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Abstract

This paper considers an adaptive finite difference scheme for the numerical solution
of evolution partial differencial equations. The computational domain is formed by
non-overlapping blocks. Each block is a uniform grid, but step size may change from

one block to another. The blocks are not predetermined, but they are dinamically

constructed according to the refinement needs of the numerical solution. The deci-
sion over whether a block should be refined or unrefined is taken by looking at the
magnitude of wavelet coefficients of the numerical solution on such block. The main
objective of this paper is to establish a general framework for the construction and
operation on such adaptive block-grids in 2D. The algorithms and data structure are
formulated by using abstract concepts borrowed from quaternary trees. This proce-
dure helps the understanding of the method and its computational implementation.
The ability of the method is demonstrated by solving some typical test problems.
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1 Introduction

Solutions to many interesting flow problems may exhibit localized singular fea-
tures, such as sharp transition layers, propagating steep fronts or pronounced
spikes. Reliable approximations of these problems present a challenging com-
putational task. Uniform gridding is not a practical option since high reso-
lution is only needed in small regions, where irregularities occur. Therefore,
significant improvements in accuracy and computational efficiency may be
obtained by economically adapting the grid points to the numerical solution.

In computational fluid dynamics, there are several approaches for constructing
such locally adapted meshes. Some of them resort on ad hoc criteria, others
are based on more elaborated a posteriori error bounds and there are those
ones using Richardson extrapolation techniques. Nowadays, another kind of
adaptive criteria, which looks at the magnitude of wavelet coefficients to ob-
tain sparse representations, is becoming useful in the construction of adap-
tive solvers for partial differential equations (see [1] and references therein
enclosed). In the present paper we shall be concerned with such class of meth-
ods.

For instance, consider the SPR method (for sparse point representation), in-
troduced in [2]. It is an adaptive finite difference strategy that combines the
simplicity and accuracy of traditional finite difference schemes with the ability
of wavelet coefficients in the characterization of local regularity of functions.
The idea is to represent the functions by the point values corresponding to
their significant wavelet coefficients. Typically, few points are found in each
time step, the grid being coarse in smooth regions, and refined close to irreg-
ularities. At each point, spatial derivatives are discretized by uniform finite
differences, using step size proportional to the point local scale. Eventually,
stencils not present in the grid are approximated from coarser scales by using
an interpolating subdivision scheme. Other wavelet adaptive methods have
been proposed with many similarities to the SPR method. For instance, the
filter bank method in [3] and the second generation wavelet collocation method
in [4] may be considered as generalizations of the SPR method.

A rigorous study of the effectiveness of nonlinear wavelet representations has
already being established [1]. However, sparse grids coming from wavelet data
compression may present a complicated topology. This fact causes an overhead
involved in operations like accessing or interpolating neighboring stencils to
compute finite differences at scattered grid points. In order to reduce the over-
head, one possible way is by imposing some sort of regularity in the adaptive
grid at the cost of losing some sparcity. For instance, the suggestion in [2] is
to use an adaptive block representation (ABR). The computational domain is
formed by non-overlapping blocks. Each block is a uniform grid, but the step



size may change from one block to another. In the automatic construction
of such block-grids, the wavelet coefficients are also used as the main tool to
decide whether a block needs to be refined or may be coarsened.

As it is well discussed in [3], such class of adaptive wavelet solvers can be
separated into two basic parts: the representation part and the operator part.
The operator part is performed by finite differences on uniform grids which
may be chosen by considering stability and consistency criteria. The represen-
tation part is formulated in the context of wavelet data compression by means
of a simple thresholding operation. This kind of separation of the solver into
independent parts has several advantages. It makes it general: it is simple to
change the differential equation, the order of the finite difference method, the
boundary conditions, the wavelet transform etc. Consequently, it fits well into
the object oriented programming philosophy. Furthermore, this methodology
may be beneficiary of the considerable achievements in the well stablished field
of finite differences as well as of the more recent advances in wavelet analysis.

The main objective of this paper is to establish a general framework for the
application of the ABR method in 2D. The algorithms and data structure
are formulated by using abstract concepts borrowed from quaternary trees.
With this procedure, we expect to improve the understanding of the method
and help the process of its computational implementation. The ability of the
method is demonstrated by solving some test problems showing typical fea-
tures of spikes, propagating fronts and the formation of sharp transition layers.

2 Adaptive Block-Structured Grids

In this section, we shall describe the type of grids used in the ABR method
and their quaternary tree structure.

Let X0 be the uniform grid on the rectangle [0, L] x [0, D] with spatial steps

hy = NL in the w-direction and h, = NQ in the y-direction. That is,
T Yy

X° = {y = (khy,th,),0 <k < N,,0< ¢ < N,}.

Starting from 0, a ladder of uniform grids X7 are constructed by successive
dyadic refinements

Xﬂ‘:{7:(kh{c,eh;),ogk<Ng,ogz<N5},
where N = 2/N,, Nj = 2/N,, hl, = 279h, and h} = 277h,. Thus, each

X7 is obtained from X7~! by midpoint insertions. This grid sequence can be
organized in a quaternary tree structure (quad-tree).



2.1 Quad-tree structure

Let BJ be a generic block of N, x N, points in X7 of type
B, ={y=p+ (khj,(h]),0 < k < N;,0 <L < N,},

which is uniquely represented by its origin position p and its scale level j.
From B{L, new blocks at level j 4+ 1 are obtained, firstly by dyadic refinement,
and then by splitting into four parts
: il il itd il
B, — 8B ={B, B, B, B}

Ko 2 TpL 2 ) U

If o is the origin of the starting block, then the origins of the new blocks are
po = iy o = i+ (0,5 B1), pry = e+ (B b, 5 hi) and s = p+ (5 b1, 0).
Using the quad-tree terminology, the elements of the set S(B3),) are called the
children of the node 13/, 3/, is the mother of B!, Bf;:l is son of 37, and B!
is brother of Bf;:l. One generation of a quad-tree block structure is illustrated
in Figure 1.

a) Tree structure

5,

j+1 j+1 j+1 j+1
B, B B, B,

b) Grid structure

j+1 | g+l
B B

B+ —

j+1 j+1
BNO Bus

Fig. 1. The representation of a block generation

By defining Bgo = X? as the root of the tree, and performing 7 generations, a
complete quad—tree having J + 1 levels is obtained. At each level 0 < 7 < J
there exist 2% blocks (nodes). Let us denoted by Z7 the set of block origin
points at level j.

Incomplete quad—trees occur when some nodes have no children at interme-
diary levels. This leads to the concept of tree leaves: leaves are nodes that do
not have children.



In a complete block quad—tree, the leaves correspond to the blocks B;{ at the
last level. The union of these blocks constitutes the uniform grid at the finest
scale

x7=J Bl

nerd

In an incomplete block quad—tree, the leaves at intermediary levels 0 < j < J
correspond to blocks where the refinement process has been interrupted. Let
AV C TV be the set of origin points associated to the leaf-blocks at level j. The
union of such blocks forms a block-structured grid

J
M=) U B
J=1 peni

The diagram in Figure 2 illustrates a 4-level incomplete tree and its corre-
sponding grid.

a) b)

Fig. 2. Incomplete 4-level quad-tree and its corresponding block-structured grid.

3 Adaptive Construction of Block—Grids

For a given block-structured grid M, we shall denote by f™ the collection of
point values of a given function f(x,y) represented at M. According to the
tree structure of M, f™ can be organized as a vector whose components are
N, x N, matrices containing the data corresponding to the point values at the
leaf-blocks 137

The purpose of the ABR technique is to obtain representations { M, fM} as
sparse as possible. This means that a small total number of blocks is found
within an incomplete quad-tree M, the leaves in lower levels (big scales) cor-
responding to smooth regions and those at higher levels (small scales) cor-
responding to irregularity regions. In the construction of such an adaptive
representation, the main tool is a local regularity indicator i(B) to decide, at



each generation, whether a given block should be a leaf, i(B) = 0, or not,
i(B) = 1. Next, we shall describe how wavelet coefficients in an interpolatory
multi-resolution analysis can be used in the definition of i(B). In the wavelet
literature, there are several examples of multi-resolution analyses that may
be used as well. In fact, some of them offer convenient aspects, like shorter
filters for the same order of polynomial cancellation (zero moments for the
dual wavelets), as described in [3], or additional zero moments for the primal
wavelets, like in the modified lifting scheme adopted by [4].

3.1 Wavelet Indicators

Given a generic block B/, at level j, define the set l’;’fL as the completion of 53/,
by the inclusion of extra points in the right and upper lateral lines. That is,

B, ={y=p+ (kh}, th}),0 <k < N,,0 < £ < N, }.

Consider the rectangular grid R/ = lgft and its dyadic refinement R7*! given
by
RITE = {y = p+ (kR (hIH),0 < k < 2N,,0 < £ < 2N, } .

Note that R/*! can also be expressed as

M 7

3
Rj+1 — U [;)j+1
k=0

where ij:l are the completion of the children of BJ.

Let f7 be the matrix containing the values of a given function f(x,y) at the
grid points in R/

fle= fu+ (KR, Ch)).

In wavelet analysis, transformation algorithms relating f7/*+*, f/ and the wavelet
coefficients d’, containing the difference of information between two consecu-
tive levels, play a crucial role. For discretizations by means of points values,
the wavelet coefficients are usually defined in terms of interpolation error [1].

Fi+l Fi+1 Fi+1 . : (@),j i1 j
Values f3 041, fo5 1100, and f3) 50,1, at the new midpoints ;7”7 € RITH\ R/,

YT = p (KR (20 + 1R,
W) = A (2K + 1)RZIH 20T+,
Y = (2K + )R (20 + 1)RITHY),



are computed by polynomial Lagrange interpolation from the values f7/ at
the coarser grid. Wavelet coefficients are then defined as the differences be-
tween the known function values f3, 3, 1, f3i+1.20 and f3;3,,, and the values
predicted by the interpolation procedure. Precisely,

f_’] _ pJ+l
ks — J2k,2¢

(1) _') 7+1 ri+1

d k,l f 2k,20+1 f 2k,20+1>
(2)4

d k.l f2k+1 20 f2k+1 205

(3)J _ pi+1 rj+1
d, —fk21£+1 fk2l+1'

In case of rectangular 2D gr1ds interpolation can be expressed in terms of 1D
algorithms. For instance, fzk 2041 18 obtained from fk 4 by one-dimensional in-
terpolation along the [-direction, f%“ﬂ is obtained from fs,l by one-dimensional
interpolation along the k-direction. Finally, fg’,jjl,wl is obtained from fj,:ﬁil 29
by applying the one-dimensional interpolatory scheme in the [-direction (or,
equivalently, by one-dimensional interpolation of the fg: 214 41 values in the k-
direction). The general 1D interpolation formula reads

j+1 '
fje+1 Z pﬂ,quﬂa

q

in which p;, are the Lagrange interpolation weights. In the interior of the
grid, central interpolation is used. For this case, the weights do not depend
on the location, i.e., p; 4 = p,. One-sided interpolation is required close to the
boundaries, leading to weights that do depend on the location k [2].

As interpolation errors, wavelet coefficients are good indicators of local smooth-
ness. This fact leads to the definition of a set index i.(B) which is based on
the significance of the wavelet coefficients associated to the block B, as com-
pared to a certain given threshold e. By definition, i.(B)) = 1. Then, at level
j > 0, for each block BZ having set index equal to one, the children set indexes
ze(BfLﬁ) are computed according to the following strategy. First we perform
the one-level wavelet transform, as described before, and consider D(B]1') as

the set of those wavelet coefficients d,(&) 7 which are associated to points fy,(&)’j

in BIF1.If all wavelet coefficients in D(BJ!) are not significant, this means
that the function is smooth in this region. Consequently, the block does not
need to be refined, and it will be leaf-tree. On the other hand, if at least one
significant wavelet coefficient exists in the block, this means that the function
is not represented there with the prescribed accuracy, and that refinement is



needed. Therefore, according to these principles, the set index ¢, is defined by

0 if [d})

(O:),j +1
i (BL) = <eVdy " € DB
" 1 otherwise.

Following this strategy, the adaptive grid construction ends when, at a certain
level, all the analyzed blocks are leaves.

3.2 Numerical Examples

The first example is for the spike function
Flz,y) = 3 exp~ 20000 (@=03"+(=03)") | sopy (2z) + sen(2my),

with a singularity point at (z,y) = (0.3,0.3), as illustrated in Figure 3. For

Fig. 3. The spike function.

this function, the ABR grids M, are represented in Figure 4. The wavelet
coefficients are for cubic polynomial interpolation (M = 4), the blocks have
N,=N,=32and e =107%,10"* and 107°. As € becomes smaller, more refined
blocks are tended to concentrate near the singularity region. As indicated in
Table 1, the number of blocks grows as ¢ becomes smaller. However, if the
number of points in the ABR grid M, is compared to number of points in the
uniformed mesh X, in which ¢ is the finest scale level present in M,, then
the ratio $(M,)/4(X*) reduced very quickly as e decreases.



a)M10—3 b)M10—4 C)Mlg—s

Fig. 4. ABR for the spike function

Table 1
Efficiency in ABR for the spike.

¢ | tblocks | §(Me) | H(XY) | H(M)/H(X)
105 | 100 | 102400 | 2097152 0.05
107 | 64 65536 | 262144 0.25
1073 | 28 28672 | 65536 0.43

As a second example, we shall consider the oblique-front function
f(z,y) =1 —tanh(25x 4+ 5(y — 1)), (1)

that exhibit abrupt changes close to the line 25x+5(y —1) = 0, as displayed in
Figure 5. Therefore, the most refined blocks in the ABR grids M, are expected
to be placed around the oblique-front region, as e¢ decreases. This behavior
is illustrated in Figure 6 according to the same parameters of the previous
example. An indication of the efficiency of the ABR method for the oblique-
front function can be obtained from the data in Table 2. Their comparison
with the corresponding results in Table 1 implies that, given an accuracy e,
the spike ABR meshes M, need higher resolution levels and more blocks than
in the oblique-front case. In spite of that, the efficiency ratio is better for the
spike function.

Table 2
Efficiency in ABR for the oblique-front

e | #blocks | #(Me) | #(X7) | H(Me)/H(XE)
10°° 44 45056 | 262144 0.17
104 19 19456 | 65536 0.30
10-3 10 10240 | 16384 0.60
102 4 4096 4096 1.00

Fixing ¢ = 102 and the block size 16 x 16, ABR grids M2 for the oblique
front are presented in Figure 7 (a) and (b), for different interpolation order.

10



Fig. 5. Oblique-front function.

a)waB b) Mip-1 C) Mig-s

Fig. 6. ABR for the oblique-front function

The number of blocks formed with linear interpolation (M = 2) is 34 and with
the cubic interpolation (M =4) is 10 . Fixing M =4 and growing the block
size to N, = N, =32 the number of blocks in M,-> decreases, as presented
in Figure 7 (c). However, despite of the smaller number of blocks, the total
number of points increases in comparison with the N, = N, = 16 mesh in
Figure 7 (a). Similar behavior also occurs in relation to different truncation
parameter e.

Fig. 7. Oblique front representation in block adaptive mesh Mj-2: a) M =4, with
10 blocks 16 x 16; b) M =2, with 34 blocks 16 x 16 and ¢) M =4, with 4 blocks
32 x32.
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4 Operations on Block-Structured Grids

For the application of ABR method in the numerical solution of partial differ-
ential equations, there are some typical operations involved: grid refinement
and coarsening, functional operations and differentiation.

Refining and Coarsening

The automatic adaptation of the grid structure during time evolution requires
a simple procedure for refining or coarsening the grids. For block-structured
grids, these operations are easily defined in the context of quad-trees by means
of tree extension or reduction. In a general sense, if A and A are two quad-
trees such as A C A, then A is an extension of A, or A is a reduction of A.
Specifically, the extension and reduction operations of interest are described
next.

e Tree Extension (Grid Refinement) : A 5 A
An extended tree A may be obtained by adding a new block generation to
all leaves of the tree A. Figure 8 shows an example of a block structured grid
M and its corresponding extension M. Given the representation (./\/l, fM),

the functional values fM at the extended grid M may be not available.
In such case, each missing value in f™ is obtained by the interpolatory
refinement scheme.

a) Grid M b) Grid M

Fig. 8. Extension operation (a) Original grid; (b) Extended grid.

e Tree Reduction (Grid Coarsening): A T5 A

As done for the grid construction, the reduction operator 7¢ is character-
ized by a regularity indicator ¢ (B). All leaves in A, whose three brothers
are also leaves, are tested. If one of these leaves and their brothers have
te = 0, these nodes are removed from the tree structure. Consequently, their
mother becomes a new leaf-node. When this particular case happens, the
leaf-structure changes. Therefore, the reduction process must be executed
again.

Functional Operations

Operations between two functions represented in block—structured grids are

12



straightforward point-wise evaluations if their grids coincide. Otherwise, it is
necessary to extend both grids in order to get representations in a common
grid.

Differentiation

The idea is to use finite difference operators with uniform spacing in each
block. For blocks at level 7, partial derivatives in the x-direction are discretized
with spacing hj, and in the y-direction with hJ. For points close to block
boundaries, stencil information from neighboring blocks may be required. To
avoid demanding search procedures, the process of block construction should
consider the addition of needed extra rows and columns around the block
boundaries. For instance, in the particular case of forth order discretization
of derivatives by a central scheme, two extra rows or columns are necessary
at each side of the blocks. The importance in maintaining the block indepen-
dence, by adding auxiliary extra rows or columns, is crucial for implementa-
tions of the method on parallel computers.

5 Application to Evolution Problems

The concepts in the ABR method are particularly suitable for adaptive solvers
to evolution partial differential equations. For the applications of this paper,
we shall consider equations of the form

ou
—=LU

ot
where L(U) is a differential operator acting on spatial variables. The solution
U =U(x,y,t) is searched for (z,y) € [0,1] x [0,1] and ¢ > 0, augmented with
initial and boundary conditions.

Suppose that at time ¢, = nA t an sparse block-grid representation (M™, U")
for the approximate solution is given, in which #" is formed by the numerical
solution values at an adaptive mesh M".

In the next time step, the representation (M™*1 Y/"*1) is obtained after the
following procedure.

(1) Extension: (M" U") L (M ()

The grid M™ may not be suitable for the solution at the next time step,
since regions of smoothness or irregularities of the solution may change
from one step to the next. Therefore, before doing time evolution, the
representation of the solution should be extended to a grid M™", which

13



is expected to contain M™"!, This refinement stage is very important. In
the applications of this paper, the simple one level refinement described
previously is adopted.

(2) Time evolution: (M™,U"t) L% (M 1m+1).

A discrete evolution operator £, is applied. The action of £, includes
the the discretization of the partial derivatives in L by uniform finite
difference schemes, adapted to each block in M™", the discretization
in time by some explicit ODE solver, an the enforcement of boundary
conditions.

(3) Truncation: (M™F, 1"ty T (Mt ymtl),
Finally, a thresholding operation is applied, in order to unrefine those

blocks in M™" that are unnecessary for an accurate representation of
un+1

5.1 Numerical Examples

A solver that performs these tasks is implemented using a C™1 object oriented
paradigm programming. All the simulations are for 4-th order interpolation,
finite differences and Runge-Kutta ODE solver. The time step is dynamically
chosen according to the smallest scale A, present in the extended adaptive
mesh M"™* such that A, /A" = \.

min
Moving Spike
For the linear Advection Equation

(o ey
ot or Oy

we shall consider the spiky initial condition
U(x,y,0) = exp 0@=05+W=09) L 0 9 sin(2rz) + sin(27y)
and the periodic boundary condition

UO,y,t) =U(1,y,t), 0<y<l1
U(z,0,t) =U(x,1,1), 0<z<I1.

The exact solution is the spike moving along the diagonal z = y, without
changing its format. Some typical features of the numerical solution and the
corresponding adaptive block-grids are presented in Figure 9. For this simula-
tion, the parameters are ¢ = 1073, N, =N, =32 and A\ = 5x 10 2. As depicted
in Figure 9, at ¢ = 0.2 the spike is approaching the down-left corner of the
square. As expected, the grid is refined in this quadrant and coarse in the
other ones. Similarly, at ¢ = 0.9 the spike is already coming from the up-right

14



corner, and the refinement automatically switches to this region. Figure 10
describes how the number of the blocks in the adaptive mesh evolves during

the simulation.

a)t=0.2

b) t =0.9

Fig. 9. Advecting spike.
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Fig. 10. Number of blocks in the adaptive meshes for the advected spike.
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Oblique Front
Let us consider the advection-diffusion equation

U U o U PU

ot * Ox + oy  0x?2  0y?

fort >0, (z,y) € [0,1] x [0,1]. Given the forcing term
F(z,y,t) — B sech® (Z) —2(a? + B%)sech? (z) tanh (z),

where z = 25(x — t) + 5(y — 1), and appropriate boundary conditions, the
exact solution is

=1 —tanh(z).

It describes a propagating steep front moving to the right, as presented in [5].
Figure 11 exhibits some typical features for the numerical solution and the
corresponding extended adaptive block-grids. The parameters for this simu-
lation are € = 1072, N, = N, =16 and A\ = 107%. The Figure 12 shows how
the number of blocks in the adaptive mesh evolves during the simulation. The
largest number of blocks occurs when the front crosses the center of the region.

Sharp Transition Layers

The following results are for the Burgers’ equation

ou ou ou ou o*u
— 4+ U —+U——p——p—=0 4
ot Por Ty TFam T Hap T (4)
t >0, (z,y) €[0,1] x [0,1] and p = 1072, with periodic boundary conditions
and initial data

U(z,y,0) = sen(2rz) sen(21y).

Since negative and positive features move on opposite directions, this exam-
ple shows sharp transition layers, as time evolves. In the present simulation,
the parameters are ¢ = 10°°, N, = N, = 32 and A = 5 x 10 2. Figure 13
exhibits some typical features of the numerical solution and the correspond-
ing extended adaptive grids. Initially, the function is smooth and the mesh
is totally uniform with 16 blocks. At ¢ = 0.05, the steepness of the solution
requires more refinement, but the grid is still globally uniform. At ¢t ~ 0.9,
the application of the ABR method produces an irregular mesh with refined
blocks close to the sharp transition regions. Figure 14 shows how the number
of blocks in the adaptive meshes increases according to the steepness of the
solution during the simulation.

16



a) t = 0.35

b) t =0.45
c) t=0.70 WI
Fig. 11. Oblique front
100
80 4
L2 so | N
2 o
20 4
@ o o1 0.2 o3 (o . B 0.5 0.5 0.7

Time

Fig. 12. Number of blocks in the adaptive meshes for the evolution of the oblique
front.
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b) ¢t = 0.05

¢) t =0.09

Fig. 13. Sharp transition layer formation.
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Fig. 14. Number of blocks in the adaptive meshes for the evolution of the sharp
transition layer.
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6 Conclusions

This work describes an adaptive finite—difference scheme for PDEs based on
block—structured grids, which are dinamically generated by wavelet represen-
tation techniques. The algorithms and data structure are formulated by using
abstract concepts borrowed from quaternary trees. This procedure helps the
understanding of the method and its computational implementation. Given
any desired accuracy, the method in intended to produce simulations with au-
tomatic grid refinement, as required by the numerical solution. For the class
of singular structures considered in this paper, gain in local spacial resolution
may be obtained without penalizing the computational complexity. Neverthe-
less, it is worth saying that the method, as stated, faces the typical dilema
of adaptive solvers with explicit time discretization. Since, for stability razon,
At is adjusted to the current finest scale level, the effect of any grid refine-
ment is the increment of the total number of time steps. This aspect affects
the computational performance of the method and requires further studies. A
typical alternative would be to consider implicit time stepping or to introduce
some kind of local time-space adaptivity, for instance, following one of the
guidelines indicated in [6,5,7].
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