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Abstra
t

This paper 
onsiders an adaptive �nite di�eren
e s
heme for the numeri
al solution

of evolution partial di�eren
ial equations. The 
omputational domain is formed by

non-overlapping blo
ks. Ea
h blo
k is a uniform grid, but step size may 
hange from

one blo
k to another. The blo
ks are not predetermined, but they are dinami
ally


onstru
ted a

ording to the re�nement needs of the numeri
al solution. The de
i-

sion over whether a blo
k should be re�ned or unre�ned is taken by looking at the

magnitude of wavelet 
oeÆ
ients of the numeri
al solution on su
h blo
k. The main

obje
tive of this paper is to establish a general framework for the 
onstru
tion and

operation on su
h adaptive blo
k-grids in 2D. The algorithms and data stru
ture are

formulated by using abstra
t 
on
epts borrowed from quaternary trees. This pro
e-

dure helps the understanding of the method and its 
omputational implementation.

The ability of the method is demonstrated by solving some typi
al test problems.

Key words:

Wavelet Analysis, Finite Di�eren
es, Adaptive Grids

PACS: 02.70.Bf, 02.30.Jr

Preprint submitted to Elsevier S
ien
e 10 May 2002



�

Corresponding author

Email addresses: margaret�
pte
.inpe.br (M. O. Domingues),

soniag�ime.uni
amp.br (S. M. Gomes ), lilliam�
idet.i
mf.inf.
u ( L. M.

A. D��az).

1

Supported by Funda�
~ao de Amparo �a Pesquisa do Estado de S~ao Paulo, grants

94=2016 � 9, 2000=04148 � 2 and 1997=2248 � 5

2

Supported by Conselho Na
ional de Desenvolvimento Cient���
o e Te
nol�ogi
o,

grant 302714=88 � 0

2



1 Introdu
tion

Solutions to many interesting 
ow problems may exhibit lo
alized singular fea-

tures, su
h as sharp transition layers, propagating steep fronts or pronoun
ed

spikes. Reliable approximations of these problems present a 
hallenging 
om-

putational task. Uniform gridding is not a pra
ti
al option sin
e high reso-

lution is only needed in small regions, where irregularities o

ur. Therefore,

signi�
ant improvements in a

ura
y and 
omputational eÆ
ien
y may be

obtained by e
onomi
ally adapting the grid points to the numeri
al solution.

In 
omputational 
uid dynami
s, there are several approa
hes for 
onstru
ting

su
h lo
ally adapted meshes. Some of them resort on ad ho
 
riteria, others

are based on more elaborated a posteriori error bounds and there are those

ones using Ri
hardson extrapolation te
hniques. Nowadays, another kind of

adaptive 
riteria, whi
h looks at the magnitude of wavelet 
oeÆ
ients to ob-

tain sparse representations, is be
oming useful in the 
onstru
tion of adap-

tive solvers for partial di�erential equations (see [1℄ and referen
es therein

en
losed). In the present paper we shall be 
on
erned with su
h 
lass of meth-

ods.

For instan
e, 
onsider the SPR method (for sparse point representation), in-

trodu
ed in [2℄. It is an adaptive �nite di�eren
e strategy that 
ombines the

simpli
ity and a

ura
y of traditional �nite di�eren
e s
hemes with the ability

of wavelet 
oeÆ
ients in the 
hara
terization of lo
al regularity of fun
tions.

The idea is to represent the fun
tions by the point values 
orresponding to

their signi�
ant wavelet 
oeÆ
ients. Typi
ally, few points are found in ea
h

time step, the grid being 
oarse in smooth regions, and re�ned 
lose to irreg-

ularities. At ea
h point, spatial derivatives are dis
retized by uniform �nite

di�eren
es, using step size proportional to the point lo
al s
ale. Eventually,

sten
ils not present in the grid are approximated from 
oarser s
ales by using

an interpolating subdivision s
heme. Other wavelet adaptive methods have

been proposed with many similarities to the SPR method. For instan
e, the

�lter bank method in [3℄ and the se
ond generation wavelet 
ollo
ation method

in [4℄ may be 
onsidered as generalizations of the SPR method.

A rigorous study of the e�e
tiveness of nonlinear wavelet representations has

already being established [1℄. However, sparse grids 
oming from wavelet data


ompression may present a 
ompli
ated topology. This fa
t 
auses an overhead

involved in operations like a

essing or interpolating neighboring sten
ils to


ompute �nite di�eren
es at s
attered grid points. In order to redu
e the over-

head, one possible way is by imposing some sort of regularity in the adaptive

grid at the 
ost of losing some spar
ity. For instan
e, the suggestion in [2℄ is

to use an adaptive blo
k representation (ABR). The 
omputational domain is

formed by non-overlapping blo
ks. Ea
h blo
k is a uniform grid, but the step

3



size may 
hange from one blo
k to another. In the automati
 
onstru
tion

of su
h blo
k-grids, the wavelet 
oeÆ
ients are also used as the main tool to

de
ide whether a blo
k needs to be re�ned or may be 
oarsened.

As it is well dis
ussed in [3℄, su
h 
lass of adaptive wavelet solvers 
an be

separated into two basi
 parts: the representation part and the operator part.

The operator part is performed by �nite di�eren
es on uniform grids whi
h

may be 
hosen by 
onsidering stability and 
onsisten
y 
riteria. The represen-

tation part is formulated in the 
ontext of wavelet data 
ompression by means

of a simple thresholding operation. This kind of separation of the solver into

independent parts has several advantages. It makes it general: it is simple to


hange the di�erential equation, the order of the �nite di�eren
e method, the

boundary 
onditions, the wavelet transform et
. Consequently, it �ts well into

the obje
t oriented programming philosophy. Furthermore, this methodology

may be bene�
iary of the 
onsiderable a
hievements in the well stablished �eld

of �nite di�eren
es as well as of the more re
ent advan
es in wavelet analysis.

The main obje
tive of this paper is to establish a general framework for the

appli
ation of the ABR method in 2D. The algorithms and data stru
ture

are formulated by using abstra
t 
on
epts borrowed from quaternary trees.

With this pro
edure, we expe
t to improve the understanding of the method

and help the pro
ess of its 
omputational implementation. The ability of the

method is demonstrated by solving some test problems showing typi
al fea-

tures of spikes, propagating fronts and the formation of sharp transition layers.

2 Adaptive Blo
k-Stru
tured Grids

In this se
tion, we shall des
ribe the type of grids used in the ABR method

and their quaternary tree stru
ture.

Let X

0

be the uniform grid on the re
tangle [0; L℄� [0; D℄ with spatial steps

h

x

=

L

N

x

in the x-dire
tion and h

y

=

D

N

y

in the y-dire
tion. That is,

X

0

= f
 = (kh

x

; `h

y

); 0 � k < N

x

; 0 � ` < N

y

g :

Starting from 0, a ladder of uniform grids X

j

are 
onstru
ted by su

essive

dyadi
 re�nements

X

j

=

n


 = (kh

j

x

; `h

j

y

); 0 � k < N

j

x

; 0 � ` < N

j

y

o

;

where N

j

x

= 2

j

N

x

, N

j

y

= 2

j

N

y

, h

j

x

= 2

�j

h

x

and h

j

y

= 2

�j

h

y

. Thus, ea
h

X

j

is obtained from X

j�1

by midpoint insertions. This grid sequen
e 
an be

organized in a quaternary tree stru
ture (quad-tree).

4



2.1 Quad-tree stru
ture

Let B

j

�

be a generi
 blo
k of N

x

�N

y

points in X

j

of type

B

j

�

=

n


 = �+ (kh

j

x

; `h

j

y

); 0 � k < N

x

; 0 � ` < N

y

o

;

whi
h is uniquely represented by its origin position � and its s
ale level j.

From B

j

�

, new blo
ks at level j + 1 are obtained, �rstly by dyadi
 re�nement,

and then by splitting into four parts

B

j

�

! S(B

j

�

) = fB

j+1

�

0

;B

j+1

�

1

;B

j+1

�

2

;B

j+1

�

3

g:

If � is the origin of the starting blo
k, then the origins of the new blo
ks are

�

0

= �, �

1

= �+(0;

N

y

2

h

j

y

), �

2

= �+(

N

x

2

h

j

x

;

N

y

2

h

j

y

) and �

3

= �+(

N

x

2

h

j

x

; 0).

Using the quad-tree terminology, the elements of the set S(B

j

�

) are 
alled the


hildren of the node B

j

�

, B

j

�

is the mother of B

j+1

�

�

, B

j+1

�

�

0

is son of B

j

�

, and B

j+1

�

�

is brother of B

j+1

�

�

0

. One generation of a quad-tree blo
k stru
ture is illustrated

in Figure 1.

a) Tree stru
ture

B

j+1

�

0

B

j+1

�

1

B

j+1

�

2

B

j+1

�

3

B

j

�

b) Grid stru
ture

B

j+1

�

B

j+1

�

1

B

j+1

�

0

B

j+1

�

2

B

j+1

�

3

-

Fig. 1. The representation of a blo
k generation

By de�ning B

0

�

0

= X

0

as the root of the tree, and performing J generations, a


omplete quad{tree having J + 1 levels is obtained. At ea
h level 0 � j � J

there exist 2

2j

blo
ks (nodes). Let us denoted by I

j

the set of blo
k origin

points at level j.

In
omplete quad{trees o

ur when some nodes have no 
hildren at interme-

diary levels. This leads to the 
on
ept of tree leaves: leaves are nodes that do

not have 
hildren.
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In a 
omplete blo
k quad{tree, the leaves 
orrespond to the blo
ks B

J

�

at the

last level. The union of these blo
ks 
onstitutes the uniform grid at the �nest

s
ale

X

J

=

[

�2I

J

B

J

�

:

In an in
omplete blo
k quad{tree, the leaves at intermediary levels 0 < j < J


orrespond to blo
ks where the re�nement pro
ess has been interrupted. Let

�

j

� I

j

be the set of origin points asso
iated to the leaf-blo
ks at level j. The

union of su
h blo
ks forms a blo
k-stru
tured grid

M =

J

[

j=1

[

�2�

j

B

j

�

:

The diagram in Figure 2 illustrates a 4-level in
omplete tree and its 
orre-

sponding grid.

a) b)

Fig. 2. In
omplete 4-level quad-tree and its 
orresponding blo
k-stru
tured grid.

3 Adaptive Constru
tion of Blo
k{Grids

For a given blo
k-stru
tured grid M, we shall denote by f

M

the 
olle
tion of

point values of a given fun
tion f(x; y) represented at M. A

ording to the

tree stru
ture of M, f

M


an be organized as a ve
tor whose 
omponents are

N

x

�N

y

matri
es 
ontaining the data 
orresponding to the point values at the

leaf-blo
ks B

j

�

.

The purpose of the ABR te
hnique is to obtain representations fM; f

M

g as

sparse as possible. This means that a small total number of blo
ks is found

within an in
omplete quad-tree M, the leaves in lower levels (big s
ales) 
or-

responding to smooth regions and those at higher levels (small s
ales) 
or-

responding to irregularity regions. In the 
onstru
tion of su
h an adaptive

representation, the main tool is a lo
al regularity indi
ator i(B) to de
ide, at
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ea
h generation, whether a given blo
k should be a leaf, i(B) = 0, or not,

i(B) = 1. Next, we shall des
ribe how wavelet 
oeÆ
ients in an interpolatory

multi-resolution analysis 
an be used in the de�nition of i(B). In the wavelet

literature, there are several examples of multi-resolution analyses that may

be used as well. In fa
t, some of them o�er 
onvenient aspe
ts, like shorter

�lters for the same order of polynomial 
an
ellation (zero moments for the

dual wavelets), as des
ribed in [3℄, or additional zero moments for the primal

wavelets, like in the modi�ed lifting s
heme adopted by [4℄.

3.1 Wavelet Indi
ators

Given a generi
 blo
k B

j

�

at level j, de�ne the set

~

B

j

�

as the 
ompletion of B

j

�

by the in
lusion of extra points in the right and upper lateral lines. That is,

~

B

j

�

=

n


 = �+ (kh

j

x

; `h

j

y

); 0 � k � N

x

; 0 � ` � N

y

o

:

Consider the re
tangular grid R

j

=

~

B

j

�

and its dyadi
 re�nement R

j+1

given

by

R

j+1

=

n


 = �+ (kh

j+1

x

; `h

j+1

y

); 0 � k � 2N

x

; 0 � ` � 2N

y

o

:

Note that R

j+1


an also be expressed as

R

j+1

=

3

[

�=0

~

B

j+1

�

�

;

where

~

B

j+1

�

�

are the 
ompletion of the 
hildren of B

j

�

.

Let f

j

be the matrix 
ontaining the values of a given fun
tion f(x; y) at the

grid points in R

j

f

j

k;`

= f(�+ (kh

j

x

; `h

j

y

)):

In wavelet analysis, transformation algorithms relating f

j+1

, f

j

and the wavelet


oeÆ
ients d

j

, 
ontaining the di�eren
e of information between two 
onse
u-

tive levels, play a 
ru
ial role. For dis
retizations by means of points values,

the wavelet 
oeÆ
ients are usually de�ned in terms of interpolation error [1℄.

Values

~

f

j+1

2k;2`+1

;

~

f

j+1

2k+1;2`

, and

~

f

j+1

2k;2`+1

, at the new midpoints 


(�);j

k;`

2 R

j+1

n R

j

,




(1);j

k;`

=�+ (2kh

j+1

x

; (2`+ 1)h

j+1

y

);




(2);j

k;`

=�+ ((2k + 1)h

;jj+1

x

; 2`h

j+1

y

);




(3);j

k;`

=�+ ((2k + 1)h

j+1

x

; (2`+ 1)h

j+1

y

);
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are 
omputed by polynomial Lagrange interpolation from the values f

j

at

the 
oarser grid. Wavelet 
oeÆ
ients are then de�ned as the di�eren
es be-

tween the known fun
tion values f

j+1

2k;2`+1

; f

j+1

2k+1;2`

, and f

j+1

2k;2`+1

and the values

predi
ted by the interpolation pro
edure. Pre
isely,

f

j

k;`

= f

j+1

2k;2`

d

(1) j

k;`

= f

j+1

2k;2`+1

�

~

f

j+1

2k;2`+1

;

d

(2) j

k;`

= f

j+1

2k+1;2`

�

~

f

j+1

2k+1;2`

;

d

(3) j

k;`

= f

j+1

2k;2`+1

�

~

f

j+1

2k;2`+1

:

In 
ase of re
tangular 2D grids, interpolation 
an be expressed in terms of 1D

algorithms. For instan
e,

~

f

j+1

2k;2`+1

is obtained from f

j

k;q

by one-dimensional in-

terpolation along the l-dire
tion,

~

f

j+1

2k+1;2`

is obtained from f

j

s;l

by one-dimensional

interpolation along the k-dire
tion. Finally,

~

f

j+1

2k+1;2`+1

is obtained from

~

f

j+1

2k+1;2q

by applying the one-dimensional interpolatory s
heme in the l-dire
tion (or,

equivalently, by one-dimensional interpolation of the

~

f

j+1

2s;2`+1

values in the k-

dire
tion). The general 1D interpolation formula reads

~

f

j+1

2`+1

=

X

q

p

`;q

f

j

`+q

;

in whi
h p

`;q

are the Lagrange interpolation weights. In the interior of the

grid, 
entral interpolation is used. For this 
ase, the weights do not depend

on the lo
ation, i.e., p

`;q

= p

q

. One-sided interpolation is required 
lose to the

boundaries, leading to weights that do depend on the lo
ation k [2℄.

As interpolation errors, wavelet 
oeÆ
ients are good indi
ators of lo
al smooth-

ness. This fa
t leads to the de�nition of a set index i

�

(B) whi
h is based on

the signi�
an
e of the wavelet 
oeÆ
ients asso
iated to the blo
k B, as 
om-

pared to a 
ertain given threshold �. By de�nition, i

�

(B

0

0

) = 1. Then, at level

j > 0, for ea
h blo
k B

j

�

having set index equal to one, the 
hildren set indexes

i

�

(B

j+1

�

p;q

) are 
omputed a

ording to the following strategy. First we perform

the one-level wavelet transform, as des
ribed before, and 
onsider D(B

j+1

�

�

) as

the set of those wavelet 
oeÆ
ients d

(�);j

k;`

whi
h are asso
iated to points 


(�);j

k;`

in

~

B

j+1

�

�

. If all wavelet 
oeÆ
ients in D(B

j+1

�

�

) are not signi�
ant, this means

that the fun
tion is smooth in this region. Consequently, the blo
k does not

need to be re�ned, and it will be leaf-tree. On the other hand, if at least one

signi�
ant wavelet 
oeÆ
ient exists in the blo
k, this means that the fun
tion

is not represented there with the pres
ribed a

ura
y, and that re�nement is

8



needed. Therefore, a

ording to these prin
iples, the set index i

�

is de�ned by

i

�

(B

j+1

�

�

) =

8

>

<

>

:

0 if jd

(�);j

k;`

j < � 8d

(�);j

k;`

2 D(B

j+1

�

p;q

)

1 otherwise:

Following this strategy, the adaptive grid 
onstru
tion ends when, at a 
ertain

level, all the analyzed blo
ks are leaves.

3.2 Numeri
al Examples

The �rst example is for the spike fun
tion

f(x; y) = 3 exp

�2500:0 ( (x�0:3)

2

+(y�0:3)

2

)

+sen(2�x) + sen(2�y);

with a singularity point at (x; y) = (0:3; 0:3), as illustrated in Figure 3. For

Fig. 3. The spike fun
tion.

this fun
tion, the ABR grids M

�

are represented in Figure 4. The wavelet


oeÆ
ients are for 
ubi
 polynomial interpolation (M = 4), the blo
ks have

N

x

=N

y

=32 and � = 10

�3

; 10

�4

and 10

�5

. As � be
omes smaller, more re�ned

blo
ks are tended to 
on
entrate near the singularity region. As indi
ated in

Table 1, the number of blo
ks grows as � be
omes smaller. However, if the

number of points in the ABR gridM

�

is 
ompared to number of points in the

uniformed mesh X

`

, in whi
h ` is the �nest s
ale level present in M

`

, then

the ratio ℄(M

�

)=℄(X

`

) redu
ed very qui
kly as � de
reases.
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a)M

10

�3

b)M

10

�4


)M

10

�5

Fig. 4. ABR for the spike fun
tion

Table 1

EÆ
ien
y in ABR for the spike.

� ℄blo
ks ℄(M

�

) ℄(X

`

) ℄(M

�

)=℄(X

`

)

10

�5

100 102400 2097152 0.05

10

�4

64 65536 262144 0.25

10

�3

28 28672 65536 0.43

As a se
ond example, we shall 
onsider the oblique-front fun
tion

f(x; y) = 1� tanh(25x + 5(y � 1)); (1)

that exhibit abrupt 
hanges 
lose to the line 25x+5(y�1) = 0, as displayed in

Figure 5. Therefore, the most re�ned blo
ks in the ABR gridsM

�

are expe
ted

to be pla
ed around the oblique-front region, as � de
reases. This behavior

is illustrated in Figure 6 a

ording to the same parameters of the previous

example. An indi
ation of the eÆ
ien
y of the ABR method for the oblique-

front fun
tion 
an be obtained from the data in Table 2. Their 
omparison

with the 
orresponding results in Table 1 implies that, given an a

ura
y �,

the spike ABR meshesM

�

need higher resolution levels and more blo
ks than

in the oblique-front 
ase. In spite of that, the eÆ
ien
y ratio is better for the

spike fun
tion.

Table 2

EÆ
ien
y in ABR for the oblique-front

� ℄ blo
ks ℄(M

�

) ℄(X

j

) ℄(M

�

)=℄(X

`

)

10

�5

44 45056 262144 0.17

10

�4

19 19456 65536 0.30

10

�3

10 10240 16384 0.60

10

�2

4 4096 4096 1.00

Fixing � = 10

�2

and the blo
k size 16� 16, ABR grids M

10

�2

for the oblique

front are presented in Figure 7 (a) and (b), for di�erent interpolation order.

10



Fig. 5. Oblique-front fun
tion.

a)M

10

�3

b) M

10

�4


) M

10

�5

Fig. 6. ABR for the oblique-front fun
tion

The number of blo
ks formed with linear interpolation (M = 2) is 34 and with

the 
ubi
 interpolation (M = 4) is 10 . Fixing M = 4 and growing the blo
k

size to N

x

=N

y

= 32 the number of blo
ks in M

10

�2

de
reases, as presented

in Figure 7 (
). However, despite of the smaller number of blo
ks, the total

number of points in
reases in 
omparison with the N

x

= N

y

= 16 mesh in

Figure 7 (a). Similar behavior also o

urs in relation to di�erent trun
ation

parameter �.

a) b) 
)

Fig. 7. Oblique front representation in blo
k adaptive mesh M

10

�2
: a) M=4, with

10 blo
ks 16 � 16; b) M = 2, with 34 blo
ks 16 � 16 and 
) M = 4, with 4 blo
ks

32� 32 .
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4 Operations on Blo
k-Stru
tured Grids

For the appli
ation of ABR method in the numeri
al solution of partial di�er-

ential equations, there are some typi
al operations involved: grid re�nement

and 
oarsening, fun
tional operations and di�erentiation.

Re�ning and Coarsening

The automati
 adaptation of the grid stru
ture during time evolution requires

a simple pro
edure for re�ning or 
oarsening the grids. For blo
k-stru
tured

grids, these operations are easily de�ned in the 
ontext of quad-trees by means

of tree extension or redu
tion. In a general sense, if A and

~

A are two quad-

trees su
h as A �

~

A, then

~

A is an extension of A, or A is a redu
tion of

~

A.

Spe
i�
ally, the extension and redu
tion operations of interest are des
ribed

next.

� Tree Extension (Grid Re�nement) : A

E

�!

~

A

An extended tree

~

A may be obtained by adding a new blo
k generation to

all leaves of the tree A. Figure 8 shows an example of a blo
k stru
tured grid

M and its 
orresponding extension

~

M. Given the representation

�

M; f

M

�

,

the fun
tional values f

~

M

at the extended grid

~

M may be not available.

In su
h 
ase, ea
h missing value in f

~

M

is obtained by the interpolatory

re�nement s
heme.

a) Grid M b) Grid

~

M

Fig. 8. Extension operation (a) Original grid; (b) Extended grid.

� Tree Redu
tion (Grid Coarsening):

~

A

T

�

�! A

As done for the grid 
onstru
tion, the redu
tion operator T

�

is 
hara
ter-

ized by a regularity indi
ator {

�

(B). All leaves in

~

A, whose three brothers

are also leaves, are tested. If one of these leaves and their brothers have

i

�

= 0, these nodes are removed from the tree stru
ture. Consequently, their

mother be
omes a new leaf-node. When this parti
ular 
ase happens, the

leaf{stru
ture 
hanges. Therefore, the redu
tion pro
ess must be exe
uted

again.

Fun
tional Operations

Operations between two fun
tions represented in blo
k{stru
tured grids are

12



straightforward point-wise evaluations if their grids 
oin
ide. Otherwise, it is

ne
essary to extend both grids in order to get representations in a 
ommon

grid.

Di�erentiation

The idea is to use �nite di�eren
e operators with uniform spa
ing in ea
h

blo
k. For blo
ks at level |, partial derivatives in the x-dire
tion are dis
retized

with spa
ing h

|

x

, and in the y-dire
tion with h

|

y

. For points 
lose to blo
k

boundaries, sten
il information from neighboring blo
ks may be required. To

avoid demanding sear
h pro
edures, the pro
ess of blo
k 
onstru
tion should


onsider the addition of needed extra rows and 
olumns around the blo
k

boundaries. For instan
e, in the parti
ular 
ase of forth order dis
retization

of derivatives by a 
entral s
heme, two extra rows or 
olumns are ne
essary

at ea
h side of the blo
ks. The importan
e in maintaining the blo
k indepen-

den
e, by adding auxiliary extra rows or 
olumns, is 
ru
ial for implementa-

tions of the method on parallel 
omputers.

5 Appli
ation to Evolution Problems

The 
on
epts in the ABR method are parti
ularly suitable for adaptive solvers

to evolution partial di�erential equations. For the appli
ations of this paper,

we shall 
onsider equations of the form

� U

�t

= LU

where L(U) is a di�erential operator a
ting on spatial variables. The solution

U = U(x; y; t) is sear
hed for (x; y) 2 [0; 1℄� [0; 1℄ and t > 0, augmented with

initial and boundary 
onditions.

Suppose that at time t

n

= n� t an sparse blo
k{grid representation (M

n

;U

n

)

for the approximate solution is given, in whi
h U

n

is formed by the numeri
al

solution values at an adaptive mesh M

n

.

In the next time step, the representation (M

n+1

;U

n+1

) is obtained after the

following pro
edure.

(1) Extension: (M

n

;U

n

)

E

�! (M

n+

;U

n+

)

The gridM

n

may not be suitable for the solution at the next time step,

sin
e regions of smoothness or irregularities of the solution may 
hange

from one step to the next. Therefore, before doing time evolution, the

representation of the solution should be extended to a grid M

n+

, whi
h

13



is expe
ted to 
ontainM

n+1

. This re�nement stage is very important. In

the appli
ations of this paper, the simple one level re�nement des
ribed

previously is adopted.

(2) Time evolution: (M

n+

;U

n+

)

L

a

�! (M

n+

;

�

U

n+1

).

A dis
rete evolution operator L

a

is applied. The a
tion of L

a

in
ludes

the the dis
retization of the partial derivatives in L by uniform �nite

di�eren
e s
hemes, adapted to ea
h blo
k in M

n+

, the dis
retization

in time by some expli
it ODE solver, an the enfor
ement of boundary


onditions.

(3) Trun
ation: (M

n+

;

�

U

n+1

)

T

�

�! (M

n+1

;U

n+1

).

Finally, a thresholding operation is applied, in order to unre�ne those

blo
ks in M

n+

that are unne
essary for an a

urate representation of

U

n+1

5.1 Numeri
al Examples

A solver that performs these tasks is implemented using a C

++

obje
t oriented

paradigm programming. All the simulations are for 4-th order interpolation,

�nite di�eren
es and Runge-Kutta ODE solver. The time step is dynami
ally


hosen a

ording to the smallest s
ale h

n

min

present in the extended adaptive

mesh M

n+

, su
h that h

n

min

=�t

n

= �.

Moving Spike

For the linear Adve
tion Equation

�U

�t

+

 

�U

�x

+

�U

�y

!

= 0; (2)

we shall 
onsider the spiky initial 
ondition

U(x; y; 0) = exp

�300((x�0:5)

2

+(y�0:5)

2

)

+ 0:2 sin(2�x) + sin(2�y)

and the periodi
 boundary 
ondition

U(0; y; t) = U(1; y; t); 0 � y � 1

U(x; 0; t) = U(x; 1; t); 0 � x � 1:

The exa
t solution is the spike moving along the diagonal x = y, without


hanging its format. Some typi
al features of the numeri
al solution and the


orresponding adaptive blo
k-grids are presented in Figure 9. For this simula-

tion, the parameters are � = 10

�3

, N

x

=N

y

=32 and � = 5�10

�2

. As depi
ted

in Figure 9, at t = 0:2 the spike is approa
hing the down-left 
orner of the

square. As expe
ted, the grid is re�ned in this quadrant and 
oarse in the

other ones. Similarly, at t = 0:9 the spike is already 
oming from the up-right
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orner, and the re�nement automati
ally swit
hes to this region. Figure 10

des
ribes how the number of the blo
ks in the adaptive mesh evolves during

the simulation.

a) t = 0:2

b) t = 0:9

Fig. 9. Adve
ting spike.

Fig. 10. Number of blo
ks in the adaptive meshes for the adve
ted spike.
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Oblique Front

Let us 
onsider the adve
tion-di�usion equation

�U

�t

+

�U

�x

+

�U

�y

�

�

2

U

�x

2

�

�

2

U

�y

2

= F (3)

for t � 0, (x; y) 2 [0; 1℄� [0; 1℄. Given the for
ing term

F(x; y; t)� � se
h

2

�

z

�

� 2(�

2

+ �

2

)se
h

2

�

z

�

tanh

�

z

�

;

where z = 25(x � t) + 5(y � 1), and appropriate boundary 
onditions, the

exa
t solution is

U = 1� tanh

�

z

�

:

It des
ribes a propagating steep front moving to the right, as presented in [5℄.

Figure 11 exhibits some typi
al features for the numeri
al solution and the


orresponding extended adaptive blo
k-grids. The parameters for this simu-

lation are � = 10

�2

, N

x

=N

y

= 16 and � = 10

�3

. The Figure 12 shows how

the number of blo
ks in the adaptive mesh evolves during the simulation. The

largest number of blo
ks o

urs when the front 
rosses the 
enter of the region.

Sharp Transition Layers

The following results are for the Burgers' equation

�U

�t

+ U

�U

�x

+ U

�U

�y

� �

�

2

U

�x

2

� �

�

2

U

�y

2

= 0; (4)

t � 0, (x; y) 2 [0; 1℄� [0; 1℄ and � = 10

�2

, with periodi
 boundary 
onditions

and initial data

U(x; y; 0) = sen(2�x) sen(2�y):

Sin
e negative and positive features move on opposite dire
tions, this exam-

ple shows sharp transition layers, as time evolves. In the present simulation,

the parameters are � = 10

�5

, N

x

= N

y

= 32 and � = 5 � 10

�2

. Figure 13

exhibits some typi
al features of the numeri
al solution and the 
orrespond-

ing extended adaptive grids. Initially, the fun
tion is smooth and the mesh

is totally uniform with 16 blo
ks. At t = 0:05, the steepness of the solution

requires more re�nement, but the grid is still globally uniform. At t � 0:9,

the appli
ation of the ABR method produ
es an irregular mesh with re�ned

blo
ks 
lose to the sharp transition regions. Figure 14 shows how the number

of blo
ks in the adaptive meshes in
reases a

ording to the steepness of the

solution during the simulation.
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a) t = 0:35

b) t = 0:45


) t = 0:70

Fig. 11. Oblique front

Fig. 12. Number of blo
ks in the adaptive meshes for the evolution of the oblique

front.
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a) t = 0

b) t = 0:05


) t = 0:09

Fig. 13. Sharp transition layer formation.

Fig. 14. Number of blo
ks in the adaptive meshes for the evolution of the sharp

transition layer.
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6 Con
lusions

This work des
ribes an adaptive �nite{di�eren
e s
heme for PDEs based on

blo
k{stru
tured grids, whi
h are dinami
ally generated by wavelet represen-

tation te
hniques. The algorithms and data stru
ture are formulated by using

abstra
t 
on
epts borrowed from quaternary trees. This pro
edure helps the

understanding of the method and its 
omputational implementation. Given

any desired a

ura
y, the method in intended to produ
e simulations with au-

tomati
 grid re�nement, as required by the numeri
al solution. For the 
lass

of singular stru
tures 
onsidered in this paper, gain in lo
al spa
ial resolution

may be obtained without penalizing the 
omputational 
omplexity. Neverthe-

less, it is worth saying that the method, as stated, fa
es the typi
al dilema

of adaptive solvers with expli
it time dis
retization. Sin
e, for stability razon,

�t is adjusted to the 
urrent �nest s
ale level, the e�e
t of any grid re�ne-

ment is the in
rement of the total number of time steps. This aspe
t a�e
ts

the 
omputational performan
e of the method and requires further studies. A

typi
al alternative would be to 
onsider impli
it time stepping or to introdu
e

some kind of lo
al time-spa
e adaptivity, for instan
e, following one of the

guidelines indi
ated in [6,5,7℄.

19



Referen
es

[1℄ A. Cohen, Wavelet Methods in Numeri
al Analysis, in: P. G. Ciarlet, J. L. Lions

(Eds.), Handbook of Numeri
al Analysis, Vol. VII, Elsevier, Amsterdam, 2000.

[2℄ M. Holmstr�om, Wavelet Based Methods for Time Dependent PDEs, Ph.D. thesis,

Uppsala University (1997).

[3℄ J. Walden, A general adaptive solver for hyperboli
 PDEs based on �lter bank

subdivisions, Appl. Numer. Math. 33 (1-4) (2000) 317{325.

[4℄ O. V. Vasilyev, C. Browman, Se
ond generation wavelet 
ollo
ation method for

the solution of partial di�erential equations, J. Comput. Phys. 165 (2000) 660{

693.

[5℄ R. A. Tromper, J. G. Verwer, Runge-Kutta methods and lo
al uniform grid

re�nement, Math. Comput. 60 (202) (1993) 591{616.

[6℄ E. Ba
ry, S. Mallat, G. Papani
olau, A wavelet based spa
e-time adaptive

numeri
al method for partial equations, Math. Model. Numer. Anal. 26 (7) (1992)

793{834.

[7℄ P. L�otstedt, S. S�oderberg, A. Ramage, L. Hemmingsson-Fr�and�en, Impli
it

solution of hyperboli
 equations with spa
e-time adaptivity, BIT 42 (2002) 134{

158.

20


