
Thoughtful omments on `Bessel beams and signal

propagation'

�

E. Capelas de Oliveira

�

, W. A. Rodrigues, Jr.

�;?

, D. S. Thober

?

and

A. L. Xavier, Jr.

?

�

Institute of Mathematis, Statistis and Sienti� Computation,

IMECC-UNICAMP

CP 6065, 13083-970, Campinas, SP, Brazil

?

Wernher Von Braun - Advaned Researh Center, Unisal

Av. A. Garret, 267, 13087-290, Campinas, SP, Brazil

03/15/2001

Abstrat

In this paper we present thoughtful omments on the paper `Bessel beams and

signal propagation' showing that the main laims of that paper are wrong. Moreover,

we take the opportunity to show the non trivial and indeed surprising result that a

salar pulse (i.e., a wave train of ompat support in the time domain) that is solution

of the homogeneous wave equation ( vetor (

~

E;

~

B) pulse that is solution of Maxwell

equations) is suh that its wave front in some ases does travel with speed greater than

, the speed of light . In order for a pulse to posses a front that travels with speed , an

additional ondition must be satis�ed, namely the pulse must have �nite energy. When

this ondition is ful�lled the pulse still an show peaks propagating with superluminal

(or subluminal) veloities, but now its wave front travels at speed . These results

are important beause they explain several experimental results obtained in reent

experiments, where superluminal veloities have been observed, without implying in

any breakdown of the Priniple of Relativity.

In this paper we present some thoughtful omments (C

1

� C

4

) onerning statements

presented in the paper `Bessel beams and signal propagation' [1℄ and also some non trivial

results onerning superluminal propagation of peaks in partiular eletromagneti pulses in

nondispersive media.

In [1℄ the author realls that the experimental results presented in [2℄ showed that Bessel

beams generated at mirowave frequenies have a group veloity greater than the veloity

�
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of light  (in what follows we use units suh that  = 1)

1

. His intention was then to show

that the signal veloity, de�ned aording to Brillouin and Sommerfeld (B&S ) was also

superluminal. We expliitly shows that the partiular example used by the author of [1℄,

given by the Bessel beam of his eq.(3) does not endorse his laim. Contrary to the author's

onlusion this beam has no fronts in both spae and time domains, hene annot satisfy

B&S de�ntion of a signal. Moreover, the beam given by eq.(3) of [1℄ travels rigidly with

a superluminal speed. We prove then that there are two lasses of general Bessel pulses

satisfying B&S de�nition of signal. A solution of the HWE orresponding to lass I is suh

that the group speed is always less than  whereas its front moves with speed .

2

A solution

of the HWE of the lass II travels rigidly at superluminal speed if are is not taken of the

energy ontent of the pulse. We present also some neessary omments onerning solutions

of Maxwell equations assoiated with Bessel beams of lasses I and II.

We start by realling the general solution of the HWE �� = 0 in Minkowski spaetime

(M; �;D) [10-12℄. In a given Lorentz referene frame [10-12℄ I = �=�t 2 se TM , we hoose

ylindrial oordinates (�; '; z) naturally adapted to the I referene frame, where � = (x

2

+

y

2

)

1

2

and x = � os' and y = � sin', with (x; y; z) being the usual artesian oordinates

naturally adapted to I. Writting

�(t; �; '; z) = f

1

(�)f

2

(')f

3

(t; z); (1)

and substituting eq.(1) in the HWE we get the following equations (where � and 
 are

separation parameters),
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�

f

3

= 0:

: (2)

The �rst of eqs.(2) is Bessel's equation, the seond one implies that � must be an integer

and the third is a Klein-Gordon equation in two dimensional Minkowski spaetime.

3

In what

follows ( without loss of generality for the objetives of the present paper) we hoose � = 0

1

In [3℄ we srutinized the experimental results of [2℄. We presented there a simple model showing that all

partiulars of the data (inluding the slowing of the superluminal veloity of the peak along the propagation

diretion) an be qualitatively and quantitatively understood as a sissor's like e�et. Moreover in [3℄

we alled the readers attention that in [4℄ peaks of �nite aperture approximations (FAA) to partiular

aoustial Bessel pulses alled X-waves (�rst disoverd by Lu and Greenleaf ([5,6℄) have been see to travel at

supersoni speed i.e., with veloity greater than 

s

, the sound speed parameter appearing on the homogenous

wave equation (HWE ). In [4℄ and [7℄ it is also predited the possibilty of launhing FAA to superluminal

eletromagneti X-waves, a fat that has been on�rmed experimentally in the mirowave region in [2℄ and

in the optial region in [8℄. A review onerning the di�erent faets of `superluminal' wave motion under

di�erent physial onditions an be found in [9℄.

2

Of ourse, this is a kind of generalized reshaping phenomena whih annot endures for ever. It lasts

until the peak of the wave athes the front.

3

In 4-dimensional spaetime the Klein-Gordon equation possess families of luminal and superluminal

solutions, besides subluminal solutions. See [4℄ and referenes therein.
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(and also 
 > 0). Then, we obtain as a solution of eqs.(2) a wave propagating in the

z-diretion, i.e.,

�

J

0

(t; �; z) = J

0

(�
) exp[�i(!t�

�

kz)℄; (3)

where the following dispersion relation must neessarily be satis�ed,

!

2

�

�

k

2

= 


2

: (4)

The dispersion relation given by eq.(4) may look strange at �rst sight, but there are

evidenes that it an be realized in nature (see below) in some speial irunstanes.

C

1

. It is quite lear that the wave desribed by eq.(3), alled in [1℄ a Bessel beam

4

, has

phase veloity v

ph

= !=

�

k > 1. However, we point out that the statement done in [1℄ is false,

namely: `As known, in the absene of dispersion the group veloity v

gr

of a Bessel pulse

is equal to the phase one [4,5℄

5

sine all the omponents at di�erent frequenies propagate

with the same veloity'. To prove its falsity reall that there exists a Lorentz referene frame

[10-12℄

I

0

= (1� v

2

gr

)

1

2

(�=�t + v

gr

�=�z) 2 se TM; (5)

whih is moving with veloity v

gr

= d!=d

�

k < 1 in relation to the frame I in the z-diretion.

In the oordinates naturally adapted to the frame I

0

the frequeny of the wave is !

0

= 
,

whih means that in the frame I

0

the Bessel beam is stationary. This proves our statement

that for Bessel beam the group veloity is always less than the veloity of light :

C

2

. Now, we show how to build two di�erent lasses (I and II) of solutions of the HWE

by appropriate linear superpositions of waves of the form given by our eq.(3).

Class I. Suppose, following B&S [13,14 ℄ that a signal is de�ned as a pulse with a �nite

time duration at the origin z = 0 where a physial devie generated it. We model our

problem as a Sommerfeld problem [15℄ for the HWE (with ylindrial symmetry), i.e., we

want to �nd the solution of the HWE with the following onditions (alled in what follows

Sommerfeld onditions),

�(t; �; 0) = AJ

0
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�

�

�

�
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�
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�

k(!) e

�i!t

�

e
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� 1

	

! � !

0

: (6)

In eq.(6) �(t) is the Heaviside funtion, A and !

0

= 
 are onstants, Re means real part

and

�

k(!) is given below and for simpliity we take T = N�

0

= 2�N=!

0

, with N an integer.

Now, to solve our problem it is enough to get a solution of the third of eqs.(2). We have,

f

3

(t; z) =

1

2�

Re

Z

�

d!

! � !

0

�

e

�i!(t�T�v

gr

z)

� e

�i!(t�v

gr

z)

	

(7)

4

Note that in [1℄ the author writes 
 = ! sin � and

�

k = ! os �.

5

The referenes [4,5℄ in [1℄ are the referenes [8,13℄ in the present paper.
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Figure 1: Contour for integration of Eq.(7) for t� z < 0.

where v

gr

=

�

k(!)=! and � is an appropriate path in the omplex !-plane. We note

lim

!!1

v

gr

= 1: Putting eq.(7) into the third of eqs.(2) we see that the dispersion rela-

tion given by eq.(4) must be satis�ed. To ontinue we write,

�

k(!) =

p

(! + 
)(! � 
): (8)

There are two branh points at ! = �
. The orresponding branh uts an be taken as

the segment (�
;
) in the real !-axis. Following � from positive values of <! above and

lose to the real axis, the root in eq.(8) aquires a phase fator e

i�

= �1 when passing from

Re! > 
 to Re! < �
. Then, on the real !-axis we have,

�

k(!) =

�

j

p

!

2

� 


2

j; ! > 


�j

p

!

2

� 


2

j; ! < �


(9)

a result that is neessary in order to alulate the value of f

3

for (t� v

gr

z) > 0. We are not

going to investigate this ase here, sine we are interested in the behavior of f

3

for the ase

where (t� z < 0). In this ase, we must lose the ontour � in the upper half plane. Sine

there are no poles inside the ontour we get that

f

3

(t; z) = 0 for t� z < 0: (10)

Now, it is easy to verify the intensity of the wave whih is solution of the HWE and

satis�es the Sommerfeld onditions given by eq.(6) has a maximum for ! = !

0

, i.e., the

waves with frequeny near !

0

have always a muh greater amplitude than all others. Under

these onditions let us write,

!t�

�

kz = (!

0

t�

�

k

0

z) + (t�

z

v

gr

0

)(! � !

0

); (11)
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where v

gr

0

= (d!=d

�

k)j

!=!

0

< 1 and v

ph

0

= !

0

=

�

k

0

> 1. We an write an approximation for

the funtion f

3

(t; z) denoted by

~

f

3

(t; z) as,

~

f

3

(t; z) =

1

2�

Re

8

<

:

e

�i!

0

(t�z=v

ph0

)

!

0

+4!

Z

!

0

�4!

d!

! � !

0

�

e

�i!(t�T�z=v

gr0

)

� e

�i!(t�z=v

gr0

)

	

9

=

;

: (12)

We see that

~

f

3

(t; 0) is equal to f

3

(t; 0) if we suppress in the expression for this funtion the

frequenies very di�erent from !

0

. Now,

~

f

3

(t; 0) has support on the whole temporal axis, i.e.,

in the interval �1 < t <1, but it is taken by some authors (like, e.g., [16℄) as representing

a wave that begin gradually at t = 0 and ends gradually at t = T . Of ourse, no wave of the

kind of

~

f

3

an be build by any physial devie. The importane of the funtion

~

f

3

(t; z) is

that, as emphasized by B&S [13,14℄ it shows that we an assoiate a group veloity to pulse

peaks in general (and of Bessel beams in partiular) satisfying the Sommerfeld onditons

(eq.(6)) and that the group veloity in this ase is less than the veloity of light. This means

that after a while the bak end of the wave that is travelling at speed (= 1) will ath the

peak. The wave reshapes even when propagating in vauum.

A general subluminal J

0

-Bessel beam an be written as,

�

B

(t; �; z) = J

0

(�!)F

�1

[T (!)℄e

i

�

kz

(13)

where T (!) is an appropriate transfer funtion and F

�1

is the inverse Fourier transform.

Now, the peaks of FAA to aoustial pulses of the form given by eq.(13) (i.e., the waves

at z = 0 are not zero only in the time interval 0 < t < T ) have been seen travelling at

subluminal speed

6

in an experiment desribed in [4℄, thus endorsing the above analysis.

Class II. We now return to the dispersion relation given by eq.(4) and write,

�

k = k os �; 
 = k sin �; (14)

where � is a onstant alled axion angle [5,6,17℄. It results that

! = �k: (15)

We immediately verify that

J

0

(!� sin �)e

�i(!t�kz os �)

; (16)

is a solution of the HWE whose beam width is proportional to 1=! sin �, thus being frequeny

dependent. The dependeny of the beam width on frequeny will ause the beam to have a

pulse response that is independent of position. Indeed, suppose that the soure is driven by

a frequeny distribution B(!), i.e., we have a pulse

�

X

(t; �; z) =

1

Z

�1

d!B(!)J

0

(!� sin �)e

�i(!t�kz os �)

; ! = k: (17)

6

Of ourse, in this ase the speed paramenter appearing in the HWE must be 

s

, the sound speed in the

medium, and the word subluminal speed used must be understood as a speed less than 

s

.
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If J

0

were not dependent on frequeny the integral in eq.(17) would be simply the inverse

Fourier transform of the soure spetrum and we return to lass I solutions. However, here J

0

is dependent on frequeny and also on position and onsequently modi�es the pulse spetrum

in suh a way to make the time response of the pulse dependent on radial position. We put an

index X in the wave given by eq.(17) beause pulses of this kind have been named X-waves

by Lu and Greenleaf sine 1992 [5,6℄. Even more, taking B(!) = Ae

�a

0

j!j

(A and a

0

> 0

being onstants), we an easily verify (.r., pages 707 and 763 of [18℄) that we an write for

sin � > 0,

�

X

(t; �; z) = A

Z

1

�1

d!e

�a

0

j!j

J

0

(!� sin �)e

�i!(t�z os �)

(18a)

= A

Z

1

0

d!e

�a

0

!

J

0

(!� sin �) os(!�)

=

A

�

�

2

sin

2

� + [a

0

+ i�℄

2

�

1

2

+

A

�

�

2

sin

2

� + [a

0

� i�℄

2

�

1

2

(18b)

=

A

p

2

�

h

�

�

2

sin

2

� + a

2

0

� �

2

�

2

+ 4a

2

0

�

2

i

1

2

+ �

2

sin

2

� + a

2

0

� �

2

�

1

2

n

�

�

2

sin

2

� + a

2

0

� �

2

�

2

+ 4a

2

0

�

2

o

1

2

;

(18)

where � = ( t� z os �).

Eq.(18) shows that this wave is a real solution of the HWE. We reall that if in eq.(18a)

we use as integration interval 0 < ! <1, we get only the �rst term in eq.(18b). In this ase

we have a omplex wave that has been alled the broad band X-wave in [4-6℄. These waves

and the more general ones given by eq.(18b) propagate without distortion with superluminal

veloity given by 1= os �, but of ourse they annot be produed in the physial world

beause (like the plane wave solutions of the HWE ) they have in�nity energy, as it is easy to

verify. Waves that are solutions of the linear relativisti wave equations and that propagate

in a distortion free mode, have been alled UPWs (undistorted progressive waves) in [4℄.

Now, we show that a X-pulse even if it has ompat support in the time domain (thus

being of the form of a B&S signal) is suh that its front propagates with superluminal

speed. To prove our statement we look for a solution of the HWE satisfying the following

Sommerfeld onditions

7

,

�

X

(t; �; 0) = [�(t+ T )��(t� T )℄

1

R

�1

d!B(!)J

0

(!� sin �)e

�i!t

;

��

X

(t;�;z)

�z

�

�

�

z=0

= i [�(t+ T )��(t� T )℄ os �

1

R

�1

d!B(!)J

0

(!� sin �)k(!)e

�i!t

;

(19)

7

B(!) is taken in this example as a funtion suh that

1

R

�1

d!B(!)J

0

(!� sin �)e

�i!t

has support in the

interval �1 < t <1.

6



and k(!) = !. Proeeding in the same way as in the Sommerfeld problem of lass I solution

presented above we obtain as a solution of the HWE (for z > 0),

�

X

(t; �; z) =

1

2�

1

Z

�1

d�!B(�!)J

0

(�!� sin �)

�

1

Z

�1

d!e

�i!(t�z os �)

�

e

i(!��!)T

� e

�i(!��!)T

i(! � �!)

�

(20)

=

8

<

:

1

R

�1

d!B(!)J

0

(!� sin �)e

�i!(t�z os �)

for jt� z os �j < T

0 for jt� z os �j > T

:

(21)

Re !

Im !

�

1

!

0

�

2

Figure 2: Contour for integration of Eq.(20). �

1

for jt� z os �j > T and �

2

for jt� z os �j <

T .

We see that for jt� z os �j < T the integral in eq.(20) is not zero. Sine the axion angle

� > 0, then 1 > os � < 0 and it follows that the pulse is not zero for z > t and t > T , what

means that the wave front of our pulse propagates with superluminal speed! Of ourse, the

pulse is zero for z < (t� T )= os � or z > (t+ T )= os �. We observe that the above result is

true even a single Bessel pulse, i.e., when B(!) = Æ(! � !

0

), a result that we mentioned in

[3℄.
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How to ompare this �nding with the famous B&S result [13,14℄ stating that a wave pulse

whih propagates in a dispersive medium with loss has a front propagating at maximum

speed ? Some things are to be realled in order to get a meaningful answer. The �rst is

that B&S example refers to a propagation of a `plane' wave trunated in time (whih, of

ourse, has in�nite energy) satisfying the Sommerfeld onditions (analogous to eq.(6)) and

propagating in a dispersive medium with loss. A areful analysis [19℄ shows that the same

problem in a dispersive medium with gain reveals that in this ase we an �nd two kinds

of solutions ( both of of in�nite energy). In one of these kinds, by appropriately hoosing

the integration path in the omplex !-plane we obtain as result that the front of the wave

may travel with superluminal speed. This situation is somewhat analogous to what happen

with some possible mathematial solutions of the tahyoni Klein-Gordon equation in two

dimensional Minkowski spaetime [20,21℄. This equation is important beause it an be

assoiated with the so alled telegraphist equation.

The reason for our �nding that the X-pulse propagating in a nondispersive medium,

although of ompat support in the time domain, is suh that its front travel at superluminal

speed is the following; the solution given by eq.(20) is not of ompat support in the spae

domain and as suh has in�nite energy as an be easily veri�ed. Only for a pulse of �nite

energy we an warranty that its front always travel with a speed that annot be greater than

maximum speed. Indeed, suppose we produe on the plane z = 0 a pulse like the one given

by eq.(20), exept that it has a �nite lateral irular width of radius a, i.e.,it is taken as zero

for � > a. Suh a pulse is alled a FAA to the pulse given by eq.(20) and as an be easily

veri�ed has �nite energy. If suh a pulse does not spread with in�nite veloity during its

build up, then after it is ready, i.e., at t = T it oupies a region of ompat support in

spae given by j~xj < R, where R is the maximum linear dimension involved. Suh a �eld

on�guration an then be taken as part of the initial onditions for a stritly hyperboli

Cauhy problem at t = T . For suh a problem it is well known the mathematial theorem

that stablishes that [22,23℄ the time evolution of the pulse must be suh that it is null for

j~xj > R + (t � T ). In onlusion, it is not suÆient for a wave to be of ompat support

in the time domain (i.e., to be a pulse) to assure that the wave front of the pulse moves

in a nondispersive medium at maximum speed . In order for the wave front to move with

veloity  it is neessary that the pulse possess �nite energy, and in order for this ondition

to be satis�ed the pulse must have ompat support in the spae domain after its build

up. We reall here that in [4℄ the peaks of FAA to aoustial pulses given by eq.(18) (with

appropriated B(!)) have been seen traveling with veloities 

s

= os �, thus on�rming the

theory developed above.

C

3

. We now examine the laim of [1℄ that a wave given by our eq.(17), with B(!) = 1,

i.e.,

U(t; �; z) =

1

Z

�1

d!J

0

(!� sin �)e

�i(!t�kz os �)

; ! = k: (22)

is a pulse with support only in the z-axis at points z = t= os � and with value at that points

Æ(0). The alulations presented in [1℄ are wrong. Before we prove our statement let us reall

8



that [1℄ quotes Brillouin: `a signal an be de�ned as a pulse of �nite temporal extension, that

is, of in�nite extension in the frequey domain'.

8

The wave given by eq.(21) has an in�nite

extension in the frequeny domain but it is not a pulse of �nite time domain (for a �xed

z). Indeed, as theorem 11 on page 22 in Sneddon's book [24℄ stablishes: a funtion whih

is bounded in the time domain has an in�nite extension in the frequeny domain, but it is

not true that a funtion with an in�nite frequeny spetrum is neessarily bounded in the

time domain. A trivial example of the last statement is the ase of a Gaussian pulse, whose

Fourier transform is itself a Gaussian. In the partiular ase of the wave given by eq.(21) it

is immediate to realize that the integral is nothing more than the Fourier transform of a J

0

funtion, and the value of the integral is given in many books, in partiular on page 523 of

Sneddon's book [24℄. We have,

1

Z

�1

d!J

0

(!� sin �)e

�i(!t�kz os �)

(23a)

=

(

2

p

�

2

sin

2

��(t�z os �)

2

for jt� z os �j < � sin �

0 for jt� z os �j > � sin �

(23b)

Eq.(22b) shows that U(t; �; z) has support in the entire time axis provided that jt �

z os �j < � sin �. When � = 0, sine U is real (as an be seen diretly from eq.(22a) we must

have that jt � z os �j = 0 and the funtion U is singular. We see that the result expressed

by eq.(22b) is ompatible with the one given by eq.(18b) if we take the limit for a

0

! 0.

C

4

. Finally, we investigate the laim (done in [1℄ and attributed to [8℄) that the wave

funtion given by eq.(3) represents an eletri �eld. This laim is a nonsequitur. Indeed,

the salar solutions of the HWE an be used to generated solutions of the Maxwell system

using the Hertz potential method (see, e.g.[25,26℄). In partiular, superluminal solutions of

the HWE an be used to produe superluminal solutions of Maxwell equations [4,7,9℄. If

we hoose a magneti Hertz potential

~

�

m

= �

J

0

ẑ it is a simple exerise to show that the

transverse eletri and magneti �elds do not show any dependene on J

0

. Only the B

z

omponent of the eletromagneti �eld on�guration has a J

0

dependene. Expliitly we

have from the well known formulas

~

E = ��=�t(r �

~

�

m

) and

~

B = r�r�

~

�

m

that,

E

�

= 0; E

'

= i!
J

1

(
�)e

�i(!t�

�

kz)

; E

z

= 0; (24)

B

�

= �i

�

k
J

1

(
�)e

�i(!t�

�

kz)

;

B

z

= 


2

�

J

1

(
�)


�

+

J

0

(
�)

2

�

J

2

(
�)

2

�

e

�i(!t�

�

kz)

;

!

2

�

�

k

2

= 


2

: (25)

With an eletri Hertz potential we obtain a solution where only the E

z

omponent has

a J

0

dependene. As suh, we onlude that the eletromagneti beams observed in [2℄ and

8

This de�nition is due to Sommerfeld. See [13,14℄.

9



also in [8,17℄ are not J

0

beams. A areful analysis of the solutions of Maxwell equations in

ylindrial symmetry shows that there are not J

0

solutions representing transverse eletri

�elds. The existene of only one peak observerd in the experiments done in [2℄ is due to a

J

1

=� like term in the di�rated E

'

term of the real experiment. A more detailed analysis

will be reported elsewhere.

Our onlusions are as follows: (i) our results show that the main laims of [1℄ are wrong

and/or misleading and leads to equivoated onlusions onerning reent experimental re-

sults showing superluminal motion of peaks of partiular eletromagneti �eld on�gurations

in nondispersive media; (ii) we also prove a non trivial result, namely that the ondition

that a wave is of �nite time duration is not a suÆient ondition for its front to propagate

with the speed . It is neessary in order for the front to travel with speed  that the pulse

possess �nite energy, and thus as explained above it must (after being prepared by the

launhing devie) have support only in a ompat spae region when ready;

9

(iii) only FAA

to superluminal solutions of the HWE (aoustial ase) and to superluminal solutions of

Maxwell equations an be produed in nature, beause only waves of this kind have �nite

energy. These FAA exhibit peaks propagating with superluminal speeds even in the vauum,

but sine their fronts propagate with speed  this kind of phenomenom does not implies in

any danger for the Theory of Relativity.
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