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Abstra
t

We exhibit exa
t �nite energy superluminal solutions of Maxwell

equations in va
uum and dis
uss the physi
al meaning of these solu-

tions.

Re
ently, some papers [1,2℄ have appeared in the literature showing that

in some hypotheti
al media there is the possibility of the existen
e of super-

luminal ele
tromagneti
 pulses (solutions of Maxwell equations) su
h their

fronts travel in the media with superluminal velo
ities. Now, the solutions

dis
overed in [1,2℄, despite their theoreti
al interest have in�nite energy and

as su
h 
annot be produ
ed in the physi
al world. Only �nite aperture

approximations to these waves 
an eventually be produ
ed (supposing the

existen
e of the spe
ial media). The obje
tive of this letter is to show that
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in 
ontrast to the solutions dis
overed in [1,2℄ (that, as already said have

in�nite energy), there exist va
uum solutions of Maxwell equations whi
h

are �nite energy superluminal solutions . These new solutions, as we shall

see, appear when we solve some Sommerfeld like problems

3;4

to be reported

below. We dis
uss if the new solutions 
an be realized in the physi
al world.

Moreover, we emphasize that the new solutions 
orrespond to phenomenon

distin
t to already observed wave motion with superluminal [5-8℄ (or even

negative [9,10℄) group velo
ities. In the 
ase,e.g., of experiments [5-8℄ only

the peaks of the waves travel (for a while) with superluminal velo
ity whereas

their fronts always travel at the velo
ity of light.

We start by re
alling how to write ele
tromagneti
 �eld 
on�gurations in

terms of Hertz potentials [11,12℄. Suppose we have a Hertz potential

~

�

m

of

magneti
 type. In what follows we use units su
h that the velo
ity of light

is 
 = 1. Then, the asso
iated ele
tromagneti
 �eld is given by

~

E = �

�

�t

(r�

~

�

m

);

~

B = r�r�

~

�

m

: (1)

Let us take

~

�

m

= �ê

z

. Then, sin
e the Hertz potential (in va
uum) satis�es

a homogeneous wave equation, we have that

�� = 0: (2)

The Sommerfeld problem (not to be 
onfused with a Cau
hy problem) to

be 
onsidered here is the following. In a given inertial frame (the laboratory

1

)

�nd a solution �

X

: (t; ~x) 7! C (where C is the �eld of 
omplex numbers)

for eq.(2) satisfying the following boundary 
onditions

2

at the z = 0 plane,

8

>

>

<

>

>

:

�

X

(t; �; 0) = T(t)

1

R

�1

d!B(!)J

0

(!� sin �)e

�i!t

;

��

X

(t;�;z)

�z

�

�

�

z=0

= iT(t) 
os �

1

R

�1

d!B(!)J

0

(!� sin �)k(!)e

�i!t

;

(3)

where T(t) = [�(t + T )� �(t� T )℄ , � is the Heaviside fun
tion, k(!) = !,

and � is a 
onstant 
alled the axi
on angle [13-18℄ and B(k) is an appropriate

frequen
y distribution. As showed in [14℄ the solution of eq.(2) (for z > 0; t >

T ) whi
h satis�es the Sommerfeld 
onditions is

1

The laboratory is modeled by time like ve
tor �eld L =

�

�t

2 se
TM .

2

The ne
essity for these boundary 
onditions is proved in [13℄.
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�

X

(t; �; z) =

8

<

:

1

R

�1

d!B(!)J

0

(!� sin �)e

�i!(t�z 
os �)

for jt� z 
os �j < T

0 for jt� z 
os �j > T:

(4)

We 
all �

X

a s
alar superluminal X-pulse. Now, as is well known, the

energy density for a 
omplex �eld 
on�guration, like the �

X

, is

u = (�

t

�

X

)(�

t

�

�

X

) + (�

x

�

X

)(�

x

�

�

X

) + (�

y

�

X

)(�

y

�

�

X

) + (�

z

�

X

)(�

z

�

�

X

); (5)

and the energy of the �eld 
on�guration 
an be 
al
ulated by the volume

integral of u on a 
onstant time hyperplane, say t = T

0

> T . The 
al
ulation

is easy when done in 
ylindri
al 
oordinates. Re
alling that from eq.(4) it

follows that the support of the pulse at t = T

0

is 4z = 2T= 
os �, we have

E =

8�T

sin

2

� 
os �

1

Z

�1

jB(k)j

2

kdk; (6)

where the kineti
 and potential energy terms give equal 
ontributions. Eq.(6)

gives �nite energy for the s
alar X-pulse for an in�nity of frequen
y distri-

bution fun
tions B(k), su
h that jB(k)j

2

be null for k < 0. A trivial example

is B(k) = [ �(k) � �(k � k

0

)℄, with k

0

a 
onstant. Now, we study the

ele
tromagneti
 
ase. The non null 
omponents of the ele
tromagneti
 �eld
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orresponding to a magneti
 Hertz potential

~

�

m

= �

X

ê

z

are (for z > 0,

t > T )

8

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

:

E

�

= i sin �

1

R

�1

dkB(k)k

2

J

1

(k� sin �)e

�ik(t�z 
os �)

;

B

�

=

�i

2

sin 2�

1

R

�1

dkB(k)k

2

J

1

(k� sin �)e

�ik(t�z 
os �)

;

B

z

= sin

2

�

1

R

�1

dkB(k)k

2

J

0

(k� sin �)e

�ik(t�z 
os �)

;

for jt� z 
os �j < T;

E

�

= B

�

= B

z

= 0; for jt� z 
os �j > T:

(7)

3

Called a superluminal ele
tromagneti
 X pulse [13,14℄.
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Now, using the standard energy density of the ele
tromagneti
 �eld [11,12℄,

the energy of the superluminal ele
tromagneti
 X pulse results,

E

X

=

1

2

2�

Z

0

z

max

Z

z

min

1

Z

0

�

E

�

E

�

�

+B

�

B

�

�

+B

z

B

�

z

�

�d�dzd�

=

4�T


os �

1

Z

�1

jB(k)j

2

k

3

dk: (8)

Eq.(8) gives �nite energy for superluminal solutions of Maxwell equations

satisfying Sommerfeld boundary 
onditions (here expressed through 
ondi-

tions for the asso
iated Hertz potential) for an in�nity of possible frequen
y

distributions B(k), as in the s
alar 
ase.

We have four 
omments before ending this letter:

(i) What does our �nite energy solution (for the s
alar wave equation)

look like for an observer in a Lorentz frame Z 2 se
TM;

Z =

1

p

1� V

2

(�

t

+ V �

z

); (9)

whi
h is moving with velo
ity V = 
os � relative to the laboratory (the

frame L = �

t

2 se
 TM )?

As 
an be easily veri�ed the transformed solution is:

�

0

X

(t

0

; �; z

0

) =

8

<

:

1

R

�1

d!B(!)J

0

(!� sin �)e

�i! sin �t�

for jt

0

j < T= sin �

0 for jt

0

j > T= sin �:

(10)

The solution is independent of the spatial 
oordinate z and 
orresponds

to a standing wave o

upying all the rest spa
e of the Z frame and that

exists only for the time interval 4t

0

= 2T= sin �. Is this result non physi
al?

If not, what is the meaning of su
h a wave for the observers of the Z frame?

As a Minkowski diagram 
an show, the wave stands for a �nite period of

time a

ording to the time order of the Z frame be
ause it is going to the

past of the Z's observers. This must be a normal phenomenon if relativity

theory is true and genuine superluminal motion exists. The observers at the

Z frame will 
ompute an in�nite energy for that wave, but sin
e they know

relativity theory they will interpret the whole phenomena as follows: the
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wave that stands for a �nite period of time at our frame is a superluminal

�nite energy wave produ
ed in a laboratory ( the L frame) that is moving

with velo
ity �1= 
os � relative to our frame (i.e., Z frame). Of 
ourse, the

Z frames physi
ists 
annot produ
e su
h a wave in their frame, due to two

reasons. The �rst is that the wave a

ording to them has in�nite energy

and the se
ond, whi
h is the 
ru
ial one, is simply be
ause the devi
e whi
h

produ
ed it is at rest in another frame (the L frame). A

ording to the

Prin
iple of Relativity the Z frame physi
ists 
an dupli
ate in their frame

the devi
e used in the L frame and laun
h a wave like the one given by eq.(4)

(with boundary 
onditions like in eq.(3)) with the (t; �; z) substituted by

(t

0

; �; z

0

). Of 
ourse, if that would be possible, we would arrive at well known

paradoxi
al situations

4

, that fortunately need not to be dis
ussed here (see

(iii) below).

Note also that the Z frame mathemati
ians aware of the interpretation

given by their fellow physi
ists 
an obtain dire
tly the solution given by

eq.(10) by solving a generalized mixed boundary value problem, where the

boundary 
onditions are:

�

0

X

(t

0

; �; z

0

)j

z

0

=� 
os �t

0

= [�(sin �t

0

+ T )� �(sin �t

0

� T )℄

1

Z

�1

d!B(!)J

0

(!� sin �)e

�i! sin �t

0

�




�

�z

0

� 
V

�

�t

0

�

�

0

X

(t

0

; �; z

0

)j

z

0

=� 
os �t

0

= i 
os � [�(sin �t

0

+ T )��(sin �t

0

� T )℄

1

Z

�1

d!B(!)!J

0

(!� sin �)e

�i! sin �t

0

:

(ii) Of 
ourse, an analogous analysis holds for the �nite energy superlu-

minal solutions of Maxwell equations that we have just found. It is worth

saying here that the existen
e of su
h solutions does not 
on
i
t with the fa-

mous result on the Cau
hy problem 
on
erning the Maxwell equations. That

result says: any ele
tromagneti
 �eld 
on�guration with 
ompa
t support at

t = 0; let us say for j~xj � R, is su
h that the �eld is null for t > 0 for all

j~xj � R + t.

5

4

More details on this issue 
an be found in [18℄.

5

A proof of an anlagous theorem for the homogeneous wave equation 
an be found in

[13℄. For Maxwell equations see [14℄.
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(iii) Is it possible to build a physi
al devi
e to laun
h a �nite energy

superluminal ele
tromagneti
 X pulse? Our answer is no. Indeed, �nite

aperture approximations (FAA) to exa
t superluminal X-like solutions of

Maxwell equations (whi
h, of 
ourse have �nite energy) have already been

produ
ed [7,8℄. However, these FAA are su
h that their peaks move with

velo
ity v > 1 but their front always moves with the speed of light. This

result has been predi
ted in [16,18℄ and is endorsed by the experimental

results of [7,8℄ as proved in [13℄. Now, 
on
erning the solutions we just

found, in order for them to be produ
ed (by an antenna) as real physi
al

waves it is ne
essary to produ
e waves that extend in all the z = 0 plane

where the antenna is lo
ated for the time interval �T < t < T . Of 
ourse,

this is physi
ally impossible be
ause it would require that the antenna should

be an in�nite one.

(iv) Besides the superluminal solutions just found, there are also �nite

energy subluminal solutions (to be reported elsewhere). We must say that

even if the new superluminal solutions 
annot be produ
ed by physi
al de-

vi
es the only possible reason for their non existen
e in our universe is that

of a possible violation of the prin
iple of relativity. Eventually these new su-

perluminal solutions may also �nd appli
ations in the understanding of some

fundamental issues 
on
erning the nonlo
ality problem in quantum me
han-

i
s [21℄.
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