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Abstra
t

In this paper we present thoughtful 
omments on the paper `Bessel beams and

signal propagation' showing that the main 
laims of that paper are wrong. Moreover,

we take the opportunity to show the non trivial and indeed surprising result that a

s
alar pulse (i.e., a wave train of 
ompa
t support in the time domain) that is solution

of the homogeneous wave equation ( ve
tor (

~

E;

~

B) pulse that is solution of Maxwell

equations) is su
h that its wave front in some 
ases does travel with speed greater than


, the speed of light . In order for a pulse to posses a front that travels with speed 
, an

additional 
ondition must be satis�ed, namely the pulse must have �nite energy. When

this 
ondition is ful�lled the pulse still 
an show peaks propagating with superluminal

(or subluminal) velo
ities, but now its wave front travels at speed 
. These results

are important be
ause they explain several experimental results obtained in re
ent

experiments, where superluminal velo
ities have been observed, without implying in

any breakdown of the Prin
iple of Relativity.

In this paper we present some thoughtful 
omments (C

1

� C

4

) 
on
erning statements

presented in the paper `Bessel beams and signal propagation' [1℄ and also some non trivial

results 
on
erning superluminal propagation of peaks in parti
ular ele
tromagneti
 pulses in

nondispersive media.

In [1℄ the author re
alls that the experimental results presented in [2℄ showed that Bessel

beams generated at mi
rowave frequen
ies have a group velo
ity greater than the velo
ity

�
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of light 
 (in what follows we use units su
h that 
 = 1)

1

. His intention was then to show

that the signal velo
ity, de�ned a

ording to Brillouin and Sommerfeld (B&S ) was also

superluminal. We expli
itly shows that the parti
ular example used by the author of [1℄,

given by the Bessel beam of his eq.(3) does not endorse his 
laim. Contrary to the author's


on
lusion this beam has no fronts in both spa
e and time domains, hen
e 
annot satisfy

B&S de�ntion of a signal. Moreover, the beam given by eq.(3) of [1℄ travels rigidly with

a superluminal speed. We prove then that there are two 
lasses of general Bessel pulses

satisfying B&S de�nition of signal. A solution of the HWE 
orresponding to 
lass I is su
h

that the group speed is always less than 
 whereas its front moves with speed 
.

2

A solution

of the HWE of the 
lass II travels rigidly at superluminal speed if 
are is not taken of the

energy 
ontent of the pulse. We present also some ne
essary 
omments 
on
erning solutions

of Maxwell equations asso
iated with Bessel beams of 
lasses I and II.

We start by re
alling the general solution of the HWE �� = 0 in Minkowski spa
etime

(M; �;D) [10-12℄. In a given Lorentz referen
e frame [10-12℄ I = �=�t 2 se
 TM , we 
hoose


ylindri
al 
oordinates (�; '; z) naturally adapted to the I referen
e frame, where � = (x

2

+

y

2

)

1

2

and x = � 
os' and y = � sin', with (x; y; z) being the usual 
artesian 
oordinates

naturally adapted to I. Writting

�(t; �; '; z) = f

1

(�)f

2

(')f

3

(t; z); (1)

and substituting eq.(1) in the HWE we get the following equations (where � and 
 are

separation parameters),
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f

1

= 0;

�

d

2

d'

2

+ �

2

�

f

2

= 0;

�

�

2

�t

2

�

�

2

�z

2

+ 


2

�

f

3

= 0:

: (2)

The �rst of eqs.(2) is Bessel's equation, the se
ond one implies that � must be an integer

and the third is a Klein-Gordon equation in two dimensional Minkowski spa
etime.

3

In what

follows ( without loss of generality for the obje
tives of the present paper) we 
hoose � = 0

1

In [3℄ we s
rutinized the experimental results of [2℄. We presented there a simple model showing that all

parti
ulars of the data (in
luding the slowing of the superluminal velo
ity of the peak along the propagation

dire
tion) 
an be qualitatively and quantitatively understood as a s
issor's like e�e
t. Moreover in [3℄

we 
alled the readers attention that in [4℄ peaks of �nite aperture approximations (FAA) to parti
ular

a
ousti
al Bessel pulses 
alled X-waves (�rst dis
overd by Lu and Greenleaf ([5,6℄) have been see to travel at

supersoni
 speed i.e., with velo
ity greater than 


s

, the sound speed parameter appearing on the homogenous

wave equation (HWE ). In [4℄ and [7℄ it is also predi
ted the possibilty of laun
hing FAA to superluminal

ele
tromagneti
 X-waves, a fa
t that has been 
on�rmed experimentally in the mi
rowave region in [2℄ and

in the opti
al region in [8℄. A review 
on
erning the di�erent fa
ets of `superluminal' wave motion under

di�erent physi
al 
onditions 
an be found in [9℄.

2

Of 
ourse, this is a kind of generalized reshaping phenomena whi
h 
annot endures for ever. It lasts

until the peak of the wave 
at
hes the front.

3

In 4-dimensional spa
etime the Klein-Gordon equation possess families of luminal and superluminal

solutions, besides subluminal solutions. See [4℄ and referen
es therein.
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(and also 
 > 0). Then, we obtain as a solution of eqs.(2) a wave propagating in the

z-dire
tion, i.e.,

�

J

0

(t; �; z) = J

0

(�
) exp[�i(!t�

�

kz)℄; (3)

where the following dispersion relation must ne
essarily be satis�ed,

!

2

�

�

k

2

= 


2

: (4)

The dispersion relation given by eq.(4) may look strange at �rst sight, but there are

eviden
es that it 
an be realized in nature (see below) in some spe
ial 
ir
unstan
es.

C

1

. It is quite 
lear that the wave des
ribed by eq.(3), 
alled in [1℄ a Bessel beam

4

, has

phase velo
ity v

ph

= !=

�

k > 1. However, we point out that the statement done in [1℄ is false,

namely: `As known, in the absen
e of dispersion the group velo
ity v

gr

of a Bessel pulse

is equal to the phase one [4,5℄

5

sin
e all the 
omponents at di�erent frequen
ies propagate

with the same velo
ity'. To prove its falsity re
all that there exists a Lorentz referen
e frame

[10-12℄

I

0

= (1� v

2

gr

)

1

2

(�=�t + v

gr

�=�z) 2 se
 TM; (5)

whi
h is moving with velo
ity v

gr

= d!=d

�

k < 1 in relation to the frame I in the z-dire
tion.

In the 
oordinates naturally adapted to the frame I

0

the frequen
y of the wave is !

0

= 
,

whi
h means that in the frame I

0

the Bessel beam is stationary. This proves our statement

that for Bessel beam the group velo
ity is always less than the velo
ity of light 
:

C

2

. Now, we show how to build two di�erent 
lasses (I and II) of solutions of the HWE

by appropriate linear superpositions of waves of the form given by our eq.(3).

Class I. Suppose, following B&S [13,14 ℄ that a signal is de�ned as a pulse with a �nite

time duration at the origin z = 0 where a physi
al devi
e generated it. We model our

problem as a Sommerfeld problem [15℄ for the HWE (with 
ylindri
al symmetry), i.e., we

want to �nd the solution of the HWE with the following 
onditions (
alled in what follows

Sommerfeld 
onditions),

�(t; �; 0) = AJ

0

(�
)[�(t)��(t� T )℄ sin!

0

t

= AJ

0

(�
)

1

2�

Re

Z

�

d!e

�i!t

�

e

i!T

� 1

	

! � !

0

;

��(t; �; z)

�z

�

�

�

�

z=0

= AJ

0

(�
)

1

2�

Re

Z

�

d!

�

k(!) e

�i!t

�

e

i!T

� 1

	

! � !

0

: (6)

In eq.(6) �(t) is the Heaviside fun
tion, A and !

0

= 
 are 
onstants, Re means real part

and

�

k(!) is given below and for simpli
ity we take T = N�

0

= 2�N=!

0

, with N an integer.

Now, to solve our problem it is enough to get a solution of the third of eqs.(2). We have,

f

3

(t; z) =

1

2�

Re

Z

�

d!

! � !

0

�

e

�i!(t�T�v

gr

z)

� e

�i!(t�v

gr

z)

	

(7)

4

Note that in [1℄ the author writes 
 = ! sin � and

�

k = ! 
os �.

5

The referen
es [4,5℄ in [1℄ are the referen
es [8,13℄ in the present paper.
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Figure 1: Contour for integration of Eq.(7) for t� z < 0.

where v

gr

=

�

k(!)=! and � is an appropriate path in the 
omplex !-plane. We note

lim

!!1

v

gr

= 1: Putting eq.(7) into the third of eqs.(2) we see that the dispersion rela-

tion given by eq.(4) must be satis�ed. To 
ontinue we write,

�

k(!) =

p

(! + 
)(! � 
): (8)

There are two bran
h points at ! = �
. The 
orresponding bran
h 
uts 
an be taken as

the segment (�
;
) in the real !-axis. Following � from positive values of <! above and


lose to the real axis, the root in eq.(8) a
quires a phase fa
tor e

i�

= �1 when passing from

Re! > 
 to Re! < �
. Then, on the real !-axis we have,

�

k(!) =

�

j

p

!

2

� 


2

j; ! > 


�j

p

!

2

� 


2

j; ! < �


(9)

a result that is ne
essary in order to 
al
ulate the value of f

3

for (t� v

gr

z) > 0. We are not

going to investigate this 
ase here, sin
e we are interested in the behavior of f

3

for the 
ase

where (t� z < 0). In this 
ase, we must 
lose the 
ontour � in the upper half plane. Sin
e

there are no poles inside the 
ontour we get that

f

3

(t; z) = 0 for t� z < 0: (10)

Now, it is easy to verify the intensity of the wave whi
h is solution of the HWE and

satis�es the Sommerfeld 
onditions given by eq.(6) has a maximum for ! = !

0

, i.e., the

waves with frequen
y near !

0

have always a mu
h greater amplitude than all others. Under

these 
onditions let us write,

!t�

�

kz = (!

0

t�

�

k

0

z) + (t�

z

v

gr

0

)(! � !

0

); (11)
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where v

gr

0

= (d!=d

�

k)j

!=!

0

< 1 and v

ph

0

= !

0

=

�

k

0

> 1. We 
an write an approximation for

the fun
tion f

3

(t; z) denoted by

~

f

3

(t; z) as,

~

f

3

(t; z) =

1

2�

Re

8

<

:

e

�i!

0

(t�z=v

ph0

)

!

0

+4!

Z

!

0

�4!

d!

! � !

0

�

e

�i!(t�T�z=v

gr0

)

� e

�i!(t�z=v

gr0

)

	

9

=

;

: (12)

We see that

~

f

3

(t; 0) is equal to f

3

(t; 0) if we suppress in the expression for this fun
tion the

frequen
ies very di�erent from !

0

. Now,

~

f

3

(t; 0) has support on the whole temporal axis, i.e.,

in the interval �1 < t <1, but it is taken by some authors (like, e.g., [16℄) as representing

a wave that begin gradually at t = 0 and ends gradually at t = T . Of 
ourse, no wave of the

kind of

~

f

3


an be build by any physi
al devi
e. The importan
e of the fun
tion

~

f

3

(t; z) is

that, as emphasized by B&S [13,14℄ it shows that we 
an asso
iate a group velo
ity to pulse

peaks in general (and of Bessel beams in parti
ular) satisfying the Sommerfeld 
onditons

(eq.(6)) and that the group velo
ity in this 
ase is less than the velo
ity of light. This means

that after a while the ba
k end of the wave that is travelling at speed 
(= 1) will 
at
h the

peak. The wave reshapes even when propagating in va
uum.

A general subluminal J

0

-Bessel beam 
an be written as,

�

B

(t; �; z) = J

0

(�!)F

�1

[T (!)℄e

i

�

kz

(13)

where T (!) is an appropriate transfer fun
tion and F

�1

is the inverse Fourier transform.

Now, the peaks of FAA to a
ousti
al pulses of the form given by eq.(13) (i.e., the waves

at z = 0 are not zero only in the time interval 0 < t < T ) have been seen travelling at

subluminal speed

6

in an experiment des
ribed in [4℄, thus endorsing the above analysis.

Class II. We now return to the dispersion relation given by eq.(4) and write,

�

k = k 
os �; 
 = k sin �; (14)

where � is a 
onstant 
alled axi
on angle [5,6,17℄. It results that

! = �k: (15)

We immediately verify that

J

0

(!� sin �)e

�i(!t�kz 
os �)

; (16)

is a solution of the HWE whose beam width is proportional to 1=! sin �, thus being frequen
y

dependent. The dependen
y of the beam width on frequen
y will 
ause the beam to have a

pulse response that is independent of position. Indeed, suppose that the sour
e is driven by

a frequen
y distribution B(!), i.e., we have a pulse

�

X

(t; �; z) =

1

Z

�1

d!B(!)J

0

(!� sin �)e

�i(!t�kz 
os �)

; ! = k: (17)

6

Of 
ourse, in this 
ase the speed paramenter appearing in the HWE must be 


s

, the sound speed in the

medium, and the word subluminal speed used must be understood as a speed less than 


s

.
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If J

0

were not dependent on frequen
y the integral in eq.(17) would be simply the inverse

Fourier transform of the sour
e spe
trum and we return to 
lass I solutions. However, here J

0

is dependent on frequen
y and also on position and 
onsequently modi�es the pulse spe
trum

in su
h a way to make the time response of the pulse dependent on radial position. We put an

index X in the wave given by eq.(17) be
ause pulses of this kind have been named X-waves

by Lu and Greenleaf sin
e 1992 [5,6℄. Even more, taking B(!) = Ae

�a

0

j!j

(A and a

0

> 0

being 
onstants), we 
an easily verify (
.r., pages 707 and 763 of [18℄) that we 
an write for

sin � > 0,

�

X

(t; �; z) = A

Z

1

�1

d!e

�a

0

j!j

J

0

(!� sin �)e

�i!(t�z 
os �)

(18a)

= A

Z

1

0

d!e

�a

0

!

J

0

(!� sin �) 
os(!�)

=

A

�

�

2

sin

2

� + [a

0

+ i�℄

2

�

1

2

+

A

�

�

2

sin

2

� + [a

0

� i�℄

2

�

1

2

(18b)

=

A

p

2

�

h

�

�

2

sin

2

� + a

2

0

� �

2

�

2

+ 4a

2

0

�

2

i

1

2

+ �

2

sin

2

� + a

2

0

� �

2

�

1

2

n

�

�

2

sin

2

� + a

2

0

� �

2

�

2

+ 4a

2

0

�

2

o

1

2

;

(18
)

where � = ( t� z 
os �).

Eq.(18
) shows that this wave is a real solution of the HWE. We re
all that if in eq.(18a)

we use as integration interval 0 < ! <1, we get only the �rst term in eq.(18b). In this 
ase

we have a 
omplex wave that has been 
alled the broad band X-wave in [4-6℄. These waves

and the more general ones given by eq.(18b) propagate without distortion with superluminal

velo
ity given by 1= 
os �, but of 
ourse they 
annot be produ
ed in the physi
al world

be
ause (like the plane wave solutions of the HWE ) they have in�nity energy, as it is easy to

verify. Waves that are solutions of the linear relativisti
 wave equations and that propagate

in a distortion free mode, have been 
alled UPWs (undistorted progressive waves) in [4℄.

Now, we show that a X-pulse even if it has 
ompa
t support in the time domain (thus

being of the form of a B&S signal) is su
h that its front propagates with superluminal

speed. To prove our statement we look for a solution of the HWE satisfying the following

Sommerfeld 
onditions

7

,

�

X

(t; �; 0) = [�(t+ T )��(t� T )℄

1

R

�1

d!B(!)J

0

(!� sin �)e

�i!t

;

��

X

(t;�;z)

�z

�

�

�

z=0

= i [�(t+ T )��(t� T )℄ 
os �

1

R

�1

d!B(!)J

0

(!� sin �)k(!)e

�i!t

;

(19)

7

B(!) is taken in this example as a fun
tion su
h that

1

R

�1

d!B(!)J

0

(!� sin �)e

�i!t

has support in the

interval �1 < t <1.

6



and k(!) = !. Pro
eeding in the same way as in the Sommerfeld problem of 
lass I solution

presented above we obtain as a solution of the HWE (for z > 0),

�

X

(t; �; z) =

1

2�

1

Z

�1

d�!B(�!)J

0

(�!� sin �)

�

1

Z

�1

d!e

�i!(t�z 
os �)

�

e

i(!��!)T

� e

�i(!��!)T

i(! � �!)

�

(20)

=

8

<

:

1

R

�1

d!B(!)J

0

(!� sin �)e

�i!(t�z 
os �)

for jt� z 
os �j < T

0 for jt� z 
os �j > T

:

(21)

Re !

Im !

�

1

!

0

�

2

Figure 2: Contour for integration of Eq.(20). �

1

for jt� z 
os �j > T and �

2

for jt� z 
os �j <

T .

We see that for jt� z 
os �j < T the integral in eq.(20) is not zero. Sin
e the axi
on angle

� > 0, then 1 > 
os � < 0 and it follows that the pulse is not zero for z > t and t > T , what

means that the wave front of our pulse propagates with superluminal speed! Of 
ourse, the

pulse is zero for z < (t� T )= 
os � or z > (t+ T )= 
os �. We observe that the above result is

true even a single Bessel pulse, i.e., when B(!) = Æ(! � !

0

), a result that we mentioned in

[3℄.

7



How to 
ompare this �nding with the famous B&S result [13,14℄ stating that a wave pulse

whi
h propagates in a dispersive medium with loss has a front propagating at maximum

speed 
? Some things are to be re
alled in order to get a meaningful answer. The �rst is

that B&S example refers to a propagation of a `plane' wave trun
ated in time (whi
h, of


ourse, has in�nite energy) satisfying the Sommerfeld 
onditions (analogous to eq.(6)) and

propagating in a dispersive medium with loss. A 
areful analysis [19℄ shows that the same

problem in a dispersive medium with gain reveals that in this 
ase we 
an �nd two kinds

of solutions ( both of of in�nite energy). In one of these kinds, by appropriately 
hoosing

the integration path in the 
omplex !-plane we obtain as result that the front of the wave

may travel with superluminal speed. This situation is somewhat analogous to what happen

with some possible mathemati
al solutions of the ta
hyoni
 Klein-Gordon equation in two

dimensional Minkowski spa
etime [20,21℄. This equation is important be
ause it 
an be

asso
iated with the so 
alled telegraphist equation.

The reason for our �nding that the X-pulse propagating in a nondispersive medium,

although of 
ompa
t support in the time domain, is su
h that its front travel at superluminal

speed is the following; the solution given by eq.(20) is not of 
ompa
t support in the spa
e

domain and as su
h has in�nite energy as 
an be easily veri�ed. Only for a pulse of �nite

energy we 
an warranty that its front always travel with a speed that 
annot be greater than

maximum speed. Indeed, suppose we produ
e on the plane z = 0 a pulse like the one given

by eq.(20), ex
ept that it has a �nite lateral 
ir
ular width of radius a, i.e.,it is taken as zero

for � > a. Su
h a pulse is 
alled a FAA to the pulse given by eq.(20) and as 
an be easily

veri�ed has �nite energy. If su
h a pulse does not spread with in�nite velo
ity during its

build up, then after it is ready, i.e., at t = T it o

upies a region of 
ompa
t support in

spa
e given by j~xj < R, where R is the maximum linear dimension involved. Su
h a �eld


on�guration 
an then be taken as part of the initial 
onditions for a stri
tly hyperboli


Cau
hy problem at t = T . For su
h a problem it is well known the mathemati
al theorem

that stablishes that [22,23℄ the time evolution of the pulse must be su
h that it is null for

j~xj > R + 
(t � T ). In 
on
lusion, it is not suÆ
ient for a wave to be of 
ompa
t support

in the time domain (i.e., to be a pulse) to assure that the wave front of the pulse moves

in a nondispersive medium at maximum speed 
. In order for the wave front to move with

velo
ity 
 it is ne
essary that the pulse possess �nite energy, and in order for this 
ondition

to be satis�ed the pulse must have 
ompa
t support in the spa
e domain after its build

up. We re
all here that in [4℄ the peaks of FAA to a
ousti
al pulses given by eq.(18) (with

appropriated B(!)) have been seen traveling with velo
ities 


s

= 
os �, thus 
on�rming the

theory developed above.

C

3

. We now examine the 
laim of [1℄ that a wave given by our eq.(17), with B(!) = 1,

i.e.,

U(t; �; z) =

1

Z

�1

d!J

0

(!� sin �)e

�i(!t�kz 
os �)

; ! = k: (22)

is a pulse with support only in the z-axis at points z = t= 
os � and with value at that points

Æ(0). The 
al
ulations presented in [1℄ are wrong. Before we prove our statement let us re
all

8



that [1℄ quotes Brillouin: `a signal 
an be de�ned as a pulse of �nite temporal extension, that

is, of in�nite extension in the freque
y domain'.

8

The wave given by eq.(21) has an in�nite

extension in the frequen
y domain but it is not a pulse of �nite time domain (for a �xed

z). Indeed, as theorem 11 on page 22 in Sneddon's book [24℄ stablishes: a fun
tion whi
h

is bounded in the time domain has an in�nite extension in the frequen
y domain, but it is

not true that a fun
tion with an in�nite frequen
y spe
trum is ne
essarily bounded in the

time domain. A trivial example of the last statement is the 
ase of a Gaussian pulse, whose

Fourier transform is itself a Gaussian. In the parti
ular 
ase of the wave given by eq.(21) it

is immediate to realize that the integral is nothing more than the Fourier transform of a J

0

fun
tion, and the value of the integral is given in many books, in parti
ular on page 523 of

Sneddon's book [24℄. We have,

1

Z

�1

d!J

0

(!� sin �)e

�i(!t�kz 
os �)

(23a)

=

(

2

p

�

2

sin

2

��(t�z 
os �)

2

for jt� z 
os �j < � sin �

0 for jt� z 
os �j > � sin �

(23b)

Eq.(22b) shows that U(t; �; z) has support in the entire time axis provided that jt �

z 
os �j < � sin �. When � = 0, sin
e U is real (as 
an be seen dire
tly from eq.(22a) we must

have that jt � z 
os �j = 0 and the fun
tion U is singular. We see that the result expressed

by eq.(22b) is 
ompatible with the one given by eq.(18b) if we take the limit for a

0

! 0.

C

4

. Finally, we investigate the 
laim (done in [1℄ and attributed to [8℄) that the wave

fun
tion given by eq.(3) represents an ele
tri
 �eld. This 
laim is a nonsequitur. Indeed,

the s
alar solutions of the HWE 
an be used to generated solutions of the Maxwell system

using the Hertz potential method (see, e.g.[25,26℄). In parti
ular, superluminal solutions of

the HWE 
an be used to produ
e superluminal solutions of Maxwell equations [4,7,9℄. If

we 
hoose a magneti
 Hertz potential

~

�

m

= �

J

0

ẑ it is a simple exer
ise to show that the

transverse ele
tri
 and magneti
 �elds do not show any dependen
e on J

0

. Only the B

z


omponent of the ele
tromagneti
 �eld 
on�guration has a J

0

dependen
e. Expli
itly we

have from the well known formulas

~

E = ��=�t(r �

~

�

m

) and

~

B = r�r�

~

�

m

that,

E

�

= 0; E

'

= i!
J

1

(
�)e

�i(!t�

�

kz)

; E

z

= 0; (24)

B

�

= �i

�

k
J

1

(
�)e

�i(!t�

�

kz)

;

B

z

= 


2

�

J

1

(
�)


�

+

J

0

(
�)

2

�

J

2

(
�)

2

�

e

�i(!t�

�

kz)

;

!

2

�

�

k

2

= 


2

: (25)

With an ele
tri
 Hertz potential we obtain a solution where only the E

z


omponent has

a J

0

dependen
e. As su
h, we 
on
lude that the ele
tromagneti
 beams observed in [2℄ and

8

This de�nition is due to Sommerfeld. See [13,14℄.

9



also in [8,17℄ are not J

0

beams. A 
areful analysis of the solutions of Maxwell equations in


ylindri
al symmetry shows that there are not J

0

solutions representing transverse ele
tri


�elds. The existen
e of only one peak observerd in the experiments done in [2℄ is due to a

J

1

=� like term in the di�ra
ted E

'

term of the real experiment. A more detailed analysis

will be reported elsewhere.

Our 
on
lusions are as follows: (i) our results show that the main 
laims of [1℄ are wrong

and/or misleading and leads to equivo
ated 
on
lusions 
on
erning re
ent experimental re-

sults showing superluminal motion of peaks of parti
ular ele
tromagneti
 �eld 
on�gurations

in nondispersive media; (ii) we also prove a non trivial result, namely that the 
ondition

that a wave is of �nite time duration is not a suÆ
ient 
ondition for its front to propagate

with the speed 
. It is ne
essary in order for the front to travel with speed 
 that the pulse

possess �nite energy, and thus as explained above it must (after being prepared by the

laun
hing devi
e) have support only in a 
ompa
t spa
e region when ready;

9

(iii) only FAA

to superluminal solutions of the HWE (a
ousti
al 
ase) and to superluminal solutions of

Maxwell equations 
an be produ
ed in nature, be
ause only waves of this kind have �nite

energy. These FAA exhibit peaks propagating with superluminal speeds even in the va
uum,

but sin
e their fronts propagate with speed 
 this kind of phenomenom does not implies in

any danger for the Theory of Relativity.
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