${ }^{1}$ The papers in this series will be denoted when quoted within or in another paper in the series by I, II, III,...

[^2]: ${ }^{2}$ More precisely, in differential geometry the key objects are gauge extensor fields.

[^3]: ${ }^{3}$ The definition of a spacetime will be given at the appropriate place.
 ${ }^{4}$ Our approach immediately suggests possible improvements of the Einstein's gravitational theory as well as other interpretations, where the gravitational field, contrary to what happens in Einstein's theory is understood as a physical field in the sense of Faraday.
 ${ }^{5}$ The subject has even a journal, Advances in Applied Clifford Algebras , edited by J. Keller and in publication since 1991. Keller is an enthusiastic of the applications of Clifford algebras in theoretical physics and contributed with several beautiful papers to the subject. His ideas are nicely described in his recent book [19].
 ${ }^{6}$ We antecipately apologize to the author of any important contribution on the subject that has not been quoted in our brief account.
 ${ }^{7}$ Formulations of Maxwell and Dirac theories which use only Clifford algebras (more properly speaking Clifford bundles), and do not use the concept of extensor are incomplete [20]. These theories, e.g., cannot capture the essential mathematical nature of the physical concepts of energy-momentum and angular momentum associated with physical fields (in the sense of Faraday), since they must be mathematically represented by extensor fields. In particular, approaches to Dirac theory which do not use the concept of extensors are incomplete, to say the less. On this issue, see ([14]-[18]).
 ${ }^{8}$ This book is essentially based on Sobczyk Ph.D. thesis presented at the Department of Mathematics of the University of Arizona. We are grateful to Professor P. Lounesto

[^4]: (Helsinki) for this important information.
 ${ }^{9}$ A preliminary presentation of the general theory of connection using multivectorextensor calculus on Minkowski manifolds appears in [25].
 ${ }^{10}$ In the paper dealing with the Lagrangian formalism for fields we make use of the concept of a spinor field that (roughly speaking) can be said to be an equivalence class of a sum of non homogenous multivector fields. A tentative definition of these objects appear in [26], which unfortunately contains many misprints and some important errors. These are correct in ([31],[32]).
 ${ }^{11}$ See [27] for a list of references on the subject.
 ${ }^{12}$ It is also possible to present a theory of spinor fields, where these objects are (loosely speaking) represented by certain equivalence classes of multivector fieds on an arbitrary manifold. A rigorous presentation of that theory is given elsewhere ([28],[29]).

[^5]: ${ }^{13}$ If the reader is not familiar with exterior algebra he must consult texts on the subject. See, e.g., ([35],[36][37]). However, care must be taken when reading different books which use different definitions for the exterior product and still use all the same symbol for that different products. About this issue, see comments on Appendix A.

[^6]: ${ }^{14}$ There are several different definitions of the exterior product in the literature differing by factors and all using the same symbol.. This may lead to confusion if care is not taken. See Appendix A for some details.
 ${ }^{15}$ Recall that $\epsilon^{j_{1} \ldots j_{k}} \equiv \epsilon_{j_{1} \ldots j_{k}}$.

[^7]: ${ }^{16}$ Recall that $\epsilon_{i_{1} \ldots i_{k}}^{j_{1} \ldots j_{k}}$ is the so-called generalized permutation symbol of order k,

 $$
 \epsilon_{i_{1} \ldots i_{k}}^{j_{1} \ldots j_{k}}=\operatorname{det}\left[\begin{array}{ccc}
 \delta_{i_{1}}^{j_{1}} & \ldots & \delta_{i_{1}}^{j_{k}} \\
 \cdots & \ldots & \ldots \\
 \delta_{i_{k}}^{j_{1}} & \ldots & \delta_{i_{k}}^{j_{k}}
 \end{array}\right], \text { with } i_{1}, \ldots, i_{k}=1, \ldots, n \text { and } j_{1}, \ldots, j_{k}=1, \ldots, n .
 $$

[^8]: ${ }^{17}$ The classification of all euclidean algebras for arbitrary finite dimensional space and their matrix representations can be found, e.g., in [30].

