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Abstrat

This paper onsiders an adaptive �nite di�erene sheme for the numerial solution

of evolution partial di�erenial equations. The omputational domain is formed by

non-overlapping bloks. Eah blok is a uniform grid, but step size may hange from

one blok to another. The bloks are not predetermined, but they are dinamially

onstruted aording to the re�nement needs of the numerial solution. The dei-

sion over whether a blok should be re�ned or unre�ned is taken by looking at the

magnitude of wavelet oeÆients of the numerial solution on suh blok. The main

objetive of this paper is to establish a general framework for the onstrution and

operation on suh adaptive blok-grids in 2D. The algorithms and data struture are

formulated by using abstrat onepts borrowed from quaternary trees. This proe-

dure helps the understanding of the method and its omputational implementation.

The ability of the method is demonstrated by solving some typial test problems.
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1 Introdution

Solutions to many interesting ow problems may exhibit loalized singular fea-

tures, suh as sharp transition layers, propagating steep fronts or pronouned

spikes. Reliable approximations of these problems present a hallenging om-

putational task. Uniform gridding is not a pratial option sine high reso-

lution is only needed in small regions, where irregularities our. Therefore,

signi�ant improvements in auray and omputational eÆieny may be

obtained by eonomially adapting the grid points to the numerial solution.

In omputational uid dynamis, there are several approahes for onstruting

suh loally adapted meshes. Some of them resort on ad ho riteria, others

are based on more elaborated a posteriori error bounds and there are those

ones using Rihardson extrapolation tehniques. Nowadays, another kind of

adaptive riteria, whih looks at the magnitude of wavelet oeÆients to ob-

tain sparse representations, is beoming useful in the onstrution of adap-

tive solvers for partial di�erential equations (see [1℄ and referenes therein

enlosed). In the present paper we shall be onerned with suh lass of meth-

ods.

For instane, onsider the SPR method (for sparse point representation), in-

trodued in [2℄. It is an adaptive �nite di�erene strategy that ombines the

simpliity and auray of traditional �nite di�erene shemes with the ability

of wavelet oeÆients in the haraterization of loal regularity of funtions.

The idea is to represent the funtions by the point values orresponding to

their signi�ant wavelet oeÆients. Typially, few points are found in eah

time step, the grid being oarse in smooth regions, and re�ned lose to irreg-

ularities. At eah point, spatial derivatives are disretized by uniform �nite

di�erenes, using step size proportional to the point loal sale. Eventually,

stenils not present in the grid are approximated from oarser sales by using

an interpolating subdivision sheme. Other wavelet adaptive methods have

been proposed with many similarities to the SPR method. For instane, the

�lter bank method in [3℄ and the seond generation wavelet olloation method

in [4℄ may be onsidered as generalizations of the SPR method.

A rigorous study of the e�etiveness of nonlinear wavelet representations has

already being established [1℄. However, sparse grids oming from wavelet data

ompression may present a ompliated topology. This fat auses an overhead

involved in operations like aessing or interpolating neighboring stenils to

ompute �nite di�erenes at sattered grid points. In order to redue the over-

head, one possible way is by imposing some sort of regularity in the adaptive

grid at the ost of losing some sparity. For instane, the suggestion in [2℄ is

to use an adaptive blok representation (ABR). The omputational domain is

formed by non-overlapping bloks. Eah blok is a uniform grid, but the step
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size may hange from one blok to another. In the automati onstrution

of suh blok-grids, the wavelet oeÆients are also used as the main tool to

deide whether a blok needs to be re�ned or may be oarsened.

As it is well disussed in [3℄, suh lass of adaptive wavelet solvers an be

separated into two basi parts: the representation part and the operator part.

The operator part is performed by �nite di�erenes on uniform grids whih

may be hosen by onsidering stability and onsisteny riteria. The represen-

tation part is formulated in the ontext of wavelet data ompression by means

of a simple thresholding operation. This kind of separation of the solver into

independent parts has several advantages. It makes it general: it is simple to

hange the di�erential equation, the order of the �nite di�erene method, the

boundary onditions, the wavelet transform et. Consequently, it �ts well into

the objet oriented programming philosophy. Furthermore, this methodology

may be bene�iary of the onsiderable ahievements in the well stablished �eld

of �nite di�erenes as well as of the more reent advanes in wavelet analysis.

The main objetive of this paper is to establish a general framework for the

appliation of the ABR method in 2D. The algorithms and data struture

are formulated by using abstrat onepts borrowed from quaternary trees.

With this proedure, we expet to improve the understanding of the method

and help the proess of its omputational implementation. The ability of the

method is demonstrated by solving some test problems showing typial fea-

tures of spikes, propagating fronts and the formation of sharp transition layers.

2 Adaptive Blok-Strutured Grids

In this setion, we shall desribe the type of grids used in the ABR method

and their quaternary tree struture.

Let X

0

be the uniform grid on the retangle [0; L℄� [0; D℄ with spatial steps

h

x

=

L

N

x

in the x-diretion and h

y

=

D

N

y

in the y-diretion. That is,

X

0

= f = (kh

x

; `h

y

); 0 � k < N

x

; 0 � ` < N

y

g :

Starting from 0, a ladder of uniform grids X

j

are onstruted by suessive

dyadi re�nements

X

j

=

n

 = (kh

j

x

; `h

j

y

); 0 � k < N

j

x

; 0 � ` < N

j

y

o

;

where N

j

x

= 2

j

N

x

, N

j

y

= 2

j

N

y

, h

j

x

= 2

�j

h

x

and h

j

y

= 2

�j

h

y

. Thus, eah

X

j

is obtained from X

j�1

by midpoint insertions. This grid sequene an be

organized in a quaternary tree struture (quad-tree).
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2.1 Quad-tree struture

Let B

j

�

be a generi blok of N

x

�N

y

points in X

j

of type

B

j

�

=

n

 = �+ (kh

j

x

; `h

j

y

); 0 � k < N

x

; 0 � ` < N

y

o

;

whih is uniquely represented by its origin position � and its sale level j.

From B

j

�

, new bloks at level j + 1 are obtained, �rstly by dyadi re�nement,

and then by splitting into four parts

B

j

�

! S(B

j

�

) = fB

j+1

�

0

;B

j+1

�

1

;B

j+1

�

2

;B

j+1

�

3

g:

If � is the origin of the starting blok, then the origins of the new bloks are

�

0

= �, �

1

= �+(0;

N

y

2

h

j

y

), �

2

= �+(

N

x

2

h

j

x

;

N

y

2

h

j

y

) and �

3

= �+(

N

x

2

h

j

x

; 0).

Using the quad-tree terminology, the elements of the set S(B

j

�

) are alled the

hildren of the node B

j

�

, B

j

�

is the mother of B

j+1

�

�

, B

j+1

�

�

0

is son of B

j

�

, and B

j+1

�

�

is brother of B

j+1

�

�

0

. One generation of a quad-tree blok struture is illustrated

in Figure 1.

a) Tree struture

B

j+1

�

0

B

j+1

�

1

B

j+1

�

2

B

j+1

�

3

B

j

�

b) Grid struture

B

j+1

�

B

j+1

�

1

B

j+1

�

0

B

j+1

�

2

B

j+1

�

3

-

Fig. 1. The representation of a blok generation

By de�ning B

0

�

0

= X

0

as the root of the tree, and performing J generations, a

omplete quad{tree having J + 1 levels is obtained. At eah level 0 � j � J

there exist 2

2j

bloks (nodes). Let us denoted by I

j

the set of blok origin

points at level j.

Inomplete quad{trees our when some nodes have no hildren at interme-

diary levels. This leads to the onept of tree leaves: leaves are nodes that do

not have hildren.
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In a omplete blok quad{tree, the leaves orrespond to the bloks B

J

�

at the

last level. The union of these bloks onstitutes the uniform grid at the �nest

sale

X

J

=

[

�2I

J

B

J

�

:

In an inomplete blok quad{tree, the leaves at intermediary levels 0 < j < J

orrespond to bloks where the re�nement proess has been interrupted. Let

�

j

� I

j

be the set of origin points assoiated to the leaf-bloks at level j. The

union of suh bloks forms a blok-strutured grid

M =

J

[

j=1

[

�2�

j

B

j

�

:

The diagram in Figure 2 illustrates a 4-level inomplete tree and its orre-

sponding grid.

a) b)

Fig. 2. Inomplete 4-level quad-tree and its orresponding blok-strutured grid.

3 Adaptive Constrution of Blok{Grids

For a given blok-strutured grid M, we shall denote by f

M

the olletion of

point values of a given funtion f(x; y) represented at M. Aording to the

tree struture of M, f

M

an be organized as a vetor whose omponents are

N

x

�N

y

matries ontaining the data orresponding to the point values at the

leaf-bloks B

j

�

.

The purpose of the ABR tehnique is to obtain representations fM; f

M

g as

sparse as possible. This means that a small total number of bloks is found

within an inomplete quad-tree M, the leaves in lower levels (big sales) or-

responding to smooth regions and those at higher levels (small sales) or-

responding to irregularity regions. In the onstrution of suh an adaptive

representation, the main tool is a loal regularity indiator i(B) to deide, at
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eah generation, whether a given blok should be a leaf, i(B) = 0, or not,

i(B) = 1. Next, we shall desribe how wavelet oeÆients in an interpolatory

multi-resolution analysis an be used in the de�nition of i(B). In the wavelet

literature, there are several examples of multi-resolution analyses that may

be used as well. In fat, some of them o�er onvenient aspets, like shorter

�lters for the same order of polynomial anellation (zero moments for the

dual wavelets), as desribed in [3℄, or additional zero moments for the primal

wavelets, like in the modi�ed lifting sheme adopted by [4℄.

3.1 Wavelet Indiators

Given a generi blok B

j

�

at level j, de�ne the set

~

B

j

�

as the ompletion of B

j

�

by the inlusion of extra points in the right and upper lateral lines. That is,

~

B

j

�

=

n

 = �+ (kh

j

x

; `h

j

y

); 0 � k � N

x

; 0 � ` � N

y

o

:

Consider the retangular grid R

j

=

~

B

j

�

and its dyadi re�nement R

j+1

given

by

R

j+1

=

n

 = �+ (kh

j+1

x

; `h

j+1

y

); 0 � k � 2N

x

; 0 � ` � 2N

y

o

:

Note that R

j+1

an also be expressed as

R

j+1

=

3

[

�=0

~

B

j+1

�

�

;

where

~

B

j+1

�

�

are the ompletion of the hildren of B

j

�

.

Let f

j

be the matrix ontaining the values of a given funtion f(x; y) at the

grid points in R

j

f

j

k;`

= f(�+ (kh

j

x

; `h

j

y

)):

In wavelet analysis, transformation algorithms relating f

j+1

, f

j

and the wavelet

oeÆients d

j

, ontaining the di�erene of information between two onseu-

tive levels, play a ruial role. For disretizations by means of points values,

the wavelet oeÆients are usually de�ned in terms of interpolation error [1℄.

Values

~

f

j+1

2k;2`+1

;

~

f

j+1

2k+1;2`

, and

~

f

j+1

2k;2`+1

, at the new midpoints 

(�);j

k;`

2 R

j+1

n R

j

,



(1);j

k;`

=�+ (2kh

j+1

x

; (2`+ 1)h

j+1

y

);



(2);j

k;`

=�+ ((2k + 1)h

;jj+1

x

; 2`h

j+1

y

);



(3);j

k;`

=�+ ((2k + 1)h

j+1

x

; (2`+ 1)h

j+1

y

);
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are omputed by polynomial Lagrange interpolation from the values f

j

at

the oarser grid. Wavelet oeÆients are then de�ned as the di�erenes be-

tween the known funtion values f

j+1

2k;2`+1

; f

j+1

2k+1;2`

, and f

j+1

2k;2`+1

and the values

predited by the interpolation proedure. Preisely,

f

j

k;`

= f

j+1

2k;2`

d

(1) j

k;`

= f

j+1

2k;2`+1

�

~

f

j+1

2k;2`+1

;

d

(2) j

k;`

= f

j+1

2k+1;2`

�

~

f

j+1

2k+1;2`

;

d

(3) j

k;`

= f

j+1

2k;2`+1

�

~

f

j+1

2k;2`+1

:

In ase of retangular 2D grids, interpolation an be expressed in terms of 1D

algorithms. For instane,

~

f

j+1

2k;2`+1

is obtained from f

j

k;q

by one-dimensional in-

terpolation along the l-diretion,

~

f

j+1

2k+1;2`

is obtained from f

j

s;l

by one-dimensional

interpolation along the k-diretion. Finally,

~

f

j+1

2k+1;2`+1

is obtained from

~

f

j+1

2k+1;2q

by applying the one-dimensional interpolatory sheme in the l-diretion (or,

equivalently, by one-dimensional interpolation of the

~

f

j+1

2s;2`+1

values in the k-

diretion). The general 1D interpolation formula reads

~

f

j+1

2`+1

=

X

q

p

`;q

f

j

`+q

;

in whih p

`;q

are the Lagrange interpolation weights. In the interior of the

grid, entral interpolation is used. For this ase, the weights do not depend

on the loation, i.e., p

`;q

= p

q

. One-sided interpolation is required lose to the

boundaries, leading to weights that do depend on the loation k [2℄.

As interpolation errors, wavelet oeÆients are good indiators of loal smooth-

ness. This fat leads to the de�nition of a set index i

�

(B) whih is based on

the signi�ane of the wavelet oeÆients assoiated to the blok B, as om-

pared to a ertain given threshold �. By de�nition, i

�

(B

0

0

) = 1. Then, at level

j > 0, for eah blok B

j

�

having set index equal to one, the hildren set indexes

i

�

(B

j+1

�

p;q

) are omputed aording to the following strategy. First we perform

the one-level wavelet transform, as desribed before, and onsider D(B

j+1

�

�

) as

the set of those wavelet oeÆients d

(�);j

k;`

whih are assoiated to points 

(�);j

k;`

in

~

B

j+1

�

�

. If all wavelet oeÆients in D(B

j+1

�

�

) are not signi�ant, this means

that the funtion is smooth in this region. Consequently, the blok does not

need to be re�ned, and it will be leaf-tree. On the other hand, if at least one

signi�ant wavelet oeÆient exists in the blok, this means that the funtion

is not represented there with the presribed auray, and that re�nement is
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needed. Therefore, aording to these priniples, the set index i

�

is de�ned by

i

�

(B

j+1

�

�

) =

8

>

<

>

:

0 if jd

(�);j

k;`

j < � 8d

(�);j

k;`

2 D(B

j+1

�

p;q

)

1 otherwise:

Following this strategy, the adaptive grid onstrution ends when, at a ertain

level, all the analyzed bloks are leaves.

3.2 Numerial Examples

The �rst example is for the spike funtion

f(x; y) = 3 exp

�2500:0 ( (x�0:3)

2

+(y�0:3)

2

)

+sen(2�x) + sen(2�y);

with a singularity point at (x; y) = (0:3; 0:3), as illustrated in Figure 3. For

Fig. 3. The spike funtion.

this funtion, the ABR grids M

�

are represented in Figure 4. The wavelet

oeÆients are for ubi polynomial interpolation (M = 4), the bloks have

N

x

=N

y

=32 and � = 10

�3

; 10

�4

and 10

�5

. As � beomes smaller, more re�ned

bloks are tended to onentrate near the singularity region. As indiated in

Table 1, the number of bloks grows as � beomes smaller. However, if the

number of points in the ABR gridM

�

is ompared to number of points in the

uniformed mesh X

`

, in whih ` is the �nest sale level present in M

`

, then

the ratio ℄(M

�

)=℄(X

`

) redued very quikly as � dereases.
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a)M

10

�3

b)M

10

�4

)M

10

�5

Fig. 4. ABR for the spike funtion

Table 1

EÆieny in ABR for the spike.

� ℄bloks ℄(M

�

) ℄(X

`

) ℄(M

�

)=℄(X

`

)

10

�5

100 102400 2097152 0.05

10

�4

64 65536 262144 0.25

10

�3

28 28672 65536 0.43

As a seond example, we shall onsider the oblique-front funtion

f(x; y) = 1� tanh(25x + 5(y � 1)); (1)

that exhibit abrupt hanges lose to the line 25x+5(y�1) = 0, as displayed in

Figure 5. Therefore, the most re�ned bloks in the ABR gridsM

�

are expeted

to be plaed around the oblique-front region, as � dereases. This behavior

is illustrated in Figure 6 aording to the same parameters of the previous

example. An indiation of the eÆieny of the ABR method for the oblique-

front funtion an be obtained from the data in Table 2. Their omparison

with the orresponding results in Table 1 implies that, given an auray �,

the spike ABR meshesM

�

need higher resolution levels and more bloks than

in the oblique-front ase. In spite of that, the eÆieny ratio is better for the

spike funtion.

Table 2

EÆieny in ABR for the oblique-front

� ℄ bloks ℄(M

�

) ℄(X

j

) ℄(M

�

)=℄(X

`

)

10

�5

44 45056 262144 0.17

10

�4

19 19456 65536 0.30

10

�3

10 10240 16384 0.60

10

�2

4 4096 4096 1.00

Fixing � = 10

�2

and the blok size 16� 16, ABR grids M

10

�2

for the oblique

front are presented in Figure 7 (a) and (b), for di�erent interpolation order.
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Fig. 5. Oblique-front funtion.

a)M

10

�3

b) M

10

�4

) M

10

�5

Fig. 6. ABR for the oblique-front funtion

The number of bloks formed with linear interpolation (M = 2) is 34 and with

the ubi interpolation (M = 4) is 10 . Fixing M = 4 and growing the blok

size to N

x

=N

y

= 32 the number of bloks in M

10

�2

dereases, as presented

in Figure 7 (). However, despite of the smaller number of bloks, the total

number of points inreases in omparison with the N

x

= N

y

= 16 mesh in

Figure 7 (a). Similar behavior also ours in relation to di�erent trunation

parameter �.

a) b) )

Fig. 7. Oblique front representation in blok adaptive mesh M

10

�2
: a) M=4, with

10 bloks 16 � 16; b) M = 2, with 34 bloks 16 � 16 and ) M = 4, with 4 bloks

32� 32 .
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4 Operations on Blok-Strutured Grids

For the appliation of ABR method in the numerial solution of partial di�er-

ential equations, there are some typial operations involved: grid re�nement

and oarsening, funtional operations and di�erentiation.

Re�ning and Coarsening

The automati adaptation of the grid struture during time evolution requires

a simple proedure for re�ning or oarsening the grids. For blok-strutured

grids, these operations are easily de�ned in the ontext of quad-trees by means

of tree extension or redution. In a general sense, if A and

~

A are two quad-

trees suh as A �

~

A, then

~

A is an extension of A, or A is a redution of

~

A.

Spei�ally, the extension and redution operations of interest are desribed

next.

� Tree Extension (Grid Re�nement) : A

E

�!

~

A

An extended tree

~

A may be obtained by adding a new blok generation to

all leaves of the tree A. Figure 8 shows an example of a blok strutured grid

M and its orresponding extension

~

M. Given the representation

�

M; f

M

�

,

the funtional values f

~

M

at the extended grid

~

M may be not available.

In suh ase, eah missing value in f

~

M

is obtained by the interpolatory

re�nement sheme.

a) Grid M b) Grid

~

M

Fig. 8. Extension operation (a) Original grid; (b) Extended grid.

� Tree Redution (Grid Coarsening):

~

A

T

�

�! A

As done for the grid onstrution, the redution operator T

�

is harater-

ized by a regularity indiator {

�

(B). All leaves in

~

A, whose three brothers

are also leaves, are tested. If one of these leaves and their brothers have

i

�

= 0, these nodes are removed from the tree struture. Consequently, their

mother beomes a new leaf-node. When this partiular ase happens, the

leaf{struture hanges. Therefore, the redution proess must be exeuted

again.

Funtional Operations

Operations between two funtions represented in blok{strutured grids are

12



straightforward point-wise evaluations if their grids oinide. Otherwise, it is

neessary to extend both grids in order to get representations in a ommon

grid.

Di�erentiation

The idea is to use �nite di�erene operators with uniform spaing in eah

blok. For bloks at level |, partial derivatives in the x-diretion are disretized

with spaing h

|

x

, and in the y-diretion with h

|

y

. For points lose to blok

boundaries, stenil information from neighboring bloks may be required. To

avoid demanding searh proedures, the proess of blok onstrution should

onsider the addition of needed extra rows and olumns around the blok

boundaries. For instane, in the partiular ase of forth order disretization

of derivatives by a entral sheme, two extra rows or olumns are neessary

at eah side of the bloks. The importane in maintaining the blok indepen-

dene, by adding auxiliary extra rows or olumns, is ruial for implementa-

tions of the method on parallel omputers.

5 Appliation to Evolution Problems

The onepts in the ABR method are partiularly suitable for adaptive solvers

to evolution partial di�erential equations. For the appliations of this paper,

we shall onsider equations of the form

� U

�t

= LU

where L(U) is a di�erential operator ating on spatial variables. The solution

U = U(x; y; t) is searhed for (x; y) 2 [0; 1℄� [0; 1℄ and t > 0, augmented with

initial and boundary onditions.

Suppose that at time t

n

= n� t an sparse blok{grid representation (M

n

;U

n

)

for the approximate solution is given, in whih U

n

is formed by the numerial

solution values at an adaptive mesh M

n

.

In the next time step, the representation (M

n+1

;U

n+1

) is obtained after the

following proedure.

(1) Extension: (M

n

;U

n

)

E

�! (M

n+

;U

n+

)

The gridM

n

may not be suitable for the solution at the next time step,

sine regions of smoothness or irregularities of the solution may hange

from one step to the next. Therefore, before doing time evolution, the

representation of the solution should be extended to a grid M

n+

, whih

13



is expeted to ontainM

n+1

. This re�nement stage is very important. In

the appliations of this paper, the simple one level re�nement desribed

previously is adopted.

(2) Time evolution: (M

n+

;U

n+

)

L

a

�! (M

n+

;

�

U

n+1

).

A disrete evolution operator L

a

is applied. The ation of L

a

inludes

the the disretization of the partial derivatives in L by uniform �nite

di�erene shemes, adapted to eah blok in M

n+

, the disretization

in time by some expliit ODE solver, an the enforement of boundary

onditions.

(3) Trunation: (M

n+

;

�

U

n+1

)

T

�

�! (M

n+1

;U

n+1

).

Finally, a thresholding operation is applied, in order to unre�ne those

bloks in M

n+

that are unneessary for an aurate representation of

U

n+1

5.1 Numerial Examples

A solver that performs these tasks is implemented using a C

++

objet oriented

paradigm programming. All the simulations are for 4-th order interpolation,

�nite di�erenes and Runge-Kutta ODE solver. The time step is dynamially

hosen aording to the smallest sale h

n

min

present in the extended adaptive

mesh M

n+

, suh that h

n

min

=�t

n

= �.

Moving Spike

For the linear Advetion Equation

�U

�t

+

 

�U

�x

+

�U

�y

!

= 0; (2)

we shall onsider the spiky initial ondition

U(x; y; 0) = exp

�300((x�0:5)

2

+(y�0:5)

2

)

+ 0:2 sin(2�x) + sin(2�y)

and the periodi boundary ondition

U(0; y; t) = U(1; y; t); 0 � y � 1

U(x; 0; t) = U(x; 1; t); 0 � x � 1:

The exat solution is the spike moving along the diagonal x = y, without

hanging its format. Some typial features of the numerial solution and the

orresponding adaptive blok-grids are presented in Figure 9. For this simula-

tion, the parameters are � = 10

�3

, N

x

=N

y

=32 and � = 5�10

�2

. As depited

in Figure 9, at t = 0:2 the spike is approahing the down-left orner of the

square. As expeted, the grid is re�ned in this quadrant and oarse in the

other ones. Similarly, at t = 0:9 the spike is already oming from the up-right

14



orner, and the re�nement automatially swithes to this region. Figure 10

desribes how the number of the bloks in the adaptive mesh evolves during

the simulation.

a) t = 0:2

b) t = 0:9

Fig. 9. Adveting spike.

Fig. 10. Number of bloks in the adaptive meshes for the adveted spike.
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Oblique Front

Let us onsider the advetion-di�usion equation

�U

�t

+

�U

�x

+

�U

�y

�

�

2

U

�x

2

�

�

2

U

�y

2

= F (3)

for t � 0, (x; y) 2 [0; 1℄� [0; 1℄. Given the foring term

F(x; y; t)� � seh

2

�

z

�

� 2(�

2

+ �

2

)seh

2

�

z

�

tanh

�

z

�

;

where z = 25(x � t) + 5(y � 1), and appropriate boundary onditions, the

exat solution is

U = 1� tanh

�

z

�

:

It desribes a propagating steep front moving to the right, as presented in [5℄.

Figure 11 exhibits some typial features for the numerial solution and the

orresponding extended adaptive blok-grids. The parameters for this simu-

lation are � = 10

�2

, N

x

=N

y

= 16 and � = 10

�3

. The Figure 12 shows how

the number of bloks in the adaptive mesh evolves during the simulation. The

largest number of bloks ours when the front rosses the enter of the region.

Sharp Transition Layers

The following results are for the Burgers' equation

�U

�t

+ U

�U

�x

+ U

�U

�y

� �

�

2

U

�x

2

� �

�

2

U

�y

2

= 0; (4)

t � 0, (x; y) 2 [0; 1℄� [0; 1℄ and � = 10

�2

, with periodi boundary onditions

and initial data

U(x; y; 0) = sen(2�x) sen(2�y):

Sine negative and positive features move on opposite diretions, this exam-

ple shows sharp transition layers, as time evolves. In the present simulation,

the parameters are � = 10

�5

, N

x

= N

y

= 32 and � = 5 � 10

�2

. Figure 13

exhibits some typial features of the numerial solution and the orrespond-

ing extended adaptive grids. Initially, the funtion is smooth and the mesh

is totally uniform with 16 bloks. At t = 0:05, the steepness of the solution

requires more re�nement, but the grid is still globally uniform. At t � 0:9,

the appliation of the ABR method produes an irregular mesh with re�ned

bloks lose to the sharp transition regions. Figure 14 shows how the number

of bloks in the adaptive meshes inreases aording to the steepness of the

solution during the simulation.
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a) t = 0:35

b) t = 0:45

) t = 0:70

Fig. 11. Oblique front

Fig. 12. Number of bloks in the adaptive meshes for the evolution of the oblique

front.
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a) t = 0

b) t = 0:05

) t = 0:09

Fig. 13. Sharp transition layer formation.

Fig. 14. Number of bloks in the adaptive meshes for the evolution of the sharp

transition layer.

18



6 Conlusions

This work desribes an adaptive �nite{di�erene sheme for PDEs based on

blok{strutured grids, whih are dinamially generated by wavelet represen-

tation tehniques. The algorithms and data struture are formulated by using

abstrat onepts borrowed from quaternary trees. This proedure helps the

understanding of the method and its omputational implementation. Given

any desired auray, the method in intended to produe simulations with au-

tomati grid re�nement, as required by the numerial solution. For the lass

of singular strutures onsidered in this paper, gain in loal spaial resolution

may be obtained without penalizing the omputational omplexity. Neverthe-

less, it is worth saying that the method, as stated, faes the typial dilema

of adaptive solvers with expliit time disretization. Sine, for stability razon,

�t is adjusted to the urrent �nest sale level, the e�et of any grid re�ne-

ment is the inrement of the total number of time steps. This aspet a�ets

the omputational performane of the method and requires further studies. A

typial alternative would be to onsider impliit time stepping or to introdue

some kind of loal time-spae adaptivity, for instane, following one of the

guidelines indiated in [6,5,7℄.
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