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Abstract

This paper studies connected components of open subsemigroups
of non-compact semi-simple Lie groups through the control sets in
the flag manifolds and their coverings. A method for computing the
number of components we call recurrent, which includes the semigroup
components, is developed and it is proved that the union of this set of
components is a subsemigroup. The idea of mid-reversibility comes up
to show that an open semigroup has just one semigroup component if
the identity belongs to its closure. A necessary and sufficient condition
for mid-reversibility is proved showing that e.g. in a complex group
any open semigroup is mid-reversible.
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1 Introduction

Let G be a connected non-compact semi-simple Lie group with finite center.
The purpose of this paper is to study the connected components of an open
subsemigroup S C G. Our approach is through the action of S on the flag
manifolds of G and the corresponding control sets (for results related to this
method we refer to [8], [9], [10], [11]). Thus the main efforts are dedicated
towards the description of the connected components in terms of the control
sets. Having this in mind we divide the connected components of S into two
classes. The first one comprises those components I' C S such that some
power I'*, k > 2, meets T' (and hence is contained in I'). We say that such a
component has finite index or is recurrent. The other class contains the infi-
nite index or transient components. Among the recurrent components there
are those which are themselves subsemigroups (semigroups components, for
short).

In this paper we get sharper results for the recurrent components. This is
due to the fact that the properties of the semigroup S captured by its action
on the flag manifolds are usually related to high powers of the elements of
S.

We better describe our results by summarizing the contents of the paper:
Sections 2, 3 and 4 are preparatory. In section 2 we discuss generalities about
connected components of semigroups, and prove a lemma used throughout
the paper, ensuring that in a connected nilpotent Lie group an open sub-
semigroup has just one semigroup component. In Section 3 we set notations
and recall some of the above mentioned results about semigroups in semi-
simple Lie groups and their control sets on flag manifolds. This includes
a discussion about the parabolic type of a semigroup and the introduction
of the open subsets sets C* and C~ of the maximal flag manifold, which
we call the attractor and the repeller sets of S, respectively. These sets
play a central role in the study of recurrent components of S. In Section
4 the invariant control sets in the covering G/P, of the flag manifold are
determined. These control sets are used afterwards in the description of the
recurrent components.

In Section 5 we relate the Jordan decomposition of a g € S with the
parabolic type of S, by showing how the latter influences the semi-simple
and unipotent components of g. This result has independent interest (and
improves Corollary 4.4 of [11]). From the knowledge of the Jordan decompo-
sitions we prove that any g € .S has a unique fixed point in the attractor sub-
set of the flag manifold determined by the parabolic type of S (see Theorem



5.9). This result is used in Section 6 to show that a connected component of
S, say Y, leaves invariant a unique connected component of C*, denoted by
K+ (Y), and analogously Y ~! leaves invariant a unique component K~ ()
of C™.

The uniqueness of the invariant component opens the way to study the
semigroup components in Section 7. In Theorem 7.1 we prove that for a
pair of connected components K; of C* and Ky of C~ there exists a unique
semigroup component, say I' (K7, K»), which leaves invariant K; and whose
inverse leaves invariant K. This is one of the main results of the paper.
It gives the number of semigroup components in terms of the control sets.
In proving this theorem some results of independent interest are obtained,
like the fact that the attractor and repeller sets of ' (K1, K3) are K; and
K, respectively, and that the parabolic type of a semigroup component of
S coincides with the parabolic type of S.

The recurrent components which are not semigroups are studied in Sec-
tion 8. They are described by the components of the invariant control sets in
the covering G/ Py mentioned above. As a consequence we prove that the set
of recurrent components is a subsemigroup of the semigroup of components,
or equivalently, the union of recurrent components is a subsemigroup of S.

In Section 9 we relate the connected components with the concept of
mid-reversibility introduced by Ruppert [6] (S is mid-reversible in G if
G = SS7'S). This algebraic property of a semigroup has deep links to
connectivity properties as already appears in [6]. In fact, Theorem 3.9 of [6]
shows that an open subsemigroup of a group G containing the identity in its
closure is connected in case every open subsemigroup of G is mid-reversible.
In our semi-simple context we give a necessary and sufficient condition for
an open semigroup in a semi-simple Lie group to be mid-reversible (see
Theorem 9.4). This condition depends on the connected components of the
centralizer of a split-torus (the M-group). In particular, the condition of
Ruppert that every open subsemigroup is mid-reversible holds if M is con-
nected (which happens for instance if G is a complex Lie group). For these
groups Theorem 3.9 of [6] applies. In case M is not connected we show any-
way that a semigroup S with 1 € clS has exactly one semigroup component.
Still in this subject we prove that compression semigroups are mid-reversible
and for in general we give a rough upper bound for the number of factors
S, S~! required to generate the group.

Finally, in Section 10 we provide some examples and counter-examples
related to the results of the paper. In particular we illustrate how to prove
connectedness of a semigroup by showing that the compression semigroup



Sw of a pointed and generating cone W C R” is connected.

2 Semigroup of connected components

In this section we discuss some concepts and general facts about connected
components of semigroups which are used throughout the paper. Let G be
a semitopological group and S C G a subsemigroup.

Given z € S we denote by K, the connected component of S containing
x. The subset K, K, is connected and contains zy thus K, K, C K;,. This
provides the set of connected components of S the structure of a semigroup,
where the product KK, of two components K, and K, is the component
containing zy. In the sequel we often write K, K, = K;,, meaning the
product in the semigroup of connected components, instead of product of
sets (when equality may not be true).

A connected component K, is a subsemigroup, (that is K, K, C K,) if
and only if it is an idempotent in the semigroup of components, which is
equivalent to K,» = K, that is, > € K,. Such a connected component
is called semigroup component. In dealing with semigroups in Lie groups
it is convenient to have the following terminology for components meeting
one-parameter semigroups.

Definition 2.1 A connected component K of a semigroup S C G is said
to be an exit component provided there exists a one-parameter subgroup ¢ :
R — G, and Ty € R, such that the interval ¢ (Ty, +00) C K.

An exit component has the form K = Ky, t > Tp. Since ¢ (t) ¢ (t) =
¢ (2t), it is clear that an exit component is a subsemigroup. Exit components
are easily built with the aid of the following simple fact.

Lemma 2.2 Let I' C Ry be a semigroup of positive reals, and suppose
that for 0 < ty € T there exists € > 0 with (top —e,t9 +¢) C T'. Then,

tn —
(ntg,+00) C T if n > > .

Proof: Given an integer n > 0, the interval (nty — ne,ntg + ne) is con-
tained in I'. Hence (nty, +oo) C I"if ktg + ke > (k+1)to — (k+ 1) e for all
to— €

. |

k > n. But this inequality holds if n >
€

This lemma implies immediately the following statement about existence
of exit components (cf. [6], Proposition 3.1).



Proposition 2.3 Let ¢ be a one-parameter subgroup of the topological group
G. Let S C G be a subsemigroup and suppose that ¢ (s) € intS for some
s > 0. Then there exists Ty > 0 such that ¢ (Ty,+00) C intS. Clearly
¢ (Toy, +00) is entirely contained in an exit component.

Therefore, any open semigroup meeting a one-parameter group contains
an exit component, and hence a semigroup component.

Now, let G be a Lie group with Lie algebra g. If X € g is such that the
one-parameter semigroup exptX, ¢ > 0, meets the open semigroup S we
denote by E (X, S), or simply E (X), the exit component of S containing
exptX for large t > 0. Also, if h € S and X = logh is well defined we put
E(h) = E(X).

At this point we recall that a Lie group G is said to have finite index if
for every z € G some power z* belongs to the image of the exponential map
(cf. Dokovic and Hofmann [2]). Any open subsemigroup of a group with
finite index meets a one-parameter group and thus has exit components.
Furthermore, any semigroup component is an exit component, so that in
these groups both concepts are equivelent. Note also that in a finite index
group G a connected component T of an open semigroup S C G must have
some power meeting a semigroup component.

In particular, open semigroups in a connected nilpotent Lie group has
semigroup (exit) components. Next we show the uniquenes of such com-
ponents, a fact which is used extensively in the sequel, applied to abelian
groups. For the proof we use the concept of reversibility. Recall that a sub-
semigroup T of a group G is said to be left (respectively right) reversible if
TT~! (respectively T 1'T) is a group, which must be G if T has non-empty
interior and G is connected.

Proposition 2.4 Let G be a connected nilpotent Lie group and S C G an
open subsemigroup. Then S contains exactly one semigroup (exit) compo-
nent K.

Proof: The nilpotent Lie group G is exponential, so that a connected com-
ponent K C S is exit if and only if it is a subsemigroup. For the uniqueness
we use the fact that any open semigroup in a nilpotent Lie group is (right
and left) reversible (see [6], Proposition 1.5). Thus suppose that K;, Ky C S
are semigroup components of S. Take y € K. By right reversibility of K,
there exists £ € K such that xy € K;. Hence, K1 Ky C K. But by left
reversibility of Ko, for any z € K; there exists z € Ko such that zz € K.



Therefore, K1 Ko C Ko, that is, K1 = Ko. ]

Remark: Notice that this proof uses both right and left reversibility of open
subsemigroups of nilpotent Lie groups. Actually one sided reversibility is not
enough. In fact, after looking at the connected components of semigroups
in semi-simple Lie groups we can find easily an example of a subsemigroup
S of an exponential solvable Lie group G such that every component of S is
right reversible and nevertheless S has more than one semigroup component
(see the remark at the end of Section 7, below). 1

3 Semigroups in semi-simple groups

The purpose of this section is to establish notations and background results
to be used afterwards. Let G be a connected noncompact Lie group with
finite center and denote by g its Lie algebra. The flag manifolds of G are
labelled by subsets of the set of simple (restricted) roots of g. Precisely,
choose an Iwasawa decomposition g = €@ a @ n. Let II be the set of roots
of the pair (g,a). Denote by II™ and 3 the set of positive and simple roots,
respectively, which correspond to the nilpotent component n, that is,

n= " ga,

a€ellt

where g, stands for the a-root space. Let m be the centralizer of a in ¢
and put p = m @ a @ n for the corresponding minimal parabolic subalgebra.
By definition, the maximal flag manifold B of GG is the set of subalgebras
Ad (G)p, where Ad stands for the adjoint representation of G in g. There
is an identification of B with G/P where P is the normalizer of p in G.
Furthermore, P = MAN, A =expa, N =expn and M is the centralizer of
Ain K =expt.

Given a subset © C X, denote by pg the corresponding parabolic subal-
gebra, namely,

po=n"(O)&p,

where n~ (©) is the subalgebra spanned by the root spaces g_,, a € (©).
Here (©) is the set of positive roots generated by ©. The set of parabolic
subalgebras conjugate to pe identifies with the homogenous space G/Pg,
where Pg is the normalizer of pg in G:

Po zz{g 6(?:.Ad(g)p@ ::p@}.



This construction yields the flag manifold Bg = G/Pg, © C X.
Let
at ={Hca:a(H)>0foral a € ¥}

be the Weyl chamber associated to . We say that X € g is split-regular
in case X = Ad(g) (H) for some g € G, H € a™. Analogously, z € G is
said to be split-regular in case £ = ghg~! with h € AT = expa™, that is,
z = exp X, with X split-regular in g.

Let n= = ) < 0—a be the nilpotent subalgebra opposed to n. Put
N~ =expn . Then in any flag manifold Bg, the orbit Ad (N ) pe (called
open Bruhat cell) is open and dense. Furthermore, if h € AT then lim h¥y =
po for any y € Ad(N ) pe. In other words, pe is an attractor in Bg for
any h € AT, with Ad (N ™) pe the corresponding stable manifold. Similarly,
for £ € G the element ¢ = zhx~! is split-regular. Its attractor in Bg
is Ad(g) pe with open and dense stable manifold Ad (:BN_SIT_l). In the
sequel we denote the attractor fixed point of g in Bg by atte (g), while the
corresponding stable manifold is denoted by stg (h). Analogous remarks
hold for the repeller rppg (¢g) in Bg. In case Bg = B is the maximal flag
manifold we suppress the indices and write simply att (¢g) and rpp (g).

Given two subsets ©1 C ©y C X, the corresponding parabolic subgroups
satisfy Po, C Po,, so that there is a canonical fibration G/Pgy, — G/Pe,,
gPo, — gPo,. Alternatively, the fibration assigns to the parabolic subal-
gebra q € Bg, the unique parabolic subalgebra in Bg, containing g. In
particular, B = By projects onto every flag manifold Bg.

From the structure of the parabolic subgroup Pg the fiber Pg/P of
B — Be is obtained. We follow closely the notation of Warner [12], Section
1.2. Denote by ag the annihilator of © in a:

ao ={H €a:a(H) =0 for all @ € O}.

Let Lg stand for the centralizer of ag in G and put Mg (K) = Lo N K
for the centralizer of ag in K. The Lie algebra [g of Lg is reductive and
decomposes as [g = mg@ae with me semi-simple. Let Mg be the connected
subgroup whose Lie algebra is mg and put Mg = Mg (K) Mg. It follows
that the identity component of Mg is Mg. The Bruhat-Moore Theorem
(see [12], Theorem 1.2.4.8), provides the following decompositions:

1. P = MgAoNg, where Ag = exp ae and Ng is the unipotent radical
of Pg, that is, No = expne, with ng the nilradical of pg.

2. Po = Mg (K) AN.



This second decomposition ensures that the fiber Pg/P is equal to the
coset space Mg (K) /M. It turns out that Mg (K) /M = Mg/ (Mo N P).
This last coset space is the maximal flag manifold of Mg, since Mg N P is
a minimal parabolic subgroup of Mg.

We discuss now semigroups in G. The following facts can be proved for
any semigroup S with intS # (), provided G has finite center. Consider the
action of S in the flag manifolds of G. It was proved in [11], Theorem 6.2,
that S is not transitive in Bg unless S = G. Moreover, there exists just one
closed invariant subset Cg (S) C Bg such that Sz is dense in Cg (.5) for all
z € Co (S). This subset is called the invariant control set of S in Cg ()
(abbreviated S-i.c.s.). Since S is not transitive, Cg (S) # Be.

The fact that Sz is dense in Cg (S) for all z € Cg (S) implies the
existence of an open subset Cg (S) C Cg () such that forallz,y € Cg there
exists g € S with gz = y. Furthermore, Cg, (9) is dense in Cg (S). In view of
Proposition 3.1 below we call Cg (S) the attractor set of S in Bo. Replacing
S by S~ we get a subset Cg (S) which we call the repeller set of S in Bg.
In case Bo = B is the maximal flag manifold, we suppress de subscripts and
write simply CF (S) for C3 (S). Also, if the semigroup is understood we
write simply Cg instead of Cét (S). Usually Cg will be associated to a given
semigroup S while Cg (T') is extensively used for subsemigroups 7' C S.

For later reference we note that Cg (S) is connected in case S is con-
nected, because S is transitive on Cg (S) and the evaluation map g — gz is
continuous.

Proposition 3.1 The attractor set Cg is given att (h) with h running through
the split-regular elements in intS. Analogously the repeller set Cg is formed
by rpp (h), h € intS.

The semigroups in G are distinguished according to the geometry of
their invariant control sets. This geometry is described by the following
statements, proved in [11].

Proposition 3.2 There exists © C X such that ng' (Ce) C B is the invari-
ant control set in the mazimal flag manifold. Among the subsets © satisfying
this property there exists a maximal one, in the sense that it contains the
others.

We denote the maximal subset by © (S) and say that it is the parabolic
type of S. Alternatively, we say also that the parabolic type of S is the



corresponding flag manifold B(S) = Bg(g) (see [8], [10], [11], for further
discussions about the parabolic type of a semigroup).

When © = © (5), the invariant control set Cg(gy has the following nice
properties:

Proposition 3.3 The set R(S) of split-reqular elements in intS is not
empty, and if h € R(S) then atte (h) € C& for any © and Cosy C
St@(s) (h)

We conclude this section by proving the following reversibility properties
inside identity component of minimal parabolic subgroups.

Lemma 3.4 Let T be an open semigroup and take z € CT (T). Denote by
P the isotropy subgroup at x and let Py be its identity component. Then
T NPy # 0 is left reversible.

Proof: By definition of C*, T N P has non-empty interior in P. Since
we are assuming that G has finite center, the number of connected com-
ponents of P is finite, hence T'N P, also has non-empty interior. Now,
left reversibility follows from [6], Lemma 4.6. In fact, T N P, contains a
split-regular h = exp H, which belongs to a Weyl chamber positive for P.
This means that the eigenvalues of ad(H) in the Lie algebra of P are > 0. &

Using the same argument for the inverse semigroup we get right re-
versibility inside the isotropy subgroups at repeller points.

Lemma 3.5 Let T be an open semigroup and take x € C~ (T). Denote by
P the isotropy subgroup at x and let Py be its identity component. Then
T N Py # 0 right reversible.

4 Control sets on G/P,

Let P = M AN be a minimal parabolic subgroup and put Py = MyAN for
its identity component. Given an open semigroup S let C" be its attracting
set on B = G/P. Without loss of generality we can assume that P is the
isotropy subgroup at # € C*. In this case S N P is a nonempty open
semigroup meeting Py (if G has finite center). In order to have a notation
for the components of P meeting S we put

M(S,P):{tP[)EP/PU:SﬂtP()#@}.



Clearly M (S, P) a subsemigroup of P/Py = M/M,. Notice that M (S, P)
is actually a group in case G has finite center, because in this case M /M is
finite.
The group M (S, P) is also described in terms of control sets in G/Py.
Let
m:G/Py —B=G/P

be the canonical fibration with typical fiber P/Py = M /M;. This is simul-
taneously a covering and a principal bundle. The group M /M, acts on the
right on G/ Py, and this action commutes with left action of G. Since we are
assuming that G has finite center M /M, is finite and G/ P, is compact. Thus
any open semigroup S C G has invariant control sets in G /Py, in general
not a unique one. As before we assume that P is the isotropy at z € CT.
In this case P, is the isotropy subgroup at any y in the fiber 7~ 1{z} over z.
Now, let D C G/Py be an invariant control set for S, and put D* for
its set of transitivity. By general facts about control sets on fiber bundles
(D) = C, 7(D*) = C* and any point of 7! (C') belongs to an invariant
control set. Furthermore, since the left action of G commutes with the right
action of M (or rather M/My), it follows that for any m € M, Dm is also
an S-i.c.s. This implies that Dm = D or Dm N D = (), and the invariant
control sets of S on G /Py have the form Dm, m € M/M,. We define

M (8,D) = {m € M/My : Dm = D}.

It is easy to check that M (S, D) is a subgroup of M/Mj. The following
proposition establishes the relation between M (S, P) and M (S, D).

Proposition 4.1 Let P be the isotropy subgroup at a given x € C* and fiz
y € DNa~Yx}. Let m s ym be the bijection between M /My and the fiber
through y. Then M (S, D) = yM (S, P).

Proof: Let m € M be such that the component mPy belongs to M (S, D).
Since y € D, ym € D, so that there exists g € .S such that gy = ym. Clearly,
g leaves invariant the fiber over z, so that g € P. Moreover, gy = ym implies
that g = mt for some t € Py. Hence, g € mP,y, showing that S N"mPy # 0,
that is mMy € M (S, P).

Conversely, suppose that ¢ € S NMmP,. Then gy = ym € D, hence the
coset mM) belongs to M (S, D). 1

10



Corollary 4.2 The number of invariant control sets for S on G /Py is the
order of (M /My) /M (S, D).

We get a more detailed information about M (S, D) with the aid of the
parabolic type © (S) of the semigroup S. To do this we discuss first the
restriction to open cells of the bundles over a flag Bg. Fix an open Bruhat
cell o C Bg. Recall that the restriction of the bundle g : B — Bg to o is
trivial, meaning that 71'@_)1 (o) is diffeomorphic to o x F', where F' = Pg /P is
the fiber of B — Bg. Analogously, the restriction of G/Py — Bg to o gives
the product o x Fy, where Fy = Pg/Py. The decomposition of the fiber Fj
into connected components reads

Po/Py = (P3/Py) x (Po/PY)

where Pg) is the identity component of Pg. The first factor Pg /Py is equal
to Pg/P, since any connected component of Pg contains a component of P
(see [12], Lemma 1.2.4.5). The second component is writen in terms of the
M-group as follows: Write M () = M N PJ. Then the set of components
of Po is M/M (©) (that is, M meets every component of Py and M (O)
is contained in the identity component of Pg; see [12], Lemma 1.2.4.5).
Therefore, the restriction of G/Py — Bg over o is diffeomorphic to the
product o X (Po/P) x (M/M (©)).

Now we carry this decomposition to invariant control sets in G/Py by
taking © = O (S). Recall that the invariant control set C' C B is given by
C = 71'6(15) (C@(S)), and there exists an open cell 0 C Bg(g) with Cg(g5) C 0.
Hence the restriction of G/ Py — Bg(g) above Cgg is diffeomorphic to

Co(s) X (Po/P) x (M/M (©))

while C' is diffeomorphic to Cg(s) X (Pe/P). Notice that the projection of
Cosy X (Po/P) x (M/M (©)) onto the first two components is just the
restriction of G/Py — B. Therefore, the slices Cg(s) x (Po/P) x {a},
a € M/M (©), are the leaves above C' = Cg(g) X (Po/P), and each one
is contained in an invariant control set in G/Fy. Also, let D C Cg(g) X
(Po/P) x (M/M (©)). Then by definition of M (D, S), it follows that

D = Cogs) x (Po/P) x (M (S,D) /M ().

For later reference we summarize this description of the invariant control
sets in the following proposition.

11



Proposition 4.3 Keep the above notations with © (S) the parabolic type of
S. Suppose, without loss of generality, that the standard parabolic subgroup
P C Pg(g) is the isotropy of © € C*. Then any slice Co(s)y X (Po/P) x
{a}, a € M/M (©), is entirely contained in a control set. Furthermore, an
invariant control set D C G /Py is diffeomorphic to Cg(s) x (Po/P) X Mp,
where Mp = M (S, D) /M (©).

5 Jordan decompositions

As before we let S C G be an open semigroup in the connected semi-simple
Lie group G, with finite center with parabolic type © (S). In this section we
relate the Jordan decompositions of elements in S with © (S). As a result
we get Theorem 5.9, ensuring that a g € S has exactly one fixed point in
Cas)-

Recall that a ¢ € G is said to be unipotent or semi-simple if Ad (g) is
unipotent or semi-simple, respectivley. The Jordan decomposition of g € G
writes ¢ = ¢gsgu = gugs uniquely with gs, g, € G semi-simple and unipotent,
respectively (see [12], Proposition 1.4.3.3). In real groups the semi-simple
component g, can be decomposed further into compact and radial parts.

Proposition 5.1 Given g € G, there are an Iwasawa decomposition G =
KAN and uw € K, h = expH € A such that g, = uh, so that g = uhg,,
with g, unipotent. Furthermore, the components u, h, g, commute with each
other.

Proof: See [4], Theorem IX, 7.2. 1

Now, for ¢ € S we shall relate the decomposition ¢ = uhn with the
parabolic type of S. Since h belongs to A there exists a Weyl chamber AT
such that h € clA*. Denote by 3 the simple system of roots associated to
AT, and put

©(h) ={a e X:a(logh)=0}. (1)
This subset defines the standard parabolic subgroup Pg(j), whose reductive
Levi component Lg(p) is the centralizer of h in G' (see [12]).

The next few results are intended to prove that © (h) is contained in the
parabolic type O (S) of S.

Lemma 5.2 As above decompose g € S as g = uhg,. Then for some integer
k>0,htes8.

12



Proof: Since S is open and u belongs to a torus, we can find v of finite
order so that vhg, € S. Thus, for some integer [, hlgl, € S. On the other
hand, ¢/, is a unipotent element in the reductive Lie group Lepy. Thus for
any neighborhood U of gl in Le(p) there exists z € U with finite order (see
[7], Lemma 4.1). If U is small enough, h!z € S. Taking into account that
z € Lg() commutes with h!, we conclude that (hl)S € S, if s is the order of
z, showing the lemma. |

Since h* belongs to the closure of A1, the lemma implies that SNA* # 0.
Therefore, if we denote by L%(h) the identity component of Lg;), we have

SN LO@(h) # (). This intersection is in fact, quite large:

Lemma 5.3 Denote by Mgy the semi-simple component of L%(h), and

consider the projection p : L%(h) — Mgy modulo the center. Then p (S N L%(h)) =

Proof: Clearly, p (SﬂLoe(h)> is an open semigroup in Mg;). By the

previous lemma h¥ € SN LO@(h)v and since p (hk) is the identity in Mg,
the result follows. |

Corollary 5.4 For every x € Mgy there exists a € A such that za € S.

Proof: The center of LO@(h) has the form ZxZ, with Zg C K, compact
and Z, C A. Given z € Mg(j) the lemma shows the existence of a € Zx Z,
with ax = xa € S. Since Zk is compact we can argue as in the proof of
Lemma 5.2, and get az € S, with a € Z, C A. ]

Corollary 5.5 Given a flag manifold Bg denote by b® the attractor of
AT in Bg and by Cé“ the attractor set of S, also in Bg. Then the orbit
M@(h)b(;) C Cg

Proof: Take z € Mg, and let a € A be such that za € S. Then
zb® = zab®. But bg) € Cg, and since za € S, it follows that zb® C Ca“. ]

Now it is easy to prove that the orbit M@(h)be is entirely contained in
the attractor set Cg .

13



Lemma 5.6 Keep the previous notations with b® the attractor of At in
Bo. Then, M@(h)bg is contained in the open Bruhat cell determined by A™
if and only if © (h) C O.

Proof: Suppose that © (h) C ©. Then Mg,y C Po, the isotropy at b®.
Hence M@(h)be = b°.

For the converse denote by Wg the subgroup of the Weyl group gener-
ated by the reflections with respect to the roots in ©. Suppose that some
a € O (h) is not in O, and let r, be the reflection with respect to @. Then
ro & Wo, so that if w, is a representative of r, in the normalizer M* of A
then w,b® # . However, w, € Megp so that M@(h)be is not contained in
the open cell. 1

Corollary 5.7 For g € S write g = uhg,, and define © (h) as in (1). Then
©(h) CO(S).

Proof: Follows immediately from the previous lemma and the definition
of the parabolic type of S, after taking into account that SN A" # (). ]

Corollary 5.8 ¢h®(%) = pO(5),
Proof: L@(h) - P@(h) - PG)(S)- |

Finally we arrive that any element of the open semigroup S leaves fixed
just one point of the attractor set of S in the flag manifold corresponding
to the parabolic type.

Theorem 5.9 Let S be an open semigroup. Then any g € S has a unique
fized point, say fixg(s) (g), in Cg(s).

Proof: It remains to check that 5°(5) is the only fixed point in Cg( sy
Write g = gsgu, 9s = uh. It is standard that a g fixed point is also fixed un-
der g5 and g, [proof: Ad (gs) and Ad (g,) are polynomial functions of Ad (g).
Thus any subspace invariant under Ad (g) is also invariant under Ad (g5) and
Ad(gy). The claim then follows by the remark that any flag manifold can
be realized as an orbit in a certain Grassmannian of subspaces of g.] Now,
b9(9) is the only fixed point under g, in the open cell o C B(S) determined
by A", since u leaves o invariant and h¥z — b9 for all z € o, so that
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az e o,z #b°95) isnot a fixed point. Since Cg(s) C o the result follows. 1

We note that the same result holds with S~! in place of S, taking care
to consider flag manifold Bg- gy dual to Bgg) in the sense of [8].
Remark: It becomes clear from the proof above that g"z — fixg(g) (g) for
every z in the open cell o determined by g (or A™). This open cell contains
the invariant control set Cig(gy so that g"z — fixg(g) (g) for every g € S and
T € Cg(s)- ]

Remark: With some extra effort one can use the previous results (specially
Corollary 5.7) to prove that the the map g € S+ fixg(g) (9) € Bg(s) is con-
tinous in S. We do not give the details here since continuity of fixe (-) is
not needed in the sequel. ]

6 Invariance of connected components

This section starts the study of the conected components. We prove here
that a component of S leaves invariant a unique component of the attractor
set CT. Recall that CT is given by ﬂ'é(ls) (C&S)) where 7g(g) : B — Bg(g) is
the canonical projection. Hence, the connected components of C have the
form 7! (K) where K is a connected component of Cg( 9)" Analogously,

the connected components of C~ have the form Wé(ls_l) (Cg(5_1)>, with

obvious notation.

Lemma 6.1 Let T C S be a connected component, and take g € Y. Then
there exists a semi-simple element g € T with fixg(g) (9) = fixg(s) (9)-

Proof: We keep in mind the notations and results of the previous sec-
tion. With the given choice of A* we have that the isotropy at fixg(s) ()
is Pg(sy and g € Lg(s). Now, the set of semi-simple elements in the re-
ductive group Lg(g) is dense. Since T N Lg(sy # 0 is open in Lgg), there
exists a semi-simple g € T N Lg(g). Clearly fixg(s) (g9) is fixed under g,
hence by Theorem 5.9, fixg(g) (¢) is the unique g-fixed point in C’g(s), that

is ﬁxe(s) (9) = ﬁxG)(S) (9)- .

Notice that a connected component ¥ C S maps components of Ct into
components, because the evaluation map g — gz is continuous for any x and
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C™ is invariant. Furthermore, if g1 C ko for some g € T and components k
and ko, then Yk C k. Analogous remarks, hold for Y= and components
of the repeller set C~.

Our objective now is to prove that T leaves invariant exactly one con-
nected component of CT. For this we recall the well known construction of
the flag manifold as an adjoint orbit. Let g = ¢ ® s be a Cartan decomposi-
tion and fix a maximal abelian subspace a C s and a Weyl chamber a™ C a.
Given Hy € cla™ its adjoint orbit under K = exp identifies with the flag
manifold Be( #) = G/ Po(m,) where © (Hp) is the set of simple roots annihi-
lating Hy. This embedding permits to define for H € s the height function
fu (-) = (H,-). Now, there exists in Bg(p,) a K-invariant Riemannian met-
ric, say (-,")p,, such that for any H € s the gradient of fg with respect to

() g, is precisely the vector field H on Be( #y) induced by H (see Borel [1]
and Duistermaat, Kolk, Varadarajan [3]).

Proposition 6.2 Let Y C S be a connected component. Then there exists
a unique connected component k1 of CT which is invariant under Y. Also,
there exists a unique component kg of C~ invariant under YT~

Proof: It is enough to prove the result for Y and C*. By Theorem 5.9 a
g € S has a unique fixed point in 05(5)- Take g € T, let = be its fixed point
in Cg( sy and denote by k; the connected component of Cg( 9) containing x.
Then gk C % and thus Y& C %. It follows that Yk; C &k if k1 = 7 1R;.

For the uniqueness it is enough to show that ¥, is the only Y-invariant
component of Cg(s)' Take g as above with z = fixg(g) (9) € k1. By Lemma
6.1 we can assume that g is semi-simple, and write ¢ = uh = hu, with u
eliptic and h = exp H hyperbolic, that is, there exists a Cartan decomposi-
tion g = £ @ s, such that u € expt and h € clexpa™’, where a™ is a Weyl
chamber in s. Thus the vector field H induced by H on Bg(g) is the gradi-
ent of the height function fy, with respect to a Borel metric on Bg(g), so
that fu (hz) > fu (2) for any z € Bg(g) with strict inequality if 2 is not a
singularity of H. Note that fu attains its maximum at z (because z is an
attractor of h), and fg is constant along the orbits of u in Bg(g) (because
Ad(u) H = H). Also, if 0 C Bg(g) stands for the open cell corresponding
to a® then H has no singularity in o (this is due again to the fact that x is
an isolated fixed point of h so that the roots outside (0 (S)) do not vanish
on H).
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Now, let ¥ # k1 be a connected component of Cg( s)" Since some power

of h belongs to S (see Lemma 5.2) Cg(s) (and hence k) is contained in
sto(s) (h). Hence, fm (9z) = fu (hz) > fm (2) for all z € cls. Thus if the
maximum of fz on clk is attained in z € clk then hz ¢ clk, showing that
clk is not invariant under h, so that ¥ cannot be invariant under Y.

So far we have proved existence and uniqueness of invariant component
of C&S). However, the components of C* have the form x = 7! (&), where
m: B — Bg(g) is the canonical projection. Thus the result follows for com-
ponents of C. 1

Since the control sets in Bg are obtained by projeting control sets in
B, this result implies immediately existence and uniqueness of invariant
components in arbitrary flag manifolds.

Corollary 6.3 A connected component T C S leaves invariant a unique
component of Cé“, while there exists just one component of Cg invariant
under Y71,

Notation: We denote by K (T) the component of C" invariant under Y
and by K~ (T) the Y~ l-invariant component of C~. Analogously Kg (T)
are the invariant components of Cét. |

Specializing these facts to the parabolic type Bg(g) we have.

Corollary 6.4 For a connected component T C S the set {fixg(s) (9) : g €
T} is contained in K&S) (7).

Proof: A fixed point fixg(s) (9), g € T, belongs to a T-invariant compo-
nent. |

Still another consequence of the existence and uniqueness of invariant
components obtains:

Corollary 6.5 Given a semigroup component T C S and an integer k > 0,
Kg (TF) = K (7).

Proof: First consider the K case. If © = © (S) the result follows from

the previous corollary because fixgg) (gk) = fixg(s) (9). This implies the
result in the maximal flag manifold B because the components of C* have
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the form 7~! (), with x C Cg(s) a connected component. From B the re-

sult is carried out to Bg by projecting components. Finally, the K~ case is
obtained by taking S~!. |

For a semigroup component I' the invariant component K (T') actually
satisfies TCT C KT (T'). In fact, the attractor att (h) of any split-regular
h € T belongs to K* (T'). Therefore, for any connected component K C
C*, there exists a large enough integer k& > 0 such that h*K N K+ (T') #
0, implying that h*K c K* ('), and thus TK c K*(T'). Analogously,
I'~'C~ c K~ (T'). The same reasoning yields that the attractor and repeller
sets of T satisfy C* (T') ¢ K* (T).

For other components we have the following useful property of the sets
K*(4).

Lemma 6.6 For g € S and a semigroup component T, denote by T (g) the
component containing I'g and by (g) T the component containing gU'. Then

K*(I'(9)) = K*(T") and K~ ((9)T) = K~ ().

Proof: For the first equality note that gK ™ (I') C C* so that g (K (T")) C
I'C*T c K* (T'). The second equality follows analogously. |

Remark: The proof of uniqueness of the invariant component could be
done in a different route, exploiting the continuity of the map g € S —
fixg(s) (9) € Co(s) (see the remark at the end of Section 5). In fact, since
the map is continuous the set of fixed points fixg(g)(g) with g running
through T is contained in a connected component of Cg( sy which must be
the only Y-invariant component. ]

7 Semigroup components

This section is devoted to the proof of the following characterization of the
semigroup components of S. Denote by # (C*) the number (possibly infi-
nite) of connected components of C* and by #, (S) the number of semigroup
components of S.

Theorem 7.1 Given a pair of connected components Ky of CT and Ky of
C~ there exists a unique semigroup component I' such that C* (T') C K,
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and C~ (T') C Ky. Furthermore, T satisfies CT (') = K™ (T') = K; and
C~ ()= K () = Ky. Therefore, #5(S) = # (Ct) - #(C™).

Notation: Given components K; C CT and Ky C C~ we denote by
['(Ki, K9) the unique semigroup component whose attractor and repeller
sets are K; and Ko, respectively. [

Corollary 7.2 Given an arbitrary connected component Y C S the set

U Tk meets a unique semigroup component. We denote this semigroup
E>1
component by T (T).

Proof: Existence follows immediately from Lemma 5.2 (and its proof).
On the other hand, by Corollary 6.4 K+ (Tk) = K*(Y) so that if T*
is contained in a semigroup component I' then C* (I') = K* (Y). Hence
uniqueness follows from the theorem. ]

We separate the proof of Theorem 7.1 in two steps corresponding to
existence and uniqueness of I'.

7.1 Existence

Given the connected components K; C CT and Ky C C~ in order to prove
the existence of a semigroup component I' with C* (I') € K; and C~ (') C
K, it is enough exhibit a split-regular h € S whose attractor belongs to K
and repeller to K». In fact, some positive power h¥ belongs to a semigroup
component satisfying the required conditions.

To start with let us take split-regular elements hi,hy € S such that
att (h1) € Ky and rpp (h2) € Ks. Denote by T'y and T's the exit components
of hy and hs, respectively. Then CT (T'y) C K; whereas C~ (T'3) C K. Now,
the basic idea is provided by the following lemma combined with Proposition
6.2 (and its corollary).

Lemma 7.3 Let 'y and Ty be semigroup components with C* (1) C K
and C~ (T's) C Ks. Then Ky is invariant under T1Ty while Ko invariant
under (01Ty) 1 =T5'T7"

Proof: For the invariance of K it is enough to show that there exists
a € T1T'y with aK; N Ky # (. For this take ¢ € T's and a split-regular
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h € T'1. The attractor att (h) € K, so that A"z € Kj for = in a dense
subset and n large enough. Since gK; is open, there exists z € Ky, and an
integer n > 0 such that h"gz € K;. Hence a = h"g is the required element
in I'1T"2. The proof for K5 is analogous. ]

Now the existence proof can be performed. Put T = I''I's. By the
previous lemma K* (T) = K; and K™ (T) = K,. Since our group G has
finite index there is an integer k& > 0 such that Y* is contained in a semigroup
component, say I'. However, we have by Corollary 6.5, that K* (I') =
K¥* (T). Therefore, T is the required semigroup component, concluding the
proof.

7.2 Uniqueness

For the proof of uniqueness of semigroup component we fix advance con-
nected components K1 C CT and Ky C C~, and assume that there exists a
semigroup component, say I'g, with CT (I'g) C K1 and C~ (I'g) C Ko.

Lemma 7.4 K; = CT (') with T running through the semigroup compo-
nents such that C* (T') C K. An analogous result holds for Ko and C~ (T).

Proof: Given z € K there exists a split-regular h € S with = = att (h).
Denote by E (h) the exit component of A, so that for some k& > 0, k¥ € E (h).
Then the attractor set Ot (E (h)) C K, since h*2 = x and hence K is the
unique component left invariant by E (h). But z € C* (E (h)) C K3, prov-
ing the statement for K;. The proof for Ky is analogous. |

This lemma shows that in the eventuality that C* (T'g) differs from
K there must exist another semigroup component I'; such that C* (Ig) N
C* (1) # (. In the next two lemmas we look at this possibility.

Lemma 7.5 The semigroup components I'y and Ty satisfy T4y C Ty if
CT(Ty)NCT (Ty) #0. Analogously, T1Ts C Ty if C~ (') NC~ ([g) # 0.

Proof: Takez € C* (I'1)NCT (T'2) and denote by P the istoropy at . By
assumption the semigroups 71 = 't N Py and T = ['s N Py are open in Py
and non-empty. By Lemma 3.4, T is left reversible in Py. Thus for every
x € T there exists y € Ty such that zy € Ts. It follows that ['1I's C I'9, as
claimed.
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Now applying this fact to the inverse semigroups, we get I'; 1F1_1 C Fl_l,
which is equivalent to the last statement. |

Lemma 7.6 Let I'y and 'y be semigroup components, and suppose that
ct (Fl) NnCo+ (FQ) # 0. Then C* (Fl) =Ct (Fg).

Proof: Given z € CT (I')) there exists a split regular h € T'; such that
x = att(h). Thus A"y — z for y in a dense subset. In particular, for
all g € 'y, gC* (I'3) is open, so that there exists y € CT (I'y) such that
h"gy — z, n = 4+o0. By the previous lemma h"g € 'y, for all n. Hence
h™gy € C* (I'3), and since the invariant control sets are closed, it follows
that z € C (T'2).

It remains to check that z is actually in C* (I'y). Take z € C (1), N
C (T'2)y,- Then there are a € T'y and b € T’y such that az = z (because
z € C(Ig) and 2z € CT (I'g)) and bz = z (because z,y € CT (I)).
Therefore, bax = x. But, ba € Ty, hence z € C* (T'3), as desired. Thus
C* (1) € CT (T'g). The reverse inclusion follows by symmetry. |

It is now an easy consequence of the previous lemmas that the attractor

set of a semigroup component is a connected component of the attractor set
of S.

Proposition 7.7 Let I' a semigroup component, and denote by K the con-
nected component of C* which contains CT (T'). Then C*(T') = K.

Proof: By Lemma 7.4, K is a union of attractor sets of semigroup compo-

nents. However Lemma 7.6 shows that two of these attractor sets are equal

or disjoint. Since these sets are open and K is connected, the result follows.
|

Applying this proposition to the semigroup S~!, we get the correspond-
ing result for the repeller sets.

Proposition 7.8 Let I' a semigroup component, and denote by K the con-
nected component of C~ which contains C~ (I'). Then C~ (') = K.

Now let I'g and I'y be semigroup components whose attractor and repeller

sets are contained in the same component of C* and C, respectively. By
Propositions 7.7 and 7.8, C* (I'y) = C* (T';). On the other hand, Lemma
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7.5 ensures that ['gI'; C I'g and I'gI'y C I'y. Hence I'y = I';. Concluding the
uniqueness part of the proof of Theorem 7.1.

We conclude this section stating the following consequence of our proof,
which might be interesting in itself.

Proposition 7.9 Let I' C S be a semigroup component. Then T' has the
same parabolic type as S.

Proof: By Proposition 7.7 the I'-i.c.s. on B is the closure of a connected
component K C C*. Such a component has the form 71'6(15) (K1), with Ky a

component of Cg( s)" This shows that the parabolic type © (I') of I contains
© (S). Since I' C S they must be equal. 1

Remark: These results about semigroup components show that in general
semigroups in connected solvable groups can have more than one semigroup
component. To see this take S C G an open semigroup in such a way that
C~ contains two different connected components, say K; and K,. Fixing
x € CT let P be the isotropy at z and K the component of CT containing z.
Then SN Py has at least two semigroup components, namely I' (K, K1) N P
and T' (K, Ky) N P. |

8 Recurrent components

Definition 8.1 A connected component Y C S is said to be recurrent (or
to have finite index) if Y¥ N Y # 0 for some integer k > 1. The smallest
k > 2 satisfying this condition is the index of Y. Otherwise the component
is transient or has infinite index.

Alternatively, T has finite index if and only if Y*¥ C Y for some integer
k > 1, which means that T has finite index in the semigroup of compo-
nents. Of course, a component is a semigroup if and only if it has index 2.
Furthermore, if k£ is the index of T then Y™ C T for any multiple n = [k,
I>1.

In this section we present a description of the finite index components in
a manner similar to the semigroup components. Now we look at the control
sets on G/ P, instead of B. First we prove an useful property of recurrent
components, which holds in general.
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Lemma 8.2 Given a recurrent component Y, suppose there exists a semi-
group component I containing a power Y*. Then TY C Y and YT' C Y.

Proof: Let n > s be such that Y C Y. Then any g € T" % satisfies
gl',T'g C T. We can change g by gh, h € I', without affecting the inclusion
gl' C Y. But, gh € T, so that YI' C Y. Analogously, hg € YT so that
rrcrt. |

In semi-simple groups the following kind of converse to this lemma also
holds.

Proposition 8.3 Let the notations be as in the prefious section and take
a component YT C S. Suppose that t I' is a recurrent component such that
K*(Y) = K*(I') and Y contains gT" or T'g for some g € S. Then Y is
recurrent.

Proof: Assume first that I is a semigroup component and gI" C Y. Denote
by Y, the component of S containing g, so that T,I' C Y. Since T, is open
it contains semi-simple elements, so that we can assume without loss of
generality that ¢ is semi-simple. Write ¢ = mh = hm, with h split and
m compact. Using again that T, is open we can assume that m has finite
index, say k. Since h = exp H, H € g, there exists a power h® which is
contained in a semigroup component. This component must be I', because
fix(g) and fix (gil) are fixed points of h. Hence, for large s =1k + 1, h* €T
and mh® € Y. Therefore, (mh*)**' = mh¥s € Y, showing that TF+! c T,
that is, T has finite index. The proof in case I'g C T is the same.

Now, if T is recurrent then K* (I') = K* (T'y), for a semigroup compo-
nent I'1, so that by the previous lemma there exists g; € S with g1I';y C I
Hence, gg1I'1 C T, and the result follows by the first part of the proof. 1

In order to proceed we recall that by Corollary 7.2, there exists a unique
semigroup component I' (T) which contains some power of Y. Tt is defined by
the conditions K* (I' (Y)) = K* (T). Hence Lemma 8.2 applies to our con-
text. Consider the projection 7 : G/Py — B. The pre-images 7! (K* (Y))
are also invariant under Y, so the components of 7=! (K (T)) are mapped
into each other by Y. To see the behavior of these mappings we look first
at the semigroup components.
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Lemma 8.4 Let I be a semigroup component, and k a connected component
of 71 (K+(T')). ThenTy = k for everyy € k. Analogously, the components
of ™ (K~ (T)) are orbits of T L.

Proof: Since I is a semigroup it contains a split-regular element h. Denote
by AT the chamber containing h, and let P be the corresponding parabolic
subgroup. If P is the isotropy subgroup at z € B, then z € K™ (T'), and
Py is the isotropy subgroup of any y in the fiber 7~ '{z}. Thus h € T fixes
every point over z, showing that I'y C « for every y € x. This inclusion is
an equality because T' acts transitively on K (T). 1

Combining this lemma with Lemma 8.2 we see that the recurrent com-
ponents map components in G /Py onto components.

Proposition 8.5 Let Y be a recurrent component and k a connected compo-

nent of 71 (K* (Y)). Then Yy is a connected component of 7= (K (T))
for every y € k. Analogous result holds for m=* (K~ (Y)) and Y~ 1.

Proof: By Lemma 8.2, there exists g € S with I'(T) g C Y. Then, for ev-
eryy € k, ['(T) gy C Yy, so that Ty equals the component containing gy. 1

Now we can prove existence and uniqueness of a recurrent component
mapping a connected component of a control set in G/P; onto another
component.

Lemma 8.6 Let I be a semigroup component, and k1, ko connected compo-
nents of =V (Kt (I')). Then there exists at most one finite index component

T with T'(YT) =T and Tk = k.

Proof: Let Y and YT; be recurrent components with I'(T) = T'(Ty),
and suppose that T and T; map ki into ko. Take ¢ € T and y € k;.
By the previous corollary there exists g1 € Y1 such that gy = ¢g1y. Then
g g1 € P,, the isotropy at y. Now, ['N Py is left reversible in Py, so that
g 'giT'NT # 0, that is, gT'N g1 T # 0. However, by Lemma 8.2, gI' C Y and
g1 C YTy. Hence, Y N Yy # (), showing the uniqueness of the component.
|

Lemma 8.7 Let I' be a semigroup component, and K1, ko connected com-
ponents of 7= (K* (T)). Suppose that k1 and ko are contained in the same
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invariant control set in G/Py. Then there ezists a recurrent component T
such that Yk1 = Ko.

Proof: By assumption there exists g € S with gk C k2. Denote by
T the component of S containing gI'. We claim that K+ (Y) = K* ().
In fact, the inclusion grx; C ko implies that gK* (I') ¢ KT (T'), so that
gl leaves invariant KT (T'), hence K (Y) = K™ (T'). On the other hand
K= (Y)= K~ (I') by Lemma 6.6. Therefore, by Proposition 8.3, T is recur-
rent. Now, Lemma, 8.4 ensures that T maps k1 into ko. ]

Finally we prove that the product of recurrent components is recurrent,
so that this set of components is a subsemigroup.

Proposition 8.8 The set of recurrent components is a subsemigroup of the
semigroup of components of S, that is, the union of the recurrent components
is a subsemigroup of S.

Proof:  First we check that the product T = T'(Ky, Ks)T' (L1, Lo) of
semigroup components is recurrent (cf. the notation following Theorem
7.1). Note that by Lemma 7.3, K; = K+ (Y) while Ly = K~ (T). Now, by
Lemma 75, r (Kl,LQ) r (Kl,KQ) c’rl (Kl,KQ), so that T’ (Kl, LQ) T C T.
Hence, by Proposition 8.3, T is recurrent.

Now if T is recurrent and I' is a semigroup component, then T contains
gl with Ty the semigroup component such that K* (Y;) = K+ (T), so
TI' contains gI'yI'. By the first part of the proof I'1I" is recurrent, hence
by Proposition 8.3, YT is recurrent, because K* (YT) = K+ (TT). The
same way one proves that the product of arbitrary recurrent components is
recurrent. |

9 Mid-reversibility

A subsemigroup S C G is said to be mid-reversible if SgS NS # ), for all
gEG,or G=S85""1Sor G=S5""155"". Accordingly the mid-reversor of S
is defined to be the set

Mid(S) ={ge G:5¢5SNS # 0}

and S is mid-reversible if Mid (S) = G. These concepts were introduced
in [6] where they are related to the connected components of S when S is
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open. In this section we pursue further on these relations for semigroups in
semi-simple Lie groups.

Let us take in advance a minimal parabolic subgroup P in such a say
that the corresponding origin by € B = G/P belongs to C* (S). As we
shall see mid-reversibility and questions involving the way S generates G
are related to the intersection of S with the connected components of P.

Lemma 9.1 G = S~'P.

Proof: It is known that for every z € B, C'(S) C Sz (this is a consequence
of the uniqueness of the S-i.c.s., see e.g. [7]). Hence B = S~'by, and since
P is the isotropy subgroup at By the lemma follows. ]

This simple fact yields the following sufficient condition for S to be mid-
reversible.

Proposition 9.2 Suppose that S N P meets every connected component of
P. Then S is mid-reversible.

Proof: We show that P C SS~!. Take g € P. By assumption there exists
t € SN P in the connected component of g. Then ¢t 'g € Py. By Lemma 3.4,
SN Py is left reversible, so that there exists s € S with t~'gs € SNP,. Hence
g € SS~!. Using the previous lemma we get G = S~155~!, concluding the
proof. ]

Corollary 9.3 FEvery open semigroup in G is mid-reversible if the minimal
parabolic subgroups are connected.

Examples of G with connected P (or equivalently, connected M) are the
groups with real rank one with dimB > 1 and the complex groups. For these
groups a result of Ruppert (see [6], Theorem 3.9) shows that subsemigroups
containing 1 in the closure are connected. Of course this phenomena does
not occur in general. For example the interior of the semigroup £S1(2,R) ™"
contains the identity in its closure but is not connected. However, we shall
prove below that in general an open semigroup has just one semigroup com-
ponent if the identity is a cluster point.

Remark: The criterion of Theorem 9.4 works also for semigroups with
nonempty interior, since in case intT # () it is easy to prove that T is mid-
reversible if and only if intT" is mid-reversible. |
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We observe that Proposition 9.2 (and hence its corollary) does not re-
quire that the group G has finite center. So the condition that S N P meets
every component of P is sufficient for mid-reversibility even in groups with
infinite center. We prove next the converse to Proposition 9.2, using ex-
plicitly that G has finite center. Note that by the discussion in Section 4
uniqueness of invariant control set in G/ P, holds if and only if S N P meets
every component of P if P is the isotropy subgroup at z € C*.

Theorem 9.4 An open semigroup S C G is mid-reversible if and only if S
has ezxactly one invariant control set on G/F,.

Proof: If there is uniqueness of invariant control set then S meets every
component of P so it is mid-reversible by Proposition 9.2.

For the converse we assume that some component of P, say mP,, does
not meet S and prove that SmS NS = (. In fact, suppose to the contrary
that tms € S with ¢,s € S. Arguing as in the first part of the proof we see
that there exists ¢t € S such that p = t;# € P. We can write p = mqp,
with p; € Py, mi € M (S, P). Then pm = mimgq, where ¢ = m ™ 'pym € P.
Note that mym ¢ M (S, P), since m ¢ M (S, P).

Now, recall the notation rounding Proposition 4.3, and identify 7~! (C),
m: G/Py — B, with Cg(s) x (Po/P) x (M (S, D) /M (©)). By Proposition
4.3 the set D = Cg(g) X (Po/P) x Mp is an invariant control set for S. Since
q € Py any slice C@(S) X {a} X {b}, a e (P@(S))O /Po, be (PG)(S)/ (P@(S))O>
is invariant under ¢. Also, s € S, so that sD C D. Hence, gsD C D. On
the other hand, mymD N D = ), because mym ¢ M (S, P). Hence we arrive

at the contradiction that (tms) DN D = () with tms € S and D an invariant
control set. [

As an application of these results we can prove that compression semi-
groups are always mid-reversible.

Proposition 9.5 Let T C G be a semigroup with non-empty interior, and
denote by C' its invariant control set on B. Suppose that

T =compC ={g € G:gC CC}.

Then T has a unique i.c.s on G /Py, namely 7= (C), where 7 : G/Py — B
is the standard projection. Therefore, T is mid-reversible.
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Proof: Fix b€ C* and take a split-regular h € intT such that b = att (h).
Suppose that h € AT, corresponding to the decomposition P = MAN,
where P is the isotropy at b. It is enough to show that for any m € M there
exists an integer k& > 0 with mh* € T.

Let © (T) be the parabolic type of T' and put Cgry for the T-i.c.s on
Be(r). Since C' = ﬂ'é(lT) (C@(T)), g € T if and only if gCg(r)y C Co(ry. Put
be = me(ryb. Then h"Cq(ry — {be} as n — +o0, and b is fixed under M.
The latter ensures given m € M there exists a neighborhood U C Cg of
bo such m (U) C Cd. Now, take k large enough so that h*Ceo C U. Then
mh*Ceo C mU C Cg, so that mh* € intT, concluding the proof. ]

A slight change of the proof of Theorem 9.4 yields the following infor-
mation about the mid-reversor of S.

Proposition 9.6 Let AT be a Weyl chamber and denote by P and N~
the subgroups determined by AT. Suppose that the attractor set Ct of
S is contained in the open cell o, determined by A™. Then, the subset
M (S, P) N~ Py is contained in the mid-reversor of the open semigroup S.

Proof: As in Proposition 4.3, write a control set D on G/P, as
D= C@(S) X (P@(S)/P) X MD

with Cg(g) contained in the open Bruhat cell og(g) in Bg(g) determined by
P. Take g € M (S,P) N~ P,. If y is an element in the fiber over = then gy
is contained in og(gy X <P8(S)/P0) x M (S, P). Now a split-regular h € P,
leaves invariant the slices og(g) X {a} x {b}. In particular, if h € SN Py
hgy belongs to the same slice as gy, so that if h is large enough hgy € D.
Thus there exists g1 € S such that g1g € M (S, P) Py. Therefore the same
argument as in the first part of the proof above shows that g € Mid (5), as
desired. 1

We turn now to the relation between mid-reversibiltity and the connected
components. First note that the set N~ P, is a neighborhood of 1 € G, since
the product map N~ x Py — G has full rank at the identity. From this
remark and the above proposition we get the following fact which is a slight
change ot [6], Theorem 3.9 (i).

Lemma 9.7 Suppose 1 € clS, and let AT be a Weyl chamber with S N
AT #£ 0. Take N~ and Py subgroups corresponding to A% and put U =
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N~PFy. Then U meets exactly one component I' of S, and this component is
a semigroup containing 1 in its closure.

Proof: By assumption there exists ¢ € SN U. Let I" be the component
containing g and select an neighborhood of the identity V such that VgV C
I'. Put Sy for the interior of the semigroup generated by S NV. Clearly
Sy C S hence its invariant control set is contained in C. Therefore by
Proposition 9.6 U is contained in the mid-reversor of Sy . Now, the proof
that I is a semigroup and the unique component meeting U follows verbatim
the proof of Theorem 3.9 (i) of [6]. We sketch it: The choice of V' implies
that Sy I' C I and Sy ¢Sy C I'. Thus

0 # SygSy NSy CcT'NSy.

But for h € I'N Sy it holds hI' C ST" C I, so that I is a semigroup. Further-
more, let T be a component meeting V. Repeating the above arguments we
get TgY NY # () and Yg¥ C . Hence SNV C T, so that 1 € clS, and
since g € U was arbitrary, the uniqueness follows, concluding the proof. 1

Theorem 9.8 Let S be an open semigrouup in the connected semi-simple
Lie group G with finite center. If 1 € clS then any component of S has
finite index. Also, there exists exactly one semigroup component, which is
the only component containing 1 in its closure.

Proof: For the uniqueness of the semigroup component it is enough to
check that the sets C* are connected. Let I' be the unique (semigroup)
component containing 1 in its closure, as ensured by the above lemma. If
k is a connected component of CT then I'n C k because 1 € clS. Since
by Lemma, 6.2, T' leaves invariant just one component of C* it follows that
this set is connected. Analogously, C'~ is connected showing that I' is the
only semigroup component of S. Using again the fact that 1 € cIl" we see
that 'Y C T for any connected component Y. Therefore, Proposition 8.3
ensures that the components are recurrent. ]

In concluding we shall exploit a step further our method of proving
mid-reversibility to get a (rough) estimate of the number of factors S, S~!
required to produce G. The idea is that if P is the isotropy subgroup at
by € C* then Py C SS°!, so that if x € G/Py is fixed under Py and for
a certain product A = S ... 8% Az = G/Py then G = ASS™'. Now, let
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Z1,...,Zx be the fixed point set of Py in G/Py. By making a right choice
of N—, we get open orbits N~z;, « = 1,...,k, whose union contain the
invariant control sets in G/Py. Accordingly, we choose h € SN Py such that
h"y — x; for every y € N™z;. Write C; = n~! (CT) N N~z; then the sets
h="C;, n > 1, cover Nz;, so that N~ z; C S~ 1z;.

Lemma 9.9 If two slices satisfy I;j = cl(N~xz;) N cl(N~xz;) # 0 then
(Cj), C SS 'z;.

Proof: The closed set I;; contains h-fixed points, since I;; is h-invariant
and a limit lim A"z is fixed under h. If y € I;; is an h-fixed point then there
exists an effective control set, say D, with y € Dy, so that DN N~ z; # () #
Do N N~ zj. Now, Dy N N~ x; # 0 implies that Dy N S~ 'z; # (), and hence
Dy C S7'z;, because S~ is transitive on Dy. On the other hand, h"z — zj
for any 2 € N z;. Therefore, (C;), meets SDy C SS™'z; implying that
(Cj)o C S8~ ', as claimed. 1

Thus by applying SS~' we cover different sets (Cj)y- We can do this
successively and get the following upper bound for the number of factors.
Note that the order of the fixed point set of Py in G/P, is the number of
connected components of P.

Proposition 9.10 Let k = |P/Py|. Then G = S~ (SS-1)".

Proof: With the notations as above we prove by inductiononl =1,...,k—
1 that (SS_l)l x1 contains [+ 1 different sets (C;),. For [ =1 the statement

follows from the above lemma. Thus suppose that (S S *1)171 11 contains the
sets (Cij)o’ j=1,...,1. Since G/P, is connected there exists a slice N~ x;,
i #1i5, j =1,...,1, such that cl (N~z;) meets some cl (N*:ci].). Applying
again the lemma, it follows that (Cy;), C (SS_l)l Ty

Therefore, U, (C)y © (551", so that G/Py ¢ S~ (551",
As mentioned above, this implies that G = S~! (SS_l)k, concluding the
proof. |

10 Examples

In this section we provide some examples and counter-examples related to
the results of the paper.
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10.1 Transient components

The following is an example of a transient component of an open semigroup
in G = S1(2,R). For positive reals r < s put

Ur,s:{<z Z) 681(2,R):r<a<s;b,c,d20}.

Since the entries are positive, it follows that r"*! < ad' if z € Urs and

z' € Uy, where
_[a b v a b
r = c d r = C, d/ .

Hence, U, sNU;s = () foralln > 2if1 < r < s < r2. Under this condition the
connected compoenents of U, ; are transient components in the semigroup
Sr.s generated by U, . Actually, it is not hard to check that U, , is itself
connected, so that it is a transient component in S, ; if 1 <r < s < r2.

10.2 Fixed points

For the results Section 5 to hold the condition that S is an open semigroup
is essential. This condition appears explicitly for instance in the proof of
Lemma 5.2 and subsequently.

Actually, even for semigroups with non-empty interior the uniqueness of
fixed points stated in Theorem 5.9 holds only for the interior points. Here is
an example of a semigroup S C SI(3,R) with non-empty interior such that
boundary elements of S can have infinity fixed points in the attractor set

+
C@( 5)"
Given a basis {e1,ea,e3} of R® define the flag by = (V; C Vo), Vi =
span{e; }, Vo = span{ey, es}, and write lower triangular matrices as
100
(a,bye)=1 a 1 0
c b 1
Consider the diagonal matrix
H = diag{2,—1,—1}.

Then exp (tH) (a,b,c) exp (—tH) = (e_3ta,b, e‘3tc), so that the semigroup
exp (tH), t > 0, leaves invariant subsets of the form

Ra,,@,’y = {(0’7 ba C) bU : |a’| S «, |b| S /67 |C| S 'Y}
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Thus if we let S be the compression semigroup of R, g, a, 8y > 0, then
exp (tH) € S if t > 0. By general facts about compression semigroup the
flag type of S is the full flag manifold, R, g, is the invariant control set
of S and C* = intR, . The points (0,b,0)by € R, are fixed under
exp (tH), t > 0., and belong to C*. Of course, exp (tH), t > 0, are boundary
elements of S.

10.3 Components of i.c.s.

The connected components of the semigroups were studied via the compo-
nents of the attractor and repeller sets C*. The attractor set CT is dense
in the invariant control set C', so that it is natural to ask about the relation
between the components of C* and C. In general C* can have much more
components than C. Examples of semigroups with C connected, but C* not
connected are easily given as compression semigroups of closed connected
sets, having non-connected interior. For instance, consider the situation in
SI(3,R) of the previous example. In the open cell N™by let C' be the union
of two tangent balls, i.e., C is prescribed by

A+ +(c+1)2<tlora®+b+(c—1)><1.

The compression semigroup of C' has at least two semigroup components
although C' is connected.

10.4 Compression semigroup of a cone

Let W C R” be a pointed generating cone, and consider the compression
semigroup

Sw ={g €Sl(n,R) : gW C W}.

In Ribeiro and San Martin [5] it was proved that Sy is connected. We shall
use our results above to give an alternative proof of this fact. It is well know
(and easy to see) that S = intSy is dense in Sy, so that it is enough to
check that intSy is connected. Of course, 1 € clS so that by 9.8 it has
only recurrent components. Now, the parabolic type Oy of Sy is given by
the condition that Sl(n,R) /Pe,, is the projective space P"~!. Hence its
covering Sl(n,R) / Pg)w is the sphere S~ 1. Also, the invariant control set
of S in P! is the set of lines contained in W, which is connected. This set
splits into two components in S?~!, namely the set of rays starting at the
origin and contained in W. Of course the later components are invariant
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under W. Therefore by the characterization of the finite index components
it follows that S has just one component, meaning that Sy is connected.

10.5 Product of semigroup components

In view of Theorem 8.8 it is natural to ask if the product of two semi-
group components is still a semigroup component. The example given here
shows that in general this is not true: In R? consider the pointed cones
Wy ={(z,y) : 0 <y <z} and Wy = {(z,y) : —y <z <0}, form the com-
pression semigroup in S1(2,R), "= comp (+W; U £W5) and put S = intT.
In the projective line P' the attractor set CT of S has two components,
namely K; = int[+W;] and Ky = int[+W5]. The repeller set C'~ also
has two connected components L; = int[+U;] and Ly = int[£Us], where
Uy ={(z,y) : 0 <z <y} and Uy = {(z,y) : —y <z < 0}. We claim that
the product T' (Ky, Lo) T (K1, Ly) is not a semigroup component. In fact,
take g € T' (K1, L) such that gKy C Ky and h € T' (K>, L) with hK; C K.
The matrix g has real eigenvalues A; > 1 > A9 whose principal eigenspace
is contained in +W; and the secondary one is in +L;. Analogously, the
principal eigenspace of h is contained in +W5s and the secondary in +Lo.
Taking into account that a matrix leaves invariant a half-space bounded by
an eigenspace we see that for any x € Wy, gr € —Wy, and hgr € —Ws.
Hence hg does not leave invariant a connected component of a control set
in the double covering S' — P!. By Lemma 8.4, T (K3, L) T (K1, Ly) is not
a semigroup component.

10.6 Number of factors of S generating G

Let G be a two fold covering of S1(2,R) and S C G the semigroup generated
by the exponential of the Lie wedge sl (2, R) formed by the matrices

(a b) b,c > 0.
c —a

The picture below depicts the control sets in in the four fold covering G/ P, of
the projective line P! = G/ P. In the picture the C’s represent the invariant
control sets and the D’s the open control sets. Also, the points marked
inside the D's are delimiters of open intervals which are the sheets given by
open N-orbits (cf. Proposition 9.10).
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D, D, Ds D, D,
. Y
' 1y

—T——"F—TF—"0—"d—
Cl 02 03 04

Now, given z € Cy, S~ 'z is contained in C; U Dy U Dy, since S~ 'z is

connected and does not meet Cy and Cj because these are S-invariant. By
similar reasons we see that SS 'z is contained in C; U Co U Cy U Dy U Do
and S~'SS~ 'z does not meet C3, so that SS~'S # G. It is clear that if we
take higher coverings of SI(2,R) we can apply this method to find examples
semigroups such that the number of factors needed to generate the group is
as large as we please.
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