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Abstract

In this paper we present thoughtful comments on the paper ‘Bessel beams and
signal propagation’ showing that the main claims of that paper are wrong. Moreover,
we take the opportunity to show the non trivial and indeed surprising result that a
scalar pulse (i.e., a wave train of compact support in the time domain) that is solution
of the homogeneous wave equation ( vector (E, é) pulse that is solution of Maxwell
equations) is such that its wave front in some cases does travel with speed greater than
¢, the speed of light . In order for a pulse to posses a front that travels with speed ¢, an
additional condition must be satisfied, namely the pulse must have finite energy. When
this condition is fulfilled the pulse still can show peaks propagating with superluminal
(or subluminal) velocities, but now its wave front travels at speed c¢. These results
are important because they explain several experimental results obtained in recent
experiments, where superluminal velocities have been observed, without implying in
any breakdown of the Principle of Relativity.

In this paper we present some thoughtful comments (C; — C4) concerning statements
presented in the paper ‘Bessel beams and signal propagation’ [1] and also some non trivial
results concerning superluminal propagation of peaks in particular electromagnetic pulses in
nondispersive media.

In [1] the author recalls that the experimental results presented in [2] showed that Bessel
beams generated at microwave frequencies have a group velocity greater than the velocity
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of light ¢ (in what follows we use units such that ¢ = 1)'. His intention was then to show
that the signal velocity, defined according to Brillouin and Sommerfeld (Bé&S) was also
superluminal. We explicitly shows that the particular example used by the author of [1],
given by the Bessel beam of his eq.(3) does not endorse his claim. Contrary to the author’s
conclusion this beam has no fronts in both space and time domains, hence cannot satisfy
Bé9S defintion of a signal. Moreover, the beam given by eq.(3) of [1] travels rigidly with
a superluminal speed. We prove then that there are two classes of general Bessel pulses
satisfying BéS definition of signal. A solution of the HWFE corresponding to class I is such
that the group speed is always less than ¢ whereas its front moves with speed ¢.2 A solution
of the HWE of the class II travels rigidly at superluminal speed if care is not taken of the
energy content of the pulse. We present also some necessary comments concerning solutions
of Maxwell equations associated with Bessel beams of classes I and TII.

We start by recalling the general solution of the HWE [® = 0 in Minkowski spacetime
(M,n, D) [10-12]. In a given Lorentz reference frame [10-12] I = 9/0t € sec T M, we choose
cylindrical coordinates (p, ¢, z) naturally adapted to the I reference frame, where p = (22 +
yQ)% and x = pcosp and y = psinp, with (z,y,2) being the usual cartesian coordinates
naturally adapted to I. Writting

(1, p, ¢, 2) = [1(p) () f3(1, 2), (1)

and substituting eq.(1) in the HWE we get the following equations (where v and Q are
separation parameters),

[PQ% +pgs + (P9~ VQ)] fi=0,
(i +22) fo =0, . 2)
(& - Z+) =0
The first of eqs.(2) is Bessel’s equation, the second one implies that ¥ must be an integer

and the third is a Klein-Gordon equation in two dimensional Minkowski spacetime.? In what
follows ( without loss of generality for the objectives of the present paper) we choose v =0

'In [3] we scrutinized the experimental results of [2]. We presented there a simple model showing that all
particulars of the data (including the slowing of the superluminal velocity of the peak along the propagation
direction) can be qualitatively and quantitatively understood as a scissor’s like effect. Moreover in [3]
we called the readers attention that in [4] peaks of finite aperture approzimations (FAA) to particular
acoustical Bessel pulses called X-waves (first discoverd by Lu and Greenleaf ([5,6]) have been see to travel at
supersonic speed i.e., with velocity greater than ¢, , the sound speed parameter appearing on the homogenous
wave equation (HWE). In [4] and [7] it is also predicted the possibilty of launching FAA to superluminal
electromagnetic X-waves, a fact that has been confirmed experimentally in the microwave region in [2] and
in the optical region in [8]. A review concerning the different facets of ‘superluminal’ wave motion under
different physical conditions can be found in [9].

20f course, this is a kind of generalized reshaping phenomena which cannot endures for ever. It lasts
until the peak of the wave catches the front.

3In 4-dimensional spacetime the Klein-Gordon equation possess families of luminal and superluminal
solutions, besides subluminal solutions. See [4] and references therein.



(and also © > 0). Then, we obtain as a solution of eqs.(2) a wave propagating in the
z-direction, i.e.,

(I)Jo (ta P, Z) = JU(/)Q) eXp[_i(Wt - IEZ)]? (3)

where the following dispersion relation must necessarily be satisfied,
w? — k% = Q% (4)

The dispersion relation given by eq.(4) may look strange at first sight, but there are
evidences that it can be realized in nature (see below) in some special circunstances.

C,. It is quite clear that the wave described by eq.(3), called in [1] a Bessel beam?, has
phase velocity v,, = w/k > 1. However, we point out that the statement done in [1] is false,
namely: ‘As known, in the absence of dispersion the group velocity vy, of a Bessel pulse
is equal to the phase one [4,5]° since all the components at different frequencies propagate
with the same velocity’. To prove its falsity recall that there exists a Lorentz reference frame
[10-12]

I'= (1 —v2)7 (9/0t + v4,0/92) € sec TM, (5)

which is moving with velocity v, = dw/dk < 1 in relation to the frame I in the z-direction.
In the coordinates naturally adapted to the frame I’ the frequency of the wave is W' = ,
which means that in the frame I’ the Bessel beam is stationary. This proves our statement
that for Bessel beam the group velocity is always less than the velocity of light c.

C,. Now, we show how to build two different classes (I and II) of solutions of the HWE
by appropriate linear superpositions of waves of the form given by our eq.(3).

Class I. Suppose, following B¢S [13,14 | that a signal is defined as a pulse with a finite
time duration at the origin z = 0 where a physical device generated it. We model our
problem as a Sommerfeld problem [15] for the HWE (with cylindrical symmetry), i.e., we
want to find the solution of the HWE with the following conditions (called in what follows
Sommerfeld conditions),

O(t,p,0) = AJy(pQ)[O(t) —O(t — T')] sinwyt

1 ) wT 1
= AJO(pQ)—Re/dwe_’“tu,
T

2m w — Wy
0P(t, p, 2) 1 - i LT — 1}
— = A Q) — dw k wti 2
20| = A ke /F o Bw) et (6)

In eq.(6) O(t) is the Heaviside function, A and wy = € are constants, Re means real part
and k(w) is given below and for simplicity we take T'= N1y = 27 N/wy, with N an integer.
Now, to solve our problem it is enough to get a solution of the third of eqs.(2). We have,

1 d . .
f3(t, Z) = % Re/ w0 e_“"(t_T—Ung) _ e—zw(t—vgrz)} (7)

rw—wo

4Note that in [1] the author writes Q = wsin# and k = w cos#f.
>The references [4,5] in [1] are the references [8,13] in the present paper.
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Figure 1: Contour for integration of Eq.(7) for t — 2z < 0.

where v, = k(w)/w and T is an appropriate path in the complex w-plane. We note
lim,_,o vy, = 1. Putting eq.(7) into the third of eqs.(2) we see that the dispersion rela-
tion given by eq.(4) must be satisfied. To continue we write,

kw) = (w+Q)(w - Q). (8)

There are two branch points at w = +£). The corresponding branch cuts can be taken as
the segment (—£2,€) in the real w-axis. Following I' from positive values of $w above and
close to the real axis, the root in eq.(8) acquires a phase factor /™ = —1 when passing from
Rew > Q to Rew < —. Then, on the real w-axis we have,

S IVw?z — 2|, w>0
k(w) —{ TR we< -0 (%)

a result that is necessary in order to calculate the value of f; for (t —v,2) > 0. We are not
going to investigate this case here, since we are interested in the behavior of f; for the case
where (¢t — z < 0). In this case, we must close the contour ' in the upper half plane. Since
there are no poles inside the contour we get that

f3(t,2) =0 for t—2z<0. (10)

Now, it is easy to verify the intensity of the wave which is solution of the HWFE and
satisfies the Sommerfeld conditions given by eq.(6) has a maximum for w = wy, i.e., the
waves with frequency near wy have always a much greater amplitude than all others. Under
these conditions let us write,

“ ) (w — wo), (11)

vg?"o

wt — kz = (wot — koz) + (t —



where vg, = (dw/dk)|w-w, < 1 and vpn, = wo/ke > 1. We can write an approximation for
the function f3(¢, z) denoted by f3(t, 2) as,

wo+Aw

r 1 —iwo(t—2/v dw —iw(t—T—z/v —iw(t—z/v,

f(t, 2) = %Re e~ wo(t—2/vpho) / Py {e (t=T—z/vgro0) _ o—iw(t /gro)} . (12)
wo—Aw

We see that f5(t,0) is equal to f3(t,0) if we suppress in the expression for this function the
frequencies very different from wy. Now, f3 (t,0) has support on the whole temporal axis, i.e.,
in the interval —oco < ¢t < oo, but it is taken by some authors (like, e.g., [16]) as representing
a wave that begin gradually at t = 0 and ends gradually at t = T. Of course, no wave of the
kind of f3 can be build by any physical device. The importance of the function fs(t,z) is
that, as emphasized by B&S [13,14] it shows that we can associate a group velocity to pulse
peaks in general (and of Bessel beams in particular) satisfying the Sommerfeld conditons
(eq.(6)) and that the group velocity in this case is less than the velocity of light. This means
that after a while the back end of the wave that is travelling at speed c¢(= 1) will catch the
peak. The wave reshapes even when propagating in vacuum.

A general subluminal Jy-Bessel beam can be written as,

B (t, p, 2) = Jo(pw) F T (w)]e™* (13)

where T'(w) is an appropriate transfer function and F~' is the inverse Fourier transform.

Now, the peaks of FAA to acoustical pulses of the form given by eq.(13) (i.e., the waves

at z = 0 are not zero only in the time interval 0 < ¢ < T) have been seen travelling at

subluminal speed® in an experiment described in [4], thus endorsing the above analysis.
Class II. We now return to the dispersion relation given by eq.(4) and write,

k=kcos, Q=ksiné, (14)
where 6 is a constant called azicon angle [5,6,17]. It results that
w = =tk. (15)
We immediately verify that
Jo(wpsin §)e"iwi=kzcosd) (16)

is a solution of the HWE whose beam width is proportional to 1/w sin 6, thus being frequency
dependent. The dependency of the beam width on frequency will cause the beam to have a
pulse response that is independent of position. Indeed, suppose that the source is driven by
a frequency distribution B(w), i.e., we have a pulse

O (t,p,2) = /de(w)Jg(wpsin f)e iwi—kzcosd) =y — k. (17)

— 00

60f course, in this case the speed paramenter appearing in the HWE must be ¢;, the sound speed in the
medium, and the word subluminal speed used must be understood as a speed less than cs.



If Jy were not dependent on frequency the integral in eq.(17) would be simply the inverse
Fourier transform of the source spectrum and we return to class I solutions. However, here .J,
is dependent on frequency and also on position and consequently modifies the pulse spectrum
in such a way to make the time response of the pulse dependent on radial position. We put an
index X in the wave given by eq.(17) because pulses of this kind have been named X-waves
by Lu and Greenleaf since 1992 [5,6]. Even more, taking B(w) = Ae ®ll (4 and ay > 0
being constants), we can easily verify (c.r., pages 707 and 763 of [18]) that we can write for
sinf) > 0,

O (t,p,2) = A/ dwe™ LTy (wpsin §)ew(t=zcosd) (18a)

o0

=A dwe ** Jo(wpsin @) cos(wp)
0

- A -+ 4 T (18b)
[p? sin 0—|—[a0+zu]]2 [p?sin 9+[a0—z,u]]2
Aﬂ{[[pQSin29+a§—u2] —i—4a0,u] —i—/)Qs;inQG—l—ag—/ﬂ}2
{[pZSinQG—i—ag—,u2]2+4a%u2}§,
(18c¢)

where = (t — zcos#).

Eq.(18c) shows that this wave is a real solution of the HWE. We recall that if in eq.(18a)
we use as integration interval 0 < w < co, we get only the first term in eq.(18b). In this case
we have a complex wave that has been called the broad band X-wave in [4-6]. These waves
and the more general ones given by eq.(18b) propagate without distortion with superluminal
velocity given by 1/cosf, but of course they cannot be produced in the physical world
because (like the plane wave solutions of the HWE) they have infinity energy, as it is easy to
verify. Waves that are solutions of the linear relativistic wave equations and that propagate
in a distortion free mode, have been called UPWs (undistorted progressive waves) in [4].

Now, we show that a X-pulse even if it has compact support in the time domain (thus
being of the form of a B&S signal) is such that its front propagates with superluminal
speed. To prove our statement we look for a solution of the HWE satisfying the following
Sommerfeld conditions’,

Ox(t,p,0) = OFt+T)—0(t—-T)] }o dwB(w) Jo(wpsin e,
o (19)
W = i[Ot +T)—0@—T)cosO [ dwB(w)Jo(wpsinb)k(w)e ™",

o]
"B(w) is taken in this example as a function such that [ dwB(w)Jo(wpsin@)e ™ has support in the
— 00
interval —oo < t < oo.



and k(w) = w. Proceeding in the same way as in the Sommerfeld problem of class I solution
presented above we obtain as a solution of the HWE (for z > 0),

1 o0
Dx(t,p,z) = %/de )Jo(wpsin 6)

o0

) H(w—@)T _ efi(wfc?))T
% d —iw(t—z cos B) e 20
/ e ilw— ) (20)

— 00

[ dwB(w)Jp(wpsinB)e =) for |t — zcos0] < T

0 for |t —zcosf| >T
(21)

almw

o
o

I\ » Re w
Wo

Figure 2: Contour for integration of Eq.(20). 'y for |t — zcosf| > T and T's for [t — zcos 0| <
T.

We see that for [t — zcosf| < T the integral in eq.(20) is not zero. Since the axicon angle
0 > 0, then 1 > cosf < 0 and it follows that the pulse is not zero for z > ¢t and ¢t > T, what
means that the wave front of our pulse propagates with superluminal speed! Of course, the
pulse is zero for z < (t —=T)/cosf or z > (t+ T)/ cosf. We observe that the above result is
true even a single Bessel pulse, i.e., when B(w) = §(w — wyp), a result that we mentioned in

[3].



How to compare this finding with the famous BéS result [13,14] stating that a wave pulse
which propagates in a dispersive medium with loss has a front propagating at maximum
speed ¢? Some things are to be recalled in order to get a meaningful answer. The first is
that BéS example refers to a propagation of a ‘plane’ wave truncated in time (which, of
course, has infinite energy) satisfying the Sommerfeld conditions (analogous to eq.(6)) and
propagating in a dispersive medium with loss. A careful analysis [19] shows that the same
problem in a dispersive medium with gain reveals that in this case we can find two kinds
of solutions ( both of of infinite energy). In one of these kinds, by appropriately choosing
the integration path in the complex w-plane we obtain as result that the front of the wave
may travel with superluminal speed. This situation is somewhat analogous to what happen
with some possible mathematical solutions of the tachyonic Klein-Gordon equation in two
dimensional Minkowski spacetime [20,21]. This equation is important because it can be
associated with the so called telegraphist equation.

The reason for our finding that the X-pulse propagating in a nondispersive medium,
although of compact support in the time domain, is such that its front travel at superluminal
speed is the following; the solution given by eq.(20) is not of compact support in the space
domain and as such has infinite energy as can be easily verified. Only for a pulse of finite
energy we can warranty that its front always travel with a speed that cannot be greater than
maximum speed. Indeed, suppose we produce on the plane z = 0 a pulse like the one given
by eq.(20), except that it has a finite lateral circular width of radius a, i.e.,it is taken as zero
for p > a. Such a pulse is called a FAA to the pulse given by eq.(20) and as can be easily
verified has finite energy. 1If such a pulse does not spread with infinite velocity during its
build up, then after it is ready, i.e., at ¢ = T it occupies a region of compact support in
space given by |Z| < R, where R is the maximum linear dimension involved. Such a field
configuration can then be taken as part of the initial conditions for a strictly hyperbolic
Cauchy problem at ¢ = T. For such a problem it is well known the mathematical theorem
that stablishes that [22,23] the time evolution of the pulse must be such that it is null for
|Z| > R+ c(t — T). In conclusion, it is not sufficient for a wave to be of compact support
in the time domain (i.e., to be a pulse) to assure that the wave front of the pulse moves
in a nondispersive medium at maximum speed c. In order for the wave front to move with
velocity c¢ it is necessary that the pulse possess finite energy, and in order for this condition
to be satisfied the pulse must have compact support in the space domain after its build
up. We recall here that in [4] the peaks of FAA to acoustical pulses given by eq.(18) (with
appropriated B(w)) have been seen traveling with velocities ¢,/ cos#, thus confirming the
theory developed above.

C;. We now examine the claim of [1] that a wave given by our eq.(17), with B(w) = 1,

ie.,
o

Ult,p,z) = / dwJo(wpsin §)e i Wikzcost) =) — k. (22)

is a pulse with support only in the z-axis at points z = ¢/ cos# and with value at that points
§(0). The calculations presented in [1] are wrong. Before we prove our statement let us recall



that [1] quotes Brillouin: ‘a signal can be defined as a pulse of finite temporal extension, that
is, of infinite extension in the frequecy domain’.® The wave given by eq.(21) has an infinite
extension in the frequency domain but it is not a pulse of finite time domain (for a fixed
z). Indeed, as theorem 11 on page 22 in Sneddon’s book [24] stablishes: a function which
is bounded in the time domain has an infinite extension in the frequency domain, but it is
not true that a function with an infinite frequency spectrum is necessarily bounded in the
time domain. A trivial example of the last statement is the case of a Gaussian pulse, whose
Fourier transform is itself a Gaussian. In the particular case of the wave given by eq.(21) it
is immediate to realize that the integral is nothing more than the Fourier transform of a Jy
function, and the value of the integral is given in many books, in particular on page 523 of
Sneddon’s book [24]. We have,

o0

/ dw.Jo(wpsin §)e i (Wt-kzcost) (23a)
2 for |t — zcos @] < psinf

— \/p2 sin? 0—(t—z cos 0)2 | | P (23b)
0 for |t — zcos@| > psin@

Eq.(22b) shows that U(t, p, z) has support in the entire time axis provided that [t —
zcos | < psinfl. When p = 0, since U is real (as can be seen directly from eq.(22a) we must
have that |t — zcos#| = 0 and the function U is singular. We see that the result expressed
by eq.(22b) is compatible with the one given by eq.(18b) if we take the limit for ag — 0.

C,. Finally, we investigate the claim (done in [1] and attributed to [8]) that the wave
function given by eq.(3) represents an electric field. This claim is a nonsequitur. Indeed,
the scalar solutions of the HWE can be used to generated solutions of the Maxwell system
using the Hertz potential method (see, e.g.[25,26]). In particular, superluminal solutions of
the HWE can be used to produce superluminal solutions of Maxwell equations [4,7,9]. If
we choose a magnetic Hertz potential ﬁm = &, 2 it is a simple exercise to show that the
transverse electric and magnetic fields do not show any dependence on J;. Only the B,
component of the electromagnetic field configuration has a .J, dependence. Explicitly we
have from the well known formulas E = —9/0t(V x Ii,,,) and B = V x V x I, that,

E, = 0, B, =iwQJ,(Qp)e @) B =, (24)
B, = —ik QLT (Qp)e i@t F2)
B, = Jl(QP)+J0(QP) ) o—ilwt—Fz)
Qp 2 2 ’
Wk = QL (25)

With an electric Hertz potential we obtain a solution where only the E, component has
a Jo dependence. As such, we conclude that the electromagnetic beams observed in [2] and

8This definition is due to Sommerfeld. See [13,14].



also in [8,17] are not J, beams. A careful analysis of the solutions of Maxwell equations in
cylindrical symmetry shows that there are not J; solutions representing transverse electric
fields. The existence of only one peak observerd in the experiments done in [2] is due to a
Ji/p like term in the diffracted E, term of the real experiment. A more detailed analysis
will be reported elsewhere.

Our conclusions are as follows: (i) our results show that the main claims of [1] are wrong
and/or misleading and leads to equivocated conclusions concerning recent experimental re-
sults showing superluminal motion of peaks of particular electromagnetic field configurations
in nondispersive media; (ii) we also prove a non trivial result, namely that the condition
that a wave is of finite time duration is not a sufficient condition for its front to propagate
with the speed c. It is necessary in order for the front to travel with speed ¢ that the pulse
possess finite energy, and thus as explained above it must (after being prepared by the
launching device) have support only in a compact space region when ready;” (iii) only FAA
to superluminal solutions of the HWE (acoustical case) and to superluminal solutions of
Maxwell equations can be produced in nature, because only waves of this kind have finite
energy. These FAA exhibit peaks propagating with superluminal speeds even in the vacuum,
but since their fronts propagate with speed c¢ this kind of phenomenom does not implies in
any danger for the Theory of Relativity.
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