
Finite Energy Superluminal Solutions of

Maxwell Equations

�

E. Capelas de Oliveira

1y

and W. A. Rodrigues, Jr.

2zx

1

Institute of Mathematis, Statistis and Sienti� Computation,

IMECC-UNICAMP

CP 6065, 13083-970, Campinas, SP, Brazil

2

Department of Mathematis, University of Liverpool

Liverpool L69 3BX, UK

June 1, 2002

Abstrat

We exhibit exat �nite energy superluminal solutions of Maxwell

equations in vauum and disuss the physial meaning of these solu-

tions.

Reently, some papers [1,2℄ have appeared in the literature showing that

in some hypothetial media there is the possibility of the existene of super-

luminal eletromagneti pulses (solutions of Maxwell equations) suh their

fronts travel in the media with superluminal veloities. Now, the solutions

disovered in [1,2℄, despite their theoretial interest have in�nite energy and

as suh annot be produed in the physial world. Only �nite aperture

approximations to these waves an eventually be produed (supposing the

existene of the speial media). The objetive of this letter is to show that
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in ontrast to the solutions disovered in [1,2℄ (that, as already said have

in�nite energy), there exist vauum solutions of Maxwell equations whih

are �nite energy superluminal solutions . These new solutions, as we shall

see, appear when we solve some Sommerfeld like problems

3;4

to be reported

below. We disuss if the new solutions an be realized in the physial world.

Moreover, we emphasize that the new solutions orrespond to phenomenon

distint to already observed wave motion with superluminal [5-8℄ (or even

negative [9,10℄) group veloities. In the ase,e.g., of experiments [5-8℄ only

the peaks of the waves travel (for a while) with superluminal veloity whereas

their fronts always travel at the veloity of light.

We start by realling how to write eletromagneti �eld on�gurations in

terms of Hertz potentials [11,12℄. Suppose we have a Hertz potential

~

�

m

of

magneti type. In what follows we use units suh that the veloity of light

is  = 1. Then, the assoiated eletromagneti �eld is given by

~

E = �

�

�t

(r�

~

�

m

);

~

B = r�r�

~

�

m

: (1)

Let us take

~

�

m

= �ê

z

. Then, sine the Hertz potential (in vauum) satis�es

a homogeneous wave equation, we have that

�� = 0: (2)

The Sommerfeld problem (not to be onfused with a Cauhy problem) to

be onsidered here is the following. In a given inertial frame (the laboratory

1

)

�nd a solution �

X

: (t; ~x) 7! C (where C is the �eld of omplex numbers)

for eq.(2) satisfying the following boundary onditions

2

at the z = 0 plane,

8
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(3)

where T(t) = [�(t + T )� �(t� T )℄ , � is the Heaviside funtion, k(!) = !,

and � is a onstant alled the axion angle [13-18℄ and B(k) is an appropriate

frequeny distribution. As showed in [14℄ the solution of eq.(2) (for z > 0; t >

T ) whih satis�es the Sommerfeld onditions is

1

The laboratory is modeled by time like vetor �eld L =

�

�t

2 seTM .

2

The neessity for these boundary onditions is proved in [13℄.
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(t; �; z) =

8
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�i!(t�z os �)

for jt� z os �j < T

0 for jt� z os �j > T:

(4)

We all �

X

a salar superluminal X-pulse. Now, as is well known, the

energy density for a omplex �eld on�guration, like the �

X

, is

u = (�
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); (5)

and the energy of the �eld on�guration an be alulated by the volume

integral of u on a onstant time hyperplane, say t = T

0

> T . The alulation

is easy when done in ylindrial oordinates. Realling that from eq.(4) it

follows that the support of the pulse at t = T

0

is 4z = 2T= os �, we have

E =

8�T

sin

2

� os �

1

Z

�1

jB(k)j

2

kdk; (6)

where the kineti and potential energy terms give equal ontributions. Eq.(6)

gives �nite energy for the salar X-pulse for an in�nity of frequeny distri-

bution funtions B(k), suh that jB(k)j

2

be null for k < 0. A trivial example

is B(k) = [ �(k) � �(k � k

0

)℄, with k

0

a onstant. Now, we study the

eletromagneti ase. The non null omponents of the eletromagneti �eld

3

orresponding to a magneti Hertz potential

~
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m

= �

X

ê

z

are (for z > 0,

t > T )
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for jt� z os �j < T;

E

�

= B

�

= B

z

= 0; for jt� z os �j > T:

(7)
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Called a superluminal eletromagneti X pulse [13,14℄.
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Now, using the standard energy density of the eletromagneti �eld [11,12℄,

the energy of the superluminal eletromagneti X pulse results,

E

X

=
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Eq.(8) gives �nite energy for superluminal solutions of Maxwell equations

satisfying Sommerfeld boundary onditions (here expressed through ondi-

tions for the assoiated Hertz potential) for an in�nity of possible frequeny

distributions B(k), as in the salar ase.

We have four omments before ending this letter:

(i) What does our �nite energy solution (for the salar wave equation)

look like for an observer in a Lorentz frame Z 2 seTM;

Z =

1

p

1� V

2

(�

t

+ V �

z

); (9)

whih is moving with veloity V = os � relative to the laboratory (the

frame L = �

t

2 se TM )?

As an be easily veri�ed the transformed solution is:

�

0

X

(t

0

; �; z

0

) =

8

<

:

1

R

�1

d!B(!)J

0

(!� sin �)e

�i! sin �t�

for jt

0

j < T= sin �

0 for jt

0

j > T= sin �:

(10)

The solution is independent of the spatial oordinate z and orresponds

to a standing wave oupying all the rest spae of the Z frame and that

exists only for the time interval 4t

0

= 2T= sin �. Is this result non physial?

If not, what is the meaning of suh a wave for the observers of the Z frame?

As a Minkowski diagram an show, the wave stands for a �nite period of

time aording to the time order of the Z frame beause it is going to the

past of the Z's observers. This must be a normal phenomenon if relativity

theory is true and genuine superluminal motion exists. The observers at the

Z frame will ompute an in�nite energy for that wave, but sine they know

relativity theory they will interpret the whole phenomena as follows: the
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wave that stands for a �nite period of time at our frame is a superluminal

�nite energy wave produed in a laboratory ( the L frame) that is moving

with veloity �1= os � relative to our frame (i.e., Z frame). Of ourse, the

Z frames physiists annot produe suh a wave in their frame, due to two

reasons. The �rst is that the wave aording to them has in�nite energy

and the seond, whih is the ruial one, is simply beause the devie whih

produed it is at rest in another frame (the L frame). Aording to the

Priniple of Relativity the Z frame physiists an dupliate in their frame

the devie used in the L frame and launh a wave like the one given by eq.(4)

(with boundary onditions like in eq.(3)) with the (t; �; z) substituted by

(t

0

; �; z

0

). Of ourse, if that would be possible, we would arrive at well known

paradoxial situations

4

, that fortunately need not to be disussed here (see

(iii) below).

Note also that the Z frame mathematiians aware of the interpretation

given by their fellow physiists an obtain diretly the solution given by

eq.(10) by solving a generalized mixed boundary value problem, where the

boundary onditions are:
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:

(ii) Of ourse, an analogous analysis holds for the �nite energy superlu-

minal solutions of Maxwell equations that we have just found. It is worth

saying here that the existene of suh solutions does not onit with the fa-

mous result on the Cauhy problem onerning the Maxwell equations. That

result says: any eletromagneti �eld on�guration with ompat support at

t = 0; let us say for j~xj � R, is suh that the �eld is null for t > 0 for all

j~xj � R + t.

5

4

More details on this issue an be found in [18℄.

5

A proof of an anlagous theorem for the homogeneous wave equation an be found in

[13℄. For Maxwell equations see [14℄.
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(iii) Is it possible to build a physial devie to launh a �nite energy

superluminal eletromagneti X pulse? Our answer is no. Indeed, �nite

aperture approximations (FAA) to exat superluminal X-like solutions of

Maxwell equations (whih, of ourse have �nite energy) have already been

produed [7,8℄. However, these FAA are suh that their peaks move with

veloity v > 1 but their front always moves with the speed of light. This

result has been predited in [16,18℄ and is endorsed by the experimental

results of [7,8℄ as proved in [13℄. Now, onerning the solutions we just

found, in order for them to be produed (by an antenna) as real physial

waves it is neessary to produe waves that extend in all the z = 0 plane

where the antenna is loated for the time interval �T < t < T . Of ourse,

this is physially impossible beause it would require that the antenna should

be an in�nite one.

(iv) Besides the superluminal solutions just found, there are also �nite

energy subluminal solutions (to be reported elsewhere). We must say that

even if the new superluminal solutions annot be produed by physial de-

vies the only possible reason for their non existene in our universe is that

of a possible violation of the priniple of relativity. Eventually these new su-

perluminal solutions may also �nd appliations in the understanding of some

fundamental issues onerning the nonloality problem in quantum mehan-

is [21℄.
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