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any open semigroup is mid-reversible.
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1 Introdution

Let G be a onneted non-ompat semi-simple Lie group with �nite enter.

The purpose of this paper is to study the onneted omponents of an open

subsemigroup S � G. Our approah is through the ation of S on the ag

manifolds of G and the orresponding ontrol sets (for results related to this

method we refer to [8℄, [9℄, [10℄, [11℄). Thus the main e�orts are dediated

towards the desription of the onneted omponents in terms of the ontrol

sets. Having this in mind we divide the onneted omponents of S into two

lasses. The �rst one omprises those omponents � � S suh that some

power �

k

, k � 2, meets � (and hene is ontained in �). We say that suh a

omponent has �nite index or is reurrent. The other lass ontains the in�-

nite index or transient omponents. Among the reurrent omponents there

are those whih are themselves subsemigroups (semigroups omponents, for

short).

In this paper we get sharper results for the reurrent omponents. This is

due to the fat that the properties of the semigroup S aptured by its ation

on the ag manifolds are usually related to high powers of the elements of

S.

We better desribe our results by summarizing the ontents of the paper:

Setions 2, 3 and 4 are preparatory. In setion 2 we disuss generalities about

onneted omponents of semigroups, and prove a lemma used throughout

the paper, ensuring that in a onneted nilpotent Lie group an open sub-

semigroup has just one semigroup omponent. In Setion 3 we set notations

and reall some of the above mentioned results about semigroups in semi-

simple Lie groups and their ontrol sets on ag manifolds. This inludes

a disussion about the paraboli type of a semigroup and the introdution

of the open subsets sets C

+

and C

�

of the maximal ag manifold, whih

we all the attrator and the repeller sets of S, respetively. These sets

play a entral role in the study of reurrent omponents of S. In Setion

4 the invariant ontrol sets in the overing G=P

0

of the ag manifold are

determined. These ontrol sets are used afterwards in the desription of the

reurrent omponents.

In Setion 5 we relate the Jordan deomposition of a g 2 S with the

paraboli type of S, by showing how the latter inuenes the semi-simple

and unipotent omponents of g. This result has independent interest (and

improves Corollary 4.4 of [11℄). From the knowledge of the Jordan deompo-

sitions we prove that any g 2 S has a unique �xed point in the attrator sub-

set of the ag manifold determined by the paraboli type of S (see Theorem
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5.9). This result is used in Setion 6 to show that a onneted omponent of

S, say �, leaves invariant a unique onneted omponent of C

+

, denoted by

K

+

(�), and analogously �

�1

leaves invariant a unique omponent K

�

(�)

of C

�

.

The uniqueness of the invariant omponent opens the way to study the

semigroup omponents in Setion 7. In Theorem 7.1 we prove that for a

pair of onneted omponents K

1

of C

+

and K

2

of C

�

there exists a unique

semigroup omponent, say � (K

1

;K

2

), whih leaves invariant K

1

and whose

inverse leaves invariant K

2

. This is one of the main results of the paper.

It gives the number of semigroup omponents in terms of the ontrol sets.

In proving this theorem some results of independent interest are obtained,

like the fat that the attrator and repeller sets of � (K

1

;K

2

) are K

1

and

K

2

, respetively, and that the paraboli type of a semigroup omponent of

S oinides with the paraboli type of S.

The reurrent omponents whih are not semigroups are studied in Se-

tion 8. They are desribed by the omponents of the invariant ontrol sets in

the overing G=P

0

mentioned above. As a onsequene we prove that the set

of reurrent omponents is a subsemigroup of the semigroup of omponents,

or equivalently, the union of reurrent omponents is a subsemigroup of S.

In Setion 9 we relate the onneted omponents with the onept of

mid-reversibility introdued by Ruppert [6℄ (S is mid-reversible in G if

G = SS

�1

S). This algebrai property of a semigroup has deep links to

onnetivity properties as already appears in [6℄. In fat, Theorem 3.9 of [6℄

shows that an open subsemigroup of a group G ontaining the identity in its

losure is onneted in ase every open subsemigroup of G is mid-reversible.

In our semi-simple ontext we give a neessary and suÆient ondition for

an open semigroup in a semi-simple Lie group to be mid-reversible (see

Theorem 9.4). This ondition depends on the onneted omponents of the

entralizer of a split-torus (the M -group). In partiular, the ondition of

Ruppert that every open subsemigroup is mid-reversible holds if M is on-

neted (whih happens for instane if G is a omplex Lie group). For these

groups Theorem 3.9 of [6℄ applies. In ase M is not onneted we show any-

way that a semigroup S with 1 2 lS has exatly one semigroup omponent.

Still in this subjet we prove that ompression semigroups are mid-reversible

and for in general we give a rough upper bound for the number of fators

S, S

�1

required to generate the group.

Finally, in Setion 10 we provide some examples and ounter-examples

related to the results of the paper. In partiular we illustrate how to prove

onnetedness of a semigroup by showing that the ompression semigroup
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S

W

of a pointed and generating one W � R

n

is onneted.

2 Semigroup of onneted omponents

In this setion we disuss some onepts and general fats about onneted

omponents of semigroups whih are used throughout the paper. Let G be

a semitopologial group and S � G a subsemigroup.

Given x 2 S we denote by K

x

the onneted omponent of S ontaining

x. The subset K

x

K

y

is onneted and ontains xy thus K

x

K

y

� K

xy

. This

provides the set of onneted omponents of S the struture of a semigroup,

where the produt K

x

K

y

of two omponents K

x

and K

y

is the omponent

ontaining xy. In the sequel we often write K

x

K

y

= K

xy

, meaning the

produt in the semigroup of onneted omponents, instead of produt of

sets (when equality may not be true).

A onneted omponent K

x

is a subsemigroup, (that is K

x

K

x

� K

x

) if

and only if it is an idempotent in the semigroup of omponents, whih is

equivalent to K

x

2
= K

x

, that is, x

2

2 K

x

. Suh a onneted omponent

is alled semigroup omponent. In dealing with semigroups in Lie groups

it is onvenient to have the following terminology for omponents meeting

one-parameter semigroups.

De�nition 2.1 A onneted omponent K of a semigroup S � G is said

to be an exit omponent provided there exists a one-parameter subgroup � :

R ! G, and T

0

2 R, suh that the interval � (T

0

;+1) � K.

An exit omponent has the form K = K

�(t)

, t > T

0

. Sine � (t)� (t) =

� (2t), it is lear that an exit omponent is a subsemigroup. Exit omponents

are easily built with the aid of the following simple fat.

Lemma 2.2 Let � � R

+

be a semigroup of positive reals, and suppose

that for 0 < t

0

2 � there exists " > 0 with (t

0

� "; t

0

+ ") � �. Then,

(nt

0

;+1) � � if n >

t

0

� "

2"

.

Proof: Given an integer n > 0, the interval (nt

0

� n"; nt

0

+ n") is on-

tained in �. Hene (nt

0

;+1) � � if kt

0

+ k" > (k + 1) t

0

� (k + 1) " for all

k � n. But this inequality holds if n >

t

0

� "

2"

.

This lemma implies immediately the following statement about existene

of exit omponents (f. [6℄, Proposition 3.1).
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Proposition 2.3 Let � be a one-parameter subgroup of the topologial group

G. Let S � G be a subsemigroup and suppose that � (s) 2 intS for some

s > 0. Then there exists T

0

> 0 suh that � (T

0

;+1) � intS. Clearly

� (T

0

;+1) is entirely ontained in an exit omponent.

Therefore, any open semigroup meeting a one-parameter group ontains

an exit omponent, and hene a semigroup omponent.

Now, let G be a Lie group with Lie algebra g. If X 2 g is suh that the

one-parameter semigroup exp tX, t � 0, meets the open semigroup S we

denote by E (X;S), or simply E (X), the exit omponent of S ontaining

exp tX for large t > 0. Also, if h 2 S and X = log h is well de�ned we put

E (h) = E (X).

At this point we reall that a Lie group G is said to have �nite index if

for every x 2 G some power x

k

belongs to the image of the exponential map

(f. Dokovi and Hofmann [2℄). Any open subsemigroup of a group with

�nite index meets a one-parameter group and thus has exit omponents.

Furthermore, any semigroup omponent is an exit omponent, so that in

these groups both onepts are equivelent. Note also that in a �nite index

group G a onneted omponent � of an open semigroup S � G must have

some power meeting a semigroup omponent.

In partiular, open semigroups in a onneted nilpotent Lie group has

semigroup (exit) omponents. Next we show the uniquenes of suh om-

ponents, a fat whih is used extensively in the sequel, applied to abelian

groups. For the proof we use the onept of reversibility. Reall that a sub-

semigroup T of a group G is said to be left (respetively right) reversible if

TT

�1

(respetively T

�1

T ) is a group, whih must be G if T has non-empty

interior and G is onneted.

Proposition 2.4 Let G be a onneted nilpotent Lie group and S � G an

open subsemigroup. Then S ontains exatly one semigroup (exit) ompo-

nent K.

Proof: The nilpotent Lie group G is exponential, so that a onneted om-

ponent K � S is exit if and only if it is a subsemigroup. For the uniqueness

we use the fat that any open semigroup in a nilpotent Lie group is (right

and left) reversible (see [6℄, Proposition 1.5). Thus suppose that K

1

;K

2

� S

are semigroup omponents of S. Take y 2 K

2

. By right reversibility of K

1

,

there exists x 2 K

1

suh that xy 2 K

1

. Hene, K

1

K

2

� K

1

. But by left

reversibility of K

2

, for any x 2 K

1

there exists z 2 K

2

suh that xz 2 K

2

.
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Therefore, K

1

K

2

� K

2

, that is, K

1

= K

2

.

Remark: Notie that this proof uses both right and left reversibility of open

subsemigroups of nilpotent Lie groups. Atually one sided reversibility is not

enough. In fat, after looking at the onneted omponents of semigroups

in semi-simple Lie groups we an �nd easily an example of a subsemigroup

S of an exponential solvable Lie group G suh that every omponent of S is

right reversible and nevertheless S has more than one semigroup omponent

(see the remark at the end of Setion 7, below).

3 Semigroups in semi-simple groups

The purpose of this setion is to establish notations and bakground results

to be used afterwards. Let G be a onneted nonompat Lie group with

�nite enter and denote by g its Lie algebra. The ag manifolds of G are

labelled by subsets of the set of simple (restrited) roots of g. Preisely,

hoose an Iwasawa deomposition g = k � a� n. Let � be the set of roots

of the pair (g; a). Denote by �

+

and � the set of positive and simple roots,

respetively, whih orrespond to the nilpotent omponent n, that is,

n =

X

�2�

+

g

�

;

where g

�

stands for the �-root spae. Let m be the entralizer of a in k

and put p = m� a� n for the orresponding minimal paraboli subalgebra.

By de�nition, the maximal ag manifold B of G is the set of subalgebras

Ad (G) p, where Ad stands for the adjoint representation of G in g. There

is an identi�ation of B with G=P where P is the normalizer of p in G.

Furthermore, P =MAN , A = exp a, N = exp n and M is the entralizer of

A in K = exp k.

Given a subset � � �, denote by p

�

the orresponding paraboli subal-

gebra, namely,

p

�

= n

�

(�)� p;

where n

�

(�) is the subalgebra spanned by the root spaes g

��

, � 2 h�i.

Here h�i is the set of positive roots generated by �. The set of paraboli

subalgebras onjugate to p

�

identi�es with the homogenous spae G=P

�

,

where P

�

is the normalizer of p

�

in G:

P

�

= fg 2 G : Ad (g) p

�

= p

�

g:
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This onstrution yields the ag manifold B

�

= G=P

�

, � � �.

Let

a

+

= fH 2 a : � (H) > 0 for all � 2 �g

be the Weyl hamber assoiated to �. We say that X 2 g is split-regular

in ase X = Ad (g) (H) for some g 2 G, H 2 a

+

. Analogously, x 2 G is

said to be split-regular in ase x = ghg

�1

with h 2 A

+

= exp a

+

, that is,

x = expX, with X split-regular in g.

Let n

�

=

P

�2�

g

��

be the nilpotent subalgebra opposed to n. Put

N

�

= exp n

�

. Then in any ag manifold B

�

, the orbit Ad (N

�

) p

�

(alled

open Bruhat ell) is open and dense. Furthermore, if h 2 A

+

then limh

k

y =

p

�

for any y 2 Ad(N

�

) p

�

. In other words, p

�

is an attrator in B

�

for

any h 2 A

+

, with Ad (N

�

) p

�

the orresponding stable manifold. Similarly,

for x 2 G the element g = xhx

�1

is split-regular. Its attrator in B

�

is Ad (g) p

�

with open and dense stable manifold Ad

�

xN

�

x

�1

�

. In the

sequel we denote the attrator �xed point of g in B

�

by att

�

(g), while the

orresponding stable manifold is denoted by st

�

(h). Analogous remarks

hold for the repeller rpp

�

(g) in B

�

. In ase B

�

= B is the maximal ag

manifold we suppress the indies and write simply att (g) and rpp (g).

Given two subsets �

1

� �

2

� �, the orresponding paraboli subgroups

satisfy P

�

1

� P

�

2

, so that there is a anonial �bration G=P

�

1

! G=P

�

2

,

gP

�

1

7! gP

�

2

. Alternatively, the �bration assigns to the paraboli subal-

gebra q 2 B

�

1

the unique paraboli subalgebra in B

�

2

ontaining q. In

partiular, B = B

;

projets onto every ag manifold B

�

.

From the struture of the paraboli subgroup P

�

the �ber P

�

=P of

B ! B

�

is obtained. We follow losely the notation of Warner [12℄, Setion

1.2. Denote by a

�

the annihilator of � in a:

a

�

= fH 2 a : � (H) = 0 for all � 2 �g:

Let L

�

stand for the entralizer of a

�

in G and put M

�

(K) = L

�

\ K

for the entralizer of a

�

in K. The Lie algebra l

�

of L

�

is redutive and

deomposes as l

�

= m

�

�a

�

with m

�

semi-simple. LetM

0

�

be the onneted

subgroup whose Lie algebra is m

�

and put M

�

= M

�

(K)M

0

�

. It follows

that the identity omponent of M

�

is M

0

�

. The Bruhat-Moore Theorem

(see [12℄, Theorem 1.2.4.8), provides the following deompositions:

1. P

�

=M

�

A

�

N

�

, where A

�

= exp a

�

and N

�

is the unipotent radial

of P

�

, that is, N

�

= exp n

�

, with n

�

the nilradial of p

�

.

2. P

�

=M

�

(K)AN .
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This seond deomposition ensures that the �ber P

�

=P is equal to the

oset spae M

�

(K) =M . It turns out that M

�

(K) =M = M

�

= (M

�

\ P ).

This last oset spae is the maximal ag manifold of M

�

, sine M

�

\ P is

a minimal paraboli subgroup of M

�

.

We disuss now semigroups in G. The following fats an be proved for

any semigroup S with intS 6= ;, provided G has �nite enter. Consider the

ation of S in the ag manifolds of G. It was proved in [11℄, Theorem 6.2,

that S is not transitive in B

�

unless S = G. Moreover, there exists just one

losed invariant subset C

�

(S) � B

�

suh that Sx is dense in C

�

(S) for all

x 2 C

�

(S). This subset is alled the invariant ontrol set of S in C

�

(S)

(abbreviated S-i..s.). Sine S is not transitive, C

�

(S) 6= B

�

.

The fat that Sx is dense in C

�

(S) for all x 2 C

�

(S) implies the

existene of an open subset C

+

�

(S) � C

�

(S) suh that for all x; y 2 C

+

�

there

exists g 2 S with gx = y. Furthermore, C

+

�

(S) is dense in C

�

(S). In view of

Proposition 3.1 below we all C

+

�

(S) the attrator set of S in B

�

. Replaing

S by S

�1

we get a subset C

�

�

(S) whih we all the repeller set of S in B

�

.

In ase B

�

= B is the maximal ag manifold, we suppress de subsripts and

write simply C

�

(S) for C

�

�

(S). Also, if the semigroup is understood we

write simply C

�

�

instead of C

�

�

(S). Usually C

�

�

will be assoiated to a given

semigroup S while C

�

�

(T ) is extensively used for subsemigroups T � S.

For later referene we note that C

�

�

(S) is onneted in ase S is on-

neted, beause S is transitive on C

�

�

(S) and the evaluation map g 7! gx is

ontinuous.

Proposition 3.1 The attrator set C

+

�

is given att (h) with h running through

the split-regular elements in intS. Analogously the repeller set C

�

�

is formed

by rpp (h), h 2 intS.

The semigroups in G are distinguished aording to the geometry of

their invariant ontrol sets. This geometry is desribed by the following

statements, proved in [11℄.

Proposition 3.2 There exists � � � suh that �

�1

�

(C

�

) � B is the invari-

ant ontrol set in the maximal ag manifold. Among the subsets � satisfying

this property there exists a maximal one, in the sense that it ontains the

others.

We denote the maximal subset by � (S) and say that it is the paraboli

type of S. Alternatively, we say also that the paraboli type of S is the

8



orresponding ag manifold B (S) = B

�(S)

(see [8℄, [10℄, [11℄, for further

disussions about the paraboli type of a semigroup).

When � = �(S), the invariant ontrol set C

�(S)

has the following nie

properties:

Proposition 3.3 The set R (S) of split-regular elements in intS is not

empty, and if h 2 R (S) then att

�

(h) 2 C

+

�

for any � and .C

�(S)

�

st

�(S)

(h).

We onlude this setion by proving the following reversibility properties

inside identity omponent of minimal paraboli subgroups.

Lemma 3.4 Let T be an open semigroup and take x 2 C

+

(T ). Denote by

P the isotropy subgroup at x and let P

0

be its identity omponent. Then

T \ P

0

6= ; is left reversible.

Proof: By de�nition of C

+

, T \ P has non-empty interior in P . Sine

we are assuming that G has �nite enter, the number of onneted om-

ponents of P is �nite, hene T \ P

0

also has non-empty interior. Now,

left reversibility follows from [6℄, Lemma 4.6. In fat, T \ P

0

ontains a

split-regular h = expH, whih belongs to a Weyl hamber positive for P .

This means that the eigenvalues of ad(H) in the Lie algebra of P are � 0.

Using the same argument for the inverse semigroup we get right re-

versibility inside the isotropy subgroups at repeller points.

Lemma 3.5 Let T be an open semigroup and take x 2 C

�

(T ). Denote by

P the isotropy subgroup at x and let P

0

be its identity omponent. Then

T \ P

0

6= ; right reversible.

4 Control sets on G=P

0

Let P = MAN be a minimal paraboli subgroup and put P

0

= M

0

AN for

its identity omponent. Given an open semigroup S let C

+

be its attrating

set on B = G=P . Without loss of generality we an assume that P is the

isotropy subgroup at x 2 C

+

. In this ase S \ P is a nonempty open

semigroup meeting P

0

(if G has �nite enter). In order to have a notation

for the omponents of P meeting S we put

M (S; P ) = ftP

0

2 P=P

0

: S \ tP

0

6= ;g:

9



Clearly M (S; P ) a subsemigroup of P=P

0

= M=M

0

. Notie that M (S; P )

is atually a group in ase G has �nite enter, beause in this ase M=M

0

is

�nite.

The group M (S; P ) is also desribed in terms of ontrol sets in G=P

0

.

Let

� : G=P

0

�! B = G=P

be the anonial �bration with typial �ber P=P

0

= M=M

0

. This is simul-

taneously a overing and a prinipal bundle. The group M=M

0

ats on the

right on G=P

0

, and this ation ommutes with left ation of G. Sine we are

assuming that G has �nite enterM=M

0

is �nite and G=P

0

is ompat. Thus

any open semigroup S � G has invariant ontrol sets in G=P

0

, in general

not a unique one. As before we assume that P is the isotropy at x 2 C

+

.

In this ase P

0

is the isotropy subgroup at any y in the �ber �

�1

fxg over x.

Now, let D � G=P

0

be an invariant ontrol set for S, and put D

+

for

its set of transitivity. By general fats about ontrol sets on �ber bundles

� (D) = C, � (D

+

) = C

+

and any point of �

�1

(C) belongs to an invariant

ontrol set. Furthermore, sine the left ation of G ommutes with the right

ation of M (or rather M=M

0

), it follows that for any m 2 M , Dm is also

an S-i..s. This implies that Dm = D or Dm \ D = ;, and the invariant

ontrol sets of S on G=P

0

have the form Dm, m 2M=M

0

. We de�ne

M (S;D) = fm 2M=M

0

: Dm = Dg:

It is easy to hek that M (S;D) is a subgroup of M=M

0

. The following

proposition establishes the relation between M (S; P ) and M (S;D).

Proposition 4.1 Let P be the isotropy subgroup at a given x 2 C

+

and �x

y 2 D \ �

�1

fxg. Let m 7! ym be the bijetion between M=M

0

and the �ber

through y. Then M (S;D) = yM (S; P ).

Proof: Let m 2M be suh that the omponent mP

0

belongs to M (S;D).

Sine y 2 D, ym 2 D, so that there exists g 2 S suh that gy = ym. Clearly,

g leaves invariant the �ber over x, so that g 2 P . Moreover, gy = ym implies

that g = mt for some t 2 P

0

. Hene, g 2 mP

0

, showing that S \mP

0

6= ;,

that is mM

0

2M (S; P ).

Conversely, suppose that g 2 S \mP

0

. Then gy = ym 2 D, hene the

oset mM

0

belongs to M (S;D).

10



Corollary 4.2 The number of invariant ontrol sets for S on G=P

0

is the

order of (M=M

0

) =M (S;D).

We get a more detailed information about M (S;D) with the aid of the

paraboli type � (S) of the semigroup S. To do this we disuss �rst the

restrition to open ells of the bundles over a ag B

�

. Fix an open Bruhat

ell � � B

�

. Reall that the restrition of the bundle �

�

: B ! B

�

to � is

trivial, meaning that �

�1

�

(�) is di�eomorphi to ��F , where F = P

�

=P is

the �ber of B ! B

�

. Analogously, the restrition of G=P

0

! B

�

to � gives

the produt � � F

0

, where F

0

= P

�

=P

0

. The deomposition of the �ber F

0

into onneted omponents reads

P

�

=P

0

=

�

P

0

�

=P

0

�

�

�

P

�

=P

0

�

�

where P

0

�

is the identity omponent of P

�

. The �rst fator P

0

�

=P

0

is equal

to P

�

=P , sine any onneted omponent of P

�

ontains a omponent of P

(see [12℄, Lemma 1.2.4.5). The seond omponent is writen in terms of the

M -group as follows: Write M (�) = M \ P

0

�

. Then the set of omponents

of P

�

is M=M (�) (that is, M meets every omponent of P

�

and M (�)

is ontained in the identity omponent of P

�

; see [12℄, Lemma 1.2.4.5).

Therefore, the restrition of G=P

0

! B

�

over � is di�eomorphi to the

produt � � (P

�

=P )� (M=M (�)) :

Now we arry this deomposition to invariant ontrol sets in G=P

0

by

taking � = �(S). Reall that the invariant ontrol set C � B is given by

C = �

�1

�(S)

�

C

�(S)

�

, and there exists an open ell � � B

�(S)

with C

�(S)

� �.

Hene the restrition of G=P

0

! B

�(S)

above C

�(S)

is di�eomorphi to

C

�(S)

� (P

�

=P )� (M=M (�))

while C is di�eomorphi to C

�(S)

� (P

�

=P ). Notie that the projetion of

C

�(S)

� (P

�

=P ) � (M=M (�)) onto the �rst two omponents is just the

restrition of G=P

0

! B . Therefore, the slies C

�(S)

� (P

�

=P ) � fag,

a 2 M=M (�), are the leaves above C = C

�(S)

� (P

�

=P ), and eah one

is ontained in an invariant ontrol set in G=P

0

. Also, let D � C

�(S)

�

(P

�

=P )� (M=M (�)). Then by de�nition of M (D;S), it follows that

D = C

�(S)

� (P

�

=P )� (M (S;D) =M (�)) :

For later referene we summarize this desription of the invariant ontrol

sets in the following proposition.
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Proposition 4.3 Keep the above notations with �(S) the paraboli type of

S. Suppose, without loss of generality, that the standard paraboli subgroup

P � P

�(S)

is the isotropy of x 2 C

+

. Then any slie C

�(S)

� (P

�

=P ) �

fag, a 2 M=M (�), is entirely ontained in a ontrol set. Furthermore, an

invariant ontrol set D � G=P

0

is di�eomorphi to C

�(S)

� (P

�

=P )�M

D

,

where M

D

=M (S;D) =M (�).

5 Jordan deompositions

As before we let S � G be an open semigroup in the onneted semi-simple

Lie group G, with �nite enter with paraboli type � (S). In this setion we

relate the Jordan deompositions of elements in S with � (S). As a result

we get Theorem 5.9, ensuring that a g 2 S has exatly one �xed point in

C

+

�(S)

.

Reall that a g 2 G is said to be unipotent or semi-simple if Ad (g) is

unipotent or semi-simple, respetivley. The Jordan deomposition of g 2 G

writes g = g

s

g

u

= g

u

g

s

uniquely with g

s

; g

u

2 G semi-simple and unipotent,

respetively (see [12℄, Proposition 1.4.3.3). In real groups the semi-simple

omponent g

s

an be deomposed further into ompat and radial parts.

Proposition 5.1 Given g 2 G, there are an Iwasawa deomposition G =

KAN and u 2 K, h = expH 2 A suh that g

s

= uh, so that g = uhg

u

,

with g

u

unipotent. Furthermore, the omponents u, h, g

u

ommute with eah

other.

Proof: See [4℄, Theorem IX, 7.2.

Now, for g 2 S we shall relate the deomposition g = uhn with the

paraboli type of S. Sine h belongs to A there exists a Weyl hamber A

+

suh that h 2 lA

+

. Denote by � the simple system of roots assoiated to

A

+

, and put

� (h) = f� 2 � : � (log h) = 0g: (1)

This subset de�nes the standard paraboli subgroup P

�(h)

, whose redutive

Levi omponent L

�(h)

is the entralizer of h in G (see [12℄).

The next few results are intended to prove that � (h) is ontained in the

paraboli type � (S) of S.

Lemma 5.2 As above deompose g 2 S as g = uhg

u

. Then for some integer

k > 0, h

k

2 S.

12



Proof: Sine S is open and u belongs to a torus, we an �nd v of �nite

order so that vhg

u

2 S. Thus, for some integer l, h

l

g

l

u

2 S. On the other

hand, g

l

u

is a unipotent element in the redutive Lie group L

�(h)

. Thus for

any neighborhood U of g

l

u

in L

�(h)

there exists z 2 U with �nite order (see

[7℄, Lemma 4.1). If U is small enough, h

l

z 2 S. Taking into aount that

z 2 L

�(h)

ommutes with h

l

, we onlude that

�

h

l

�

s

2 S, if s is the order of

z, showing the lemma.

Sine h

k

belongs to the losure of A

+

, the lemma implies that S\A

+

6= ;.

Therefore, if we denote by L

0

�(h)

the identity omponent of L

�(h)

, we have

S \ L

0

�(h)

6= ;. This intersetion is in fat, quite large:

Lemma 5.3 Denote by M

�(h)

the semi-simple omponent of L

0

�(h)

, and

onsider the projetion p : L

0

�(h)

!M

�(h)

modulo the enter. Then p

�

S \ L

0

�(h)

�

=

M

�(h)

.

Proof: Clearly, p

�

S \ L

0

�(h)

�

is an open semigroup in M

�(h)

. By the

previous lemma h

k

2 S \ L

0

�(h)

, and sine p

�

h

k

�

is the identity in M

�(h)

,

the result follows.

Corollary 5.4 For every x 2M

�(h)

there exists a 2 A suh that xa 2 S.

Proof: The enter of L

0

�(h)

has the form Z

K

Z

p

with Z

K

� K, ompat

and Z

p

� A. Given x 2M

�(h)

the lemma shows the existene of a 2 Z

K

Z

p

with ax = xa 2 S. Sine Z

K

is ompat we an argue as in the proof of

Lemma 5.2, and get ax 2 S, with a 2 Z

p

� A.

Corollary 5.5 Given a ag manifold B

�

denote by b

�

the attrator of

A

+

in B

�

and by C

+

�

the attrator set of S, also in B

�

. Then the orbit

M

�(h)

b

�

� C

+

�

.

Proof: Take x 2 M

�(h)

, and let a 2 A be suh that xa 2 S. Then

xb

�

= xab

�

. But b

�

0

2 C

+

�

, and sine xa 2 S, it follows that xb

�

� C

+

0

.

Now it is easy to prove that the orbit M

�(h)

b

�

is entirely ontained in

the attrator set C

+

�

.

13



Lemma 5.6 Keep the previous notations with b

�

the attrator of A

+

in

B

�

. Then, M

�(h)

b

�

is ontained in the open Bruhat ell determined by A

+

if and only if �(h) � �.

Proof: Suppose that � (h) � �. Then M

�(h)

� P

�

, the isotropy at b

�

.

Hene M

�(h)

b

�

= b

�

.

For the onverse denote by W

�

the subgroup of the Weyl group gener-

ated by the reetions with respet to the roots in �. Suppose that some

� 2 �(h) is not in �, and let r

�

be the reetion with respet to �. Then

r

�

=2 W

�

, so that if w

�

is a representative of r

�

in the normalizer M

�

of A

then w

�

b

�

6= b

�

. However, w

�

2M

�(h)

so that M

�(h)

b

�

is not ontained in

the open ell.

Corollary 5.7 For g 2 S write g = uhg

u

, and de�ne �(h) as in (1). Then

�(h) � �(S).

Proof: Follows immediately from the previous lemma and the de�nition

of the paraboli type of S, after taking into aount that S \A

+

6= ;.

Corollary 5.8 gb

�(S)

= b

�(S)

.

Proof: L

�(h)

� P

�(h)

� P

�(S)

.

Finally we arrive that any element of the open semigroup S leaves �xed

just one point of the attrator set of S in the ag manifold orresponding

to the paraboli type.

Theorem 5.9 Let S be an open semigroup. Then any g 2 S has a unique

�xed point, say �x

�(S)

(g), in C

+

�(S)

.

Proof: It remains to hek that b

�(S)

is the only �xed point in C

+

�(S)

.

Write g = g

s

g

u

, g

s

= uh. It is standard that a g �xed point is also �xed un-

der g

s

and g

u

[proof: Ad (g

s

) and Ad (g

u

) are polynomial funtions of Ad (g).

Thus any subspae invariant under Ad (g) is also invariant under Ad (g

s

) and

Ad (g

u

). The laim then follows by the remark that any ag manifold an

be realized as an orbit in a ertain Grassmannian of subspaes of g.℄ Now,

b

�(S)

is the only �xed point under g

s

in the open ell � � B (S) determined

by A

+

, sine u leaves � invariant and h

k

x ! b

�(S)

for all x 2 �, so that

14



a x 2 �, x 6= b

�(S)

is not a �xed point. Sine C

+

�(S)

� � the result follows.

We note that the same result holds with S

�1

in plae of S, taking are

to onsider ag manifold B

�

�

(S)

dual to B

�(S)

in the sense of [8℄.

Remark: It beomes lear from the proof above that g

n

x! �x

�(S)

(g) for

every x in the open ell � determined by g (or A

+

). This open ell ontains

the invariant ontrol set C

�(S)

so that g

n

x! �x

�(S)

(g) for every g 2 S and

x 2 C

�(S)

.

Remark: With some extra e�ort one an use the previous results (speially

Corollary 5.7) to prove that the the map g 2 S 7! �x

�(S)

(g) 2 B

�(S)

is on-

tinous in S. We do not give the details here sine ontinuity of �x

�

(�) is

not needed in the sequel.

6 Invariane of onneted omponents

This setion starts the study of the oneted omponents. We prove here

that a omponent of S leaves invariant a unique omponent of the attrator

set C

+

. Reall that C

+

is given by �

�1

�(S)

�

C

+

�(S)

�

where �

�(S)

: B ! B

�(S)

is

the anonial projetion. Hene, the onneted omponents of C

+

have the

form �

�1

(K) where K is a onneted omponent of C

+

�(S)

. Analogously,

the onneted omponents of C

�

have the form �

�1

�(S

�1

)

�

C

+

�(S

�1

)

�

, with

obvious notation.

Lemma 6.1 Let � � S be a onneted omponent, and take g 2 �. Then

there exists a semi-simple element eg 2 � with �x

�(S)

(eg) = �x

�(S)

(g).

Proof: We keep in mind the notations and results of the previous se-

tion. With the given hoie of A

+

we have that the isotropy at �x

�(S)

(g)

is P

�(S)

and g 2 L

�(S)

. Now, the set of semi-simple elements in the re-

dutive group L

�(S)

is dense. Sine � \ L

�(S)

6= ; is open in L

�(S)

, there

exists a semi-simple eg 2 � \ L

�(S)

. Clearly �x

�(S)

(g) is �xed under eg,

hene by Theorem 5.9, �x

�(S)

(g) is the unique eg-�xed point in C

+

�(S)

, that

is �x

�(S)

(eg) = �x

�(S)

(g).

Notie that a onneted omponent � � S maps omponents of C

+

into

omponents, beause the evaluation map g 7! gx is ontinuous for any x and
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C

+

is invariant. Furthermore, if g�

1

� �

2

for some g 2 � and omponents �

1

and �

2

, then ��

1

� �

2

. Analogous remarks, hold for �

�1

and omponents

of the repeller set C

�

.

Our objetive now is to prove that � leaves invariant exatly one on-

neted omponent of C

+

. For this we reall the well known onstrution of

the ag manifold as an adjoint orbit. Let g = k� s be a Cartan deomposi-

tion and �x a maximal abelian subspae a � s and a Weyl hamber a

+

� a.

Given H

0

2 la

+

its adjoint orbit under K = exp k identi�es with the ag

manifold B

�(H

0

)

= G=P

�(H

0

)

where � (H

0

) is the set of simple roots annihi-

lating H

0

. This embedding permits to de�ne for H 2 s the height funtion

f

H

(�) = hH; �i. Now, there exists in B

�(H

0

)

a K-invariant Riemannian met-

ri, say (�; �)

H

0

, suh that for any H 2 s the gradient of f

H

with respet to

(�; �)

H

0

is preisely the vetor �eld

e

H on B

�(H

0

)

indued by H (see Borel [1℄

and Duistermaat, Kolk, Varadarajan [3℄).

Proposition 6.2 Let � � S be a onneted omponent. Then there exists

a unique onneted omponent �

1

of C

+

whih is invariant under �. Also,

there exists a unique omponent �

2

of C

�

invariant under �

�1

.

Proof: It is enough to prove the result for � and C

+

. By Theorem 5.9 a

g 2 S has a unique �xed point in C

+

�(S)

. Take g 2 �, let x be its �xed point

in C

+

�(S)

, and denote by e�

1

the onneted omponent of C

+

�(S)

ontaining x.

Then ge�

1

� e�

1

and thus �e�

1

� e�

1

. It follows that ��

1

� �

1

if �

1

= �

�1

e�

1

.

For the uniqueness it is enough to show that e�

1

is the only �-invariant

omponent of C

+

�(S)

. Take g as above with x = �x

�(S)

(g) 2 e�

1

. By Lemma

6.1 we an assume that g is semi-simple, and write g = uh = hu, with u

elipti and h = expH hyperboli, that is, there exists a Cartan deomposi-

tion g = k � s, suh that u 2 exp k and h 2 l exp a

+

, where a

+

is a Weyl

hamber in s. Thus the vetor �eld

e

H indued by H on B

�(S)

is the gradi-

ent of the height funtion f

H

, with respet to a Borel metri on B

�(S)

, so

that f

H

(hz) � f

H

(z) for any z 2 B

�(S)

with strit inequality if z is not a

singularity of

e

H. Note that f

H

attains its maximum at x (beause x is an

attrator of h), and f

H

is onstant along the orbits of u in B

�(S)

(beause

Ad (u)H = H). Also, if � � B

�(S)

stands for the open ell orresponding

to a

+

then

e

H has no singularity in � (this is due again to the fat that x is

an isolated �xed point of h so that the roots outside h�(S)i do not vanish

on H).
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Now, let e� 6= e�

1

be a onneted omponent of C

+

�(S)

. Sine some power

of h belongs to S (see Lemma 5.2) C

+

�(S)

(and hene e�) is ontained in

st

�(S)

(h). Hene, f

H

(gz) = f

H

(hz) > f

H

(z) for all z 2 le�. Thus if the

maximum of f

H

on le� is attained in z 2 le� then hz =2 le�, showing that

le� is not invariant under h, so that e� annot be invariant under �.

So far we have proved existene and uniqueness of invariant omponent

of C

+

�(S)

. However, the omponents of C

+

have the form � = �

�1

(e�), where

� : B ! B

�(S)

is the anonial projetion. Thus the result follows for om-

ponents of C

+

.

Sine the ontrol sets in B

�

are obtained by projeting ontrol sets in

B , this result implies immediately existene and uniqueness of invariant

omponents in arbitrary ag manifolds.

Corollary 6.3 A onneted omponent � � S leaves invariant a unique

omponent of C

+

�

, while there exists just one omponent of C

�

�

invariant

under �

�1

.

Notation: We denote by K

+

(�) the omponent of C

+

invariant under �

and by K

�

(�) the �

�1

-invariant omponent of C

�

. Analogously K

�

�

(�)

are the invariant omponents of C

�

�

.

Speializing these fats to the paraboli type B

�(S)

we have.

Corollary 6.4 For a onneted omponent � � S the set f�x

�(S)

(g) : g 2

�g is ontained in K

+

�(S)

(�).

Proof: A �xed point �x

�(S)

(g), g 2 �, belongs to a �-invariant ompo-

nent.

Still another onsequene of the existene and uniqueness of invariant

omponents obtains:

Corollary 6.5 Given a semigroup omponent � � S and an integer k > 0,

K

�

�

�

�

k

�

= K

�

�

(�).

Proof: First onsider the K

+

ase. If � = �(S) the result follows from

the previous orollary beause �x

�(S)

�

g

k

�

= �x

�(S)

(g). This implies the

result in the maximal ag manifold B beause the omponents of C

+

have
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the form �

�1

(�), with � � C

+

�(S)

a onneted omponent. From B the re-

sult is arried out to B

�

by projeting omponents. Finally, the K

�

ase is

obtained by taking S

�1

.

For a semigroup omponent � the invariant omponent K

+

(�) atually

satis�es �C

+

� K

+

(�). In fat, the attrator att (h) of any split-regular

h 2 � belongs to K

+

(�). Therefore, for any onneted omponent K �

C

+

, there exists a large enough integer k > 0 suh that h

k

K \ K

+

(�) 6=

;, implying that h

k

K � K

+

(�), and thus �K � K

+

(�). Analogously,

�

�1

C

�

� K

�

(�). The same reasoning yields that the attrator and repeller

sets of � satisfy C

�

(�) � K

�

(�).

For other omponents we have the following useful property of the sets

K

�

(�).

Lemma 6.6 For g 2 S and a semigroup omponent �, denote by � (g) the

omponent ontaining �g and by (g) � the omponent ontaining g�. Then

K

+

(� (g)) = K

+

(�) and K

�

((g) �) = K

�

(�).

Proof: For the �rst equality note that gK

+

(�) � C

+

so that �g (K

+

(�)) �

�C

+

� K

+

(�). The seond equality follows analogously.

Remark: The proof of uniqueness of the invariant omponent ould be

done in a di�erent route, exploiting the ontinuity of the map g 2 S 7!

�x

�(S)

(g) 2 C

�(S)

(see the remark at the end of Setion 5). In fat, sine

the map is ontinuous the set of �xed points �x

�(S)

(g) with g running

through � is ontained in a onneted omponent of C

+

�(S)

, whih must be

the only �-invariant omponent.

7 Semigroup omponents

This setion is devoted to the proof of the following haraterization of the

semigroup omponents of S. Denote by # (C

�

) the number (possibly in�-

nite) of onneted omponents of C

�

and by #

s

(S) the number of semigroup

omponents of S.

Theorem 7.1 Given a pair of onneted omponents K

1

of C

+

and K

2

of

C

�

there exists a unique semigroup omponent � suh that C

+

(�) � K

1
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and C

�

(�) � K

2

. Furthermore, � satis�es C

+

(�) = K

+

(�) = K

1

and

C

�

(�) = K

�

(�) = K

2

. Therefore, #

s

(S) = # (C

+

) �#(C

�

).

Notation: Given omponents K

1

� C

+

and K

2

� C

�

we denote by

� (K

1

;K

2

) the unique semigroup omponent whose attrator and repeller

sets are K

1

and K

2

, respetively.

Corollary 7.2 Given an arbitrary onneted omponent � � S the set

S

k�1

�

k

meets a unique semigroup omponent. We denote this semigroup

omponent by � (�).

Proof: Existene follows immediately from Lemma 5.2 (and its proof).

On the other hand, by Corollary 6.4 K

�

�

�

k

�

= K

�

(�) so that if �

k

is ontained in a semigroup omponent � then C

�

(�) = K

�

(�). Hene

uniqueness follows from the theorem.

We separate the proof of Theorem 7.1 in two steps orresponding to

existene and uniqueness of �.

7.1 Existene

Given the onneted omponents K

1

� C

+

and K

2

� C

�

in order to prove

the existene of a semigroup omponent � with C

+

(�) � K

1

and C

�

(�) �

K

2

it is enough exhibit a split-regular h 2 S whose attrator belongs to K

1

and repeller to K

2

. In fat, some positive power h

k

belongs to a semigroup

omponent satisfying the required onditions.

To start with let us take split-regular elements h

1

; h

2

2 S suh that

att (h

1

) 2 K

1

and rpp (h

2

) 2 K

2

. Denote by �

1

and �

2

the exit omponents

of h

1

and h

2

, respetively. Then C

+

(�

1

) � K

1

whereas C

�

(�

2

) � K

2

. Now,

the basi idea is provided by the following lemma ombined with Proposition

6.2 (and its orollary).

Lemma 7.3 Let �

1

and �

2

be semigroup omponents with C

+

(�

1

) � K

1

and C

�

(�

2

) � K

2

. Then K

1

is invariant under �

1

�

2

while K

2

invariant

under (�

1

�

2

)

�1

= �

�1

2

�

�1

1

.

Proof: For the invariane of K

1

it is enough to show that there exists

a 2 �

1

�

2

with aK

1

\ K

1

6= ;. For this take g 2 �

2

and a split-regular
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h 2 �

1

. The attrator att (h) 2 K

1

, so that h

n

x 2 K

1

for x in a dense

subset and n large enough. Sine gK

1

is open, there exists z 2 K

1

, and an

integer n > 0 suh that h

n

gz 2 K

1

. Hene a = h

n

g is the required element

in �

1

�

2

. The proof for K

2

is analogous.

Now the existene proof an be performed. Put � = �

1

�

2

. By the

previous lemma K

+

(�) = K

1

and K

+

(�) = K

2

. Sine our group G has

�nite index there is an integer k > 0 suh that �

k

is ontained in a semigroup

omponent, say �. However, we have by Corollary 6.5, that K

�

(�) =

K

�

(�). Therefore, � is the required semigroup omponent, onluding the

proof.

7.2 Uniqueness

For the proof of uniqueness of semigroup omponent we �x advane on-

neted omponents K

1

� C

+

and K

2

� C

�

, and assume that there exists a

semigroup omponent, say �

0

, with C

+

(�

0

) � K

1

and C

�

(�

0

) � K

2

.

Lemma 7.4 K

1

= C

+

(�) with � running through the semigroup ompo-

nents suh that C

+

(�) � K

1

. An analogous result holds for K

2

and C

�

(�).

Proof: Given x 2 K

1

there exists a split-regular h 2 S with x = att (h).

Denote by E (h) the exit omponent of h, so that for some k > 0, h

k

2 E (h).

Then the attrator set C

+

(E (h)) � K

1

, sine h

k

x = x and hene K

1

is the

unique omponent left invariant by E (h). But x 2 C

+

(E (h)) � K

1

, prov-

ing the statement for K

1

. The proof for K

2

is analogous.

This lemma shows that in the eventuality that C

+

(�

0

) di�ers from

K

1

there must exist another semigroup omponent �

1

suh that C

+

(�

0

) \

C

+

(�

1

) 6= ;. In the next two lemmas we look at this possibility.

Lemma 7.5 The semigroup omponents �

1

and �

2

satisfy �

1

�

2

� �

2

if

C

+

(�

1

) \ C

+

(�

2

) 6= ;. Analogously, �

1

�

2

� �

1

if C

�

(�

1

) \ C

�

(�

2

) 6= ;.

Proof: Take x 2 C

+

(�

1

)\C

+

(�

2

) and denote by P the istoropy at x. By

assumption the semigroups T

1

= �

1

\ P

0

and T

2

= �

2

\ P

0

are open in P

0

and non-empty. By Lemma 3.4, T

2

is left reversible in P

0

. Thus for every

x 2 T

1

there exists y 2 T

2

suh that xy 2 T

2

. It follows that �

1

�

2

� �

2

, as

laimed.
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Now applying this fat to the inverse semigroups, we get �

�1

2

�

�1

1

� �

�1

1

,

whih is equivalent to the last statement.

Lemma 7.6 Let �

1

and �

2

be semigroup omponents, and suppose that

C

+

(�

1

) \ C

+

(�

2

) 6= ;. Then C

+

(�

1

) = C

+

(�

2

).

Proof: Given x 2 C

+

(�

1

) there exists a split regular h 2 �

1

suh that

x = att (h). Thus h

n

y ! x for y in a dense subset. In partiular, for

all g 2 �

2

, gC

+

(�

2

) is open, so that there exists y 2 C

+

(�

2

) suh that

h

n

gy ! x, n ! +1. By the previous lemma h

n

g 2 �

2

, for all n. Hene

h

n

gy 2 C

+

(�

2

), and sine the invariant ontrol sets are losed, it follows

that x 2 C (�

2

).

It remains to hek that x is atually in C

+

(�

2

). Take z 2 C (�

1

)

0

\

C (�

2

)

0

. Then there are a 2 �

2

and b 2 �

1

suh that ax = z (beause

x 2 C (�

2

) and z 2 C

+

(�

2

)) and bz = x (beause x; y 2 C

+

(�

1

)).

Therefore, bax = x. But, ba 2 �

2

, hene x 2 C

+

(�

2

), as desired. Thus

C

+

(�

1

) � C

+

(�

2

). The reverse inlusion follows by symmetry.

It is now an easy onsequene of the previous lemmas that the attrator

set of a semigroup omponent is a onneted omponent of the attrator set

of S.

Proposition 7.7 Let � a semigroup omponent, and denote by K the on-

neted omponent of C

+

whih ontains C

+

(�). Then C

+

(�) = K.

Proof: By Lemma 7.4, K is a union of attrator sets of semigroup ompo-

nents. However Lemma 7.6 shows that two of these attrator sets are equal

or disjoint. Sine these sets are open and K is onneted, the result follows.

Applying this proposition to the semigroup S

�1

, we get the orrespond-

ing result for the repeller sets.

Proposition 7.8 Let � a semigroup omponent, and denote by K the on-

neted omponent of C

�

whih ontains C

�

(�). Then C

�

(�) = K.

Now let �

0

and �

1

be semigroup omponents whose attrator and repeller

sets are ontained in the same omponent of C

+

and C

�

, respetively. By

Propositions 7.7 and 7.8, C

�

(�

0

) = C

�

(�

1

). On the other hand, Lemma
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7.5 ensures that �

0

�

1

� �

0

and �

0

�

1

� �

1

. Hene �

0

= �

1

. Conluding the

uniqueness part of the proof of Theorem 7.1.

We onlude this setion stating the following onsequene of our proof,

whih might be interesting in itself.

Proposition 7.9 Let � � S be a semigroup omponent. Then � has the

same paraboli type as S.

Proof: By Proposition 7.7 the �-i..s. on B is the losure of a onneted

omponent K � C

+

. Suh a omponent has the form �

�1

�(S)

(K

1

), with K

1

a

omponent of C

+

�(S)

. This shows that the paraboli type � (�) of � ontains

� (S). Sine � � S they must be equal.

Remark: These results about semigroup omponents show that in general

semigroups in onneted solvable groups an have more than one semigroup

omponent. To see this take S � G an open semigroup in suh a way that

C

�

ontains two di�erent onneted omponents, say K

1

and K

2

. Fixing

x 2 C

+

let P be the isotropy at x and K the omponent of C

+

ontaining x.

Then S \P

0

has at least two semigroup omponents, namely � (K;K

1

)\P

0

and � (K;K

2

) \ P

0

.

8 Reurrent omponents

De�nition 8.1 A onneted omponent � � S is said to be reurrent (or

to have �nite index) if �

k

\ � 6= ; for some integer k > 1. The smallest

k � 2 satisfying this ondition is the index of �. Otherwise the omponent

is transient or has in�nite index.

Alternatively, � has �nite index if and only if �

k

� � for some integer

k > 1, whih means that � has �nite index in the semigroup of ompo-

nents. Of ourse, a omponent is a semigroup if and only if it has index 2.

Furthermore, if k is the index of � then �

n

� � for any multiple n = lk,

l � 1.

In this setion we present a desription of the �nite index omponents in

a manner similar to the semigroup omponents. Now we look at the ontrol

sets on G=P

0

instead of B . First we prove an useful property of reurrent

omponents, whih holds in general.
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Lemma 8.2 Given a reurrent omponent �, suppose there exists a semi-

group omponent � ontaining a power �

s

. Then �� � � and �� � �.

Proof: Let n > s be suh that �

n

� �. Then any g 2 �

n�s

satis�es

g�;�g � �. We an hange g by gh, h 2 �, without a�eting the inlusion

g� � �. But, gh 2 �, so that �� � �. Analogously, hg 2 � so that

�� � �.

In semi-simple groups the following kind of onverse to this lemma also

holds.

Proposition 8.3 Let the notations be as in the pre�ous setion and take

a omponent � � S. Suppose that t � is a reurrent omponent suh that

K

�

(�) = K

�

(�) and � ontains g� or �g for some g 2 S. Then � is

reurrent.

Proof: Assume �rst that � is a semigroup omponent and g� � �. Denote

by �

g

the omponent of S ontaining g, so that �

g

� � �. Sine �

g

is open

it ontains semi-simple elements, so that we an assume without loss of

generality that g is semi-simple. Write g = mh = hm, with h split and

m ompat. Using again that �

g

is open we an assume that m has �nite

index, say k. Sine h = expH, H 2 g, there exists a power h

s

whih is

ontained in a semigroup omponent. This omponent must be �, beause

�x(g) and �x

�

g

�1

�

are �xed points of h. Hene, for large s = lk+1, h

s

2 �

and mh

s

2 �. Therefore, (mh

s

)

k+1

= mh

ks

2 �, showing that �

k+1

� �,

that is, � has �nite index. The proof in ase �g � � is the same.

Now, if � is reurrent then K

�

(�) = K

�

(�

1

), for a semigroup ompo-

nent �

1

, so that by the previous lemma there exists g

1

2 S with g

1

�

1

� �.

Hene, gg

1

�

1

� �, and the result follows by the �rst part of the proof.

In order to proeed we reall that by Corollary 7.2, there exists a unique

semigroup omponent � (�) whih ontains some power of �. It is de�ned by

the onditions K

�

(� (�)) = K

�

(�). Hene Lemma 8.2 applies to our on-

text. Consider the projetion � : G=P

0

! B . The pre-images �

�1

(K

�

(�))

are also invariant under �, so the omponents of �

�1

(K

+

(�)) are mapped

into eah other by �. To see the behavior of these mappings we look �rst

at the semigroup omponents.

23



Lemma 8.4 Let � be a semigroup omponent, and � a onneted omponent

of �

�1

(K

+

(�)). Then �y = � for every y 2 �. Analogously, the omponents

of �

�1

(K

�

(�)) are orbits of �

�1

.

Proof: Sine � is a semigroup it ontains a split-regular element h. Denote

by A

+

the hamber ontaining h, and let P be the orresponding paraboli

subgroup. If P is the isotropy subgroup at x 2 B , then x 2 K

+

(�), and

P

0

is the isotropy subgroup of any y in the �ber �

�1

fxg. Thus h 2 � �xes

every point over x, showing that �y � � for every y 2 �. This inlusion is

an equality beause � ats transitively on K

+

(�).

Combining this lemma with Lemma 8.2 we see that the reurrent om-

ponents map omponents in G=P

0

onto omponents.

Proposition 8.5 Let � be a reurrent omponent and � a onneted ompo-

nent of �

�1

(K

+

(�)). Then �y is a onneted omponent of �

�1

(K

+

(�))

for every y 2 �. Analogous result holds for �

�1

(K

�

(�)) and �

�1

.

Proof: By Lemma 8.2, there exists g 2 S with � (�) g � �. Then, for ev-

ery y 2 �, � (�) gy � �y, so that �y equals the omponent ontaining gy.

Now we an prove existene and uniqueness of a reurrent omponent

mapping a onneted omponent of a ontrol set in G=P

0

onto another

omponent.

Lemma 8.6 Let � be a semigroup omponent, and �

1

, �

2

onneted ompo-

nents of �

�1

(K

+

(�)). Then there exists at most one �nite index omponent

� with � (�) = � and ��

1

= �

2

.

Proof: Let � and �

1

be reurrent omponents with � (�) = � (�

1

),

and suppose that � and �

1

map �

1

into �

2

. Take g 2 � and y 2 �

1

.

By the previous orollary there exists g

1

2 �

1

suh that gy = g

1

y. Then

g

�1

g

1

2 P

0

, the isotropy at y. Now, � \ P

0

is left reversible in P

0

, so that

g

�1

g

1

�\� 6= ;, that is, g�\ g

1

� 6= ;. However, by Lemma 8.2, g� � � and

g

1

� � �

1

. Hene, � \ �

1

6= ;, showing the uniqueness of the omponent.

Lemma 8.7 Let � be a semigroup omponent, and �

1

, �

2

onneted om-

ponents of �

�1

(K

+

(�)). Suppose that �

1

and �

2

are ontained in the same
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invariant ontrol set in G=P

0

. Then there exists a reurrent omponent �

suh that ��

1

= �

2

.

Proof: By assumption there exists g 2 S with g�

1

� �

2

. Denote by

� the omponent of S ontaining g�. We laim that K

�

(�) = K

�

(�).

In fat, the inlusion g�

1

� �

2

implies that gK

+

(�) � K

+

(�), so that

g� leaves invariant K

+

(�), hene K

+

(�) = K

+

(�). On the other hand

K

�

(�) = K

�

(�) by Lemma 6.6. Therefore, by Proposition 8.3, � is reur-

rent. Now, Lemma 8.4 ensures that � maps �

1

into �

2

.

Finally we prove that the produt of reurrent omponents is reurrent,

so that this set of omponents is a subsemigroup.

Proposition 8.8 The set of reurrent omponents is a subsemigroup of the

semigroup of omponents of S, that is, the union of the reurrent omponents

is a subsemigroup of S.

Proof: First we hek that the produt � = � (K

1

;K

2

) � (L

1

; L

2

) of

semigroup omponents is reurrent (f. the notation following Theorem

7.1). Note that by Lemma 7.3, K

1

= K

+

(�) while L

2

= K

�

(�). Now, by

Lemma 7.5, � (K

1

; L

2

) � (K

1

;K

2

) � � (K

1

;K

2

), so that � (K

1

; L

2

)� � �.

Hene, by Proposition 8.3, � is reurrent.

Now if � is reurrent and � is a semigroup omponent, then � ontains

g�

1

with �

1

the semigroup omponent suh that K

�

(�

1

) = K

�

(�

1

), so

�� ontains g�

1

�. By the �rst part of the proof �

1

� is reurrent, hene

by Proposition 8.3, �� is reurrent, beause K

�

(��) = K

�

(�

1

�). The

same way one proves that the produt of arbitrary reurrent omponents is

reurrent.

9 Mid-reversibility

A subsemigroup S � G is said to be mid-reversible if SgS \ S 6= ;, for all

g 2 G, or G = SS

�1

S or G = S

�1

SS

�1

. Aordingly the mid-reversor of S

is de�ned to be the set

Mid (S) = fg 2 G : SgS \ S 6= ;g

and S is mid-reversible if Mid (S) = G. These onepts were introdued

in [6℄ where they are related to the onneted omponents of S when S is
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open. In this setion we pursue further on these relations for semigroups in

semi-simple Lie groups.

Let us take in advane a minimal paraboli subgroup P in suh a say

that the orresponding origin b

0

2 B = G=P belongs to C

+

(S). As we

shall see mid-reversibility and questions involving the way S generates G

are related to the intersetion of S with the onneted omponents of P .

Lemma 9.1 G = S

�1

P .

Proof: It is known that for every x 2 B , C (S) � Sx (this is a onsequene

of the uniqueness of the S-i..s., see e.g. [7℄). Hene B = S

�1

b

0

, and sine

P is the isotropy subgroup at B

0

the lemma follows.

This simple fat yields the following suÆient ondition for S to be mid-

reversible.

Proposition 9.2 Suppose that S \ P meets every onneted omponent of

P . Then S is mid-reversible.

Proof: We show that P � SS

�1

. Take g 2 P . By assumption there exists

t 2 S\P in the onneted omponent of g. Then t

�1

g 2 P

0

. By Lemma 3.4,

S\P

0

is left reversible, so that there exists s 2 S with t

�1

gs 2 S\P

0

. Hene

g 2 SS

�1

. Using the previous lemma we get G = S

�1

SS

�1

, onluding the

proof.

Corollary 9.3 Every open semigroup in G is mid-reversible if the minimal

paraboli subgroups are onneted.

Examples of G with onneted P (or equivalently, onneted M) are the

groups with real rank one with dim B > 1 and the omplex groups. For these

groups a result of Ruppert (see [6℄, Theorem 3.9) shows that subsemigroups

ontaining 1 in the losure are onneted. Of ourse this phenomena does

not our in general. For example the interior of the semigroup �Sl (2;R)

+

ontains the identity in its losure but is not onneted. However, we shall

prove below that in general an open semigroup has just one semigroup om-

ponent if the identity is a luster point.

Remark: The riterion of Theorem 9.4 works also for semigroups with

nonempty interior, sine in ase intT 6= ; it is easy to prove that T is mid-

reversible if and only if intT is mid-reversible.
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We observe that Proposition 9.2 (and hene its orollary) does not re-

quire that the group G has �nite enter. So the ondition that S \P meets

every omponent of P is suÆient for mid-reversibility even in groups with

in�nite enter. We prove next the onverse to Proposition 9.2, using ex-

pliitly that G has �nite enter. Note that by the disussion in Setion 4

uniqueness of invariant ontrol set in G=P

0

holds if and only if S \P meets

every omponent of P if P is the isotropy subgroup at x 2 C

+

.

Theorem 9.4 An open semigroup S � G is mid-reversible if and only if S

has exatly one invariant ontrol set on G=P

0

.

Proof: If there is uniqueness of invariant ontrol set then S meets every

omponent of P so it is mid-reversible by Proposition 9.2.

For the onverse we assume that some omponent of P , say mP

0

, does

not meet S and prove that SmS \ S = ;. In fat, suppose to the ontrary

that tms 2 S with t; s 2 S. Arguing as in the �rst part of the proof we see

that there exists t

1

2 S suh that p = t

1

t 2 P . We an write p = m

1

p

1

,

with p

1

2 P

0

, m

1

2M (S; P ). Then pm = m

1

mq, where q = m

�1

p

1

m 2 P

0

.

Note that m

1

m =2M (S; P ), sine m =2M (S; P ).

Now, reall the notation rounding Proposition 4.3, and identify �

�1

(C),

� : G=P

0

! B , with C

�(S)

� (P

�

=P ) � (M (S;D) =M (�)). By Proposition

4.3 the set D = C

�(S)

�(P

�

=P )�M

D

is an invariant ontrol set for S. Sine

q 2 P

0

any slie C

�(S)

�fag�fbg, a 2

�

P

�(S)

�

0

=P

0

, b 2

�

P

�(S)

=

�

P

�(S)

�

0

�

is invariant under q. Also, s 2 S, so that sD � D. Hene, qsD � D. On

the other hand, m

1

mD\D = ;, beause m

1

m =2M (S; P ). Hene we arrive

at the ontradition that (tms)D\D = ; with tms 2 S and D an invariant

ontrol set.

As an appliation of these results we an prove that ompression semi-

groups are always mid-reversible.

Proposition 9.5 Let T � G be a semigroup with non-empty interior, and

denote by C its invariant ontrol set on B . Suppose that

T = ompC = fg 2 G : gC � Cg:

Then T has a unique i..s on G=P

0

, namely �

�1

(C), where � : G=P

0

! B

is the standard projetion. Therefore, T is mid-reversible.
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Proof: Fix b 2 C

+

and take a split-regular h 2 intT suh that b = att (h).

Suppose that h 2 A

+

, orresponding to the deomposition P = MAN ,

where P is the isotropy at b. It is enough to show that for any m 2M there

exists an integer k > 0 with mh

k

2 T .

Let � (T ) be the paraboli type of T and put C

�(T )

for the T -i..s on

B

�(T )

. Sine C = �

�1

�(T )

�

C

�(T )

�

, g 2 T if and only if gC

�(T )

� C

�(T )

. Put

b

�

= �

�(T )

b. Then h

n

C

�(T )

! fb

�

g as n! +1, and b

�

is �xed under M .

The latter ensures given m 2 M there exists a neighborhood U � C

+

�

of

b

�

suh m (U) � C

+

�

. Now, take k large enough so that h

k

C

�

� U . Then

mh

k

C

�

� mU � C

�

, so that mh

k

2 intT , onluding the proof.

A slight hange of the proof of Theorem 9.4 yields the following infor-

mation about the mid-reversor of S.

Proposition 9.6 Let A

+

be a Weyl hamber and denote by P and N

�

the subgroups determined by A

+

. Suppose that the attrator set C

+

of

S is ontained in the open ell �

A+

determined by A

+

. Then, the subset

M (S; P )N

�

P

0

is ontained in the mid-reversor of the open semigroup S.

Proof: As in Proposition 4.3, write a ontrol set D on G=P

0

as

D = C

�(S)

�

�

P

�(S)

=P

�

�M

D

with C

�(S)

ontained in the open Bruhat ell �

�(S)

in B

�(S)

determined by

P . Take g 2 M (S; P )N

�

P

0

. If y is an element in the �ber over x then gy

is ontained in �

�(S)

�

�

P

0

�(S)

=P

0

�

�M (S; P ). Now a split-regular h 2 P

0

leaves invariant the slies �

�(S)

� fag � fbg. In partiular, if h 2 S \ P

0

hgy belongs to the same slie as gy, so that if h is large enough hgy 2 D.

Thus there exists g

1

2 S suh that g

1

g 2 M (S; P )P

0

. Therefore the same

argument as in the �rst part of the proof above shows that g 2 Mid (S), as

desired.

We turn now to the relation between mid-reversibiltity and the onneted

omponents. First note that the set N

�

P

0

is a neighborhood of 1 2 G, sine

the produt map N

�

� P

0

! G has full rank at the identity. From this

remark and the above proposition we get the following fat whih is a slight

hange ot [6℄, Theorem 3.9 (i).

Lemma 9.7 Suppose 1 2 lS, and let A

+

be a Weyl hamber with S \

A

+

6= ;. Take N

�

and P

0

subgroups orresponding to A

+

and put U =
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N

�

P

0

. Then U meets exatly one omponent � of S, and this omponent is

a semigroup ontaining 1 in its losure.

Proof: By assumption there exists g 2 S \ U . Let � be the omponent

ontaining g and selet an neighborhood of the identity V suh that V gV �

�. Put S

V

for the interior of the semigroup generated by S \ V . Clearly

S

V

� S hene its invariant ontrol set is ontained in C. Therefore by

Proposition 9.6 U is ontained in the mid-reversor of S

V

. Now, the proof

that � is a semigroup and the unique omponent meeting U follows verbatim

the proof of Theorem 3.9 (i) of [6℄. We sketh it: The hoie of V implies

that S

V

� � � and S

V

gS

V

� �. Thus

; 6= S

V

gS

V

\ S

V

� � \ S

V

:

But for h 2 �\S

V

it holds h� � S� � �, so that � is a semigroup. Further-

more, let � be a omponent meeting V . Repeating the above arguments we

get �g� \ � 6= ; and �g� � �. Hene S \ V � �, so that 1 2 lS, and

sine g 2 U was arbitrary, the uniqueness follows, onluding the proof.

Theorem 9.8 Let S be an open semigrouup in the onneted semi-simple

Lie group G with �nite enter. If 1 2 lS then any omponent of S has

�nite index. Also, there exists exatly one semigroup omponent, whih is

the only omponent ontaining 1 in its losure.

Proof: For the uniqueness of the semigroup omponent it is enough to

hek that the sets C

�

are onneted. Let � be the unique (semigroup)

omponent ontaining 1 in its losure, as ensured by the above lemma. If

� is a onneted omponent of C

+

then �� � � beause 1 2 lS. Sine

by Lemma 6.2, � leaves invariant just one omponent of C

+

it follows that

this set is onneted. Analogously, C

�

is onneted showing that � is the

only semigroup omponent of S. Using again the fat that 1 2 l� we see

that �� � � for any onneted omponent �. Therefore, Proposition 8.3

ensures that the omponents are reurrent.

In onluding we shall exploit a step further our method of proving

mid-reversibility to get a (rough) estimate of the number of fators S, S

�1

required to produe G. The idea is that if P is the isotropy subgroup at

b

0

2 C

+

then P

0

� SS

�1

, so that if x 2 G=P

0

is �xed under P

0

and for

a ertain produt A = S

i

1

� � � S

i

k

, Ax = G=P

0

then G = ASS

�1

. Now, let
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x

1

; : : : ; x

k

be the �xed point set of P

0

in G=P

0

. By making a right hoie

of N

�

, we get open orbits N

�

x

i

, i = 1; : : : ; k, whose union ontain the

invariant ontrol sets in G=P

0

. Aordingly, we hoose h 2 S \P

0

suh that

h

n

y ! x

i

for every y 2 N

�

x

i

. Write C

i

= �

�1

(C

+

) \ N

�

x

i

then the sets

h

�n

C

i

, n � 1, over Nx

i

, so that N

�

x

i

� S

�1

x

i

.

Lemma 9.9 If two slies satisfy I

ij

= l (N

�

x

i

) \ l (N

�

x

j

) 6= ; then

(C

j

)

0

� SS

�1

x

i

.

Proof: The losed set I

ij

ontains h-�xed points, sine I

ij

is h-invariant

and a limit limh

n

z is �xed under h. If y 2 I

ij

is an h-�xed point then there

exists an e�etive ontrol set, say D, with y 2 D

0

, so that D

0

\N

�

x

i

6= ; 6=

D

0

\N

�

x

j

. Now, D

0

\N

�

x

i

6= ; implies that D

0

\ S

�1

x

i

6= ;, and hene

D

0

� S

�1

x

i

, beause S

�1

is transitive on D

0

. On the other hand, h

n

z ! x

j

for any z 2 N

�

x

j

. Therefore, (C

j

)

0

meets SD

0

� SS

�1

x

i

implying that

(C

j

)

0

� SS

�1

x

i

, as laimed.

Thus by applying SS

�1

we over di�erent sets (C

j

)

0

. We an do this

suessively and get the following upper bound for the number of fators.

Note that the order of the �xed point set of P

0

in G=P

0

is the number of

onneted omponents of P .

Proposition 9.10 Let k = jP=P

0

j. Then G = S

�1

�

SS

�1

�

k

.

Proof: With the notations as above we prove by indution on l = 1; : : : ; k�

1 that

�

SS

�1

�

l

x

1

ontains l+1 di�erent sets (C

i

)

0

. For l = 1 the statement

follows from the above lemma. Thus suppose that

�

SS

�1

�

l�1

x

1

ontains the

sets

�

C

i

j

�

0

, j = 1; : : : ; l. Sine G=P

0

is onneted there exists a slie N

�

x

i

,

i 6= i

j

, j = 1; : : : ; l, suh that l (N

�

x

i

) meets some l

�

N

�

x

i

j

�

. Applying

again the lemma, it follows that (C

x

i

)

0

�

�

SS

�1

�

l

x

1

.

Therefore,

S

k

i=1

(C

x

i

)

0

�

�

SS

�1

�

k�1

, so that G=P

0

� S

�1

�

SS

�1

�

k�1

.

As mentioned above, this implies that G = S

�1

�

SS

�1

�

k

, onluding the

proof.

10 Examples

In this setion we provide some examples and ounter-examples related to

the results of the paper.
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10.1 Transient omponents

The following is an example of a transient omponent of an open semigroup

in G = Sl (2;R). For positive reals r < s put

U

r;s

=

��

a b

 d

�

2 Sl (2;R) : r < a < s; b; ; d � 0

�

:

Sine the entries are positive, it follows that r

n+1

< aa

0

if x 2 U

r;s

and

x

0

2 U

n

r;x

, where

x =

�

a b

 d

�

x

0

=

�

a

0

b

0



0

d

0

�

:

Hene, U

r;s

\U

n

r;s

= ; for all n � 2 if 1 < r < s < r

2

. Under this ondition the

onneted ompoenents of U

r;s

are transient omponents in the semigroup

S

r;s

generated by U

r;s

. Atually, it is not hard to hek that U

r;s

is itself

onneted, so that it is a transient omponent in S

r;s

if 1 < r < s < r

2

.

10.2 Fixed points

For the results Setion 5 to hold the ondition that S is an open semigroup

is essential. This ondition appears expliitly for instane in the proof of

Lemma 5.2 and subsequently.

Atually, even for semigroups with non-empty interior the uniqueness of

�xed points stated in Theorem 5.9 holds only for the interior points. Here is

an example of a semigroup S � Sl (3;R) with non-empty interior suh that

boundary elements of S an have in�nity �xed points in the attrator set

C

+

�(S)

.

Given a basis fe

1

; e

2

; e

3

g of R

3

de�ne the ag b

0

= (V

1

� V

2

), V

1

=

spanfe

1

g, V

2

= spanfe

1

; e

2

g, and write lower triangular matries as

(a; b; ) =

0

�

1 0 0

a 1 0

 b 1

1

A

:

Consider the diagonal matrix

H = diagf2;�1;�1g:

Then exp (tH) (a; b; ) exp (�tH) =

�

e

�3t

a; b; e

�3t



�

, so that the semigroup

exp (tH), t � 0, leaves invariant subsets of the form

R

�;�;

= f(a; b; ) b

0

: jaj � �; jbj � �; jj � g:
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Thus if we let S be the ompression semigroup of R

�;�;

, �; � > 0, then

exp (tH) 2 S if t � 0. By general fats about ompression semigroup the

ag type of S is the full ag manifold, R

�;�;

is the invariant ontrol set

of S and C

+

= intR

�;�;

. The points (0; b; 0) b

0

2 R

�;�;

are �xed under

exp (tH), t � 0., and belong to C

+

. Of ourse, exp (tH), t � 0, are boundary

elements of S.

10.3 Components of i..s.

The onneted omponents of the semigroups were studied via the ompo-

nents of the attrator and repeller sets C

�

. The attrator set C

+

is dense

in the invariant ontrol set C, so that it is natural to ask about the relation

between the omponents of C

+

and C. In general C

+

an have muh more

omponents than C. Examples of semigroups with C onneted, but C

+

not

onneted are easily given as ompression semigroups of losed onneted

sets, having non-onneted interior. For instane, onsider the situation in

Sl (3;R) of the previous example. In the open ell N

�

b

0

let C be the union

of two tangent balls, i.e., C is presribed by

a

2

+ b

2

+ (+ 1)

2

� 1 or a

2

+ b

2

+ (� 1)

2

� 1:

The ompression semigroup of C has at least two semigroup omponents

although C is onneted.

10.4 Compression semigroup of a one

Let W � R

n

be a pointed generating one, and onsider the ompression

semigroup

S

W

= fg 2 Sl (n;R) : gW �Wg:

In Ribeiro and San Martin [5℄ it was proved that S

W

is onneted. We shall

use our results above to give an alternative proof of this fat. It is well know

(and easy to see) that S = intS

W

is dense in S

W

, so that it is enough to

hek that intS

W

is onneted. Of ourse, 1 2 lS so that by 9.8 it has

only reurrent omponents. Now, the paraboli type �

W

of S

W

is given by

the ondition that Sl (n;R) =P

�

W

is the projetive spae P

n�1

. Hene its

overing Sl (n;R) =P

0

�

W

is the sphere S

n�1

. Also, the invariant ontrol set

of S in P

n�1

is the set of lines ontained in W , whih is onneted. This set

splits into two omponents in S

n�1

, namely the set of rays starting at the

origin and ontained in W . Of ourse the later omponents are invariant
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under W . Therefore by the haraterization of the �nite index omponents

it follows that S has just one omponent, meaning that S

W

is onneted.

10.5 Produt of semigroup omponents

In view of Theorem 8.8 it is natural to ask if the produt of two semi-

group omponents is still a semigroup omponent. The example given here

shows that in general this is not true: In R

2

onsider the pointed ones

W

1

= f(x; y) : 0 � y � xg and W

2

= f(x; y) : �y � x � 0g, form the om-

pression semigroup in Sl (2;R), T = omp (�W

1

[ �W

2

) and put S = intT .

In the projetive line P

1

the attrator set C

+

of S has two omponents,

namely K

1

= int[�W

1

℄ and K

2

= int[�W

2

℄. The repeller set C

�

also

has two onneted omponents L

1

= int[�U

1

℄ and L

2

= int[�U

2

℄, where

U

1

= f(x; y) : 0 � x � yg and U

2

= f(x; y) : �y � x � 0g. We laim that

the produt � (K

2

; L

2

) � (K

1

; L

1

) is not a semigroup omponent. In fat,

take g 2 � (K

1

; L

1

) suh that gK

2

� K

1

and h 2 � (K

2

; L

2

) with hK

1

� K

2

.

The matrix g has real eigenvalues �

1

> 1 > �

2

whose prinipal eigenspae

is ontained in �W

1

and the seondary one is in �L

1

. Analogously, the

prinipal eigenspae of h is ontained in �W

2

and the seondary in �L

2

.

Taking into aount that a matrix leaves invariant a half-spae bounded by

an eigenspae we see that for any x 2 W

2

, gx 2 �W

1

, and hgx 2 �W

2

.

Hene hg does not leave invariant a onneted omponent of a ontrol set

in the double overing S

1

! P

1

. By Lemma 8.4, � (K

2

; L

2

) � (K

1

; L

1

) is not

a semigroup omponent.

10.6 Number of fators of S generating G

Let G be a two fold overing of Sl (2;R) and S � G the semigroup generated

by the exponential of the Lie wedge sl

+

(2;R) formed by the matries

�

a b

 �a

�

b;  � 0:

The piture below depits the ontrol sets in in the four fold overing G=P

0

of

the projetive line P

1

= G=P . In the piture the C

0

s represent the invariant

ontrol sets and the D

0

s the open ontrol sets. Also, the points marked

inside the D

0

s are delimiters of open intervals whih are the sheets given by

open N -orbits (f. Proposition 9.10).
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)

D

1

( )

D

2

( )

D

3

( )

D

4

D

1

([ ℄

C

1

[ ℄

C

2

[ ℄

C

3

[ ℄

C

4

Now, given x 2 C

1

, S

�1

x is ontained in C

1

[ D

1

[ D

2

, sine S

�1

x is

onneted and does not meet C

2

and C

4

beause these are S-invariant. By

similar reasons we see that SS

�1

x is ontained in C

1

[ C

2

[ C

4

[D

1

[D

2

and S

�1

SS

�1

x does not meet C

3

, so that SS

�1

S 6= G. It is lear that if we

take higher overings of Sl (2;R) we an apply this method to �nd examples

semigroups suh that the number of fators needed to generate the group is

as large as we please.
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