Causal explanation for observed superluminal behavior of microwave propagation in free
space
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In this paper we present a theoretical analysis of an experiment by Mugnai and collaborators where superluminal
behavior was observed in the propagation of microwaves. We suggest that what was observed can bewell approximated
by the motion of a superluminal X wave. Furthermore the experimental results are also explained by the so called scissor
effect which occurs with the convergence of pairs of signals coming from opposite points of an annular region of the
mirror and forming an interference peak on the intersection axis traveing at superluminal speed. We clarify some
mi sunder standings concerning this kind of e ectromagnetic wave propagation in vacuum
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In this note we make some comments on a recent paper by
Mugrei, Ranfagni and Rugderi [1] claiming the
observation of superluminal behavior in  microwave
propagation for long distances in air. Our comments are of
theoretical nature axd about posshle explanations for the
measured effed.

From the theoretical point of view, we start by analyzing
the foll owing statement quoted in [1] and attributed to [2]:
“Yet, thereisno formal prodf, based on Maxwell equations
that no eledromagnetic wave packet can travel faster than
the spedl of light.” First of al we note that every physical
wave (satisfying Maxwell equations) produced by a
physical device of finite dimension (antennad) must
necessarily have abeginning and (posshly) an end in time,
say aa t=-T and t=0. We say that such an
eledromagnetic fidd configuration is an eledromagnetic
pulse of compact support in the time domain. Observe also
that if the pulse generated by the device does not spreal
with an infinite speed, then when it is ready, let us sy at
t =0 it must ocaupy, due to the finite dimension of the
antenna, a finite region in space Such a pulse is
necessarily of finite energy [3]. In an appropriate reference
frame, we @n then write that a t =0, the signa has
support only for | x|< R, where R is the maximum linea

dimension involved. Maxwell equations (in vacuum) are a
hyperbolic system of partid differential equations [4].
Moreover, each one of the mponents of the free
eedromagnetic fidd solves a homogeneous wave
equation. It is then posgble to prove under very genera
conditions (strictly hyperbdic Cauchy problem) that, if an
eledromagnetic pulse has fidd components and first time
derivatives with compact support in space d t =0, then
the time evolution of such field components must be null

[5] for |[x|=R+ct. As usuad c is the parameter that

appeas in the homogeneous wave ejuation satisfied by
any of the mmponents of the dedromagnetic field. This
result can be @lled finite propagation speed theorem. We
emphasize here that this theorem implies that the front of
the pulse travels with maximum speed ¢ (in some @ses we
can prove that it indeal travels with speal c) but it does
not fix any minimum speed for the lateral boundary of the
signal spread. This is a very important result since it
enables the project of antennas for sending well focused
waves. However, it is important to stress that perfed
focusing is imposshle for any finite energy solution of
Maxwell equations [6]. Note also, that it is not possble to
prove an ana ogous of the finite propagation speed theorem
for waves that do not have compact support in the space
domain.

When Maxwell equations are applied to the description of
wave motion in dispersive media with losses or gains and
under spedal conditions, the propagation of finite energy
eledromagnetic pulses (as defined above) may exhibit
superluminal (or even negative) group velocities. We recll
that Sommerfeld and Brillouin, showed long ago (see[7])
that a plane wave eectromagnetic pulse travels with front
velocity ¢ even in dispersive media with loss Sommerfeld
and Brillouin result is a very particular one since their
plane wave pulse has infinite energy. Indeed, Zhou [8]
recently found an example where plane wave pulses can
have superluminal front velocities when traveling in a
spedal dispersive media with gain (on this isaue, take into
acoount also the @mment in [3]). Sommerfdd and
Brillouin concluded that the mncept of group velocity can
not be applied when the group veocity becomes
superluminal and this gatement has been repeated in many
textbooks snce then, as, eg., in [9,10]. However, their
conclusion is mideading since it is now well known that



superluminal group velocities can be observed (see eg.,

[11,2213]). Even negative group velocities have been

observed [14,15]. The eplanation for some of these
superluminal (or negative) group velocities observed in

dispersive media and also in microwave tunneling is found

in the reshaping phenomenon [16,17]. However there ae
some daims that this is not the @se [18]. The basic

argument in favor of genuine superluminality, [18], is that

a red wave packet must have mpact support in the
frequency domain because “...signads with an infinite
spedrum are impossble, since Planck has shown in 1900

that the minimum energy of a frequency component is
ficw” . We do not intend to dscussthis spedfic argument

here. However, we remark that even if we do not take into

acoount the fact that red signals must have as discussed

above finite energy, we must have in mind the following

fact. Fourier theory implies that a signal with compact

support in the frequency domain is unlimited in the time

domain, i.e, has no fronts and as such it is impossible to

define afront velocity for it and only the group velocity

has physical meaning. Foll owing this reasoning, we canot

endorse the point of view of [18] which seans aso the one

adopted in [1], smply because it implies the eistence of

wave packets in the time range —o <t <, i.e, even

before the aitenna was turned an. The @ncepts presented

above, athough of fundamental character, are

unfortunately not well known asthey should be.

We now state aresult that at first sight seams to contradict
what has been said above, that is. Maxwell equations (and
also al the other linea relativistic wave ejuations) posess
exact arbitrary speal solutions (0<v<ow) that are
undstorted progressve waves (UPWs) even in free space
(for a review, see[16] and also [19,20,21]). These UPWs
solutions, like plane wave solutions of Maxwell equations,
have infinite energy, and classcal eledromagnetic theory
implies that they are the only convenient approximations to
waves that can be really built in the physical world. There
exists therefore a crucial distinction between solutions of
Maxwell equations and physical realizable solutions of that
equations. Once an exact UPW solution is known, it is
possble to launch pulses that are finite aperture
approximations to that UPW i.e., pulses olbtained through
the Rayleigh-Sommerfeld approximation [21]. Such finite
aperture approximations always have fronts that propagate
with velocity ¢ and, of course, have finite energy. As
dready dstated, there ae sublumina, lumind and
superluminal UPWs. A finite goerture approximation to a
sublumina  (superluminal) UPW pulse can be shown
theoretically to have a peak traveling at subluminal
(superluminal) group velocity even if the front travels with
velocity cl. This phenomenon was predicted and observed
for the firg time in experiments with acoustic waves [17],

where sub and superluminal means v<cg Or V>Cg

respedively (c, the sound speed appeaing in the

corresponding homogeneous wave ejuation). In [17] it was
predicted that the phenomenon could be observed for
eledromagnetic superluminal X waves. In fact Saai and
Reivelt produced a finite aperture approximation to a
superluminal X wave pusein the optical range [22].

For clarity and in order to not give cance for any

misconception and misunderstanding let us emphasize the

following. All of the theoretical (anaytical and numericd

simulations) studies of real cases of finite aperture

approximations to exact superlumina UPWs have shown

that their peaks indeel travel at v=c in some particular

circumgtances. Since the initid front of any given pulse

travels at velocity c it is reached by the peak after some

propagation time. This happens when the pulse loses its

lateral confinement after a distance @lled the depth of the

field and starts to behave like a ordinary sphericd wave.

This may be @lled a generalized reshaping phenomenon

whose origin is obvious [16]. An immediate @nsegquence

of the generalized reshaping phenomenon is the qualitative

prediction [16] that the velocity of the pesk must deaease

along the propagation diredion. This phenomenon is

exactly what has been observed in the experiment reported

in[1].

After these necessary preliminaries, we @n now present
spedfic criticisms to the contents of [1]. Recll that we @n
generate solutions of Maxwell equations with the Hertz
potential method [9,16]. The Hertz potential satisfies a
homogeneous wave equation for afreeMaxwell equation. If
we take the form used in [17], eg.,, a magnetic Hertz

potential M, =Pz in afixed dredion, say the z-diredion

taken as the propagation dredion, then @ satisfies a
homogeneous wave ejuation, namely

e,
c ot

The most simple and non-trivial solution of this equation
in cylindrical coordinates (p, ¢, 2) is

P(t, p,2) = Io(Qp) exp Fi (wt—kzz)g P

0= (wrc) -k (3)

The solution given by eq.(2) has cylindrical symmetry, i.e,
it is independent of the ¢ variable. In Eq.(2) J, is the
zeroth order Bess function and Q isa separation constant
(see eg., [19,17] for details). Eq.(3) representing a
dispersion relation at first sight looks grange, but it is
rigoroudly true (details of this derivation can be found in
[19).



Itisvery important to emphasize that eq.(3) does not imply
that the J, wave function will propagate with distortion in

vacuum. The crucid meaning d that dispersion relation is
that it implies that the Hertz potential asociated with the
field dven by eq.(2) and its assciated e edromagnetic
fields are not superlumina. Only the phase velocity is
superluminal, the group velocity remains subluminal. This
interpretation, as sowed in [17] isindeed corred, sinceit is
possble to find a Lorentz reference frame where the
solution represents a standing wave. Also, for the acoustical
case, as reported in [17], a Bessd beam i.e, a finite
aperture approximation to the wave packet of the form

Dy = 3,(QP)F [T (w)] exp(ik,z), 4

where T(w) isan appropriate transfer function and Flis
the inverse Fourier transform, is such that its peak was
reported to travel a subluminal speed (i.e., with v <cg).

This eventually surprisng result is rigoroudy proved in
[19].

Another important fact to be darified is that no eedric
component of the Maxwell field can have the same form as
the Hertz potential in eg.(2). As can be esily verified by
dired computation, an eedric Hertz potential, M, = ®z

(see[23]) with @ asin eq.(2) naturally generates besides
a transverse @mponent that is given by a tem

proportional to a J, function, also a longitudinal eledric

field composed o three terms, one of which with a J,

dependence The eplicit formulas for the fields are given
in [19]. We note moreover that we succeeded in deriving
andytically the form of the diffracted eledric fied
produced by a ring aperture as happens in the @se of the
experiment reported in [1]. Only for a paticular
mathematicd model of the transfer function of the ring (a
delta function), the diffracted eledric fidld has a transverse

component which is a J, function multiplied by a

sphericd outgoing wave and a phase factor, but a
longitudina component is present. If this transverse
component pases through a focusing lens under
appropriate cnditions it results in a transverse dedric

field that is a J, function. A redlistic transfer function

gives a more omplicated field. These results will be
reported elsewhere. In conclusion, we must say that the
experiment reported in [1] that refers to a horn antenna
emitting a TE wave cannot be represent by the field given
by Eg. (2).

So, in concluson we can say no finite gerture
approximation to an eledromagnetic Bessdl beam of the
form of Eq.(4) (which includes eq.(2) as a particular case)
can show any superluminality. As a mnsequence, if we

accept the datain [1] as corred, we must conclude that no
finite aperture approximation to an eledromagnetic J,

Bessel beam was observed.

But if thisisthe ase, what kind df wave could producethe
superluminal effea described in [1]? A proposed answer is
that what have been observed is a particular kind of afinite
aperture approximation to a superluminal eledromagnetic
X wave pulse. Acoustical X pulseswere firstly produced by
Lu and Grealleaf in the [24,25]. The speeads of the
acoustical X pulses have been measured in an experiment
reported in [18], where also the mathematical theory of
superlumina X waves (and their finite aperture
approximations) and computer simulaions for their
behavior were presented. A paticulaly simple
superluminal X wave can be generated through the

magnetic Hertz potential M, =®,z, whee ®,is a
packet of Bessl waves of the form given by eq.(2). Putting

Q=ksenf, k,=k 6 cos , )
we have a new disperson relation,

wlc=k
but, of course, and this is crucia, the propagation vedor
continuesto be K, . We can now verify that

ik(zcosf-ct)

Oy (t,0,2) = [ KBK)I(kpsenB)e @

is a superluminal wave as solution of the homogeneous
wave ejuation. In eq.(7) B(k) is a frequency distribution
function and 6 is called the axicon ange. Note that we
obtained w/c =k, at the cost of making the separation
parameter frequency dependent, something that is redly an
extraordinary idea and apparently has been first introduced
by Fujiwara [26] and after that used by Durnin [27,28] in
pionner papers on well focused waves. Theoreticaly, the
waves represented by eq.(7) are UPWs and move with
genuine superluminal spead v =c/cosf whichever be the

frequency  distribution B(k) # o(k - kO). When

B(k) = 6(k—k0)we ae back to eq.(2). Now, we aready

explained that in [1] it was not the function given by eq.(2)
that represents the e edromagnetic pulse of the experiment
because it has infinite energy. Also, the field configuration
given by (2) has support for —co <t <0 and as such cannot
correspond to the waves that the authors used in their
experiment, for they emphasized that they launched
eledromagnetic pulses, i.e., wave packets with compact
support in the time domain. Then, even if it is possble (see
below) to find frequencies distributions such that eq.(7)



represent pulses (i.e., waves of compact support in the time
domain), these pulses cannot be the eedromagnetic pulses
used in the eperiment becuse they also have infinite
energy.

Then, the question is: how to model the launching o a

pulse? The modelling must be given in two steps. First we

must mathematically modd in a orred way a

superluminal solution of Maxwell equations that cen be

asciated to the problem and after that we must project

finite aperture approximations to that solution. Here, we

examine for amplicity, the ase of a pulse representing a
magnetic Hertz potential as above, launched from a plane

antenna located on the z=0 plane and such that it solves

the homogeneous wave @auation together with

appropriated boundary conditions (Sommerfeld conditi ons)

at z=0][29]. For our problem the appropriated boundary

conditions that produce asolution like the one given by

e0.(7) and represents moreover a superluminal J, pulse (a
Xwave) must be (seeAppendix A)

®, (t, p,0) = J,(pw, sinB)e (1),
aCT)X (t! p! 0)

; = i, c0s8J, (pw, SinB)e ' T(t) 8
z

with T(t) =[e)-0t-T)] ad o) being the
Heaviside function) is such that it propagates rigidly (i.e,
without distortion) with superluminal speal. Indedd, in this
case the function B(k) in eq.(7) is given by eq.(A7) of the
appendix andthe integra in eq.(7) gives

CDX (t!p! Z)

_ o (P, sinB)e™ ") o<t -zcos0 <T,
[0, t<Oor (t—zcosf)>T.

We see then that the peak as well the front of the pulse
propagates with the same speal c/cosf ! Of course, this
result cannot be taken as a prodf that there &ists a
physically redlizéble wave whose front propagates in
vacuum with superlumina velocity. Thisis so because the
solution just found hasinfinite energy.

Thus, to complete the modeling o the eperiment we
reall that the real wave (more predsey, the Hertz
potential) used in [1] (or in any red experiment) must be

(9)

represented by a finite aperture approximation to the wave
®, ,denoted P, , Which as aready said above has
finite energy, has a peak which moves with superluminal
spead c/cosf and afront which moves with speed c. Of
course, a phenomenon like that cennot last forever and
must disappea when the peak catches the front that is
traveling at the speal of light, a result predicted in [16]
where this effed has been called generdlized reshaping
phenomenon.

source

detector
positions

mirror

Figure 1. Schematic representation of the launcher (horn
antenna) and mirror. The two point source model for the
scisor effect is seen on he kft separaed by the distance a.

For a quantitative description of the experiment in [1], it is
necessary, of course, to produce a detailed simulation under
the crred experimental conditions, i.e., to reproduce a
finite aperture approximation to the pulse generated by the
ring aperture on the mouth of the horn antenna and which is
refleded by the spherical mirror (see Figure 1). This
complete simulation will be reported elsewhere.

However, to understand the mecdhanism behind the
superluminality (and the data) observed in the experiment a
simple mode sufficies. Before presenting or smple model
we discuss an important issue raised by the authors of [1],
i.e, we show that a purey geometrical description of the
rays in the apparatus cannot reproduce the superluminal
velocities reported in [1]. A simulation using geometric
optics and naturdly including the sphericd aberration of the

mirror is shown in Fig. 2 for the two axicon angles =16’

and 6=23" used in the experiment. This dmulation
estimates the travel time of geometric rays emanating from
the fead in Fig. 1 that falls on the mirror and are refleded
onto the symmetry axis of Fig. 1 at each spedfic deteaor
positi on.

Mugrai, Ranfagni and Ruggeri “signa velocity” for each
point dong the symmetry z-axis is then determined as
follows: consider an anndar source (feed) located on the
mirror focal plane projeding rays onto the mirror. In Fig.1
the aandar sourceis represented by two point sources, the
annular dit as e edged-on. Reflected rays cross the z-



axis at different points depending on the aperture angle of
the source rays (axicon angle). Each ray takes a spedfic
timeto travel from the refledion point on the mirror surface
to the crossng point on the z-axis. Detedors are placed at
different positions (distant L from each other) on the z-axis
(not between mirror and source) and we simply calculate
the time difference T between the rays reaching these
different detedors. The signal velocity is then given by the
derivative of the airve L-T. The axicon angle obtained by
adjusting the diameter of the drcular dit changesthe pattern
of time distribution aong the z-axis, the larger the axgle the
more pronounced the superluminal effect.

We seethat for the two axicon angles 6 = 16° and 6 = 23°
used in the experiment we have an increase of about 4% and
8% for the signal velocity, respedively, in disagreament
with the values reported in [1] and showing that geometric
opticsis hardly an explanation for the phenomenon. Indee,
the eperimental results exceal such numbers mainly for

6 =23° and we agree with authors of [1] that diffraction
effeds are the @use for the observed velocity in this case.
Our statement comes from an accurate simulation of wave
propagation in the experiment including diffraction due to
source shadowing and will bereported el sawhere.
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Figure 2: Signal velocity as a function of the detector position
estimated using geometrical ray tracing. The velocity profil e does
not agree with the values foundin [1].

Having showed that smple geometric optics cannot
explain the experimental data of the experiment we now
introduce our promised model. It is an approximate model
that explains the medanism behind the superlumind
vel ociti es observed in the experiment and fits the measured

effed for 8 =16°and6 = 2°. We dready said that a
singe X pulse given by eq.(9) canot explain the
experiment in [1] because it propagates rigidly at constant
superluminal speed and the data reported in [1] shows a
varying propagation speal v(z) of the pesk. In order to

proceed, we recll that for |t - zcos@| >T aX-wave puse
likethe one given by eq.(9) can bewritten as

Jo (00, sin@)e” (1 7*2)

_ e—iwot ZI’Td¢e{iksin9[xcos¢+ysin¢]+ikcos@z} (10)
2 0

i.e, an integral over the polar angle ¢ (in the z=0

plane) of plane wave pairs emitted from points of a circle
in the plane with angles ¢ and m—-¢ and traveling at

speal c. This suggests to think of the red wave in the
experiment as an interference pattern generated by
sequence of spherical waves emanating from simultaneous
sources (an annular region) on the mirror, which move
with velocity ¢ and interfering on the z-axis. With this
supposition the dependence of V on z can be quantitatively
explained. The resulting wave fronts propagate in the z
diredion (and are in fact perpendicular to it) but, in
esence each of its components propagates at atilted angle
in relation to the z-axis. This is indeed the base of the so
called scissor effect. Thereader should understand that the
purpose of our simple modd is to illustrate a posshle
medhanism that produces the phenomenon and not to gve
accaurate values for the measured velocities. For simplicity
we admit a“virtual” anndar sourcewith dameter a placed
somewhere on a plane behind (or in front of) the mirror. If
t isthe time counted since the production of the sphericd
pulse, then the scisor spead on the z-axisis given by (as it

is easy to verify)

ct

v(t) = 1
\/t2 -a%/4c?

and therefore the distance @vered by the man scisor pek
along z-axisuntil timetis
tz_Td
L(t,,t)=Ly+ [ v(t)dt, i}
4

where t, 2 a/2c is ome referencetime, L, is an off-set

length and T, isatime delay. We @n therefore fit a curve
to the experimental resultsin [1] based on three parameters.
An offset in z L, an offset in time, T;, and the distance

between the sources (diameter of the aandar souce), a.
Another parameter would be the position adong z of the



virtual source but for simplicity, we dhoose this position at
z=0. Sincetheinterferencepeak is on the z-axis, it isonly
locally similar to a X-wave. There is no simple relation
between the axicon angle of the local X puse - which
changes along z - and the axicon angle used in [1] on the
asamption that it was indeed a Bessdl pulse (as imagined
by the authors of [1]). A larger circular dit radius (for the
red source on the mirror focal plane) simply implies a
larger separation of the virtual sourcesin our model.
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Figure 3: Fit of the delay time measurements as a function of

digance L aong the z-axis using the scissor effect model.
Triangles represent messured data extracted from [1]. Left:

6 =16°, Right: 8 = 23°.

Numerical simulations are shown in Figue 3 and, and
given the simplicity of the modd and the inexistence of
error bars in the original data of [1], they agreereasonably

wel. For the @se 6=16" we used L, =0,
Ty =51nsand a=10cm. For 6 =23 the fitting
parameters  were  L,=-2cm, T, =50 nsand
a=18cm.

We conclude the paper stressng that the experiment in [1]
shows explicitly that a kind of generalized reshaping
phenomenon occurs under appropriate mnditions even for
pulses propagating in free space (in the case of [1] we
recll that air, the medium where the propagation occurs, is
transparent to microwaves). The origin of the generalized
reshaping iscrystal clea from our discusgon [16]. Thereis
no question of principle involved in the eperiment. The
finite aperture approximations to superlumina X waves
produced by the experiment are of compact support in the
time domain and o finite energy and their fronts propagate
aways with the speal c. Only the peaks of these pulses
travel at superlumina speed and they are deteded in the
experiment instead o the fronts due to the limited

detedion threshold of the recevers. The peak of any pulse
however does not causaly conned source to detedor,
leaving relativity theory intact. Also, the phenomenon of
superluminal motion cannot last indefinitely. In fact it lasts
until the peak catches the front, defining the maximum
distance (cdled field depth of order (a/2)cot8, see[28])

for which afinite aperture approximation to a superluminal
X wave isreasonably focused. A smple explanation for the
superluminal motion reported in [1] is given by the
interference of spherical wave fronts on the symmetry axis.
The interference pattern builds the superluminal peak and
congtitutes the well known scissor effect.
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Appendix A

Here we show why the boundary conditions given by
€q.(8) must be used in order to have a solution of the
homogeneous wave ejuation of the form given eq.(7). We
also determine for these cnditions the function B(K) . The
mathematicd formulation of our problem is as follows:
find a solution of the homogeneous wave ejuation with
cylindricd symmetry (i.e., independent on the variable ¢

such that at the z=0 plane we have the following
boundary conditions,

Fl(t’p) = q)(t!p: zZ= 0),
od(t, p,2)

F(t, p) = %

(AD

z=0

As it iswel known, the general solution can be obtained
from a wave packet of functions of the from given by
€q.(2). In this appendix for simplicity we use units such
that c=1. Wewrite[9]

ict

1« i _
D(t,p,2) =— [ dwA(w, p)e'“%e
47T <o

—ikz(w)ze—iwt.

+i }) dwS(w, p)e (A2)
47T oo



From eq.(3) we have Kk, (w) = w? -Q% . We introduce
now a frequency dependent separation constant Q,
writing k, =kcosf, Q=ksnf. This implies w =k

and we rewrite eq.(A3) as
® 1 jowcos6z —iwt
47T
N }) dawS(w, p)e 02Tt (A3)
47T oo
Then,
1 B (t, Di
A(w,p)=Idt%1(t,p)—l 2(1 ) “,
ATT <o wcosf
1 Fot, 0)
S(w, p) =— [ dt , (t, p) +i—2 . A
@p =, g Py (

We want a solution without the S(w, p) term. Then we
must have

F,(t, p) =iwcosOF,(t, p) =ik, (w)F(t, p). s

From eq.(A5) we seethat if F (t, p)is given by the first
of theegs.(8) then F,(t, p) must be given by the second of
egs.(8).
The function B(k)in eg.(7) can now be found using the
following identity [19] valid for T =2mmn/w, with n
an integer,

1 w [éi(w wo)T

— [ dw Bi[po(pwsme)e
2m-w  [Ji(w-w,) [

iw(t—cosf z)

_ %]o(pwo Sine)e—lwo(t—cosez) :

[0 if t-Z4co & 0or t—-z €o>F ).

Therefore it foll ows that
i (w—wo)T B lD

B(k) = —— 0 (A7)

277@ w-w, H
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