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Abstra
t

This paper studies 
onne
ted 
omponents of open subsemigroups

of non-
ompa
t semi-simple Lie groups through the 
ontrol sets in

the 
ag manifolds and their 
overings. A method for 
omputing the

number of 
omponents we 
all re
urrent, whi
h in
ludes the semigroup


omponents, is developed and it is proved that the union of this set of


omponents is a subsemigroup. The idea of mid-reversibility 
omes up

to show that an open semigroup has just one semigroup 
omponent if

the identity belongs to its 
losure. A ne
essary and suÆ
ient 
ondition

for mid-reversibility is proved showing that e.g. in a 
omplex group

any open semigroup is mid-reversible.
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1 Introdu
tion

Let G be a 
onne
ted non-
ompa
t semi-simple Lie group with �nite 
enter.

The purpose of this paper is to study the 
onne
ted 
omponents of an open

subsemigroup S � G. Our approa
h is through the a
tion of S on the 
ag

manifolds of G and the 
orresponding 
ontrol sets (for results related to this

method we refer to [8℄, [9℄, [10℄, [11℄). Thus the main e�orts are dedi
ated

towards the des
ription of the 
onne
ted 
omponents in terms of the 
ontrol

sets. Having this in mind we divide the 
onne
ted 
omponents of S into two


lasses. The �rst one 
omprises those 
omponents � � S su
h that some

power �

k

, k � 2, meets � (and hen
e is 
ontained in �). We say that su
h a


omponent has �nite index or is re
urrent. The other 
lass 
ontains the in�-

nite index or transient 
omponents. Among the re
urrent 
omponents there

are those whi
h are themselves subsemigroups (semigroups 
omponents, for

short).

In this paper we get sharper results for the re
urrent 
omponents. This is

due to the fa
t that the properties of the semigroup S 
aptured by its a
tion

on the 
ag manifolds are usually related to high powers of the elements of

S.

We better des
ribe our results by summarizing the 
ontents of the paper:

Se
tions 2, 3 and 4 are preparatory. In se
tion 2 we dis
uss generalities about


onne
ted 
omponents of semigroups, and prove a lemma used throughout

the paper, ensuring that in a 
onne
ted nilpotent Lie group an open sub-

semigroup has just one semigroup 
omponent. In Se
tion 3 we set notations

and re
all some of the above mentioned results about semigroups in semi-

simple Lie groups and their 
ontrol sets on 
ag manifolds. This in
ludes

a dis
ussion about the paraboli
 type of a semigroup and the introdu
tion

of the open subsets sets C

+

and C

�

of the maximal 
ag manifold, whi
h

we 
all the attra
tor and the repeller sets of S, respe
tively. These sets

play a 
entral role in the study of re
urrent 
omponents of S. In Se
tion

4 the invariant 
ontrol sets in the 
overing G=P

0

of the 
ag manifold are

determined. These 
ontrol sets are used afterwards in the des
ription of the

re
urrent 
omponents.

In Se
tion 5 we relate the Jordan de
omposition of a g 2 S with the

paraboli
 type of S, by showing how the latter in
uen
es the semi-simple

and unipotent 
omponents of g. This result has independent interest (and

improves Corollary 4.4 of [11℄). From the knowledge of the Jordan de
ompo-

sitions we prove that any g 2 S has a unique �xed point in the attra
tor sub-

set of the 
ag manifold determined by the paraboli
 type of S (see Theorem
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5.9). This result is used in Se
tion 6 to show that a 
onne
ted 
omponent of

S, say �, leaves invariant a unique 
onne
ted 
omponent of C

+

, denoted by

K

+

(�), and analogously �

�1

leaves invariant a unique 
omponent K

�

(�)

of C

�

.

The uniqueness of the invariant 
omponent opens the way to study the

semigroup 
omponents in Se
tion 7. In Theorem 7.1 we prove that for a

pair of 
onne
ted 
omponents K

1

of C

+

and K

2

of C

�

there exists a unique

semigroup 
omponent, say � (K

1

;K

2

), whi
h leaves invariant K

1

and whose

inverse leaves invariant K

2

. This is one of the main results of the paper.

It gives the number of semigroup 
omponents in terms of the 
ontrol sets.

In proving this theorem some results of independent interest are obtained,

like the fa
t that the attra
tor and repeller sets of � (K

1

;K

2

) are K

1

and

K

2

, respe
tively, and that the paraboli
 type of a semigroup 
omponent of

S 
oin
ides with the paraboli
 type of S.

The re
urrent 
omponents whi
h are not semigroups are studied in Se
-

tion 8. They are des
ribed by the 
omponents of the invariant 
ontrol sets in

the 
overing G=P

0

mentioned above. As a 
onsequen
e we prove that the set

of re
urrent 
omponents is a subsemigroup of the semigroup of 
omponents,

or equivalently, the union of re
urrent 
omponents is a subsemigroup of S.

In Se
tion 9 we relate the 
onne
ted 
omponents with the 
on
ept of

mid-reversibility introdu
ed by Ruppert [6℄ (S is mid-reversible in G if

G = SS

�1

S). This algebrai
 property of a semigroup has deep links to


onne
tivity properties as already appears in [6℄. In fa
t, Theorem 3.9 of [6℄

shows that an open subsemigroup of a group G 
ontaining the identity in its


losure is 
onne
ted in 
ase every open subsemigroup of G is mid-reversible.

In our semi-simple 
ontext we give a ne
essary and suÆ
ient 
ondition for

an open semigroup in a semi-simple Lie group to be mid-reversible (see

Theorem 9.4). This 
ondition depends on the 
onne
ted 
omponents of the


entralizer of a split-torus (the M -group). In parti
ular, the 
ondition of

Ruppert that every open subsemigroup is mid-reversible holds if M is 
on-

ne
ted (whi
h happens for instan
e if G is a 
omplex Lie group). For these

groups Theorem 3.9 of [6℄ applies. In 
ase M is not 
onne
ted we show any-

way that a semigroup S with 1 2 
lS has exa
tly one semigroup 
omponent.

Still in this subje
t we prove that 
ompression semigroups are mid-reversible

and for in general we give a rough upper bound for the number of fa
tors

S, S

�1

required to generate the group.

Finally, in Se
tion 10 we provide some examples and 
ounter-examples

related to the results of the paper. In parti
ular we illustrate how to prove


onne
tedness of a semigroup by showing that the 
ompression semigroup
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S

W

of a pointed and generating 
one W � R

n

is 
onne
ted.

2 Semigroup of 
onne
ted 
omponents

In this se
tion we dis
uss some 
on
epts and general fa
ts about 
onne
ted


omponents of semigroups whi
h are used throughout the paper. Let G be

a semitopologi
al group and S � G a subsemigroup.

Given x 2 S we denote by K

x

the 
onne
ted 
omponent of S 
ontaining

x. The subset K

x

K

y

is 
onne
ted and 
ontains xy thus K

x

K

y

� K

xy

. This

provides the set of 
onne
ted 
omponents of S the stru
ture of a semigroup,

where the produ
t K

x

K

y

of two 
omponents K

x

and K

y

is the 
omponent


ontaining xy. In the sequel we often write K

x

K

y

= K

xy

, meaning the

produ
t in the semigroup of 
onne
ted 
omponents, instead of produ
t of

sets (when equality may not be true).

A 
onne
ted 
omponent K

x

is a subsemigroup, (that is K

x

K

x

� K

x

) if

and only if it is an idempotent in the semigroup of 
omponents, whi
h is

equivalent to K

x

2
= K

x

, that is, x

2

2 K

x

. Su
h a 
onne
ted 
omponent

is 
alled semigroup 
omponent. In dealing with semigroups in Lie groups

it is 
onvenient to have the following terminology for 
omponents meeting

one-parameter semigroups.

De�nition 2.1 A 
onne
ted 
omponent K of a semigroup S � G is said

to be an exit 
omponent provided there exists a one-parameter subgroup � :

R ! G, and T

0

2 R, su
h that the interval � (T

0

;+1) � K.

An exit 
omponent has the form K = K

�(t)

, t > T

0

. Sin
e � (t)� (t) =

� (2t), it is 
lear that an exit 
omponent is a subsemigroup. Exit 
omponents

are easily built with the aid of the following simple fa
t.

Lemma 2.2 Let � � R

+

be a semigroup of positive reals, and suppose

that for 0 < t

0

2 � there exists " > 0 with (t

0

� "; t

0

+ ") � �. Then,

(nt

0

;+1) � � if n >

t

0

� "

2"

.

Proof: Given an integer n > 0, the interval (nt

0

� n"; nt

0

+ n") is 
on-

tained in �. Hen
e (nt

0

;+1) � � if kt

0

+ k" > (k + 1) t

0

� (k + 1) " for all

k � n. But this inequality holds if n >

t

0

� "

2"

.

This lemma implies immediately the following statement about existen
e

of exit 
omponents (
f. [6℄, Proposition 3.1).
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Proposition 2.3 Let � be a one-parameter subgroup of the topologi
al group

G. Let S � G be a subsemigroup and suppose that � (s) 2 intS for some

s > 0. Then there exists T

0

> 0 su
h that � (T

0

;+1) � intS. Clearly

� (T

0

;+1) is entirely 
ontained in an exit 
omponent.

Therefore, any open semigroup meeting a one-parameter group 
ontains

an exit 
omponent, and hen
e a semigroup 
omponent.

Now, let G be a Lie group with Lie algebra g. If X 2 g is su
h that the

one-parameter semigroup exp tX, t � 0, meets the open semigroup S we

denote by E (X;S), or simply E (X), the exit 
omponent of S 
ontaining

exp tX for large t > 0. Also, if h 2 S and X = log h is well de�ned we put

E (h) = E (X).

At this point we re
all that a Lie group G is said to have �nite index if

for every x 2 G some power x

k

belongs to the image of the exponential map

(
f. Dokovi
 and Hofmann [2℄). Any open subsemigroup of a group with

�nite index meets a one-parameter group and thus has exit 
omponents.

Furthermore, any semigroup 
omponent is an exit 
omponent, so that in

these groups both 
on
epts are equivelent. Note also that in a �nite index

group G a 
onne
ted 
omponent � of an open semigroup S � G must have

some power meeting a semigroup 
omponent.

In parti
ular, open semigroups in a 
onne
ted nilpotent Lie group has

semigroup (exit) 
omponents. Next we show the uniquenes of su
h 
om-

ponents, a fa
t whi
h is used extensively in the sequel, applied to abelian

groups. For the proof we use the 
on
ept of reversibility. Re
all that a sub-

semigroup T of a group G is said to be left (respe
tively right) reversible if

TT

�1

(respe
tively T

�1

T ) is a group, whi
h must be G if T has non-empty

interior and G is 
onne
ted.

Proposition 2.4 Let G be a 
onne
ted nilpotent Lie group and S � G an

open subsemigroup. Then S 
ontains exa
tly one semigroup (exit) 
ompo-

nent K.

Proof: The nilpotent Lie group G is exponential, so that a 
onne
ted 
om-

ponent K � S is exit if and only if it is a subsemigroup. For the uniqueness

we use the fa
t that any open semigroup in a nilpotent Lie group is (right

and left) reversible (see [6℄, Proposition 1.5). Thus suppose that K

1

;K

2

� S

are semigroup 
omponents of S. Take y 2 K

2

. By right reversibility of K

1

,

there exists x 2 K

1

su
h that xy 2 K

1

. Hen
e, K

1

K

2

� K

1

. But by left

reversibility of K

2

, for any x 2 K

1

there exists z 2 K

2

su
h that xz 2 K

2

.
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Therefore, K

1

K

2

� K

2

, that is, K

1

= K

2

.

Remark: Noti
e that this proof uses both right and left reversibility of open

subsemigroups of nilpotent Lie groups. A
tually one sided reversibility is not

enough. In fa
t, after looking at the 
onne
ted 
omponents of semigroups

in semi-simple Lie groups we 
an �nd easily an example of a subsemigroup

S of an exponential solvable Lie group G su
h that every 
omponent of S is

right reversible and nevertheless S has more than one semigroup 
omponent

(see the remark at the end of Se
tion 7, below).

3 Semigroups in semi-simple groups

The purpose of this se
tion is to establish notations and ba
kground results

to be used afterwards. Let G be a 
onne
ted non
ompa
t Lie group with

�nite 
enter and denote by g its Lie algebra. The 
ag manifolds of G are

labelled by subsets of the set of simple (restri
ted) roots of g. Pre
isely,


hoose an Iwasawa de
omposition g = k � a� n. Let � be the set of roots

of the pair (g; a). Denote by �

+

and � the set of positive and simple roots,

respe
tively, whi
h 
orrespond to the nilpotent 
omponent n, that is,

n =

X

�2�

+

g

�

;

where g

�

stands for the �-root spa
e. Let m be the 
entralizer of a in k

and put p = m� a� n for the 
orresponding minimal paraboli
 subalgebra.

By de�nition, the maximal 
ag manifold B of G is the set of subalgebras

Ad (G) p, where Ad stands for the adjoint representation of G in g. There

is an identi�
ation of B with G=P where P is the normalizer of p in G.

Furthermore, P =MAN , A = exp a, N = exp n and M is the 
entralizer of

A in K = exp k.

Given a subset � � �, denote by p

�

the 
orresponding paraboli
 subal-

gebra, namely,

p

�

= n

�

(�)� p;

where n

�

(�) is the subalgebra spanned by the root spa
es g

��

, � 2 h�i.

Here h�i is the set of positive roots generated by �. The set of paraboli


subalgebras 
onjugate to p

�

identi�es with the homogenous spa
e G=P

�

,

where P

�

is the normalizer of p

�

in G:

P

�

= fg 2 G : Ad (g) p

�

= p

�

g:

6



This 
onstru
tion yields the 
ag manifold B

�

= G=P

�

, � � �.

Let

a

+

= fH 2 a : � (H) > 0 for all � 2 �g

be the Weyl 
hamber asso
iated to �. We say that X 2 g is split-regular

in 
ase X = Ad (g) (H) for some g 2 G, H 2 a

+

. Analogously, x 2 G is

said to be split-regular in 
ase x = ghg

�1

with h 2 A

+

= exp a

+

, that is,

x = expX, with X split-regular in g.

Let n

�

=

P

�2�

g

��

be the nilpotent subalgebra opposed to n. Put

N

�

= exp n

�

. Then in any 
ag manifold B

�

, the orbit Ad (N

�

) p

�

(
alled

open Bruhat 
ell) is open and dense. Furthermore, if h 2 A

+

then limh

k

y =

p

�

for any y 2 Ad(N

�

) p

�

. In other words, p

�

is an attra
tor in B

�

for

any h 2 A

+

, with Ad (N

�

) p

�

the 
orresponding stable manifold. Similarly,

for x 2 G the element g = xhx

�1

is split-regular. Its attra
tor in B

�

is Ad (g) p

�

with open and dense stable manifold Ad

�

xN

�

x

�1

�

. In the

sequel we denote the attra
tor �xed point of g in B

�

by att

�

(g), while the


orresponding stable manifold is denoted by st

�

(h). Analogous remarks

hold for the repeller rpp

�

(g) in B

�

. In 
ase B

�

= B is the maximal 
ag

manifold we suppress the indi
es and write simply att (g) and rpp (g).

Given two subsets �

1

� �

2

� �, the 
orresponding paraboli
 subgroups

satisfy P

�

1

� P

�

2

, so that there is a 
anoni
al �bration G=P

�

1

! G=P

�

2

,

gP

�

1

7! gP

�

2

. Alternatively, the �bration assigns to the paraboli
 subal-

gebra q 2 B

�

1

the unique paraboli
 subalgebra in B

�

2


ontaining q. In

parti
ular, B = B

;

proje
ts onto every 
ag manifold B

�

.

From the stru
ture of the paraboli
 subgroup P

�

the �ber P

�

=P of

B ! B

�

is obtained. We follow 
losely the notation of Warner [12℄, Se
tion

1.2. Denote by a

�

the annihilator of � in a:

a

�

= fH 2 a : � (H) = 0 for all � 2 �g:

Let L

�

stand for the 
entralizer of a

�

in G and put M

�

(K) = L

�

\ K

for the 
entralizer of a

�

in K. The Lie algebra l

�

of L

�

is redu
tive and

de
omposes as l

�

= m

�

�a

�

with m

�

semi-simple. LetM

0

�

be the 
onne
ted

subgroup whose Lie algebra is m

�

and put M

�

= M

�

(K)M

0

�

. It follows

that the identity 
omponent of M

�

is M

0

�

. The Bruhat-Moore Theorem

(see [12℄, Theorem 1.2.4.8), provides the following de
ompositions:

1. P

�

=M

�

A

�

N

�

, where A

�

= exp a

�

and N

�

is the unipotent radi
al

of P

�

, that is, N

�

= exp n

�

, with n

�

the nilradi
al of p

�

.

2. P

�

=M

�

(K)AN .
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This se
ond de
omposition ensures that the �ber P

�

=P is equal to the


oset spa
e M

�

(K) =M . It turns out that M

�

(K) =M = M

�

= (M

�

\ P ).

This last 
oset spa
e is the maximal 
ag manifold of M

�

, sin
e M

�

\ P is

a minimal paraboli
 subgroup of M

�

.

We dis
uss now semigroups in G. The following fa
ts 
an be proved for

any semigroup S with intS 6= ;, provided G has �nite 
enter. Consider the

a
tion of S in the 
ag manifolds of G. It was proved in [11℄, Theorem 6.2,

that S is not transitive in B

�

unless S = G. Moreover, there exists just one


losed invariant subset C

�

(S) � B

�

su
h that Sx is dense in C

�

(S) for all

x 2 C

�

(S). This subset is 
alled the invariant 
ontrol set of S in C

�

(S)

(abbreviated S-i.
.s.). Sin
e S is not transitive, C

�

(S) 6= B

�

.

The fa
t that Sx is dense in C

�

(S) for all x 2 C

�

(S) implies the

existen
e of an open subset C

+

�

(S) � C

�

(S) su
h that for all x; y 2 C

+

�

there

exists g 2 S with gx = y. Furthermore, C

+

�

(S) is dense in C

�

(S). In view of

Proposition 3.1 below we 
all C

+

�

(S) the attra
tor set of S in B

�

. Repla
ing

S by S

�1

we get a subset C

�

�

(S) whi
h we 
all the repeller set of S in B

�

.

In 
ase B

�

= B is the maximal 
ag manifold, we suppress de subs
ripts and

write simply C

�

(S) for C

�

�

(S). Also, if the semigroup is understood we

write simply C

�

�

instead of C

�

�

(S). Usually C

�

�

will be asso
iated to a given

semigroup S while C

�

�

(T ) is extensively used for subsemigroups T � S.

For later referen
e we note that C

�

�

(S) is 
onne
ted in 
ase S is 
on-

ne
ted, be
ause S is transitive on C

�

�

(S) and the evaluation map g 7! gx is


ontinuous.

Proposition 3.1 The attra
tor set C

+

�

is given att (h) with h running through

the split-regular elements in intS. Analogously the repeller set C

�

�

is formed

by rpp (h), h 2 intS.

The semigroups in G are distinguished a

ording to the geometry of

their invariant 
ontrol sets. This geometry is des
ribed by the following

statements, proved in [11℄.

Proposition 3.2 There exists � � � su
h that �

�1

�

(C

�

) � B is the invari-

ant 
ontrol set in the maximal 
ag manifold. Among the subsets � satisfying

this property there exists a maximal one, in the sense that it 
ontains the

others.

We denote the maximal subset by � (S) and say that it is the paraboli


type of S. Alternatively, we say also that the paraboli
 type of S is the

8




orresponding 
ag manifold B (S) = B

�(S)

(see [8℄, [10℄, [11℄, for further

dis
ussions about the paraboli
 type of a semigroup).

When � = �(S), the invariant 
ontrol set C

�(S)

has the following ni
e

properties:

Proposition 3.3 The set R (S) of split-regular elements in intS is not

empty, and if h 2 R (S) then att

�

(h) 2 C

+

�

for any � and .C

�(S)

�

st

�(S)

(h).

We 
on
lude this se
tion by proving the following reversibility properties

inside identity 
omponent of minimal paraboli
 subgroups.

Lemma 3.4 Let T be an open semigroup and take x 2 C

+

(T ). Denote by

P the isotropy subgroup at x and let P

0

be its identity 
omponent. Then

T \ P

0

6= ; is left reversible.

Proof: By de�nition of C

+

, T \ P has non-empty interior in P . Sin
e

we are assuming that G has �nite 
enter, the number of 
onne
ted 
om-

ponents of P is �nite, hen
e T \ P

0

also has non-empty interior. Now,

left reversibility follows from [6℄, Lemma 4.6. In fa
t, T \ P

0


ontains a

split-regular h = expH, whi
h belongs to a Weyl 
hamber positive for P .

This means that the eigenvalues of ad(H) in the Lie algebra of P are � 0.

Using the same argument for the inverse semigroup we get right re-

versibility inside the isotropy subgroups at repeller points.

Lemma 3.5 Let T be an open semigroup and take x 2 C

�

(T ). Denote by

P the isotropy subgroup at x and let P

0

be its identity 
omponent. Then

T \ P

0

6= ; right reversible.

4 Control sets on G=P

0

Let P = MAN be a minimal paraboli
 subgroup and put P

0

= M

0

AN for

its identity 
omponent. Given an open semigroup S let C

+

be its attra
ting

set on B = G=P . Without loss of generality we 
an assume that P is the

isotropy subgroup at x 2 C

+

. In this 
ase S \ P is a nonempty open

semigroup meeting P

0

(if G has �nite 
enter). In order to have a notation

for the 
omponents of P meeting S we put

M (S; P ) = ftP

0

2 P=P

0

: S \ tP

0

6= ;g:

9



Clearly M (S; P ) a subsemigroup of P=P

0

= M=M

0

. Noti
e that M (S; P )

is a
tually a group in 
ase G has �nite 
enter, be
ause in this 
ase M=M

0

is

�nite.

The group M (S; P ) is also des
ribed in terms of 
ontrol sets in G=P

0

.

Let

� : G=P

0

�! B = G=P

be the 
anoni
al �bration with typi
al �ber P=P

0

= M=M

0

. This is simul-

taneously a 
overing and a prin
ipal bundle. The group M=M

0

a
ts on the

right on G=P

0

, and this a
tion 
ommutes with left a
tion of G. Sin
e we are

assuming that G has �nite 
enterM=M

0

is �nite and G=P

0

is 
ompa
t. Thus

any open semigroup S � G has invariant 
ontrol sets in G=P

0

, in general

not a unique one. As before we assume that P is the isotropy at x 2 C

+

.

In this 
ase P

0

is the isotropy subgroup at any y in the �ber �

�1

fxg over x.

Now, let D � G=P

0

be an invariant 
ontrol set for S, and put D

+

for

its set of transitivity. By general fa
ts about 
ontrol sets on �ber bundles

� (D) = C, � (D

+

) = C

+

and any point of �

�1

(C) belongs to an invariant


ontrol set. Furthermore, sin
e the left a
tion of G 
ommutes with the right

a
tion of M (or rather M=M

0

), it follows that for any m 2 M , Dm is also

an S-i.
.s. This implies that Dm = D or Dm \ D = ;, and the invariant


ontrol sets of S on G=P

0

have the form Dm, m 2M=M

0

. We de�ne

M (S;D) = fm 2M=M

0

: Dm = Dg:

It is easy to 
he
k that M (S;D) is a subgroup of M=M

0

. The following

proposition establishes the relation between M (S; P ) and M (S;D).

Proposition 4.1 Let P be the isotropy subgroup at a given x 2 C

+

and �x

y 2 D \ �

�1

fxg. Let m 7! ym be the bije
tion between M=M

0

and the �ber

through y. Then M (S;D) = yM (S; P ).

Proof: Let m 2M be su
h that the 
omponent mP

0

belongs to M (S;D).

Sin
e y 2 D, ym 2 D, so that there exists g 2 S su
h that gy = ym. Clearly,

g leaves invariant the �ber over x, so that g 2 P . Moreover, gy = ym implies

that g = mt for some t 2 P

0

. Hen
e, g 2 mP

0

, showing that S \mP

0

6= ;,

that is mM

0

2M (S; P ).

Conversely, suppose that g 2 S \mP

0

. Then gy = ym 2 D, hen
e the


oset mM

0

belongs to M (S;D).

10



Corollary 4.2 The number of invariant 
ontrol sets for S on G=P

0

is the

order of (M=M

0

) =M (S;D).

We get a more detailed information about M (S;D) with the aid of the

paraboli
 type � (S) of the semigroup S. To do this we dis
uss �rst the

restri
tion to open 
ells of the bundles over a 
ag B

�

. Fix an open Bruhat


ell � � B

�

. Re
all that the restri
tion of the bundle �

�

: B ! B

�

to � is

trivial, meaning that �

�1

�

(�) is di�eomorphi
 to ��F , where F = P

�

=P is

the �ber of B ! B

�

. Analogously, the restri
tion of G=P

0

! B

�

to � gives

the produ
t � � F

0

, where F

0

= P

�

=P

0

. The de
omposition of the �ber F

0

into 
onne
ted 
omponents reads

P

�

=P

0

=

�

P

0

�

=P

0

�

�

�

P

�

=P

0

�

�

where P

0

�

is the identity 
omponent of P

�

. The �rst fa
tor P

0

�

=P

0

is equal

to P

�

=P , sin
e any 
onne
ted 
omponent of P

�


ontains a 
omponent of P

(see [12℄, Lemma 1.2.4.5). The se
ond 
omponent is writen in terms of the

M -group as follows: Write M (�) = M \ P

0

�

. Then the set of 
omponents

of P

�

is M=M (�) (that is, M meets every 
omponent of P

�

and M (�)

is 
ontained in the identity 
omponent of P

�

; see [12℄, Lemma 1.2.4.5).

Therefore, the restri
tion of G=P

0

! B

�

over � is di�eomorphi
 to the

produ
t � � (P

�

=P )� (M=M (�)) :

Now we 
arry this de
omposition to invariant 
ontrol sets in G=P

0

by

taking � = �(S). Re
all that the invariant 
ontrol set C � B is given by

C = �

�1

�(S)

�

C

�(S)

�

, and there exists an open 
ell � � B

�(S)

with C

�(S)

� �.

Hen
e the restri
tion of G=P

0

! B

�(S)

above C

�(S)

is di�eomorphi
 to

C

�(S)

� (P

�

=P )� (M=M (�))

while C is di�eomorphi
 to C

�(S)

� (P

�

=P ). Noti
e that the proje
tion of

C

�(S)

� (P

�

=P ) � (M=M (�)) onto the �rst two 
omponents is just the

restri
tion of G=P

0

! B . Therefore, the sli
es C

�(S)

� (P

�

=P ) � fag,

a 2 M=M (�), are the leaves above C = C

�(S)

� (P

�

=P ), and ea
h one

is 
ontained in an invariant 
ontrol set in G=P

0

. Also, let D � C

�(S)

�

(P

�

=P )� (M=M (�)). Then by de�nition of M (D;S), it follows that

D = C

�(S)

� (P

�

=P )� (M (S;D) =M (�)) :

For later referen
e we summarize this des
ription of the invariant 
ontrol

sets in the following proposition.
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Proposition 4.3 Keep the above notations with �(S) the paraboli
 type of

S. Suppose, without loss of generality, that the standard paraboli
 subgroup

P � P

�(S)

is the isotropy of x 2 C

+

. Then any sli
e C

�(S)

� (P

�

=P ) �

fag, a 2 M=M (�), is entirely 
ontained in a 
ontrol set. Furthermore, an

invariant 
ontrol set D � G=P

0

is di�eomorphi
 to C

�(S)

� (P

�

=P )�M

D

,

where M

D

=M (S;D) =M (�).

5 Jordan de
ompositions

As before we let S � G be an open semigroup in the 
onne
ted semi-simple

Lie group G, with �nite 
enter with paraboli
 type � (S). In this se
tion we

relate the Jordan de
ompositions of elements in S with � (S). As a result

we get Theorem 5.9, ensuring that a g 2 S has exa
tly one �xed point in

C

+

�(S)

.

Re
all that a g 2 G is said to be unipotent or semi-simple if Ad (g) is

unipotent or semi-simple, respe
tivley. The Jordan de
omposition of g 2 G

writes g = g

s

g

u

= g

u

g

s

uniquely with g

s

; g

u

2 G semi-simple and unipotent,

respe
tively (see [12℄, Proposition 1.4.3.3). In real groups the semi-simple


omponent g

s


an be de
omposed further into 
ompa
t and radial parts.

Proposition 5.1 Given g 2 G, there are an Iwasawa de
omposition G =

KAN and u 2 K, h = expH 2 A su
h that g

s

= uh, so that g = uhg

u

,

with g

u

unipotent. Furthermore, the 
omponents u, h, g

u


ommute with ea
h

other.

Proof: See [4℄, Theorem IX, 7.2.

Now, for g 2 S we shall relate the de
omposition g = uhn with the

paraboli
 type of S. Sin
e h belongs to A there exists a Weyl 
hamber A

+

su
h that h 2 
lA

+

. Denote by � the simple system of roots asso
iated to

A

+

, and put

� (h) = f� 2 � : � (log h) = 0g: (1)

This subset de�nes the standard paraboli
 subgroup P

�(h)

, whose redu
tive

Levi 
omponent L

�(h)

is the 
entralizer of h in G (see [12℄).

The next few results are intended to prove that � (h) is 
ontained in the

paraboli
 type � (S) of S.

Lemma 5.2 As above de
ompose g 2 S as g = uhg

u

. Then for some integer

k > 0, h

k

2 S.

12



Proof: Sin
e S is open and u belongs to a torus, we 
an �nd v of �nite

order so that vhg

u

2 S. Thus, for some integer l, h

l

g

l

u

2 S. On the other

hand, g

l

u

is a unipotent element in the redu
tive Lie group L

�(h)

. Thus for

any neighborhood U of g

l

u

in L

�(h)

there exists z 2 U with �nite order (see

[7℄, Lemma 4.1). If U is small enough, h

l

z 2 S. Taking into a

ount that

z 2 L

�(h)


ommutes with h

l

, we 
on
lude that

�

h

l

�

s

2 S, if s is the order of

z, showing the lemma.

Sin
e h

k

belongs to the 
losure of A

+

, the lemma implies that S\A

+

6= ;.

Therefore, if we denote by L

0

�(h)

the identity 
omponent of L

�(h)

, we have

S \ L

0

�(h)

6= ;. This interse
tion is in fa
t, quite large:

Lemma 5.3 Denote by M

�(h)

the semi-simple 
omponent of L

0

�(h)

, and


onsider the proje
tion p : L

0

�(h)

!M

�(h)

modulo the 
enter. Then p

�

S \ L

0

�(h)

�

=

M

�(h)

.

Proof: Clearly, p

�

S \ L

0

�(h)

�

is an open semigroup in M

�(h)

. By the

previous lemma h

k

2 S \ L

0

�(h)

, and sin
e p

�

h

k

�

is the identity in M

�(h)

,

the result follows.

Corollary 5.4 For every x 2M

�(h)

there exists a 2 A su
h that xa 2 S.

Proof: The 
enter of L

0

�(h)

has the form Z

K

Z

p

with Z

K

� K, 
ompa
t

and Z

p

� A. Given x 2M

�(h)

the lemma shows the existen
e of a 2 Z

K

Z

p

with ax = xa 2 S. Sin
e Z

K

is 
ompa
t we 
an argue as in the proof of

Lemma 5.2, and get ax 2 S, with a 2 Z

p

� A.

Corollary 5.5 Given a 
ag manifold B

�

denote by b

�

the attra
tor of

A

+

in B

�

and by C

+

�

the attra
tor set of S, also in B

�

. Then the orbit

M

�(h)

b

�

� C

+

�

.

Proof: Take x 2 M

�(h)

, and let a 2 A be su
h that xa 2 S. Then

xb

�

= xab

�

. But b

�

0

2 C

+

�

, and sin
e xa 2 S, it follows that xb

�

� C

+

0

.

Now it is easy to prove that the orbit M

�(h)

b

�

is entirely 
ontained in

the attra
tor set C

+

�

.

13



Lemma 5.6 Keep the previous notations with b

�

the attra
tor of A

+

in

B

�

. Then, M

�(h)

b

�

is 
ontained in the open Bruhat 
ell determined by A

+

if and only if �(h) � �.

Proof: Suppose that � (h) � �. Then M

�(h)

� P

�

, the isotropy at b

�

.

Hen
e M

�(h)

b

�

= b

�

.

For the 
onverse denote by W

�

the subgroup of the Weyl group gener-

ated by the re
e
tions with respe
t to the roots in �. Suppose that some

� 2 �(h) is not in �, and let r

�

be the re
e
tion with respe
t to �. Then

r

�

=2 W

�

, so that if w

�

is a representative of r

�

in the normalizer M

�

of A

then w

�

b

�

6= b

�

. However, w

�

2M

�(h)

so that M

�(h)

b

�

is not 
ontained in

the open 
ell.

Corollary 5.7 For g 2 S write g = uhg

u

, and de�ne �(h) as in (1). Then

�(h) � �(S).

Proof: Follows immediately from the previous lemma and the de�nition

of the paraboli
 type of S, after taking into a

ount that S \A

+

6= ;.

Corollary 5.8 gb

�(S)

= b

�(S)

.

Proof: L

�(h)

� P

�(h)

� P

�(S)

.

Finally we arrive that any element of the open semigroup S leaves �xed

just one point of the attra
tor set of S in the 
ag manifold 
orresponding

to the paraboli
 type.

Theorem 5.9 Let S be an open semigroup. Then any g 2 S has a unique

�xed point, say �x

�(S)

(g), in C

+

�(S)

.

Proof: It remains to 
he
k that b

�(S)

is the only �xed point in C

+

�(S)

.

Write g = g

s

g

u

, g

s

= uh. It is standard that a g �xed point is also �xed un-

der g

s

and g

u

[proof: Ad (g

s

) and Ad (g

u

) are polynomial fun
tions of Ad (g).

Thus any subspa
e invariant under Ad (g) is also invariant under Ad (g

s

) and

Ad (g

u

). The 
laim then follows by the remark that any 
ag manifold 
an

be realized as an orbit in a 
ertain Grassmannian of subspa
es of g.℄ Now,

b

�(S)

is the only �xed point under g

s

in the open 
ell � � B (S) determined

by A

+

, sin
e u leaves � invariant and h

k

x ! b

�(S)

for all x 2 �, so that

14



a x 2 �, x 6= b

�(S)

is not a �xed point. Sin
e C

+

�(S)

� � the result follows.

We note that the same result holds with S

�1

in pla
e of S, taking 
are

to 
onsider 
ag manifold B

�

�

(S)

dual to B

�(S)

in the sense of [8℄.

Remark: It be
omes 
lear from the proof above that g

n

x! �x

�(S)

(g) for

every x in the open 
ell � determined by g (or A

+

). This open 
ell 
ontains

the invariant 
ontrol set C

�(S)

so that g

n

x! �x

�(S)

(g) for every g 2 S and

x 2 C

�(S)

.

Remark: With some extra e�ort one 
an use the previous results (spe
ially

Corollary 5.7) to prove that the the map g 2 S 7! �x

�(S)

(g) 2 B

�(S)

is 
on-

tinous in S. We do not give the details here sin
e 
ontinuity of �x

�

(�) is

not needed in the sequel.

6 Invarian
e of 
onne
ted 
omponents

This se
tion starts the study of the 
one
ted 
omponents. We prove here

that a 
omponent of S leaves invariant a unique 
omponent of the attra
tor

set C

+

. Re
all that C

+

is given by �

�1

�(S)

�

C

+

�(S)

�

where �

�(S)

: B ! B

�(S)

is

the 
anoni
al proje
tion. Hen
e, the 
onne
ted 
omponents of C

+

have the

form �

�1

(K) where K is a 
onne
ted 
omponent of C

+

�(S)

. Analogously,

the 
onne
ted 
omponents of C

�

have the form �

�1

�(S

�1

)

�

C

+

�(S

�1

)

�

, with

obvious notation.

Lemma 6.1 Let � � S be a 
onne
ted 
omponent, and take g 2 �. Then

there exists a semi-simple element eg 2 � with �x

�(S)

(eg) = �x

�(S)

(g).

Proof: We keep in mind the notations and results of the previous se
-

tion. With the given 
hoi
e of A

+

we have that the isotropy at �x

�(S)

(g)

is P

�(S)

and g 2 L

�(S)

. Now, the set of semi-simple elements in the re-

du
tive group L

�(S)

is dense. Sin
e � \ L

�(S)

6= ; is open in L

�(S)

, there

exists a semi-simple eg 2 � \ L

�(S)

. Clearly �x

�(S)

(g) is �xed under eg,

hen
e by Theorem 5.9, �x

�(S)

(g) is the unique eg-�xed point in C

+

�(S)

, that

is �x

�(S)

(eg) = �x

�(S)

(g).

Noti
e that a 
onne
ted 
omponent � � S maps 
omponents of C

+

into


omponents, be
ause the evaluation map g 7! gx is 
ontinuous for any x and
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C

+

is invariant. Furthermore, if g�

1

� �

2

for some g 2 � and 
omponents �

1

and �

2

, then ��

1

� �

2

. Analogous remarks, hold for �

�1

and 
omponents

of the repeller set C

�

.

Our obje
tive now is to prove that � leaves invariant exa
tly one 
on-

ne
ted 
omponent of C

+

. For this we re
all the well known 
onstru
tion of

the 
ag manifold as an adjoint orbit. Let g = k� s be a Cartan de
omposi-

tion and �x a maximal abelian subspa
e a � s and a Weyl 
hamber a

+

� a.

Given H

0

2 
la

+

its adjoint orbit under K = exp k identi�es with the 
ag

manifold B

�(H

0

)

= G=P

�(H

0

)

where � (H

0

) is the set of simple roots annihi-

lating H

0

. This embedding permits to de�ne for H 2 s the height fun
tion

f

H

(�) = hH; �i. Now, there exists in B

�(H

0

)

a K-invariant Riemannian met-

ri
, say (�; �)

H

0

, su
h that for any H 2 s the gradient of f

H

with respe
t to

(�; �)

H

0

is pre
isely the ve
tor �eld

e

H on B

�(H

0

)

indu
ed by H (see Borel [1℄

and Duistermaat, Kolk, Varadarajan [3℄).

Proposition 6.2 Let � � S be a 
onne
ted 
omponent. Then there exists

a unique 
onne
ted 
omponent �

1

of C

+

whi
h is invariant under �. Also,

there exists a unique 
omponent �

2

of C

�

invariant under �

�1

.

Proof: It is enough to prove the result for � and C

+

. By Theorem 5.9 a

g 2 S has a unique �xed point in C

+

�(S)

. Take g 2 �, let x be its �xed point

in C

+

�(S)

, and denote by e�

1

the 
onne
ted 
omponent of C

+

�(S)


ontaining x.

Then ge�

1

� e�

1

and thus �e�

1

� e�

1

. It follows that ��

1

� �

1

if �

1

= �

�1

e�

1

.

For the uniqueness it is enough to show that e�

1

is the only �-invariant


omponent of C

+

�(S)

. Take g as above with x = �x

�(S)

(g) 2 e�

1

. By Lemma

6.1 we 
an assume that g is semi-simple, and write g = uh = hu, with u

elipti
 and h = expH hyperboli
, that is, there exists a Cartan de
omposi-

tion g = k � s, su
h that u 2 exp k and h 2 
l exp a

+

, where a

+

is a Weyl


hamber in s. Thus the ve
tor �eld

e

H indu
ed by H on B

�(S)

is the gradi-

ent of the height fun
tion f

H

, with respe
t to a Borel metri
 on B

�(S)

, so

that f

H

(hz) � f

H

(z) for any z 2 B

�(S)

with stri
t inequality if z is not a

singularity of

e

H. Note that f

H

attains its maximum at x (be
ause x is an

attra
tor of h), and f

H

is 
onstant along the orbits of u in B

�(S)

(be
ause

Ad (u)H = H). Also, if � � B

�(S)

stands for the open 
ell 
orresponding

to a

+

then

e

H has no singularity in � (this is due again to the fa
t that x is

an isolated �xed point of h so that the roots outside h�(S)i do not vanish

on H).
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Now, let e� 6= e�

1

be a 
onne
ted 
omponent of C

+

�(S)

. Sin
e some power

of h belongs to S (see Lemma 5.2) C

+

�(S)

(and hen
e e�) is 
ontained in

st

�(S)

(h). Hen
e, f

H

(gz) = f

H

(hz) > f

H

(z) for all z 2 
le�. Thus if the

maximum of f

H

on 
le� is attained in z 2 
le� then hz =2 
le�, showing that


le� is not invariant under h, so that e� 
annot be invariant under �.

So far we have proved existen
e and uniqueness of invariant 
omponent

of C

+

�(S)

. However, the 
omponents of C

+

have the form � = �

�1

(e�), where

� : B ! B

�(S)

is the 
anoni
al proje
tion. Thus the result follows for 
om-

ponents of C

+

.

Sin
e the 
ontrol sets in B

�

are obtained by projeting 
ontrol sets in

B , this result implies immediately existen
e and uniqueness of invariant


omponents in arbitrary 
ag manifolds.

Corollary 6.3 A 
onne
ted 
omponent � � S leaves invariant a unique


omponent of C

+

�

, while there exists just one 
omponent of C

�

�

invariant

under �

�1

.

Notation: We denote by K

+

(�) the 
omponent of C

+

invariant under �

and by K

�

(�) the �

�1

-invariant 
omponent of C

�

. Analogously K

�

�

(�)

are the invariant 
omponents of C

�

�

.

Spe
ializing these fa
ts to the paraboli
 type B

�(S)

we have.

Corollary 6.4 For a 
onne
ted 
omponent � � S the set f�x

�(S)

(g) : g 2

�g is 
ontained in K

+

�(S)

(�).

Proof: A �xed point �x

�(S)

(g), g 2 �, belongs to a �-invariant 
ompo-

nent.

Still another 
onsequen
e of the existen
e and uniqueness of invariant


omponents obtains:

Corollary 6.5 Given a semigroup 
omponent � � S and an integer k > 0,

K

�

�

�

�

k

�

= K

�

�

(�).

Proof: First 
onsider the K

+


ase. If � = �(S) the result follows from

the previous 
orollary be
ause �x

�(S)

�

g

k

�

= �x

�(S)

(g). This implies the

result in the maximal 
ag manifold B be
ause the 
omponents of C

+

have

17



the form �

�1

(�), with � � C

+

�(S)

a 
onne
ted 
omponent. From B the re-

sult is 
arried out to B

�

by proje
ting 
omponents. Finally, the K

�


ase is

obtained by taking S

�1

.

For a semigroup 
omponent � the invariant 
omponent K

+

(�) a
tually

satis�es �C

+

� K

+

(�). In fa
t, the attra
tor att (h) of any split-regular

h 2 � belongs to K

+

(�). Therefore, for any 
onne
ted 
omponent K �

C

+

, there exists a large enough integer k > 0 su
h that h

k

K \ K

+

(�) 6=

;, implying that h

k

K � K

+

(�), and thus �K � K

+

(�). Analogously,

�

�1

C

�

� K

�

(�). The same reasoning yields that the attra
tor and repeller

sets of � satisfy C

�

(�) � K

�

(�).

For other 
omponents we have the following useful property of the sets

K

�

(�).

Lemma 6.6 For g 2 S and a semigroup 
omponent �, denote by � (g) the


omponent 
ontaining �g and by (g) � the 
omponent 
ontaining g�. Then

K

+

(� (g)) = K

+

(�) and K

�

((g) �) = K

�

(�).

Proof: For the �rst equality note that gK

+

(�) � C

+

so that �g (K

+

(�)) �

�C

+

� K

+

(�). The se
ond equality follows analogously.

Remark: The proof of uniqueness of the invariant 
omponent 
ould be

done in a di�erent route, exploiting the 
ontinuity of the map g 2 S 7!

�x

�(S)

(g) 2 C

�(S)

(see the remark at the end of Se
tion 5). In fa
t, sin
e

the map is 
ontinuous the set of �xed points �x

�(S)

(g) with g running

through � is 
ontained in a 
onne
ted 
omponent of C

+

�(S)

, whi
h must be

the only �-invariant 
omponent.

7 Semigroup 
omponents

This se
tion is devoted to the proof of the following 
hara
terization of the

semigroup 
omponents of S. Denote by # (C

�

) the number (possibly in�-

nite) of 
onne
ted 
omponents of C

�

and by #

s

(S) the number of semigroup


omponents of S.

Theorem 7.1 Given a pair of 
onne
ted 
omponents K

1

of C

+

and K

2

of

C

�

there exists a unique semigroup 
omponent � su
h that C

+

(�) � K

1

18



and C

�

(�) � K

2

. Furthermore, � satis�es C

+

(�) = K

+

(�) = K

1

and

C

�

(�) = K

�

(�) = K

2

. Therefore, #

s

(S) = # (C

+

) �#(C

�

).

Notation: Given 
omponents K

1

� C

+

and K

2

� C

�

we denote by

� (K

1

;K

2

) the unique semigroup 
omponent whose attra
tor and repeller

sets are K

1

and K

2

, respe
tively.

Corollary 7.2 Given an arbitrary 
onne
ted 
omponent � � S the set

S

k�1

�

k

meets a unique semigroup 
omponent. We denote this semigroup


omponent by � (�).

Proof: Existen
e follows immediately from Lemma 5.2 (and its proof).

On the other hand, by Corollary 6.4 K

�

�

�

k

�

= K

�

(�) so that if �

k

is 
ontained in a semigroup 
omponent � then C

�

(�) = K

�

(�). Hen
e

uniqueness follows from the theorem.

We separate the proof of Theorem 7.1 in two steps 
orresponding to

existen
e and uniqueness of �.

7.1 Existen
e

Given the 
onne
ted 
omponents K

1

� C

+

and K

2

� C

�

in order to prove

the existen
e of a semigroup 
omponent � with C

+

(�) � K

1

and C

�

(�) �

K

2

it is enough exhibit a split-regular h 2 S whose attra
tor belongs to K

1

and repeller to K

2

. In fa
t, some positive power h

k

belongs to a semigroup


omponent satisfying the required 
onditions.

To start with let us take split-regular elements h

1

; h

2

2 S su
h that

att (h

1

) 2 K

1

and rpp (h

2

) 2 K

2

. Denote by �

1

and �

2

the exit 
omponents

of h

1

and h

2

, respe
tively. Then C

+

(�

1

) � K

1

whereas C

�

(�

2

) � K

2

. Now,

the basi
 idea is provided by the following lemma 
ombined with Proposition

6.2 (and its 
orollary).

Lemma 7.3 Let �

1

and �

2

be semigroup 
omponents with C

+

(�

1

) � K

1

and C

�

(�

2

) � K

2

. Then K

1

is invariant under �

1

�

2

while K

2

invariant

under (�

1

�

2

)

�1

= �

�1

2

�

�1

1

.

Proof: For the invarian
e of K

1

it is enough to show that there exists

a 2 �

1

�

2

with aK

1

\ K

1

6= ;. For this take g 2 �

2

and a split-regular
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h 2 �

1

. The attra
tor att (h) 2 K

1

, so that h

n

x 2 K

1

for x in a dense

subset and n large enough. Sin
e gK

1

is open, there exists z 2 K

1

, and an

integer n > 0 su
h that h

n

gz 2 K

1

. Hen
e a = h

n

g is the required element

in �

1

�

2

. The proof for K

2

is analogous.

Now the existen
e proof 
an be performed. Put � = �

1

�

2

. By the

previous lemma K

+

(�) = K

1

and K

+

(�) = K

2

. Sin
e our group G has

�nite index there is an integer k > 0 su
h that �

k

is 
ontained in a semigroup


omponent, say �. However, we have by Corollary 6.5, that K

�

(�) =

K

�

(�). Therefore, � is the required semigroup 
omponent, 
on
luding the

proof.

7.2 Uniqueness

For the proof of uniqueness of semigroup 
omponent we �x advan
e 
on-

ne
ted 
omponents K

1

� C

+

and K

2

� C

�

, and assume that there exists a

semigroup 
omponent, say �

0

, with C

+

(�

0

) � K

1

and C

�

(�

0

) � K

2

.

Lemma 7.4 K

1

= C

+

(�) with � running through the semigroup 
ompo-

nents su
h that C

+

(�) � K

1

. An analogous result holds for K

2

and C

�

(�).

Proof: Given x 2 K

1

there exists a split-regular h 2 S with x = att (h).

Denote by E (h) the exit 
omponent of h, so that for some k > 0, h

k

2 E (h).

Then the attra
tor set C

+

(E (h)) � K

1

, sin
e h

k

x = x and hen
e K

1

is the

unique 
omponent left invariant by E (h). But x 2 C

+

(E (h)) � K

1

, prov-

ing the statement for K

1

. The proof for K

2

is analogous.

This lemma shows that in the eventuality that C

+

(�

0

) di�ers from

K

1

there must exist another semigroup 
omponent �

1

su
h that C

+

(�

0

) \

C

+

(�

1

) 6= ;. In the next two lemmas we look at this possibility.

Lemma 7.5 The semigroup 
omponents �

1

and �

2

satisfy �

1

�

2

� �

2

if

C

+

(�

1

) \ C

+

(�

2

) 6= ;. Analogously, �

1

�

2

� �

1

if C

�

(�

1

) \ C

�

(�

2

) 6= ;.

Proof: Take x 2 C

+

(�

1

)\C

+

(�

2

) and denote by P the istoropy at x. By

assumption the semigroups T

1

= �

1

\ P

0

and T

2

= �

2

\ P

0

are open in P

0

and non-empty. By Lemma 3.4, T

2

is left reversible in P

0

. Thus for every

x 2 T

1

there exists y 2 T

2

su
h that xy 2 T

2

. It follows that �

1

�

2

� �

2

, as


laimed.
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Now applying this fa
t to the inverse semigroups, we get �

�1

2

�

�1

1

� �

�1

1

,

whi
h is equivalent to the last statement.

Lemma 7.6 Let �

1

and �

2

be semigroup 
omponents, and suppose that

C

+

(�

1

) \ C

+

(�

2

) 6= ;. Then C

+

(�

1

) = C

+

(�

2

).

Proof: Given x 2 C

+

(�

1

) there exists a split regular h 2 �

1

su
h that

x = att (h). Thus h

n

y ! x for y in a dense subset. In parti
ular, for

all g 2 �

2

, gC

+

(�

2

) is open, so that there exists y 2 C

+

(�

2

) su
h that

h

n

gy ! x, n ! +1. By the previous lemma h

n

g 2 �

2

, for all n. Hen
e

h

n

gy 2 C

+

(�

2

), and sin
e the invariant 
ontrol sets are 
losed, it follows

that x 2 C (�

2

).

It remains to 
he
k that x is a
tually in C

+

(�

2

). Take z 2 C (�

1

)

0

\

C (�

2

)

0

. Then there are a 2 �

2

and b 2 �

1

su
h that ax = z (be
ause

x 2 C (�

2

) and z 2 C

+

(�

2

)) and bz = x (be
ause x; y 2 C

+

(�

1

)).

Therefore, bax = x. But, ba 2 �

2

, hen
e x 2 C

+

(�

2

), as desired. Thus

C

+

(�

1

) � C

+

(�

2

). The reverse in
lusion follows by symmetry.

It is now an easy 
onsequen
e of the previous lemmas that the attra
tor

set of a semigroup 
omponent is a 
onne
ted 
omponent of the attra
tor set

of S.

Proposition 7.7 Let � a semigroup 
omponent, and denote by K the 
on-

ne
ted 
omponent of C

+

whi
h 
ontains C

+

(�). Then C

+

(�) = K.

Proof: By Lemma 7.4, K is a union of attra
tor sets of semigroup 
ompo-

nents. However Lemma 7.6 shows that two of these attra
tor sets are equal

or disjoint. Sin
e these sets are open and K is 
onne
ted, the result follows.

Applying this proposition to the semigroup S

�1

, we get the 
orrespond-

ing result for the repeller sets.

Proposition 7.8 Let � a semigroup 
omponent, and denote by K the 
on-

ne
ted 
omponent of C

�

whi
h 
ontains C

�

(�). Then C

�

(�) = K.

Now let �

0

and �

1

be semigroup 
omponents whose attra
tor and repeller

sets are 
ontained in the same 
omponent of C

+

and C

�

, respe
tively. By

Propositions 7.7 and 7.8, C

�

(�

0

) = C

�

(�

1

). On the other hand, Lemma
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7.5 ensures that �

0

�

1

� �

0

and �

0

�

1

� �

1

. Hen
e �

0

= �

1

. Con
luding the

uniqueness part of the proof of Theorem 7.1.

We 
on
lude this se
tion stating the following 
onsequen
e of our proof,

whi
h might be interesting in itself.

Proposition 7.9 Let � � S be a semigroup 
omponent. Then � has the

same paraboli
 type as S.

Proof: By Proposition 7.7 the �-i.
.s. on B is the 
losure of a 
onne
ted


omponent K � C

+

. Su
h a 
omponent has the form �

�1

�(S)

(K

1

), with K

1

a


omponent of C

+

�(S)

. This shows that the paraboli
 type � (�) of � 
ontains

� (S). Sin
e � � S they must be equal.

Remark: These results about semigroup 
omponents show that in general

semigroups in 
onne
ted solvable groups 
an have more than one semigroup


omponent. To see this take S � G an open semigroup in su
h a way that

C

�


ontains two di�erent 
onne
ted 
omponents, say K

1

and K

2

. Fixing

x 2 C

+

let P be the isotropy at x and K the 
omponent of C

+


ontaining x.

Then S \P

0

has at least two semigroup 
omponents, namely � (K;K

1

)\P

0

and � (K;K

2

) \ P

0

.

8 Re
urrent 
omponents

De�nition 8.1 A 
onne
ted 
omponent � � S is said to be re
urrent (or

to have �nite index) if �

k

\ � 6= ; for some integer k > 1. The smallest

k � 2 satisfying this 
ondition is the index of �. Otherwise the 
omponent

is transient or has in�nite index.

Alternatively, � has �nite index if and only if �

k

� � for some integer

k > 1, whi
h means that � has �nite index in the semigroup of 
ompo-

nents. Of 
ourse, a 
omponent is a semigroup if and only if it has index 2.

Furthermore, if k is the index of � then �

n

� � for any multiple n = lk,

l � 1.

In this se
tion we present a des
ription of the �nite index 
omponents in

a manner similar to the semigroup 
omponents. Now we look at the 
ontrol

sets on G=P

0

instead of B . First we prove an useful property of re
urrent


omponents, whi
h holds in general.
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Lemma 8.2 Given a re
urrent 
omponent �, suppose there exists a semi-

group 
omponent � 
ontaining a power �

s

. Then �� � � and �� � �.

Proof: Let n > s be su
h that �

n

� �. Then any g 2 �

n�s

satis�es

g�;�g � �. We 
an 
hange g by gh, h 2 �, without a�e
ting the in
lusion

g� � �. But, gh 2 �, so that �� � �. Analogously, hg 2 � so that

�� � �.

In semi-simple groups the following kind of 
onverse to this lemma also

holds.

Proposition 8.3 Let the notations be as in the pre�ous se
tion and take

a 
omponent � � S. Suppose that t � is a re
urrent 
omponent su
h that

K

�

(�) = K

�

(�) and � 
ontains g� or �g for some g 2 S. Then � is

re
urrent.

Proof: Assume �rst that � is a semigroup 
omponent and g� � �. Denote

by �

g

the 
omponent of S 
ontaining g, so that �

g

� � �. Sin
e �

g

is open

it 
ontains semi-simple elements, so that we 
an assume without loss of

generality that g is semi-simple. Write g = mh = hm, with h split and

m 
ompa
t. Using again that �

g

is open we 
an assume that m has �nite

index, say k. Sin
e h = expH, H 2 g, there exists a power h

s

whi
h is


ontained in a semigroup 
omponent. This 
omponent must be �, be
ause

�x(g) and �x

�

g

�1

�

are �xed points of h. Hen
e, for large s = lk+1, h

s

2 �

and mh

s

2 �. Therefore, (mh

s

)

k+1

= mh

ks

2 �, showing that �

k+1

� �,

that is, � has �nite index. The proof in 
ase �g � � is the same.

Now, if � is re
urrent then K

�

(�) = K

�

(�

1

), for a semigroup 
ompo-

nent �

1

, so that by the previous lemma there exists g

1

2 S with g

1

�

1

� �.

Hen
e, gg

1

�

1

� �, and the result follows by the �rst part of the proof.

In order to pro
eed we re
all that by Corollary 7.2, there exists a unique

semigroup 
omponent � (�) whi
h 
ontains some power of �. It is de�ned by

the 
onditions K

�

(� (�)) = K

�

(�). Hen
e Lemma 8.2 applies to our 
on-

text. Consider the proje
tion � : G=P

0

! B . The pre-images �

�1

(K

�

(�))

are also invariant under �, so the 
omponents of �

�1

(K

+

(�)) are mapped

into ea
h other by �. To see the behavior of these mappings we look �rst

at the semigroup 
omponents.
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Lemma 8.4 Let � be a semigroup 
omponent, and � a 
onne
ted 
omponent

of �

�1

(K

+

(�)). Then �y = � for every y 2 �. Analogously, the 
omponents

of �

�1

(K

�

(�)) are orbits of �

�1

.

Proof: Sin
e � is a semigroup it 
ontains a split-regular element h. Denote

by A

+

the 
hamber 
ontaining h, and let P be the 
orresponding paraboli


subgroup. If P is the isotropy subgroup at x 2 B , then x 2 K

+

(�), and

P

0

is the isotropy subgroup of any y in the �ber �

�1

fxg. Thus h 2 � �xes

every point over x, showing that �y � � for every y 2 �. This in
lusion is

an equality be
ause � a
ts transitively on K

+

(�).

Combining this lemma with Lemma 8.2 we see that the re
urrent 
om-

ponents map 
omponents in G=P

0

onto 
omponents.

Proposition 8.5 Let � be a re
urrent 
omponent and � a 
onne
ted 
ompo-

nent of �

�1

(K

+

(�)). Then �y is a 
onne
ted 
omponent of �

�1

(K

+

(�))

for every y 2 �. Analogous result holds for �

�1

(K

�

(�)) and �

�1

.

Proof: By Lemma 8.2, there exists g 2 S with � (�) g � �. Then, for ev-

ery y 2 �, � (�) gy � �y, so that �y equals the 
omponent 
ontaining gy.

Now we 
an prove existen
e and uniqueness of a re
urrent 
omponent

mapping a 
onne
ted 
omponent of a 
ontrol set in G=P

0

onto another


omponent.

Lemma 8.6 Let � be a semigroup 
omponent, and �

1

, �

2


onne
ted 
ompo-

nents of �

�1

(K

+

(�)). Then there exists at most one �nite index 
omponent

� with � (�) = � and ��

1

= �

2

.

Proof: Let � and �

1

be re
urrent 
omponents with � (�) = � (�

1

),

and suppose that � and �

1

map �

1

into �

2

. Take g 2 � and y 2 �

1

.

By the previous 
orollary there exists g

1

2 �

1

su
h that gy = g

1

y. Then

g

�1

g

1

2 P

0

, the isotropy at y. Now, � \ P

0

is left reversible in P

0

, so that

g

�1

g

1

�\� 6= ;, that is, g�\ g

1

� 6= ;. However, by Lemma 8.2, g� � � and

g

1

� � �

1

. Hen
e, � \ �

1

6= ;, showing the uniqueness of the 
omponent.

Lemma 8.7 Let � be a semigroup 
omponent, and �

1

, �

2


onne
ted 
om-

ponents of �

�1

(K

+

(�)). Suppose that �

1

and �

2

are 
ontained in the same
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invariant 
ontrol set in G=P

0

. Then there exists a re
urrent 
omponent �

su
h that ��

1

= �

2

.

Proof: By assumption there exists g 2 S with g�

1

� �

2

. Denote by

� the 
omponent of S 
ontaining g�. We 
laim that K

�

(�) = K

�

(�).

In fa
t, the in
lusion g�

1

� �

2

implies that gK

+

(�) � K

+

(�), so that

g� leaves invariant K

+

(�), hen
e K

+

(�) = K

+

(�). On the other hand

K

�

(�) = K

�

(�) by Lemma 6.6. Therefore, by Proposition 8.3, � is re
ur-

rent. Now, Lemma 8.4 ensures that � maps �

1

into �

2

.

Finally we prove that the produ
t of re
urrent 
omponents is re
urrent,

so that this set of 
omponents is a subsemigroup.

Proposition 8.8 The set of re
urrent 
omponents is a subsemigroup of the

semigroup of 
omponents of S, that is, the union of the re
urrent 
omponents

is a subsemigroup of S.

Proof: First we 
he
k that the produ
t � = � (K

1

;K

2

) � (L

1

; L

2

) of

semigroup 
omponents is re
urrent (
f. the notation following Theorem

7.1). Note that by Lemma 7.3, K

1

= K

+

(�) while L

2

= K

�

(�). Now, by

Lemma 7.5, � (K

1

; L

2

) � (K

1

;K

2

) � � (K

1

;K

2

), so that � (K

1

; L

2

)� � �.

Hen
e, by Proposition 8.3, � is re
urrent.

Now if � is re
urrent and � is a semigroup 
omponent, then � 
ontains

g�

1

with �

1

the semigroup 
omponent su
h that K

�

(�

1

) = K

�

(�

1

), so

�� 
ontains g�

1

�. By the �rst part of the proof �

1

� is re
urrent, hen
e

by Proposition 8.3, �� is re
urrent, be
ause K

�

(��) = K

�

(�

1

�). The

same way one proves that the produ
t of arbitrary re
urrent 
omponents is

re
urrent.

9 Mid-reversibility

A subsemigroup S � G is said to be mid-reversible if SgS \ S 6= ;, for all

g 2 G, or G = SS

�1

S or G = S

�1

SS

�1

. A

ordingly the mid-reversor of S

is de�ned to be the set

Mid (S) = fg 2 G : SgS \ S 6= ;g

and S is mid-reversible if Mid (S) = G. These 
on
epts were introdu
ed

in [6℄ where they are related to the 
onne
ted 
omponents of S when S is

25



open. In this se
tion we pursue further on these relations for semigroups in

semi-simple Lie groups.

Let us take in advan
e a minimal paraboli
 subgroup P in su
h a say

that the 
orresponding origin b

0

2 B = G=P belongs to C

+

(S). As we

shall see mid-reversibility and questions involving the way S generates G

are related to the interse
tion of S with the 
onne
ted 
omponents of P .

Lemma 9.1 G = S

�1

P .

Proof: It is known that for every x 2 B , C (S) � Sx (this is a 
onsequen
e

of the uniqueness of the S-i.
.s., see e.g. [7℄). Hen
e B = S

�1

b

0

, and sin
e

P is the isotropy subgroup at B

0

the lemma follows.

This simple fa
t yields the following suÆ
ient 
ondition for S to be mid-

reversible.

Proposition 9.2 Suppose that S \ P meets every 
onne
ted 
omponent of

P . Then S is mid-reversible.

Proof: We show that P � SS

�1

. Take g 2 P . By assumption there exists

t 2 S\P in the 
onne
ted 
omponent of g. Then t

�1

g 2 P

0

. By Lemma 3.4,

S\P

0

is left reversible, so that there exists s 2 S with t

�1

gs 2 S\P

0

. Hen
e

g 2 SS

�1

. Using the previous lemma we get G = S

�1

SS

�1

, 
on
luding the

proof.

Corollary 9.3 Every open semigroup in G is mid-reversible if the minimal

paraboli
 subgroups are 
onne
ted.

Examples of G with 
onne
ted P (or equivalently, 
onne
ted M) are the

groups with real rank one with dim B > 1 and the 
omplex groups. For these

groups a result of Ruppert (see [6℄, Theorem 3.9) shows that subsemigroups


ontaining 1 in the 
losure are 
onne
ted. Of 
ourse this phenomena does

not o

ur in general. For example the interior of the semigroup �Sl (2;R)

+


ontains the identity in its 
losure but is not 
onne
ted. However, we shall

prove below that in general an open semigroup has just one semigroup 
om-

ponent if the identity is a 
luster point.

Remark: The 
riterion of Theorem 9.4 works also for semigroups with

nonempty interior, sin
e in 
ase intT 6= ; it is easy to prove that T is mid-

reversible if and only if intT is mid-reversible.
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We observe that Proposition 9.2 (and hen
e its 
orollary) does not re-

quire that the group G has �nite 
enter. So the 
ondition that S \P meets

every 
omponent of P is suÆ
ient for mid-reversibility even in groups with

in�nite 
enter. We prove next the 
onverse to Proposition 9.2, using ex-

pli
itly that G has �nite 
enter. Note that by the dis
ussion in Se
tion 4

uniqueness of invariant 
ontrol set in G=P

0

holds if and only if S \P meets

every 
omponent of P if P is the isotropy subgroup at x 2 C

+

.

Theorem 9.4 An open semigroup S � G is mid-reversible if and only if S

has exa
tly one invariant 
ontrol set on G=P

0

.

Proof: If there is uniqueness of invariant 
ontrol set then S meets every


omponent of P so it is mid-reversible by Proposition 9.2.

For the 
onverse we assume that some 
omponent of P , say mP

0

, does

not meet S and prove that SmS \ S = ;. In fa
t, suppose to the 
ontrary

that tms 2 S with t; s 2 S. Arguing as in the �rst part of the proof we see

that there exists t

1

2 S su
h that p = t

1

t 2 P . We 
an write p = m

1

p

1

,

with p

1

2 P

0

, m

1

2M (S; P ). Then pm = m

1

mq, where q = m

�1

p

1

m 2 P

0

.

Note that m

1

m =2M (S; P ), sin
e m =2M (S; P ).

Now, re
all the notation rounding Proposition 4.3, and identify �

�1

(C),

� : G=P

0

! B , with C

�(S)

� (P

�

=P ) � (M (S;D) =M (�)). By Proposition

4.3 the set D = C

�(S)

�(P

�

=P )�M

D

is an invariant 
ontrol set for S. Sin
e

q 2 P

0

any sli
e C

�(S)

�fag�fbg, a 2

�

P

�(S)

�

0

=P

0

, b 2

�

P

�(S)

=

�

P

�(S)

�

0

�

is invariant under q. Also, s 2 S, so that sD � D. Hen
e, qsD � D. On

the other hand, m

1

mD\D = ;, be
ause m

1

m =2M (S; P ). Hen
e we arrive

at the 
ontradi
tion that (tms)D\D = ; with tms 2 S and D an invariant


ontrol set.

As an appli
ation of these results we 
an prove that 
ompression semi-

groups are always mid-reversible.

Proposition 9.5 Let T � G be a semigroup with non-empty interior, and

denote by C its invariant 
ontrol set on B . Suppose that

T = 
ompC = fg 2 G : gC � Cg:

Then T has a unique i.
.s on G=P

0

, namely �

�1

(C), where � : G=P

0

! B

is the standard proje
tion. Therefore, T is mid-reversible.
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Proof: Fix b 2 C

+

and take a split-regular h 2 intT su
h that b = att (h).

Suppose that h 2 A

+

, 
orresponding to the de
omposition P = MAN ,

where P is the isotropy at b. It is enough to show that for any m 2M there

exists an integer k > 0 with mh

k

2 T .

Let � (T ) be the paraboli
 type of T and put C

�(T )

for the T -i.
.s on

B

�(T )

. Sin
e C = �

�1

�(T )

�

C

�(T )

�

, g 2 T if and only if gC

�(T )

� C

�(T )

. Put

b

�

= �

�(T )

b. Then h

n

C

�(T )

! fb

�

g as n! +1, and b

�

is �xed under M .

The latter ensures given m 2 M there exists a neighborhood U � C

+

�

of

b

�

su
h m (U) � C

+

�

. Now, take k large enough so that h

k

C

�

� U . Then

mh

k

C

�

� mU � C

�

, so that mh

k

2 intT , 
on
luding the proof.

A slight 
hange of the proof of Theorem 9.4 yields the following infor-

mation about the mid-reversor of S.

Proposition 9.6 Let A

+

be a Weyl 
hamber and denote by P and N

�

the subgroups determined by A

+

. Suppose that the attra
tor set C

+

of

S is 
ontained in the open 
ell �

A+

determined by A

+

. Then, the subset

M (S; P )N

�

P

0

is 
ontained in the mid-reversor of the open semigroup S.

Proof: As in Proposition 4.3, write a 
ontrol set D on G=P

0

as

D = C

�(S)

�

�

P

�(S)

=P

�

�M

D

with C

�(S)


ontained in the open Bruhat 
ell �

�(S)

in B

�(S)

determined by

P . Take g 2 M (S; P )N

�

P

0

. If y is an element in the �ber over x then gy

is 
ontained in �

�(S)

�

�

P

0

�(S)

=P

0

�

�M (S; P ). Now a split-regular h 2 P

0

leaves invariant the sli
es �

�(S)

� fag � fbg. In parti
ular, if h 2 S \ P

0

hgy belongs to the same sli
e as gy, so that if h is large enough hgy 2 D.

Thus there exists g

1

2 S su
h that g

1

g 2 M (S; P )P

0

. Therefore the same

argument as in the �rst part of the proof above shows that g 2 Mid (S), as

desired.

We turn now to the relation between mid-reversibiltity and the 
onne
ted


omponents. First note that the set N

�

P

0

is a neighborhood of 1 2 G, sin
e

the produ
t map N

�

� P

0

! G has full rank at the identity. From this

remark and the above proposition we get the following fa
t whi
h is a slight


hange ot [6℄, Theorem 3.9 (i).

Lemma 9.7 Suppose 1 2 
lS, and let A

+

be a Weyl 
hamber with S \

A

+

6= ;. Take N

�

and P

0

subgroups 
orresponding to A

+

and put U =
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N

�

P

0

. Then U meets exa
tly one 
omponent � of S, and this 
omponent is

a semigroup 
ontaining 1 in its 
losure.

Proof: By assumption there exists g 2 S \ U . Let � be the 
omponent


ontaining g and sele
t an neighborhood of the identity V su
h that V gV �

�. Put S

V

for the interior of the semigroup generated by S \ V . Clearly

S

V

� S hen
e its invariant 
ontrol set is 
ontained in C. Therefore by

Proposition 9.6 U is 
ontained in the mid-reversor of S

V

. Now, the proof

that � is a semigroup and the unique 
omponent meeting U follows verbatim

the proof of Theorem 3.9 (i) of [6℄. We sket
h it: The 
hoi
e of V implies

that S

V

� � � and S

V

gS

V

� �. Thus

; 6= S

V

gS

V

\ S

V

� � \ S

V

:

But for h 2 �\S

V

it holds h� � S� � �, so that � is a semigroup. Further-

more, let � be a 
omponent meeting V . Repeating the above arguments we

get �g� \ � 6= ; and �g� � �. Hen
e S \ V � �, so that 1 2 
lS, and

sin
e g 2 U was arbitrary, the uniqueness follows, 
on
luding the proof.

Theorem 9.8 Let S be an open semigrouup in the 
onne
ted semi-simple

Lie group G with �nite 
enter. If 1 2 
lS then any 
omponent of S has

�nite index. Also, there exists exa
tly one semigroup 
omponent, whi
h is

the only 
omponent 
ontaining 1 in its 
losure.

Proof: For the uniqueness of the semigroup 
omponent it is enough to


he
k that the sets C

�

are 
onne
ted. Let � be the unique (semigroup)


omponent 
ontaining 1 in its 
losure, as ensured by the above lemma. If

� is a 
onne
ted 
omponent of C

+

then �� � � be
ause 1 2 
lS. Sin
e

by Lemma 6.2, � leaves invariant just one 
omponent of C

+

it follows that

this set is 
onne
ted. Analogously, C

�

is 
onne
ted showing that � is the

only semigroup 
omponent of S. Using again the fa
t that 1 2 
l� we see

that �� � � for any 
onne
ted 
omponent �. Therefore, Proposition 8.3

ensures that the 
omponents are re
urrent.

In 
on
luding we shall exploit a step further our method of proving

mid-reversibility to get a (rough) estimate of the number of fa
tors S, S

�1

required to produ
e G. The idea is that if P is the isotropy subgroup at

b

0

2 C

+

then P

0

� SS

�1

, so that if x 2 G=P

0

is �xed under P

0

and for

a 
ertain produ
t A = S

i

1

� � � S

i

k

, Ax = G=P

0

then G = ASS

�1

. Now, let
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x

1

; : : : ; x

k

be the �xed point set of P

0

in G=P

0

. By making a right 
hoi
e

of N

�

, we get open orbits N

�

x

i

, i = 1; : : : ; k, whose union 
ontain the

invariant 
ontrol sets in G=P

0

. A

ordingly, we 
hoose h 2 S \P

0

su
h that

h

n

y ! x

i

for every y 2 N

�

x

i

. Write C

i

= �

�1

(C

+

) \ N

�

x

i

then the sets

h

�n

C

i

, n � 1, 
over Nx

i

, so that N

�

x

i

� S

�1

x

i

.

Lemma 9.9 If two sli
es satisfy I

ij

= 
l (N

�

x

i

) \ 
l (N

�

x

j

) 6= ; then

(C

j

)

0

� SS

�1

x

i

.

Proof: The 
losed set I

ij


ontains h-�xed points, sin
e I

ij

is h-invariant

and a limit limh

n

z is �xed under h. If y 2 I

ij

is an h-�xed point then there

exists an e�e
tive 
ontrol set, say D, with y 2 D

0

, so that D

0

\N

�

x

i

6= ; 6=

D

0

\N

�

x

j

. Now, D

0

\N

�

x

i

6= ; implies that D

0

\ S

�1

x

i

6= ;, and hen
e

D

0

� S

�1

x

i

, be
ause S

�1

is transitive on D

0

. On the other hand, h

n

z ! x

j

for any z 2 N

�

x

j

. Therefore, (C

j

)

0

meets SD

0

� SS

�1

x

i

implying that

(C

j

)

0

� SS

�1

x

i

, as 
laimed.

Thus by applying SS

�1

we 
over di�erent sets (C

j

)

0

. We 
an do this

su

essively and get the following upper bound for the number of fa
tors.

Note that the order of the �xed point set of P

0

in G=P

0

is the number of


onne
ted 
omponents of P .

Proposition 9.10 Let k = jP=P

0

j. Then G = S

�1

�

SS

�1

�

k

.

Proof: With the notations as above we prove by indu
tion on l = 1; : : : ; k�

1 that

�

SS

�1

�

l

x

1


ontains l+1 di�erent sets (C

i

)

0

. For l = 1 the statement

follows from the above lemma. Thus suppose that

�

SS

�1

�

l�1

x

1


ontains the

sets

�

C

i

j

�

0

, j = 1; : : : ; l. Sin
e G=P

0

is 
onne
ted there exists a sli
e N

�

x

i

,

i 6= i

j

, j = 1; : : : ; l, su
h that 
l (N

�

x

i

) meets some 
l

�

N

�

x

i

j

�

. Applying

again the lemma, it follows that (C

x

i

)

0

�

�

SS

�1

�

l

x

1

.

Therefore,

S

k

i=1

(C

x

i

)

0

�

�

SS

�1

�

k�1

, so that G=P

0

� S

�1

�

SS

�1

�

k�1

.

As mentioned above, this implies that G = S

�1

�

SS

�1

�

k

, 
on
luding the

proof.

10 Examples

In this se
tion we provide some examples and 
ounter-examples related to

the results of the paper.
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10.1 Transient 
omponents

The following is an example of a transient 
omponent of an open semigroup

in G = Sl (2;R). For positive reals r < s put

U

r;s

=

��

a b


 d

�

2 Sl (2;R) : r < a < s; b; 
; d � 0

�

:

Sin
e the entries are positive, it follows that r

n+1

< aa

0

if x 2 U

r;s

and

x

0

2 U

n

r;x

, where

x =

�

a b


 d

�

x

0

=

�

a

0

b

0




0

d

0

�

:

Hen
e, U

r;s

\U

n

r;s

= ; for all n � 2 if 1 < r < s < r

2

. Under this 
ondition the


onne
ted 
ompoenents of U

r;s

are transient 
omponents in the semigroup

S

r;s

generated by U

r;s

. A
tually, it is not hard to 
he
k that U

r;s

is itself


onne
ted, so that it is a transient 
omponent in S

r;s

if 1 < r < s < r

2

.

10.2 Fixed points

For the results Se
tion 5 to hold the 
ondition that S is an open semigroup

is essential. This 
ondition appears expli
itly for instan
e in the proof of

Lemma 5.2 and subsequently.

A
tually, even for semigroups with non-empty interior the uniqueness of

�xed points stated in Theorem 5.9 holds only for the interior points. Here is

an example of a semigroup S � Sl (3;R) with non-empty interior su
h that

boundary elements of S 
an have in�nity �xed points in the attra
tor set

C

+

�(S)

.

Given a basis fe

1

; e

2

; e

3

g of R

3

de�ne the 
ag b

0

= (V

1

� V

2

), V

1

=

spanfe

1

g, V

2

= spanfe

1

; e

2

g, and write lower triangular matri
es as

(a; b; 
) =

0

�

1 0 0

a 1 0


 b 1

1

A

:

Consider the diagonal matrix

H = diagf2;�1;�1g:

Then exp (tH) (a; b; 
) exp (�tH) =

�

e

�3t

a; b; e

�3t




�

, so that the semigroup

exp (tH), t � 0, leaves invariant subsets of the form

R

�;�;


= f(a; b; 
) b

0

: jaj � �; jbj � �; j
j � 
g:
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Thus if we let S be the 
ompression semigroup of R

�;�;


, �; �
 > 0, then

exp (tH) 2 S if t � 0. By general fa
ts about 
ompression semigroup the


ag type of S is the full 
ag manifold, R

�;�;


is the invariant 
ontrol set

of S and C

+

= intR

�;�;


. The points (0; b; 0) b

0

2 R

�;�;


are �xed under

exp (tH), t � 0., and belong to C

+

. Of 
ourse, exp (tH), t � 0, are boundary

elements of S.

10.3 Components of i.
.s.

The 
onne
ted 
omponents of the semigroups were studied via the 
ompo-

nents of the attra
tor and repeller sets C

�

. The attra
tor set C

+

is dense

in the invariant 
ontrol set C, so that it is natural to ask about the relation

between the 
omponents of C

+

and C. In general C

+


an have mu
h more


omponents than C. Examples of semigroups with C 
onne
ted, but C

+

not


onne
ted are easily given as 
ompression semigroups of 
losed 
onne
ted

sets, having non-
onne
ted interior. For instan
e, 
onsider the situation in

Sl (3;R) of the previous example. In the open 
ell N

�

b

0

let C be the union

of two tangent balls, i.e., C is pres
ribed by

a

2

+ b

2

+ (
+ 1)

2

� 1 or a

2

+ b

2

+ (
� 1)

2

� 1:

The 
ompression semigroup of C has at least two semigroup 
omponents

although C is 
onne
ted.

10.4 Compression semigroup of a 
one

Let W � R

n

be a pointed generating 
one, and 
onsider the 
ompression

semigroup

S

W

= fg 2 Sl (n;R) : gW �Wg:

In Ribeiro and San Martin [5℄ it was proved that S

W

is 
onne
ted. We shall

use our results above to give an alternative proof of this fa
t. It is well know

(and easy to see) that S = intS

W

is dense in S

W

, so that it is enough to


he
k that intS

W

is 
onne
ted. Of 
ourse, 1 2 
lS so that by 9.8 it has

only re
urrent 
omponents. Now, the paraboli
 type �

W

of S

W

is given by

the 
ondition that Sl (n;R) =P

�

W

is the proje
tive spa
e P

n�1

. Hen
e its


overing Sl (n;R) =P

0

�

W

is the sphere S

n�1

. Also, the invariant 
ontrol set

of S in P

n�1

is the set of lines 
ontained in W , whi
h is 
onne
ted. This set

splits into two 
omponents in S

n�1

, namely the set of rays starting at the

origin and 
ontained in W . Of 
ourse the later 
omponents are invariant
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under W . Therefore by the 
hara
terization of the �nite index 
omponents

it follows that S has just one 
omponent, meaning that S

W

is 
onne
ted.

10.5 Produ
t of semigroup 
omponents

In view of Theorem 8.8 it is natural to ask if the produ
t of two semi-

group 
omponents is still a semigroup 
omponent. The example given here

shows that in general this is not true: In R

2


onsider the pointed 
ones

W

1

= f(x; y) : 0 � y � xg and W

2

= f(x; y) : �y � x � 0g, form the 
om-

pression semigroup in Sl (2;R), T = 
omp (�W

1

[ �W

2

) and put S = intT .

In the proje
tive line P

1

the attra
tor set C

+

of S has two 
omponents,

namely K

1

= int[�W

1

℄ and K

2

= int[�W

2

℄. The repeller set C

�

also

has two 
onne
ted 
omponents L

1

= int[�U

1

℄ and L

2

= int[�U

2

℄, where

U

1

= f(x; y) : 0 � x � yg and U

2

= f(x; y) : �y � x � 0g. We 
laim that

the produ
t � (K

2

; L

2

) � (K

1

; L

1

) is not a semigroup 
omponent. In fa
t,

take g 2 � (K

1

; L

1

) su
h that gK

2

� K

1

and h 2 � (K

2

; L

2

) with hK

1

� K

2

.

The matrix g has real eigenvalues �

1

> 1 > �

2

whose prin
ipal eigenspa
e

is 
ontained in �W

1

and the se
ondary one is in �L

1

. Analogously, the

prin
ipal eigenspa
e of h is 
ontained in �W

2

and the se
ondary in �L

2

.

Taking into a

ount that a matrix leaves invariant a half-spa
e bounded by

an eigenspa
e we see that for any x 2 W

2

, gx 2 �W

1

, and hgx 2 �W

2

.

Hen
e hg does not leave invariant a 
onne
ted 
omponent of a 
ontrol set

in the double 
overing S

1

! P

1

. By Lemma 8.4, � (K

2

; L

2

) � (K

1

; L

1

) is not

a semigroup 
omponent.

10.6 Number of fa
tors of S generating G

Let G be a two fold 
overing of Sl (2;R) and S � G the semigroup generated

by the exponential of the Lie wedge sl

+

(2;R) formed by the matri
es

�

a b


 �a

�

b; 
 � 0:

The pi
ture below depi
ts the 
ontrol sets in in the four fold 
overing G=P

0

of

the proje
tive line P

1

= G=P . In the pi
ture the C

0

s represent the invariant


ontrol sets and the D

0

s the open 
ontrol sets. Also, the points marked

inside the D

0

s are delimiters of open intervals whi
h are the sheets given by

open N -orbits (
f. Proposition 9.10).
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)

D

1

( )

D

2

( )

D

3

( )

D

4

D

1

([ ℄

C

1

[ ℄

C

2

[ ℄

C

3

[ ℄

C

4

Now, given x 2 C

1

, S

�1

x is 
ontained in C

1

[ D

1

[ D

2

, sin
e S

�1

x is


onne
ted and does not meet C

2

and C

4

be
ause these are S-invariant. By

similar reasons we see that SS

�1

x is 
ontained in C

1

[ C

2

[ C

4

[D

1

[D

2

and S

�1

SS

�1

x does not meet C

3

, so that SS

�1

S 6= G. It is 
lear that if we

take higher 
overings of Sl (2;R) we 
an apply this method to �nd examples

semigroups su
h that the number of fa
tors needed to generate the group is

as large as we please.
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