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Abstract
We consider the algebra Uy, (K) of n X n upper triangular matrices
over an infinite field K equipped with its usual Z,-grading. We de-
scribe a basis of the ideal of the graded polynomial identities for this
algebra, and compute some of the numerical invariants of this ideal.
An extended version of this research will be published elsewhere.
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Introduction

The interest into graded polynomial identities was inspired by their impor-
tance for the structure theory of PI algebras (see for example [16] or [5]).
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Shortly afterwards they became an object of independent studies. This in
turn was determined by the various applications that the graded identities
can find in PI theory. We mention some of the most important results con-
cerning graded polynomial identities. Thus for example, in [3] and in [10] it
was proved that if G is a finite abelian group and A is a G-graded algebra,
then A is PI if and only if its 0-component is PI. In [3, 6, 7, 8, 9, 12, 13],
several numerical characteristics of T-ideals were transferred to the graded
case and lots of their properties were deduced. In [11], bases of the 2-graded
identities for several important algebras were described. As a corollary it was
obtained a rather elementary proof of the fact that the algebras M, (G) and
G ® G satisfy the same polynomial identities when the base field is of char-
acteristic 0. Here GG stands for the infinite dimensional Grassmann algebra,
and M, (G) is the algebra of the 2 x 2 matrices over G whose main diagonal
elements are even (central) elements of G, and whose other diagonal elements
are odd elements of G. In [19] a basis of the n-graded identities of the alge-
bra of n x n matrices M,,(K) was found when K is a field of characteristic
0, and in [20] this was extended to the Z-gradings of M, (K'). Furthermore,
in [17] the results of [11] were extended to algebras over an infinite field of
characteristic p # 2 (and as a consequence a really elementary proof of the
coincidence of the T-ideals of M;;(G) and G ® G was obtained). In [2] it
was established that the main result of [19] holds for algebras over an infinite
field.

It is worth mentioning that the study of graded identities was one of the
key ingredients in Kemer’s methods for developing the structure theory of
PI algebras and in particular, for resolving positively the Specht problem
in characteristic 0. Graded identities, along with other kinds of “weaker”
identities play essential role in study of the polynomial identities satisfied by
concrete algebras. Some applications of graded identities satisfied by concrete
algebras can be found in [11, 13, 17].

The polynomial identities satisfied by the algebra U,(K) of the n x n
upper triangular matrices are of particular interest. It is well known that for
every field K and every n they are finitely based (as T-ideal), see for example
[21]. Thus, when the field K is infinite, the T-ideal of U, (K) is generated by
the identity [z, zo][x3, 24] ... [Ton_1, T2,] Where [a,b] = ab — ba is the usual
commutator. It is also well known that the identities of U, (K) are closely
related to the problem of the description of the subvarieties of the variety of
associative algebras generated by M, (K). Since the latter is still open when
charK # 0 it is important to obtain further information about the identities
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in U,(K). A detailed description of the 2-graded identities satisfied by the
algebra Us(K) when charK = 0 is given in [18].

In this paper we describe a basis of the n-graded polynomial identities for
the algebra U, (K) over an infinite field K and as an application we compute
the asymptotics for the sequence of its graded codimensions.

These results generalize the ones in [18]. We hope they can be useful in
describing the behaviour of the subvarieties of the variety generated by the
matrix algebra of order 2 over an infinite field of characteristic not 2.

1 Preliminaries

We fix an infinite field K, and consider all algebras (graded and ungraded),
vector spaces etc. over K. Denote by U,(K) the algebra of n x n upper
triangular matrices over K i.e., n X n matrices with zero entries below the
main diagonal. The algebra U, (K) has a natural Z,-grading U, (K) =V, &
Vi ---®V, | with

Vi=A{a1i11€101 Fagipo€0i0+ Fan_inenin| ars € K}, 0<i<n-—1

where the e;; are the elementary matrices having 1 as (4, j)-th entry and 0
elsewhere. In particular Vj consists of all diagonal matrices. Clearly all V; are
subspaces of U, (K) and V;V; C V;;; where i + j is taken modulo n. Observe
that if 2 + 7 > n then V;V; = 0.

Let X be a countable infinite set, and let K(X) be the free associative
algebra freely generated by X over K. Suppose that X = XoUX U...UX,,_
where X; N X; = 0 if i # j, all X; being infinite, and X; = {z;1,zp,...}.
The weight of the variable z;; is w(x;;) = 4, and if m = x;,j, Ty, - - - Tipjy
is a monomial then its weight is defined as w(m) = iy + iy + - -+ + i, the
last sum is taken modulo n. Define K(X); as the span of all monomials of
weight i, 0 <7 <n—1, then K(X) = K(X) @ K(X), @ -+ ® K(X),_; is
a Zy-graded algebra. We shall use the term n-graded instead of Z,-graded.
This algebra is the free n-graded algebra in the sense that given an n-graded
algebra A = Ag@ A1 ®--- DA, 1, every map ¢: X — A such that ¢(X;) C A;
can be extended uniquely to a graded homomorphism ®: K(X) — A.

Let f = f(%ijrs Tinjar - - s Tinjn) € K(X) be a polynomial, and let A be
an n-graded algebra. Then f is an n-graded identity for the algebra A if
f(@iriis Ginjoy - - -+ Qiyjiy) = 0 for every a;,;, € A;,. In other words f becomes
zero when we substitute its variables for homogeneous elements of A having
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the same weight as the respective variables. Obviously the set Id9"(A) of
all n-graded identities is an ideal of K(X), and this ideal is stable under all
graded endomorphisms of A. We call such ideals T),-ideals. The class of all
n-graded algebras satisfying the graded identities of Id9"(A) is the variety
var (A) of n-graded algebras determined by A (and by Id?"(A)).

The quotient algebra K (X)/Id(A) is called the relatively free n-graded
algebra. We shall use the same symbols z;; instead of x;;+1d9" (A) for the gen-
erators of the relatively free graded algebra. Then if B € var (A), every ho-
mogeneous map ¢: X — B (i.e. a map that preserves the grading) can be ex-
tended uniquely to a homomorphism of graded algebras ®: K(X)/Id?" (A) —
B.

Since our field is infinite then every ideal of n-graded identities is gen-
erated by its multihomogeneous elements. Note that when the base field is
of positive characteristic it may occur that the multilinear identities (graded
identities) of an algebra do not generate the T-ideal (the T,-ideal, respec-
tively) of the given algebra.

2 The graded identities of U,(K)

Throughout this section A = U, (K) is the algebra of n x n upper triangular
matrices with its natural Z,-grading U, (K) =V, & Vi @& ---d V, ;.

Now if S C K(X) is any set of polynomials, we denote by (S)r, the
T,—ideal of K(X) generated by S. We start with the following lemma.

Lemma 1 The algebra U,(K) satisfies the graded identities

T1T02 — To2To1 = 0 (1)

Ti1Tie =0 (2)
whenever i1 + iy > n.

Proof. The identity zo1292 — Zo201 = 0 holds in U, (K) since two diagonal
matrices commute. Moreover since 7 + j > n implies V;V; = 0, the graded
identities x;, 12,2 = 0 with iy + i > n, hold for U, (K) as well. &

Denote by I the ideal of n-graded identities generated by the identities
(1) and (2), and set J = Id9 (U, (K).
We wish to show that I = .J. We start with an obvious observation.



Remark 1 For any 1y +io+ ---+ip > N, Tij1Tiy2.. . Tip = 0 is a graded
identity of U, (K).

Proof. Tt follows from (2) by the invariance of T,-ideals under endomor-
phisms preserving the grading. &

Consider the set of monomials of K (X) of the type
U = WLk iy W1 - - - W1 Thyi, Wy (3)

where ky +-+- 4+ k; < n and wy, ..., w; are (possibly empty) monomials in
the variables xy; of homogeneous degree 0 and in each w; these variables are
written in increasing order from left to right.

The next theorem gives the multilinear structure of the relatively free
n-graded algebra in the variety determined by U, (K) and as a consequence,
a basis of the n-graded identities of U, (K).

Theorem 2 If K is an infinite field, the monomials (3) are a basis of K(X)
modulo I1d9" (U, (K). Moreover Id%"(U,(K)) = ([zo1, %02, xi1xjo |  +7 >
7’L>Tn.

Proof. We first claim that the monomials (3) are linearly independent mod-
ulo Id9" (U, (K)).

In fact suppose that f = > au; € Id9(U,(K)) for some o; € K where
the monomials u; are of the type (3). Since K is an infinite field, graded
ideals are multihomogeneous. Hence we may assume that all u; are multi-
homogeneous of the same degree sequence, i.e., the same variables appear
in each monomial u;. Fix one monomial with nonzero coefficient say u
and let uy = woxg w1 ... w12k, w,. We now evaluate f on U,(K) as fol-
lows: evaluate each variable appearing in wy, into e, the variable x ;, into
e,k +1, each variable appearing in w; into ey, 41 5,41, the variable zy,;, into
€ki+1,k1+kot+1s - -+, the variable xy,, into ey, y..qk,. 41k ++kn+1 and each
variable in w; into e;; where j = ki + -+ + ky, + 1. It follows that u; evalu-
ates into e;; and all other monomials of f evaluate to zero. Thus f # 0 on
Un(K), a contradiction.

Next we claim that, modulo ([zo1, Zo2|, Ti1%j2|i +j > n)7,, every element
of K(X) can be written as a linear combination of monomials of type (3).
In fact, this is clear since T),-ideals are invariant under homogeneous substi-
tutions.

It follows that the monomials (3) are a basis of K (X) modulo Id? (U, (K)
and that Id?" (U, (K)) = ([zo1, To2], Ti1% 2,0 + j > n)p,. O
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3 Generic matrices and graded identities

We now introduce a model for K(X)/I1d9 (U,), the relatively free n-graded
algebra. This model is based on a modification of the construction of the
ring of generic matrices.

Let vijx, 1, 7, K > 0, be commuting variables and consider the polynomial
algebra K[y;;x] in these variables. The tensor product U,(K) @ Klyi;k] is
canonically isomorphic to the algebra U, (Ky;;i]). Let

Yik = Yiir1, k€141 + Y2,i42k€2i42 + =+ + Un—ink€n—in

with 0 <i<n—-1,k=1,2, ..., and set G, the subalgebra of U, (K[y;jx])
generated by the matrices Y, 0 < i < n, k =1, 2, ... The algebra G,
is n-graded in a natural way, precisely the same as U, (K). Furthermore it
satisfies all graded identities of U, (K).

Lemma 3 The algebra G, is isomorphic as a graded algebra to the rel-
atively free algebra K(X)/Id9 (Uy(K) of the variety of n-graded algebras
var (Up(K)).

Proof. The map x;; — Y;; defines an epimorphism ®: K (X) — G,,. Further-
more @ is actually an isomorphism. The reasoning is exactly the same as in
the case of the generic matrix algebra since our field K is infinite. Obviously
® preserves the grading and hence is a graded isomorphism. &

We shall work in the algebra GG, instead of the relatively free algebra. We
use some ideas from [19] and from [2].

Lemma 4 Let my; = my(Ti,j,, Tigjos - - - Tipjp), S = 1, 2, be two monomials
in K(X). Suppose that the matrices

M, = ml(}/;lju le'zjw SRR Y;k]k) and My = m2(Y;1j1a le'zjw SRR Y;kjk)
in G,, have the same nonzero entries in the same positions in their first rows.
(In other words, My — My has zeros in its first row.) Then M; = M.

Proof. We know that the (unique) nonzero entry in the first row occurs in
position (1,7 + 1), and the same entry occurs in Ms, at the same position
(1,7 + 1), for some r, 0 < r < n — 1. One computes these entries as follows.
For M; we have that the (1,7 + 1)-st entry equals Ya, b, .c; Yas.bs.co - - - Yay by.cr



where a; =1, by =11 + 1, ¢; = j1, and ¢; = j; for all ¢; thus one obtains the
recurrence formula

App1 = by bpp1 = app1 + i1, Copr = Jog1, L <E< k=1,

where a; = 1, by = i1+ 1, ¢ = j;. Note that b;;1 = b;+1;,1. Furthermore, in
order to obtain a nonzero entry one needs b, < n. But this is always the case
ifb, =41+ + -+ +1=r+1<n. Now observe that these recurrencies
determine uniquely the monomial M7, and hence M; = M,. &

Corollary 5 Under the assumptions and in the notation of the preceding
Lemma, we have my — mqy € 1d7 (U, (K)).

Proof. The proof is straightforward since M; — M, = 0 in (G,, which is the
relatively free n-graded algebra. &

Using the properties of the relatively free graded algebra we give an al-
ternative proof of Theorem 2.

Proof of Theorem 2. Let I be the T),-ideal generated by the polynomials
(1) and (2), and let J = Id9 (U,(K)). Since I C J, it suffices to prove
that J C I. Suppose on the contrary that there exists a multihomogeneous
polynomial f € J and f ¢ I. We work in the relatively free n-graded algebra
K(X)/I = G, and choose f € G,, of minimal degree, and among these f,
choose one that is expressed in the form f = aymi + aomo + -+ + aymy
for m; being distinct monomials in G,,, all oy # 0, oy € K, and s the least
possible. Hence s > 1.

Suppose my = My (T4, iy, Tigjos - - - » Tigj,). Lhen

r
my (Y;1j17 }/;2]'2, sy Kk]k) = Z Bzmz (Y;1j17 }/;2]'2, ceey Kk]k)
z=2

where 3, = —a,/oqn #0, 2=2,3, ..., r.

On the other hand we have that m;(Y,;,, Yi,jo,- -, Yij.) # 0 and in the
first row of this matrix there will be some nonzero entry. This nonzero entry
appears on the right-hand side as well. Say it comes from the monomial m,.
But then the monomials m; and ms have the same nonzero entry in the same
position on their first rows, and hence m; —msy € J, according to Corollary 5.
But then m; = msy, and we reduce f to ¢ — 1 monomials which contradicts
the choice of t. Hence t =0 and I = J.



We now prove that the monomials (3) are linearly independent modulo
1d9" (U, (K)). Suppose that the polynomial 3'_ aym; € Id? (U, (K)) where
m; are distinct monomials of the type (3), for 0 # «; € K. Since K is
infinite we may assume that the monomials m; are all multihomogeneous
and of the same multidegree. One can express m; in the following way:
m; — — 2222 Bim;. Now substitute the variables for the respective generic
graded matrices; the first row of m; will contain some nonzero entry since
otherwise m; would belong to Id?" (U,(K)). The same nonzero entry must
appear in some of the monomials on the right-hand side, say in ms. Hence
my —mgy € I1d9(U,(K)), and we reduce our linear combination to ¢ — 1
terms. Finally we obtain single monomial, but it cannot be a graded identity
for U, (K) since it is of weight < n, and it will contain in its first row some
nonzero entry when evaluated on G,,. &

4 Applications

Here we apply the results of the previous section and describe some of the
numerical invariants of the T,-ideal of U,(K). We start with one of the
various kinds of codimensions one may define for graded identities.

Suppose that g1higahs ... gphs is a multilinear monomial that is nonzero
in the relatively free n-graded algebra K (X)/Id" (U, (K)). Let g; depend on
the O-variables z¢;, and h; depend on some z,;, 1 < z < n — 1. Suppose
further that the number of variables z; is s, and of the z,; is m —s. If g,
depends on t, variables, 1 < u < k, we fix these variables and we obtain
(m — s)! monomials of the desired type, permuting only the variables z.;.
Now, dividing the variables zy; into groups, t; in the i-th group, we will
obtain a multiple of the multinomial coefficient

slim—s)!l s
(1t e (m = 3)! <t1!t2! , .tk!)

Now summing up over all such divisions of the xq; into & groups (some of
them may be empty) one gets that the m-th graded codimension in the fixed
variables equals (m — s)!(m — s 4+ 1)°. Of course we impose one further
condition namely that the weight of the monomial be less than n. Hence we
proved the following proposition

Proposition 6 Let m be a fized positive integer and let xoj,, Toj,, - ., Toj,
be fized. Suppose further that T, v\, Tz ry, -y Toyry, § = M — s, are fized,
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1 <z <n-—=1foraliand 2y + 20+ ---+ 2, < n—1. Then the span
of all multilinear monomials on these variables in K(X)/Id (U,(K)) is of
dimension (m — s)!(m — s+ 1)*. o

One can consider another kind of graded codimensions, see for example
[3]. We recall the definition of these codimensions that represent a direct
generalization of the ungraded case. Let m be fixed positive integer, and
consider the (graded) variables z;;, 0 < i < n, 1 < j < m, in K(X). We
consider the multilinear monomials in these variables that are of the form

Ti;j1%i2,52 - Timyjm (4)

where {j1, 72, Jm} =1{1,2,...,m}and 0 < i, <n—1.

In other words, we do not admit repetitions of the second indices in
the variables. These monomials can be obtained by the usual multilinear
monomials x; x;, ...x;,, by assigning all possible weights on the variables.
It is straightforward that the span P! of these monomials in K(X) is of
dimension cip) = n™m!. Denote by P (A) the quotient P" /(P N Id"(A))
where A is an n-graded algebra, and set c,(ff)(A) = dimg P"(A). Next we

compute the codimensions ¢, = c,(ff)(Un(K)).

Theorem 7 The codimensions ¢, equal

w0, s

q=0
where M = min{m,n — 1}.

Proof. Let f = q1y192y2 - - - 9kYkgr+1 € Pr(U,(K)) be a nonzero multilinear
monomial in the variables z;;, 0 <i <n —1,1 < j < m where for ¢ = 1,
..., k+1, the gis are monomials (possibly empty) in the variables zy; only,
and for r =1, ..., k, yp, = 24, p,, with 1 < a, <n—-1,1 <b, < m. Since
f € P! (U,(K)) we have to impose a; +as + -+ +a, <n— 1.

Denote by A,,_1(q) the number of g-tuples of positive integers ay, as, ...,
a, such that a; + ay +---+a, < n —1, and as B,_;(¢) the number of
such g-tuples with a; + as + ---+ a, = n — 1. Then obviously A,_,(¢q) =
By 1(q) + Bus(q) + -+ + By(q). On the other hand, B,(g) = (/7)) is the
number of compositions of r into ¢ parts, see for example [1, p. 54]. Hence,

9



using some elementary transformations on binomial coefficients, we obtain
that

An_1(q) = nz_‘iBr(q) = ni <q Z: 1) B <n ; 1) - (q!(q(ln—_ﬁ!q)!)'

r=q r=q

Now, for the indices b, of y, = x4, we have m!/(m — q)! = q!(?) choices
(no repetition!). Therefore there exist

G

q'

q q

nonzero monomials A in GG,, with the properties described above.

Now let us consider the variables zo;. We have m — ¢ choices for the
index j (again no repetitions!), and we split the set of all such z; into
k + 1 subsets (some of them possibly empty). If we denote by C(k,q) the
number of nonzero monomials f of type (4) that can be represented as f =

91Y192Y2 - - - GkYkJk+1, G- are monomials (possibly empty) in Toj, and y, =
Za,p, With 1 < a, <n —1, then we have

n
=2

"3 (Clh,g) — Ok — 1,9))

T sG]
Therefore
tn = :kzzq'(?) <”;1)((k+1)m—q—km—q)
- (), ataror

Note that the binomial coefficient (";1) equals 0 whenever ¢ > n — 1, and
this last observation yields the formula for ¢, from the theorem. &

As a consequence of Theorem 7 we can now compute the precise asymp-
totics of the sequence of graded codimensions ¢, (U, (K)).
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Recall that if f(z) and g(x) are two functions of a natural argument
then f(z) and g(x) are asymptotically equal, and we write f(x) ~ g(x) if

limg, oo % =1.

Corollary 8 For all m,

1 n—1_m
em(Un(K)) ~ T
Proof. For M = min{m,n — 1} we have
Yom\ (n—1 m
m(Un(K)) = ! 1) ~ — 1)Ipmmntt

e (U (K)) Z(q)( = (" )
which in turn equals

m(m - 1) e (m —n+ 2) (n _ 1)!nm—n+1 ~ mn—lnm—n—l—l — 1 mn—lnm.

(n—1)! nn-t
o
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