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Shortly afterwards they beame an objet of independent studies. This in

turn was determined by the various appliations that the graded identities

an �nd in PI theory. We mention some of the most important results on-

erning graded polynomial identities. Thus for example, in [3℄ and in [10℄ it

was proved that if G is a �nite abelian group and A is a G-graded algebra,

then A is PI if and only if its 0-omponent is PI. In [3, 6, 7, 8, 9, 12, 13℄,

several numerial harateristis of T-ideals were transferred to the graded

ase and lots of their properties were dedued. In [11℄, bases of the 2-graded

identities for several important algebras were desribed. As a orollary it was

obtained a rather elementary proof of the fat that the algebras M

11

(G) and

G
G satisfy the same polynomial identities when the base �eld is of har-

ateristi 0. Here G stands for the in�nite dimensional Grassmann algebra,

and M

11

(G) is the algebra of the 2� 2 matries over G whose main diagonal

elements are even (entral) elements of G, and whose other diagonal elements

are odd elements of G. In [19℄ a basis of the n-graded identities of the alge-

bra of n � n matries M

n

(K) was found when K is a �eld of harateristi

0, and in [20℄ this was extended to the Z-gradings of M

n

(K). Furthermore,

in [17℄ the results of [11℄ were extended to algebras over an in�nite �eld of

harateristi p 6= 2 (and as a onsequene a really elementary proof of the

oinidene of the T-ideals of M

11

(G) and G 
 G was obtained). In [2℄ it

was established that the main result of [19℄ holds for algebras over an in�nite

�eld.

It is worth mentioning that the study of graded identities was one of the

key ingredients in Kemer's methods for developing the struture theory of

PI algebras and in partiular, for resolving positively the Speht problem

in harateristi 0. Graded identities, along with other kinds of \weaker"

identities play essential role in study of the polynomial identities satis�ed by

onrete algebras. Some appliations of graded identities satis�ed by onrete

algebras an be found in [11, 13, 17℄.

The polynomial identities satis�ed by the algebra U

n

(K) of the n � n

upper triangular matries are of partiular interest. It is well known that for

every �eld K and every n they are �nitely based (as T-ideal), see for example

[21℄. Thus, when the �eld K is in�nite, the T-ideal of U

n

(K) is generated by

the identity [x

1

; x

2

℄[x

3

; x

4

℄ : : : [x

2n�1

; x

2n

℄ where [a; b℄ = ab � ba is the usual

ommutator. It is also well known that the identities of U

n

(K) are losely

related to the problem of the desription of the subvarieties of the variety of

assoiative algebras generated by M

2

(K). Sine the latter is still open when

harK 6= 0 it is important to obtain further information about the identities
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in U

n

(K). A detailed desription of the 2-graded identities satis�ed by the

algebra U

2

(K) when harK = 0 is given in [18℄.

In this paper we desribe a basis of the n-graded polynomial identities for

the algebra U

n

(K) over an in�nite �eld K and as an appliation we ompute

the asymptotis for the sequene of its graded odimensions.

These results generalize the ones in [18℄. We hope they an be useful in

desribing the behaviour of the subvarieties of the variety generated by the

matrix algebra of order 2 over an in�nite �eld of harateristi not 2.

1 Preliminaries

We �x an in�nite �eld K, and onsider all algebras (graded and ungraded),

vetor spaes et. over K. Denote by U

n

(K) the algebra of n � n upper

triangular matries over K i.e., n � n matries with zero entries below the

main diagonal. The algebra U

n

(K) has a natural Z

n

-grading U

n

(K) = V

0

�

V

1

� � � � � V

n�1

with

V

i

= fa

1;i+1

e

1;i+1

+a

2;i+2

e

2;i+2

+ � � �+a

n�i;n

e

n�i;n

j a

r;s

2 Kg; 0 � i � n�1

where the e

ij

are the elementary matries having 1 as (i; j)-th entry and 0

elsewhere. In partiular V

0

onsists of all diagonal matries. Clearly all V

i

are

subspaes of U

n

(K) and V

i

V

j

� V

i+j

where i+ j is taken modulo n. Observe

that if i+ j � n then V

i

V

j

= 0.

Let X be a ountable in�nite set, and let K(X) be the free assoiative

algebra freely generated by X over K. Suppose that X = X

0

[X

1

[: : :[X

n�1

where X

i

\ X

j

= ; if i 6= j, all X

i

being in�nite, and X

i

= fx

i1

; x

i2

; : : :g.

The weight of the variable x

ij

is w(x

ij

) = i, and if m = x

i

1

j

1

x

i

2

j

2

: : : x

i

k

j

k

is a monomial then its weight is de�ned as w(m) = i

1

+ i

2

+ � � � + i

k

, the

last sum is taken modulo n. De�ne K(X)

i

as the span of all monomials of

weight i, 0 � i � n� 1, then K(X) = K(X)

0

�K(X)

1

� � � � �K(X)

n�1

is

a Z

n

-graded algebra. We shall use the term n-graded instead of Z

n

-graded.

This algebra is the free n-graded algebra in the sense that given an n-graded

algebra A = A

0

�A

1

�� � ��A

n�1

, every map ':X ! A suh that '(X

i

) � A

i

an be extended uniquely to a graded homomorphism �:K(X)! A.

Let f = f(x

i

1

j

1

; x

i

2

j

2

; : : : ; x

i

m

j

m

) 2 K(X) be a polynomial, and let A be

an n-graded algebra. Then f is an n-graded identity for the algebra A if

f(a

i

1

j

1

; a

i

2

j

2

; : : : ; a

i

m

j

m

) = 0 for every a

i

k

j

k

2 A

i

k

. In other words f beomes

zero when we substitute its variables for homogeneous elements of A having
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the same weight as the respetive variables. Obviously the set Id

gr

(A) of

all n-graded identities is an ideal of K(X), and this ideal is stable under all

graded endomorphisms of A. We all suh ideals T

n

-ideals. The lass of all

n-graded algebras satisfying the graded identities of Id

gr

(A) is the variety

var (A) of n-graded algebras determined by A (and by Id

gr

(A)).

The quotient algebra K(X)=Id

gr

(A) is alled the relatively free n-graded

algebra. We shall use the same symbols x

ij

instead of x

ij

+Id

gr

(A) for the gen-

erators of the relatively free graded algebra. Then if B 2 var (A), every ho-

mogeneous map ':X ! B (i.e. a map that preserves the grading) an be ex-

tended uniquely to a homomorphism of graded algebras �:K(X)=Id

gr

(A)!

B.

Sine our �eld is in�nite then every ideal of n-graded identities is gen-

erated by its multihomogeneous elements. Note that when the base �eld is

of positive harateristi it may our that the multilinear identities (graded

identities) of an algebra do not generate the T-ideal (the T

n

-ideal, respe-

tively) of the given algebra.

2 The graded identities of U

n

(K)

Throughout this setion A = U

n

(K) is the algebra of n� n upper triangular

matries with its natural Z

n

-grading U

n

(K) = V

0

� V

1

� � � � � V

n�1

.

Now if S � K(X) is any set of polynomials, we denote by hSi

T

n

the

T

n

�ideal of K(X) generated by S. We start with the following lemma.

Lemma 1 The algebra U

n

(K) satis�es the graded identities

x

01

x

02

� x

02

x

01

� 0 (1)

x

i

1

1

x

i

2

2

� 0 (2)

whenever i

1

+ i

2

� n.

Proof . The identity x

01

x

02

� x

02

x

01

� 0 holds in U

n

(K) sine two diagonal

matries ommute. Moreover sine i + j � n implies V

i

V

j

= 0, the graded

identities x

i

1

1

x

i

2

2

� 0 with i

1

+ i

2

� n, hold for U

n

(K) as well. }

Denote by I the ideal of n-graded identities generated by the identities

(1) and (2), and set J = Id

gr

(U

n

(K).

We wish to show that I = J . We start with an obvious observation.
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Remark 1 For any i

1

+ i

2

+ � � � + i

k

� n, x

i

1

1

x

i

2

2

: : : x

i

k

k

� 0 is a graded

identity of U

n

(K).

Proof . It follows from (2) by the invariane of T

n

-ideals under endomor-

phisms preserving the grading. }

Consider the set of monomials of K(X) of the type

u = w

0

x

k

1

i

1

w

1

: : : w

t�1

x

k

t

i

t

w

t

(3)

where k

1

+ � � � + k

t

< n and w

0

, . . . , w

t

are (possibly empty) monomials in

the variables x

0i

of homogeneous degree 0 and in eah w

i

these variables are

written in inreasing order from left to right.

The next theorem gives the multilinear struture of the relatively free

n-graded algebra in the variety determined by U

n

(K) and as a onsequene,

a basis of the n-graded identities of U

n

(K).

Theorem 2 If K is an in�nite �eld, the monomials (3) are a basis of K(X)

modulo Id

gr

(U

n

(K). Moreover Id

gr

(U

n

(K)) = h[x

01

; x

02

℄; x

i1

x

j2

j i + j �

ni

T

n

.

Proof . We �rst laim that the monomials (3) are linearly independent mod-

ulo Id

gr

(U

n

(K)).

In fat suppose that f =

P

�

i

u

i

2 Id

gr

(U

n

(K)) for some �

i

2 K where

the monomials u

i

are of the type (3). Sine K is an in�nite �eld, graded

ideals are multihomogeneous. Hene we may assume that all u

i

are multi-

homogeneous of the same degree sequene, i.e., the same variables appear

in eah monomial u

i

. Fix one monomial with nonzero oeÆient say u

1

and let u

1

= w

0

x

k

1

i

1

w

1

: : : w

t�1

x

k

t

i

t

w

t

. We now evaluate f on U

n

(K) as fol-

lows: evaluate eah variable appearing in w

0

, into e

11

, the variable x

k

1

i

1

into

e

1;k

1

+1

, eah variable appearing in w

1

into e

k

1

+1;k

1

+1

, the variable x

k

2

i

2

into

e

k

1

+1;k

1

+k

2

+1

, . . . , the variable x

k

t

i

t

into e

k

1

+���+k

m�1

+1;k

1

+���+k

m

+1

and eah

variable in w

t

into e

jj

where j = k

1

+ � � �+ k

m

+ 1. It follows that u

1

evalu-

ates into e

1j

and all other monomials of f evaluate to zero. Thus f 6� 0 on

U

n

(K), a ontradition.

Next we laim that, modulo h[x

01

; x

02

℄; x

i1

x

j2

ji+ j � ni

T

n

, every element

of K(X) an be written as a linear ombination of monomials of type (3).

In fat, this is lear sine T

n

-ideals are invariant under homogeneous substi-

tutions.

It follows that the monomials (3) are a basis of K(X) modulo Id

gr

(U

n

(K)

and that Id

gr

(U

n

(K)) = h[x

01

; x

02

℄; x

i1

x

j2

; i + j � ni

T

n

. }
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3 Generi matries and graded identities

We now introdue a model for K(X)=Id

gr

(U

n

), the relatively free n-graded

algebra. This model is based on a modi�ation of the onstrution of the

ring of generi matries.

Let y

ijk

, i, j, k � 0, be ommuting variables and onsider the polynomial

algebra K[y

ijk

℄ in these variables. The tensor produt U

n

(K) 


K

K[y

ijk

℄ is

anonially isomorphi to the algebra U

n

(K[y

ijk

℄). Let

Y

ik

= y

1;i+1;k

e

1;i+1

+ y

2;i+2;k

e

2;i+2

+ � � �+ y

n�i;n;k

e

n�i;n

with 0 � i � n � 1; k = 1, 2, . . . , and set G

n

the subalgebra of U

n

(K[y

ijk

℄)

generated by the matries Y

ik

, 0 � i � n, k = 1, 2, . . . The algebra G

n

is n-graded in a natural way, preisely the same as U

n

(K). Furthermore it

satis�es all graded identities of U

n

(K).

Lemma 3 The algebra G

n

is isomorphi as a graded algebra to the rel-

atively free algebra K(X)=Id

gr

(U

n

(K) of the variety of n-graded algebras

var (U

n

(K)).

Proof . The map x

ij

! Y

ij

de�nes an epimorphism �:K(X)! G

n

. Further-

more � is atually an isomorphism. The reasoning is exatly the same as in

the ase of the generi matrix algebra sine our �eld K is in�nite. Obviously

� preserves the grading and hene is a graded isomorphism. }

We shall work in the algebra G

n

instead of the relatively free algebra. We

use some ideas from [19℄ and from [2℄.

Lemma 4 Let m

s

= m

s

(x

i

1

j

1

; x

i

2

j

2

; : : : ; x

i

k

j

k

), s = 1, 2, be two monomials

in K(X). Suppose that the matries

M

1

= m

1

(Y

i

1

j

1

; Y

i

2

j

2

; : : : ; Y

i

k

j

k

) and M

2

= m

2

(Y

i

1

j

1

; Y

i

2

j

2

; : : : ; Y

i

k

j

k

)

in G

n

have the same nonzero entries in the same positions in their �rst rows.

(In other words, M

1

�M

2

has zeros in its �rst row.) Then M

1

= M

2

.

Proof . We know that the (unique) nonzero entry in the �rst row ours in

position (1; r + 1), and the same entry ours in M

2

, at the same position

(1; r + 1), for some r, 0 � r � n� 1. One omputes these entries as follows.

For M

1

we have that the (1; r + 1)-st entry equals y

a

1

;b

1

;

1

y

a

2

;b

2

;

2

: : : y

a

k

;b

k

;

k

6



where a

1

= 1, b

1

= i

1

+ 1, 

1

= j

1

, and 

t

= j

t

for all t; thus one obtains the

reurrene formula

a

t+1

= b

t

; b

t+1

= a

t+1

+ i

t+1

; 

t+1

= j

t+1

; 1 � t � k � 1;

where a

1

= 1, b

1

= i

1

+1, 

1

= j

1

. Note that b

t+1

= b

t

+ i

t+1

. Furthermore, in

order to obtain a nonzero entry one needs b

k

� n. But this is always the ase

if b

k

= i

1

+ i

2

+ � � �+ i

k

+1 = r+1 � n. Now observe that these reurrenies

determine uniquely the monomial M

1

, and hene M

1

= M

2

. }

Corollary 5 Under the assumptions and in the notation of the preeding

Lemma, we have m

1

�m

2

2 Id

gr

(U

n

(K)).

Proof . The proof is straightforward sine M

1

�M

2

= 0 in G

n

whih is the

relatively free n-graded algebra. }

Using the properties of the relatively free graded algebra we give an al-

ternative proof of Theorem 2.

Proof of Theorem 2. Let I be the T

n

-ideal generated by the polynomials

(1) and (2), and let J = Id

gr

(U

n

(K)). Sine I � J , it suÆes to prove

that J � I. Suppose on the ontrary that there exists a multihomogeneous

polynomial f 2 J and f 62 I. We work in the relatively free n-graded algebra

K(X)=I = G

n

and hoose f 2 G

n

of minimal degree, and among these f ,

hoose one that is expressed in the form f = �

1

m

1

+ �

2

m

2

+ � � � + �

s

m

s

for m

t

being distint monomials in G

n

, all �

t

6= 0, �

t

2 K, and s the least

possible. Hene s � 1.

Suppose m

t

= m

t

(x

i

1

j

1

; x

i

2

j

2

; : : : ; x

i

k

j

k

). Then

m

1

(Y

i

1

j

1

; Y

i

2

j

2

; : : : ; Y

i

k

j

k

) =

r

X

z=2

�

z

m

z

(Y

i

1

j

1

; Y

i

2

j

2

; : : : ; Y

i

k

j

k

)

where �

z

= ��

z

=�

1

6= 0, z = 2, 3, . . . , r.

On the other hand we have that m

1

(Y

i

1

j

1

; Y

i

2

j

2

; : : : ; Y

i

k

j

k

) 6= 0 and in the

�rst row of this matrix there will be some nonzero entry. This nonzero entry

appears on the right-hand side as well. Say it omes from the monomial m

2

.

But then the monomialsm

1

and m

2

have the same nonzero entry in the same

position on their �rst rows, and hene m

1

�m

2

2 J , aording to Corollary 5.

But then m

1

= m

2

, and we redue f to t � 1 monomials whih ontradits

the hoie of t. Hene t = 0 and I = J .
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We now prove that the monomials (3) are linearly independent modulo

Id

gr

(U

n

(K)). Suppose that the polynomial

P

t

i=1

�

i

m

i

2 Id

gr

(U

n

(K)) where

m

i

are distint monomials of the type (3), for 0 6= �

i

2 K. Sine K is

in�nite we may assume that the monomials m

i

are all multihomogeneous

and of the same multidegree. One an express m

1

in the following way:

m

1

= �

P

t

i=2

�

i

m

i

. Now substitute the variables for the respetive generi

graded matries; the �rst row of m

1

will ontain some nonzero entry sine

otherwise m

1

would belong to Id

gr

(U

n

(K)). The same nonzero entry must

appear in some of the monomials on the right-hand side, say in m

2

. Hene

m

1

� m

2

2 Id

gr

(U

n

(K)), and we redue our linear ombination to t � 1

terms. Finally we obtain single monomial, but it annot be a graded identity

for U

n

(K) sine it is of weight < n, and it will ontain in its �rst row some

nonzero entry when evaluated on G

n

. }

4 Appliations

Here we apply the results of the previous setion and desribe some of the

numerial invariants of the T

n

-ideal of U

n

(K). We start with one of the

various kinds of odimensions one may de�ne for graded identities.

Suppose that g

1

h

1

g

2

h

2

: : : g

k

h

k

is a multilinear monomial that is nonzero

in the relatively free n-graded algebra K(X)=Id

gr

(U

n

(K)). Let g

i

depend on

the 0-variables x

0j

, and h

i

depend on some x

zj

, 1 � z � n � 1. Suppose

further that the number of variables x

0j

is s, and of the x

zj

is m � s. If g

u

depends on t

u

variables, 1 � u � k, we �x these variables and we obtain

(m � s)! monomials of the desired type, permuting only the variables x

zj

.

Now, dividing the variables x

0j

into groups, t

i

in the i-th group, we will

obtain a multiple of the multinomial oeÆient

s!(m� s)!

(t

1

!t

2

! : : : t

k

!)

= (m� s)!

�

s

t

1

!t

2

! : : : t

k

!

�

:

Now summing up over all suh divisions of the x

0j

into k groups (some of

them may be empty) one gets that the m-th graded odimension in the �xed

variables equals (m � s)!(m � s + 1)

s

. Of ourse we impose one further

ondition namely that the weight of the monomial be less than n. Hene we

proved the following proposition

Proposition 6 Let m be a �xed positive integer and let x

0j

1

, x

0j

2

, . . . , x

0j

s

be �xed. Suppose further that x

z

1

;r

1

, x

z

2

;r

2

, . . . , x

z

g

;r

g

, g = m � s, are �xed,

8



1 � z

i

� n � 1 for all i and z

1

+ z

2

+ � � � + z

g

� n � 1. Then the span

of all multilinear monomials on these variables in K(X)=Id

gr

(U

n

(K)) is of

dimension (m� s)!(m� s+ 1)

s

. }

One an onsider another kind of graded odimensions, see for example

[3℄. We reall the de�nition of these odimensions that represent a diret

generalization of the ungraded ase. Let m be �xed positive integer, and

onsider the (graded) variables x

ij

, 0 � i � n, 1 � j � m, in K(X). We

onsider the multilinear monomials in these variables that are of the form

x

i

i

;j

1

x

i

2

;j

2

: : : x

i

m

;j

m

(4)

where fj

1

; j

2

; : : : ; j

m

g = f1; 2; : : : ; mg and 0 � i

t

� n� 1.

In other words, we do not admit repetitions of the seond indies in

the variables. These monomials an be obtained by the usual multilinear

monomials x

j

1

x

j

2

: : : x

j

m

by assigning all possible weights on the variables.

It is straightforward that the span P

n

m

of these monomials in K(X) is of

dimension 

(n)

m

= n

m

m!. Denote by P

n

m

(A) the quotient P

n

m

=(P

n

m

\ Id

gr

(A))

where A is an n-graded algebra, and set 

(n)

m

(A) = dim

K

P

n

m

(A). Next we

ompute the odimensions 

m

= 

(n)

m

(U

n

(K)).

Theorem 7 The odimensions 

m

equal



m

=

M

X

q=0

�

m

q

��

n� 1

q

�

q!(q + 1)

m�q

where M = minfm;n� 1g.

Proof . Let f = g

1

y

1

g

2

y

2

: : : g

k

y

k

g

k+1

2 P

n

m

(U

n

(K)) be a nonzero multilinear

monomial in the variables x

ij

, 0 � i � n � 1, 1 � j � m where for i = 1,

. . . , k + 1, the g

0

i

s are monomials (possibly empty) in the variables x

0j

only,

and for r = 1, . . . , k, y

r

= x

a

r

;b

r

, with 1 � a

r

� n � 1, 1 � b

r

� m. Sine

f 2 P

n

m

(U

n

(K)) we have to impose a

1

+ a

2

+ � � �+ a

q

� n� 1.

Denote by A

n�1

(q) the number of q-tuples of positive integers a

1

, a

2

, . . . ,

a

q

suh that a

1

+ a

2

+ � � � + a

q

� n � 1, and as B

n�1

(q) the number of

suh q-tuples with a

1

+ a

2

+ � � � + a

q

= n � 1. Then obviously A

n�1

(q) =

B

n�1

(q) + B

n�2

(q) + � � � + B

q

(q). On the other hand, B

r

(q) =

�

r�1

q�1

�

is the

number of ompositions of r into q parts, see for example [1, p. 54℄. Hene,

9



using some elementary transformations on binomial oeÆients, we obtain

that

A

n�1

(q) =

n�1

X

r=q

B

r

(q) =

n�1

X

r=q

�

q + r � 1

q � 1

�

=

�

n� 1

q

�

=

(n� 1)!

(q!(n� 1� q)!)

:

Now, for the indies b

r

of y

r

= x

a

r

;b

r

we have m!=(m � q)! = q!

�

m

q

�

hoies

(no repetition!). Therefore there exist

q!

�

m

q

��

n� 1

q

�

nonzero monomials h in G

n

with the properties desribed above.

Now let us onsider the variables x

0j

. We have m � q hoies for the

index j (again no repetitions!), and we split the set of all suh x

0j

into

k + 1 subsets (some of them possibly empty). If we denote by C(k; q) the

number of nonzero monomials f of type (4) that an be represented as f =

g

1

y

1

g

2

y

2

: : : g

k

y

k

g

k+1

, g

r

are monomials (possibly empty) in x

0j

, and y

r

=

x

a

r

;b

r

with 1 � a

r

� n� 1, then we have



m

=

n�1

X

q=0

q

X

k=0

(C(k; q)� C(k � 1; q))

where

C(k; q) = (k + 1)

m�q

q!

�

m

q

��

n� 1

q

�

:

Therefore



m

=

n�1

X

q=1

q

X

k=0

q!

�

m

q

��

n� 1

q

�

((k + 1)

m�q

� k

m�q

)

=

m

X

q=0

�

m

q

��

n� 1

q

�

q!(q + 1)

m�q

:

Note that the binomial oeÆient

�

n�1

q

�

equals 0 whenever q > n � 1, and

this last observation yields the formula for 

m

from the theorem. }

As a onsequene of Theorem 7 we an now ompute the preise asymp-

totis of the sequene of graded odimensions 

m

(U

n

(K)).
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Reall that if f(x) and g(x) are two funtions of a natural argument

then f(x) and g(x) are asymptotially equal, and we write f(x) ' g(x) if

lim

x!1

f(x)

g(x)

= 1.

Corollary 8 For all m,



m

(U

n

(K)) '

1

n

n�1

m

n�1

n

m

:

Proof . For M = minfm;n� 1g we have



m

(U

n

(K)) =

M

X

q=0

�

m

q

��

n� 1

q

�

q!(q + 1)

m�q

'

�

m

n� 1

�

(n� 1)!n

m�n+1

whih in turn equals

m(m� 1) � � � (m� n + 2)

(n� 1)!

(n� 1)!n

m�n+1

' m

n�1

n

m�n+1

=

1

n

n�1

m

n�1

n

m

:

}
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