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Abstract

In this article the main theorem establishes the necessity and sufficiency of the Poincaré-

Hopf inequalities in order for the Morse inequalities to hold under the hypothesis that the

flow and the reverse flow satisfy the Conley index duality condition on components of the

chain recurrent set. The convex hull of the collection of all Betti number vectors which satisfy

the Morse inequalities for a pre-assigned index data determines a Morse polytope defined

on the nonnegative orthant. Using results from network flow theory, a scheme is provided

for constructing all possible Betti number vectors which satisfy the Morse inequalities for a

pre-assigned index data. Geometrical properties of this polytope are described.
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1 Introduction

For a continuous flow φt on a closed manifold Mn with finite component chain recurrent set R

where each component Rk is an isolated invariant set it is possible to compute the dimensions of

the Conley homology indices (h0, . . . , hn)k for each Rk. In [2] it is proven that, given φt on M with

R = ∪Rk and hj =
∑

k(hj)k the following generalized Morse inequalities hold.

γn − γn−1 +− . . .± γ2 ± γ1 ± γ0 = hn − hn−1 +− . . .± h2 ± h1 ± h0 (n)

γn−1 − γn−2 +− . . .± γ2 ± γ1 ± γ0 ≤ hn−1 − hn−2 +− . . .± h2 ± h1 ± h0 (n− 1)
...

...

γj − γj−1 +− . . .± γ2 ± γ1 ± γ0 ≤ hj − hj−1 +− . . .± h2 ± h1 ± h0 (j)

γj−1 − γj−2 +− . . .± γ2 ± γ1 ± γ0 ≤ hj−1 − hj−2 +− . . .± h2 ± h1 ± h0 (j− 1)
...

...

γ2 − γ1 + γ0 ≤ h2 − h1 + h0 (2)

γ1 − γ0 ≤ h1 − h0 (1)

γ0 ≤ h0 (0)

(1)

The Conley index duality condition on the indices (hj)k of the components Rk of the chain

recurrent set of the flow φt implies that hj = hn−j where (hj)k are the indices of the components Rk

for the reverse flow φ−t. This property is easily verified for Morse-Smale flows. We refer the reader

to [2] for more details about index pairs, isolating blocks and Conley homology index. Note that

the Morse inequalities (1) hold for the dual indices (hj)k and we will refer to it as the dual Morse

inequalities. This corresponds to passing the bar only over the right hand side of the inequalities

since the left hand side remains unaltered.

In [1] the Poincaré-Hopf inequalities in all generality are introduced for flows on isolating blocks

N and their Lyapunov graph LN in order to ensure the continuation of LN to a Morse type Lyapunov

graph. These inequalities involve the Betti numbers of the exiting and entering boundaries of N .

We refer to these inequalities as the Poincaré-Hopf inequalities for isolating blocks which will be

presented in Section 2.

For the purpose of this article, we consider a particular case of the Poincaré-Hopf inequalities for

isolating blocks which we will refer to as the Poincaré-Hopf inequalities for closed manifolds (2), (3)

and (4). The Poincaré-Hopf inequalities give bounds on the numbers hj with respect to alternating

sums of hs with s < j and their duals hn−s. In the case of Morse flows these inequalities provide

bounds on the number of singularities cj of Morse index j with respect to alternating sums of cs
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with s < j and their duals cn−s.









n = 2i+ 1
{
−hi ≤ (hi+2 − hi−1)− (hi+3 − hi−2) +− . . .± (h2i − h1)± (h2i+1 − h0) ≤ hi+1

n = 2i
{
−hi ≤ (hi+1 − hi−1)− (hi+2 − hi−2) +− . . .± (h2i−2 − h2)± (h2i − h0) ≤ hi

(i)





−hj ≤ (hn−(j−1) − hj−1)− (hn−(j−2) − hj−2) +− . . .± (hn−1 − h1)± (hn − h0) ≤ hn−j (j)
...

−h2 ≤ (hn−1 − h1)− (hn − h0) ≤ hn−2 (2)

{
h1 ≥ h0 − 1

hn−1 ≥ hn − 1
(1)

(2)

In the case n = 2i+ 1 we have

2i+1∑

j=0

(−1)jhj = 0 (3)

and in the case n = 2i = 2 mod 4 we have

hi −
i−1∑

j=0

(−1)j(h2i−j − hj) be even. (4)

A nonnegative integral vector (γ0, γ1, . . . , γn−1, γn) satisfying γn−k = γk, for k = 0, . . . , n,

γ0 = γn = 1 and γn/2 even if n is even, is called a Betti number vector.

Our main theorem asserts that under the hypothesis that the flow satisfies the Conley index

duality condition on components of the chain recurrent set, the Poincaré-Hopf inequalities (2) hold

if and only if the Morse inequalities (1) hold for some Betti number vector (γ0, . . . , γn).

We can state the main theorem in terms of a collection of nonnegative numbers (h0, h1 . . . , hn).

Theorem 1.1 A set of nonnegative numbers (h0, h1 . . . , hn) satisfies the Poincaré-Hopf inequalities

in (2) if and only if it satisfies the Morse inequalities (1) for some Betti number vector

(γ0, γ1, . . . , γn−1, γn).
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An important role in our proof is played by a more elaborate classification of singularities.

Given a nondegenerate singularity, a classical approach is to associate to it, its Morse index j.

More generally, one can associate to it the dimensions of the Conley homology indices, hj = 1 and

hk = 0 for all k 6= j. In [3] singularities are classified not only by their index, but also by the

effect caused on the Betti numbers of the entering and exiting boundaries, N+ and N−, of the flow

defined on an isolating block N containing the singularity. In other words, a singularity of Morse

index j can increase (resp. decrease) the j-th (resp. j − 1-th) Betti number of N+ with respect to

the j-th (resp. j − 1-th) Betti number of N−. We refer to this singularity as hdj (resp. hcj) , where

the d stands for disconnecting (where the c stands for connecting). In the case n = 2i = 0 mod 4,

a singularity of index i is β-i, if all Betti numbers are kept constant.

The crucial step in the proof of the main theorem is to define a linear system, henceforth

called hcd-system which can be characterized by the dimensions of the Conley homology indices

(h0, . . . , hn) and whose unknowns are precisely (hc1, h
d
1, . . . , h

c
n−1, h

d
n−1). Nonnegative integer

solutions to this system correspond to different ways one can choose hcj and hdj for a pre-assigned

index data (h0, . . . , hn). In [1] it was shown that the hcd-system has a nonnegative solution if and

only if the Poincaré-Hopf inequalities (2), (3) and (4) are satisfied. We also show in [1] that this

hcd-system constitutes a network-flow problem, with possible additional constraints. The nature of

the network involved allows a complete characterization of all possible solutions of the hcd-system

by means of one particular solution of the system (an extreme point, or vertex, of the polytope

associated with the hcd-system) and the simple circulations of the network.

The novelty here is that the hcj and hdj will be used to define a Betti number vector which

satisfies the Morse inequalities for a pre-assigned index data (h0, . . . , hn). By considering all possible

combinations of circulations, we may construct the convex hull of all Betti number vectors which

satisfy the Morse inequalities for a pre-assigned index data. The convex hull of the collection of

Betti number vectors that satisfy the Morse inequalities constitutes a polytope. The Morse polytope

P(h0, . . . , hn) (or simply P , if we consider a generic fixed (h0, . . . , hn)) is the intersection of this

convex hull with the nonnegative orthant.

This article is divided in the following sections. Section 2 will summarize the Poincaré-Hopf

inequalities for isolating blocks obtained in [1]. In Section 3 the main equivalence results are

established, that is, the hcd-system has nonnegative integral solutions if and only if there exist

nonnegative integral Betti number vectors that satisfy the Morse inequalities. Lastly, Section 4

describes the Morse polytope P and presents additional geometric properties thereof.
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2 Poincaré-Hopf Inequalities for isolating blocks

The Poincaré-Hopf inequalities for an isolated invariant set Λ in an isolating block N with entering

set for the flow N+ and exiting set for the flow N−, are obtained by analysis of long exact sequences

of (N,N+) and (N,N−). This analysis can be found in [1].

Note that (N,N−) is an index pair for Λ and (N,N+) is an index pair for the isolated invariant

set of the reverse flow, Λ′.

Consider the long exact sequences for the pairs (N,N−) and (N,N+):

0→ Hn(N−)
in−→ Hn(N)

pn−→ Hn(N,N−)
∂n−→ Hn−1(N−)

in−1−−→ Hn−1(N)
pn−1−−→

→ Hn−1(N,N−)
∂n−1−−→ Hn−2(N−)

in−2−−→ Hn−2(N)
pn−2−−→ Hn−2(N,N−)

∂n−2−−→ . . .

∂4−→ H3(N−)
i3−→ H3(N)

p3−→ H3(N,N−)
∂3−→ H2(N−)

i2−→ H2(N)
p2−→ H2(N,N−)

∂2−→

→ H1(N−)
i1−→ H1(N)

p1−→ H1(N,N−)
∂1−→ H0(N−)

i0−→ H0(N)
p0−→ H0(N,N−)→ 0 (5)

0→ Hn(N+)
i′n−→ Hn(N)

p′n−→ Hn(N,N+)
∂′n−→ Hn−1(N+)

i′n−1−−→ Hn−1(N)
p′n−1−−→

→ Hn−1(N,N+)
∂′n−1−−→ Hn−2(N+)

i′n−2−−→ Hn−2(N)
p′n−2−−→ Hn−2(N,N+)

∂′n−2−−→ . . .

∂′4−→ H3(N+)
i′3−→ H3(N)

p′3−→ H3(N,N+)
∂′3−→ H2(N+)

i′2−→ H2(N)
p′2−→ H2(N,N+)

∂′2−→

H1(N+)
i′1−→ H1(N)

p′1−→ H1(N,N+)
∂′1−→ H0(N+)

i′0−→ H0(N)
p′0−→ H0(N,N+)→ 0 (6)

We will assume throughout our analysis that the Conley duality condition on the indices holds.

That is, the isolated invariant sets Λ and Λ′ have the property that rankHj(N,N
−) = hj and

rankHj(N,N
+) = hj = hn−j. Denote rankH0(N−) = e−, rankH0(N+) = e+ and rank(Hj(N

±)) =

B±j .

By simultaneously analyzing the following pairs of maps

{[(pi, ∂′i) , (p′i, ∂i)] , . . . [(p2, ∂
′
2) , (p′2, ∂2)]}

and analyzing p1 and p′1 we obtain the Poincaré-Hopf inequalities in all its generality.
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



n = 2i+ 1





hi ≥ −(B+
i−1 − B−i−1) + (B+

i−2 − B−i−2) +− . . .± (B+
2 − B−2 )± (B+

1 − B−1 )

− (hi+2 − hi−1) + (hi+3 − hi−2) +− . . .± (h2i−1 − h2)

±(h2i − h1)± [(h2i+1 − h0) + (e+ − e−)]

hi+1 ≥ −
[
−(B+

i−1 − B−i−1) + (B+
i−2 − B−i−2) +− . . .± (B+

2 − B−2 )± (B+
1 − B−1 )

− (hi+2 − hi−1) + (hi+3 − hi−2) +− . . .± (h2i−1 − h2)

±(h2i − h1)± [(h2i+1 − h0) + (e+ − e−)]]

n = 2i





hi ≥ −(B+
i−1 − B−i−1) + (B+

i−2 − B−i−2) +− . . .± (B+
2 − B−2 )± (B+

1 − B−1 )

−(hi+1 − hi−1) + (hi+2 − hi−2) +− . . .
±(h2i−2 − h2)± (h2i−1 − h1)± [(h2i − h0) + (e+ − e−)]

hi ≥ −
[
−(B+

i−1 − B−i−1) + (B+
i−2 − B−i−2) +− . . .± (B+

2 − B−2 )± (B+
1 − B−1 )

−(hi+1 − hi−1) + (hi+2 − hi−2) +− . . .
±(h2i−2 − h2)± (h2i−1 − h1)± [(h2i − h0) + (e+ − e−)]]

...





hj ≥ −(B+
j−1 − B−j−1) + (B+

j−2 − B−j−2) +− . . .± (B+
2 − B−2 )± (B+

1 − B−1 )

−(hn−(j−1) − hj−1) + (hn−(j−2) − hj−2) +− . . .
±(hn−1 − h1)± [(hn − h0) + (e+ − e−)]

hn−j ≥ −
[
−(B+

j−1 − B−j−1) + (B+
j−2 − B−j−2) +− . . .± (B+

2 − B−2 )± (B+
1 − B−1 )

−(hn−(j−1) − hj−1) + (hn−(j−2) − hj−2) +− . . .
±(hn−1 − h1)± [(hn − h0) + (e+ − e−)]]

...{
h2 ≥ −(B+

1 − B−1 )− (hn−1 − h1) + (hn − h0) + (e+ − e−)

hn−2 ≥ −
[
−(B+

1 − B−1 )− (hn−1 − h1) + (hn − h0) + (e+ − e−)
]

{
h1 ≥ h0 − 1 + e−

hn−1 ≥ hn − 1 + e+

(7)
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Furthermore, the Poincaré-Hopf equality must be considered in the odd-dimensional case

n = 2i+ 1:

B+ − B− = e− − e+ +
2i+1∑

j=0

(−1)jhj (8)

where

B+ =
(−1)i

2
B+
i ± B+

i−1 ± . . .− B+
1

B− =
(−1)i

2
B−i ± B−i−1 ± . . .− B−1

Moreover, in the even dimensional case n = 2 mod 4, the condition that

hi −
i−1∑

j=1

(−1)j+1(B+
j − B−j )−

i−1∑

j=0

(−1)j(h2i−j − hj) + (e− − e+) be even (9)

must be imposed.

The Poincaré-Hopf inequalities for isolating blocks will be the collection of constraints (7)–(9).

In [1] it is shown that

Proposition 2.1 The systems (10) and (11) have nonnegative integral solutions (hc1 h
d
1, . . . , h

c
n−1 h

d
n−1)

if and only if the Poincaré-Hopf inequalities (7), (8), (9), for isolating blocks are satisfied.

n = 2i+ 1





e− − 1− hc1 = 0

{hj = hcj + hdj , j = 1, . . . , 2i

e+ − 1− hd2i = 0



−(B+
1 − B−1 ) + hd1 − hc2 − hc2i + hd2i−1 = 0

−(B+
2 − B−2 ) + hd2 − hc3 − hc2i−1 + hd2i−2 = 0

...
−(B+

i −B
−
i )

2
+ hdi − hci+1 = 0

(10)

n = 2i





e− − 1− hc1 = 0

{hj = hcj + hdj + βi, j = 1, . . . , 2i− 1, βi = 0 if j 6= i and 2i 6= 0 mod 4

e+ − 1− hd2i−1 = 0



−(B+
1 − B−1 ) + hd1 − hc2 − hc2i−1 + hd2i−2 = 0

−(B+
2 − B−2 ) + hd2 − hc3 − hc2i−2 + hd2i−3 = 0

...

−(B+
i−1 − B−i−1) + hdi−1 − hci − hci+1 + hdi = 0

(11)
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3 Equivalence results

In this section we work with a particular case of the Proposition 2.1 by taking B−j = B+
j . Hence

system (10) reduces to (12) and system (11) reduces to (43) in the case n = 0 mod 4 or to (70)

in the case n = 2 mod 4. By Proposition 2.1, the systems (12), (43) and (70) have a nonnegative

integral solution (hc1 h
d
1, . . . , h

c
n−1 h

d
n−1) if and only if the Poincaré-Hopf inequalities (2), (3) and (4)

are satisfied.

In the following we show that (12) (resp., (70)) has nonnegative integral solutions if and

only if there exist nonnegative integral Betti number vectors that satisfy the Morse inequalities

(14) (resp., (73)). The result involving (43) and (47), corresponding to the case n = 0 mod 4,

involve the additional hypothesis that the pre-assigned index data (h0, . . . , hn) satisfy the condition∑n
j=0(−1)j+1hj be even.

3.1 Case n odd

Suppose there are nonnegative integers (h0, h1, . . . , h2i+1, h
c
1, h

d
1, . . . , h

c
2i, h

d
2i), where i ≥ 1, that

satisfy the linear system





hc1 = h0 − 1

hcj + hdj = hj, for j = 1, . . . , 2i

hd2i = h2i+1 − 1

hdj − hcj+1 + hd2i−j − hc2i−j+1 = 0, for j = 1, . . . , i− 1

hdi − hci+1 = 0.

(12)

Consider as fixed the nonnegative integers (h0, h1, . . . , h2i+1) that form part of a solution of (12).

Then, for this fixed (h0, h1, . . . , h2i+1), there exists a nonnegative integral (hc1, h
d
1, h

c
2, h

d
2, . . . , h

c
2i, h

d
2i)

that solves (12) and thus the equivalent system below, obtained by multiplying the odd equations

in (12) by −1:





−hc1 = −(h0 − 1)

(−1)j+1(hcj + hdj ) = (−1)j+1hj, for j = 1, . . . , 2i

hd2i = h2i+1 − 1

(−1)j(hdj − hcj+1 + hd2i−j − hc2i−j+1) = 0, for j = 1, . . . , i− 1

(−1)i(hdi − hci+1) = 0.

(13)
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It can be shown, see [1], that system (13) constitutes a network-flow problem. The coefficient

matrix of (13) is the node-arc incidence matrix of a digraph. Each equation in (13) represents flow

balance in the corresponding node. Variables represent flow along the arcs. The network contains

a chain of i− 1 cycles of length four. The arcs in the j-th cycle are associated with variables hdj+1,

hc2i−j, h
d
2i−j and hcj+1, and the orientation of the first two arcs is opposite to the orientation of the last

two, with respect to an arbitrary orientation of the cycle. The nodes in the j-th cycle are associated

with equations j+ 2, 2i+ 1− j, 2i+ 2 + j and 2i+ 3 + j, of (13). Thus the node associated with the

(2i+ 2 + j)-th equation of (13) constitutes the intersection of cycles j − 1 and j. The arc sequence

associated with (hc1, h
d
1, h

c
2i, h

d
2i), the variables still unaccounted for, form a nonoriented path that is

adjacent to the first cycle. The intersection of this path and the first cycle is the node associated

with equation 2i + 3 of (13). Arcs corresponding to flow variables (hc1, h
d
1, h

c
2, h

d
2, . . . , h

c
2i, h

d
2i), in

this order, form an Eulerian nonoriented path covering the whole digraph. This path has a zig-zag

shape in the planar embedding of the digraph exemplified in Figure 1 for the case i = 3. Inside

each node is written the right-hand-side of the associated flow balance equation.
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Figure 1: Network instance, for i = 3.

Proposition 3.1 If, for a given set of nonnegative integers (h0, h1, . . . , h2i, h2i+1) the system (13)

has a nonnegative integral solution, then there exist nonnegative integers (γ0, γ1, . . . , γ2i, γ2i+1)
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satisfying

2i+1−k∑

j=0

(−1)j+1γj





=
∑2i+1

j=0 (−1)j+1hj, if k = 0

≥
2i+1−k∑

j=0

(−1)j+1hj, if 1 ≤ k ≤ 2i+ 1, k odd

≤
2i+1−k∑

j=0

(−1)j+1hj, if 1 ≤ k ≤ 2i+ 1, k even

(14)

and

γ0 = γ2i+1 = 1 (15)

γj = γ2i+1−j, for 1 ≤ j ≤ i (16)

Proof: Let hcd = (hc1, h
d
1, h

c
2, h

d
2, . . . , h

c
2i, h

d
2i) be a nonnegative integral solution of (13). We assume,

without loss of generality, that hcd satisfies the equations

hcjh
d
2i+1−j = 0, for j = 2, . . . , i, (17)

since, given an arbitrary flow hcd satisfying (13), one can reduce to zero at least one of the flows in

(17) by sending through the (j − 1)-th cycle a circulation of value min{hcj, hd2i+1−j} in the direction

opposite to that of the arc associated with hcj. The integral circulation thus constructed is a solution

of the homogeneous version of system (13), whose addition to the flow (a solution of system (13))

results in yet another nonnegative integral flow satisfying (13) and (17).

We claim that the vector γ defined by

γ0 = γ2i+1 = 1

γj =





hdj − hcj+1, if 1 ≤ j < i

hdi , if j = i

hci+1, if j = i+ 1

−hdj−1 + hcj, if i+ 2 ≤ j ≤ 2i

(18)

is a nonnegative integral solution of (14), (15) and (16).

Integrality of γ follows easily from the integrality of hcd. Furthermore, equation 2i + 2 + j of

(13) implies

10



      

a) If 1 ≤ j < i

(−1)j(hdj − hcj+1 + hd2i−j − hc2i−j+1) =

(−1)j(γj − γ2i+1−j) = 0. (19)

b) If j = i

(−1)i(hdi − hci+1) =

(−1)i(γi − γi+1) = 0. (20)

Equations (19), (20) and the definition of γ0 and γ2i+1 given in (18) imply that the γ defined satifies

the boundary and symmetry conditions (15)–16).

Given that (16) is already established, the nonnegativity of γ is established if we show that

either γj or γ2i+1−j, for 0 ≤ j ≤ i, is nonnegative. This is trivially true for j = 0 and i. Consider

1 ≤ j ≤ i− 1. By definition and (16),

γj = hdj − hcj+1 = −hd2i−j + hc2i+1−j = γ2i+1−j.

From (17) we have that hcj+1h
d
2i−j = 0. If hcj+1 = 0, then γ2i+1−j = γj = hdj − hcj+1 = hdj ≥ 0. If

hd2i−j = 0, then γj = γ2i+1−j = −hd2i−j + hc2i+1−j = hc2i+1−j ≥ 0. Therefore the vector γ defined

above is nonnegative. In the following it will be shown that it also satisfies (14).
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Adding equations 1 through 2i+ 2 of (13) we obtain

− hc1 +
2i∑

j=1

(−1)j+1(hcj + hdj ) + hd2i =

−hc1 + hc1 + hd1 +
2i−1∑

j=2

(−1)j+1(hcj + hdj )− hc2i − hd2i + hd2i =

hd1 +
2i−1∑

j=2

(−1)j+1(hcj + hdj )− hc2i =

2i−1∑

j=1

(−1)j+1hdj +
2i∑

j=2

(−1)j+1hcj =

2i−1∑

j=1

(−1)j+1hdj +
2i−1∑

j=1

(−1)jhcj+1 =

2i−1∑

j=1

(−1)j+1(hdj − hcj+1) = −(h0 − 1) +
2i∑

j=1

(−1)j+1hj + h2i+1 − 1

=
2i+1∑

j=0

(−1)j+1hj. (21)

The alternate sum of γ’s, according to (18), gives

2i+1∑

j=0

(−1)j+1γj = −1 +
i−1∑

j=1

(−1)j+1(hdj − hcj+1) + (−1)i+1hdi + (−1)i+2hci+1 +

2i∑

j=i+2

(−1)j+1(−hdj−1 + hcj) + 1

=
i∑

j=1

(−1)j+1(hdj − hcj+1) +
2i−1∑

j=i+1

(−1)j(−hdj + hcj+1)

=
2i−1∑

j=1

(−1)j+1(hdj − hcj+1). (22)

Equations (21) and (22) imply that

2i+1∑

j=0

(−1)j+1γj =
2i+1∑

j=0

(−1)j+1hj, (23)
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that is, γ satisfies the first equation in (14).

Now consider the sum of equations 1 through 2i+ 2− ` of (13), where 1 ≤ ` ≤ 2i:

− hc1 +
2i+1−`∑

j=1

(−1)j+1(hcj + hdj ) =

hd1 +
2i+1−`∑

j=2

(−1)j+1(hcj + hdj ) =

2i−∑̀

j=1

(−1)j+1hdj +
2i+1−`∑

j=2

(−1)j+1hcj + (−1)2i+2−`hd2i+1−` =

2i−∑̀

j=1

(−1)j+1(hdj − hcj+1) + (−1)2i+2−`hd2i+1−` = −(h0 − 1) +
2i+1−`∑

j=1

(−1)j+1hj.

The last equality implies

−1 +
2i−∑̀

j=1

(−1)j+1(hdj − hcj+1) + (−1)2i+2−`hd2i+1−` =
2i+1−`∑

j=0

(−1)j+1hj. (24)

We consider three cases, when calculating the partial alternate sum of the first 2i + 2 − `

components of γ:

a) 1 ≤ ` ≤ i

2i+1−`∑

j=0

(−1)j+1γj = −1 +
i−1∑

j=1

(−1)j+1(hdj − hcj+1) + (−1)i+1hdi + (−1)i+2hci+1 +

2i+1−`∑

j=i+2

(−1)j+1(−hdj−1 + hcj)

= −1 +
i∑

j=1

(−1)j+1(hdj − hcj+1) +
2i−∑̀

j=i+1

(−1)j(−hdj + hcj+1)

= −1 +
2i−∑̀

j=1

(−1)j+1(hdj − hcj+1). (25)

Substituting (25) in (24) we obtain

2i+1−`∑

j=0

(−1)j+1γj + (−1)2i+2−`hd2i+1−` =
2i+1−`∑

j=0

(−1)j+1hj. (26)
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Taking into account the fact that hdj ≥ 0 for all j = 1, . . . , 2i, equation (26) implies

2i+1−`∑

j=0

(−1)j+1γj





≥
2i+1−`∑

j=0

(−1)j+1hj, if 1 ≤ ` ≤ i, ` odd

≤
2i+1−`∑

j=0

(−1)j+1hj, if 1 ≤ ` ≤ i, ` even

(27)

which means γ defined in (18) satisfies the inequalities in (14), for 1 ≤ ` ≤ i.

b) ` = i+ 1

2i+1−`∑

j=0

(−1)j+1γj = −1 +
i−1∑

j=1

(−1)j+1(hdj − hcj+1) + (−1)i+1hdi

= −1 +
2i−∑̀

j=1

(−1)j+1(hdj − hcj+1) + (−1)2i+2−`hd2i+1−`. (28)

From (28) and (24) we conclude that, for ` = i+ 1,

i∑

j=0

(−1)j+1γj =
i∑

j=0

(−1)j+1hj, (29)

and thus γ also satisfies (14) for ` = i+ 1.

c) i+ 2 ≤ ` ≤ 2i

2i+1−`∑

j=0

(−1)j+1γj = −1 +
2i+1−`∑

j=1

(−1)j+1(hdj − hcj+1)

= −1 +
2i−∑̀

j=1

(−1)j+1(hdj − hcj+1) + (−1)2i+2−`(hd2i+1−` − hc2i+2−`). (30)

Using (30) and (24) we obtain

2i+1−`∑

j=0

(−1)j+1γj + (−1)2i+2−`hc2i+2−` =
2i+1−`∑

j=0

(−1)j+1hj, (31)

which implies (27), given the nonnegativity of hcj, for all j.

14



         

The first equation in (13), −hc1 = −(h0 − 1) and the fact that hc1 ≥ 0 imply h0 ≥ 1 = γ0, so the

last inequality in (14) is also true.

Thus we have established that the γ defined in (18) satisfies constraints in (14).

The following proposition establishes the converse of Proposition 3.1, i.e., if (14)–(16) has a

nonnegative integral solution then so does (12).

Proposition 3.2 If, for a given set of nonnegative integers (h0, h1, . . . , h2i, h2i+1), there is a

nonnegative integral γ = (γ0, γ1, . . . , γ2i, γ2i+1) that satisfies (14)–(16), then system (12) has a

nonnegative integral solution.

Proof: We may assume without loss of generality that the nonnegative integral solution γ of (14)–

(16) saturates the inequality corresponding to k = i+ 1 in (14),

i∑

j=0

(−1)j+1γj =
i∑

j=0

(−1)j+1hj,

since, if we fix at their current values all γ’s except γi and γi+1, which we let free to vary, then all

inequalities in (14–16) are satisfied as long as the following conditions hold:

γi = γi+1 (32)

(−1)i+1

i∑

j=0

(−1)j+1γj ≤ (−1)i+1

i∑

j=0

(−1)j+1hj (33)

γi, γi+1 ≥ 0. (34)

This is due to the fact that all linear inequalities in (14) except the above either contain the difference

±(γi − γi+1) or do not contain neither γi nor γi+1. It follows that

0 ≤ γi = γi+1 ≤ (−1)i+1

(
i∑

j=0

(−1)j+1hj −
i−1∑

j=0

(−1)j+1γj

)
= hi + (−1)i+1

i−1∑

j=0

(−1)j+1(hj − γj).

(35)

The interval
[
0, hi + (−1)i+1

∑i−1
j=0(−1)j+1(hj − γj)

]
is nonempty (it contains the current value of

γi) and has integral-valued endpoints, since γ is by assumption integral and nonnegative. Thus we

may assume that γi (and, therefore, γi+1) is at the right end side of the above interval.
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Now define the vector hcd according to

hd2i+1−` = (−1)`
2i+1−`∑

j=0

(−1)j+1(hj − γj), for 1 ≤ ` ≤ i (36)

hc2i+2−` = (−1)`
2i+1−`∑

j=0

(−1)j+1(hj − γj), for i+ 2 ≤ ` ≤ 2i+ 1 (37)

hd` = γ` + hc`+1, for 1 ≤ ` ≤ i− 1 (38)

hc` = γ` + hd`−1, for i+ 2 ≤ ` ≤ 2i (39)

hdi = γi (40)

hci+1 = γi+1. (41)

We claim that the vector hcd thus defined is a nonnegative integral solution of (12). Integrality

follows easily from the integrality of γ and h. Rewriting (14) as

(−1)k
2i+1−k∑

j=0

(−1)j+1γj

{
=
∑2i+1

j=0 (−1)j+1hj, if k = 0

≤ (−1)k
∑2i+1−k

j=0 (−1)j+1hj, if 1 ≤ k ≤ 2i+ 1
(42)

we conclude that the components of hcd defined in (36) and (37) are nonnegative. This fact, on the

other hand, together with the hypotheses h ≥ 0 and γ ≥ 0, imply that the components defined in

(38)–(41) are also nonnegative.

We must now verify that hcd satisfies the constraints in (12). Equation (37) for ` = 2i + 1 and

(15) imply

hc1 = (−1)2i+1(−1)1(h0 − γ0) = h0 − 1,

thus hcd satisfies the first equation in (12). Equation (36) for ` = 1, (15) and the first equation of

(14) imply

hd2i = (−1)1

2i∑

j=0

(−1)j+1(hj − γj)

= −
(

2i+1∑

j=0

(−1)j+1(hj − γj)− (h2i+1 − γ2i+1)

)

= h2i+1 − γ2i+1

= h2i+1 − 1,

which implies the (2i+ 2)-th equation of (12).
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The last i equations of (12),

hdj − hcj+1 + hd2i−j − hc2i+1−j = (γj + hcj+1)− hcj+1 + hd2i−j − (γ2i+1−j + hd2i−j)

= γj − γ2i+1−j = 0, for 1 ≤ j ≤ i− 1

hdi − hci+1 = γi − γi+1 = 0,

are validated using (16).

Let i+ 2 ≤ ` ≤ 2i. Summing the appropriate equations in (37) we obtain

hc2i+2−` + hc2i+1−` = (−1)`

(
2i+1−`∑

j=0

(−1)j+1(hj − γj)−
2i−∑̀

j=0

(−1)j+1(hj − γj)
)

= (−1)`(−1)2i+2−`(h2i+1−` − γ2i+1−`)

= h2i+1−` − γ2i+1−`,

which implies, using (38), the (2i+ 2− `)-th equation of (12):

γ2i+1−` + hc2i+2−` + hc2i+1−` = hd2i+1−` + hc2i+1−` = h2i+1−`.

Thus equations (1 + j) of (12), for 1 ≤ j ≤ i− 1, are satisfied by hcd.

The (1 + i)-th equation of (12) follows from (37), (40) and (35):

hci + hdi = (−1)i+2

i−1∑

j=0

(−1)j+1(hj − γj) + γi

= (−1)i+2

i−1∑

j=0

(−1)j+1(hj − γj) + hi + (−1)i+1

i−1∑

j=0

(−1)j+1(hj − γj)

= hi,

and the (1 + (i+ 1))-th equation of (12) follows from (36), (41) and (35):

hci+1 + hdi+1 = γi+1 + (−1)i
i+1∑

j=0

(−1)j+1(hj − γj)

= hi + (−1)i+1

i−1∑

j=0

(−1)j+1(hj − γj) + (−1)i
i+1∑

j=0

(−1)j+1(hj − γj)

= hi + (−1)i
(
(−1)i+1(hi − γi) + (−1)i+2(hi+1 − γi+1)

)

= hi − (hi − γi) + (hi+1 − γi+1)

= hi+1.
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Finally, we show that hcd satisfies the remaining equations of (12): equations (i + 2 + j), for

1 ≤ j ≤ i− 1. Let 1 ≤ ` ≤ i− 1. Using (36) we have

hd2i+1−` + hd2i−` = (−1)`
2i+1−`∑

j=0

(1)j+1(hj − γj) + (−1)ell+1

2i−∑̀

j=0

(1)j+1(hj − γj)

= (−1)`(−1)2i+2−`(h2i+1−` − γ2i+1−`).

Therefore, taking into account definition (39)

hd2i+1−` + γ2i+1−` + hd2i−` = hd2i+1−` + hc2i+1−` = h2i+1−`.

3.2 Case n = 0 mod 4

Assume n = 2i, where i ≥ 2 is even. Suppose there are nonnegative integers (h0, h1, . . . , h2i+1, h
c
1,

hd1, . . . , h
c
2i, h

d
2i) that satisfy the linear system





hc1 = h0 − 1

hcj + hdj = hj, for j = 1, . . . , i− 1

hci + β + hdi = hi

hcj + hdj = hj, for j = i+ 1, . . . , 2i− 1

hd2i−1 = h2i − 1

hdj − hcj+1 + hd2i−1−j − hc2i−j = 0, for j = 1, . . . , i− 1

(43)

Fix (h0, h1, . . . , h2i) at nonnegative integer values such that (43) has a nonnegative integral

solution (hc1, h
d
1, h

c
2, h

d
2, . . . , h

c
2i−1, h

d
2i−1). Then this latter vector satisfies (44) below, equivalent to

(43), obtained by multiplying by −1 the odd equations up to i+1 and the even equations thereafter:





−hc1 = −(h0 − 1)

(−1)j+1(hcj + hdj ) = (−1)j+1hj, for j = 1, . . . , i− 1

−hci − β − hdi = −hi
(−1)j(hcj + hdj ) = (−1)jhj, for j = i+ 1, . . . , 2i− 1

hd2i−1 = h2i − 1

(−1)j(hdj − hcj+1 + hd2i−1−j − hc2i−j) = 0, for j = 1, . . . , i− 1.

(44)
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System (44) may be decomposed, see [1], into two independent systems: (45) and (46). System

(45) is a network-flow problem defined on a digraph whose incidence matrix is the coefficient matrix

of (13) for n = 2i − 1. Thus for the case i = 4 the digraph has precisely the structure depicted in

Figure 1, but of course with different labels on arcs and nodes. In the general case, the digraph

with incidence matrix given by the coefficient matrix of (45) has i − 2 cycles of length four plus a

nonoriented path also of length four. The j-th cycle contains arcs associated with variables hdj+1,

hc2i−1−j, h
d
2i−1−j and hcj+1, and the orientation of the first two arcs is opposite to the orientation

of the last two, with respect to an arbitrary orientation of the cycle. Nodes of the j-th cycle are

associated with equations j + 2, 2i+ 2 + j, 2i− j and 2i+ 1 + j.





−hc1 = −(h0 − 1)

(−1)j+1(hcj + hdj ) = (−1)j+1hj, for j = 1, . . . , i− 1

(−1)j(hcj + hdj ) = (−1)jhj, for j = i+ 1, . . . , 2i− 1

hd2i−1 = h2i − 1

(−1)j(hdj − hcj+1 + hd2i−1−j − hc2i−j) = 0, for j = 1, . . . , i− 2

−hdi−1 + hci+1 = −∑i−1
j=0(−1)j+1hj −

∑2i
j=i+1(−1)jhj

(45)

{
−hci − β − hdi = −hi

hci − hdi =
∑i−1

j=0(−1)j+1hj +
∑2i

j=i+1(−1)jhj
(46)

Proposition 3.3 If, for a given set of nonnegative integers (h0, h1, . . . , h2i) the system (44) has a

nonnegative integral solution, then there exist nonnegative integers (γ0, γ1, . . . , γ2i) satisfying

2i−k∑

j=0

(−1)j+1γj





=
∑2i

j=0(−1)j+1hj, if k = 0

≤
2i−k∑

j=0

(−1)j+1hj, if 1 ≤ k ≤ 2i, k odd

≥
2i−k∑

j=0

(−1)j+1hj, if 1 ≤ k ≤ 2i, k even

(47)

and

γ0 = γ2i = 1 (48)

γj = γ2i−j, for 1 ≤ j ≤ i− 1. (49)

The vector γ further satisfies γi even if and only if
∑2i

j=0(−1)jhj is even.
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Proof: If γ satisfies (47) and (49) then

2i∑

j=0

(−1)j+1γj =

2
i−1∑

j=0

(−1)j+1γj + (−1)i+1γi =
2i∑

j=0

(−1)j+1hj.

Therefore if γi =
∑2i

j=0(−1)jhj − 2
∑i−1

j=0(−1)j+1γj is even, then
∑2i

j=0(−1)jhj is also even.

On the other hand, if
∑2i

j=0(−1)jhj is even then so is Γ =
∑2i

j=0(−1)j+1hj − 2
∑2i

j=i(−1)j+1hj =∑i−1
j=0(−1)j+1hj +

∑2i
j=i(−1)jhj and, in this case, we are able to construct, as shown in the sequence,

a solution γ satisfying (47), (49) and such that γi is even.

Let hcd = (hc1, h
d
1, . . . , h

c
i , β, h

d
i , . . . , h

c
2i−1, h

d
2i−1) be a nonnegative integral solution of (44). If Γ

is even, then it is easy to see from (46) that β is even. We assume, without loss of generality, that

hcd satisfies the equations

hcjh
d
2i−j = 0, for j = 2, . . . , i. (50)

For 2 ≤ j ≤ i − 1, the trick is the same as in the proof of Proposition 3.1, that is, to

add to an arbitrary solution hcd of (44) the appropriate circulation along the (j − 1)-th cycle.

However, when j = i, the homogeneous system solution h̃cd that is added to hcd is such that

(h̃ci , β̃, h̃
d
i ) = min{hci , hdi }(−1, 2,−1) and the remaining components are zero. Notice that both

types of addition preserve nonnegativity and integrality of the solution of (44), while the last one,

the only one that may modify the value of component β, preserves its parity, as should be expected.

We claim that the vector γ defined by

γ0 = γ2i = 1

γj =





hdj − hcj+1, if 1 ≤ j ≤ i− 1

β, if j = i

−hdj−1 + hcj, if i+ 1 ≤ j ≤ 2i− 1

(51)

is a nonnegative integral solution of (47)–(49).

The integrality of hcd implies the integrality of γ. Equation 2i+ 1 + j, for 1 ≤ j ≤ i− 1, of (44)

implies

(−1)j(hdj − hcj+1 + hd2i−1−j − hc2i−j) =

(−1)j(γj − γ2i−j) = 0, (52)
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which means that γ satisfies (49). Condition (48) is true by definition.

Nonnegativity of γj is trivial for j = 0, i and 2i, and, for 1 ≤ j ≤ 2i− 1, follows from (49) and

(50), as in the proof of Proposition 3.1. It remains to be shown that it also satisfies (47). The proof

is analogous to that of Proposition 3.1, thus it is convenient to define the system (53), equivalent

to (43), obtained by multiplying odd equations by −1:





−hc1 = −(h0 − 1)

(−1)j+1(hcj + hdj ) = (−1)j+1hj, for j = 1, . . . , i− 1

−hci − β − hdi = −hi
(−1)j+1(hcj + hdj ) = (−1)j+1hj, for j = i+ 1, . . . , 2i− 1

−hd2i−1 = −(h2i − 1)

(−1)j+1(hdj − hcj+1 + hd2i−1−j − hc2i−j) = 0, for j = 1, . . . , i− 1.

(53)

Adding equations 1 through 2i+ 1 of (53) we obtain

− hc1 +
2i−1∑

j=1

(−1)j+1(hcj + hdj )− hd2i−1 − β =

hd1 +
2i−2∑

j=2

(−1)j+1(hcj + hdj ) + hc2i−1 − β =

2i−2∑

j=1

(−1)j+1hdj +
2i−1∑

j=2

(−1)j+1hcj − β =

2i−2∑

j=1

(−1)j+1hdj +
2i−2∑

j=1

(−1)jhcj+1 − β =

2i−2∑

j=1

(−1)j+1(hdj − hcj+1)− β = −(h0 − 1) +
2i−1∑

j=1

(−1)j+1hj − (h2i − 1)

= 2 +
2i∑

j=0

(−1)j+1hj. (54)
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The alternate sum of γ’s, according to (51), gives

2i∑

j=0

(−1)j+1γj = −1 +
i−1∑

j=1

(−1)j+1(hdj − hcj+1)− β +
2i−1∑

j=i+1

(−1)j+1(−hdj−1 + hcj)− 1

= −2 +
i−1∑

j=1

(−1)j+1(hdj − hcj+1) +
2i−2∑

j=i

(−1)j+1(hdj − hcj+1)− β

= −2 +
2i−2∑

j=1

(−1)j+1(hdj − hcj+1)− β. (55)

Comparing (54) and (55) we conclude that

2i∑

j=0

(−1)j+1γj =
2i∑

j=0

(−1)j+1hj, (56)

that is, γ satisfies the first equation in (47).

When calculating the partial sum of equations 1 through 2i+ 1− ` of (53), there are two cases

to consider:

a) 1 ≤ ` ≤ i

− hc1 +
2i−∑̀

j=1

(−1)j+1(hcj + hdj )− β =

hd1 +
2i−∑̀

j=2

(−1)j+1(hcj + hdj )− β =

2i−∑̀

j=1

(−1)j+1hdj −
2i−1−`∑

j=1

(−1)j+1hcj+1 − β =

2i−1−`∑

j=1

(−1)j+1(hdj − hcj+1) + (−1)2i+1−`hd2i−` − β = −(h0 − 1) +
2i−∑̀

j=1

(−1)j+1hj

= 1 +
2i−∑̀

j=0

(−1)j+1hj. (57)
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b) i+ 1 ≤ ` ≤ 2i

− hc1 +
2i−∑̀

j=1

(−1)j+1(hcj + hdj ) =

hd1 +
2i−∑̀

j=2

(−1)j+1(hcj + hdj ) =

2i−∑̀

j=1

(−1)j+1hdj −
2i−1−`∑

j=1

(−1)j+1hcj+1 =

2i−∑̀

j=1

(−1)j+1(hdj − hcj+1) + (−1)2i+1−`hc2i+1−` = −(h0 − 1) +
2i−∑̀

j=1

(−1)j+1hj

= 1 +
2i−∑̀

j=0

(−1)j+1hj. (58)

Likewise, we separate into two possibilities the partial sum
∑2i−`

j=0 (−1)j+1γj:

a) 1 ≤ ` ≤ i

2i−∑̀

j=0

(−1)j+1γj = −1 +
i−1∑

j=1

(−1)j+1(hdj − hcj+1)− β +
2i−∑̀

j=i+1

(−1)j+1(−hdj−1 + hcj)

= −1 +
i−1∑

j=1

(−1)j+1(hdj − hcj+1) +
2i−1−`∑

j=i

(−1)j+1(hdj − hcj+1)− β

= −1 +
2i−1−`∑

j=1

(−1)j+1(hdj − hcj+1)− β. (59)

Comparing (59) and (57) we conclude that

2i−∑̀

j=0

(−1)j+1γj + (−1)2i+1−`hd2i−` =
2i−∑̀

j=0

(−1)j+1hj. (60)

Using the fact that hdj ≥ 0 for all j = 1, . . . , 2i− 1, equation (60) implies

2i−∑̀

j=0

(−1)j+1γj





≤
2i−∑̀

j=0

(−1)j+1hj, if 1 ≤ ` ≤ i, ` odd

≥
2i−∑̀

j=0

(−1)j+1hj, if 1 ≤ ` ≤ i, ` even

(61)

which means γ defined in (51) satisfies the inequalities in (47), for 1 ≤ ` ≤ i.
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b) i+ 1 ≤ ` ≤ 2i− 1

2i−∑̀

j=0

(−1)j+1γj = −1 +
2i−∑̀

j=1

(−1)j+1(hdj − hcj+1). (62)

Comparing (62) and (58) we conclude that

2i−∑̀

j=0

(−1)j+1γj + (−1)2i+1−`hc2i+1−` =
2i−∑̀

j=0

(−1)j+1hj. (63)

Using the fact that hcj ≥ 0 for all j = 1, . . . , 2i− 1, equation (63) implies that γ satifies (61)

for i+ 1 ≤ ` ≤ 2i− 1.

Finally, from (58) with ` = 2i we have −hc1 = 1 − h0 and since, by hypothesis, hc1 ≥ 0, then

−h0 ≤ −1 = −γ0 holds, the last inequality in (47).

We have thus established that the γ defined in (51) satisfies constraints in (47).

Proposition 3.4 If, for a given set of nonnegative integers (h0, h1, . . . , h2i, h2i), there is a

nonnegative integral γ = (γ0, γ1, . . . , γ2i) that satisfies (47)–(49), then system (43) has a nonnegative

integral solution.

Proof: The proof is by construction. Consider the vector hcd defined by

hd2i−` = (−1)`+1

2i−∑̀

j=0

(−1)j+1(hj − γj), for 1 ≤ ` ≤ i (64)

hc2i+1−` = (−1)`+1

2i−∑̀

j=0

(−1)j+1(hj − γj), for i+ 1 ≤ ` ≤ 2i (65)

hd` = γ` + hc`+1, for 1 ≤ ` ≤ i− 1 (66)

hc` = γ` + hd`−1, for i+ 1 ≤ j ≤ 2i− 1 (67)

β = γi. (68)

Clearly, the vector hcd given by (64)–(68) is integral, since so are γ and h. Rewriting (47) as

(−1)k+1

2i−k∑

j=0

(−1)j+1γj

{
=
∑2i

j=0(−1)j+1hj, if k = 0

≤ (−1)k+1
∑2i−k

j=0 (−1)j+1hj, if 1 ≤ k ≤ 2i
(69)
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we conclude that the components of hcd defined in (64) and (65) are nonnegative. This fact, on the

other hand, together with the hypotheses h ≥ 0 and γ ≥ 0, imply that the components defined in

(66)–(68) are also nonnegative.

From (65) with ` = 2i we obtain

hc1 = (−1)2i+1(−1)0+1(h0 − γ0) = h0 − 1,

that is, the first equation in (43). On the other hand, (64) with ` = 1 gives

hd2i−1 = (−1)1+1

2i−1∑

j=0

(−1)j+1(hj − γj)

=
2i∑

j=0

(−1)j+1(hj − γj)− (−1)2i+1(h2i − γ2i)

= h2i − 1,

which is the (2i+ 1)-th equation of (43).

The last i− 1 equations of (43) are easily verified:

hdj − hcj+1 + hd2i−1−j − hc2i−j = (γj + hcj+1)− hcj+1 + hd2i−1−j − (γ2i−j + hd2i−1−j)

= γj − γ2i−j = 0, for 1 ≤ j ≤ i− 1.

Let i+ 1 ≤ ` ≤ 2i− 1. Summing the appropriate equations in (65) we obtain

hc2i+1−` + hc2i−` = (−1)`+1

(
2i−∑̀

j=0

(−1)j+1(hj − γj)−
2i−`−1∑

j=0

(−1)j+1(hj − γj)
)

= (−1)`+1(−1)2i+1−`(h2i−` − γ2i−`)

= h2i−` − γ2i−`,

which implies, using (66), the (2i+ 1− `)-th equation of (43):

γ2i−` + hc2i+1−` + hc2i−` = hd2i−` + hc2i−` = h2i−`.

Thus equations (1 + j) of (43), for 1 ≤ j ≤ i− 1, are satisfied by hcd.

Verifying the (i+ 1)-th equation of (43):

hci + β + hdi = (−1)i+2

2i−(i+1)∑

j=0

(−1)j+1(hj − γj) + γi + (−1)i+1

i∑

j=0

(−1)j+1(hj − γj)

= (−1)i+1(−1)i+1(hi − γi) + γi

= hi.
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Finally, letting 1 ≤ ` ≤ i− 1, we have

hd2i−` + hd2i−1−` = (−1)`+1

(
2i−∑̀

j=0

(−1)j+1(hj − γj)−
2i−1−`∑

j=0

(−1)j+1(hj − γj)
)

= (−1)`+1(−1)2i+1−`(h2i−` − γ2i−`)

= h2i−` − γ2i−`,

which implies, using (66)

hd2i−` + hd2i−1−` + γ2i−` = hd2i−` + hc2i−` = h2i−`,

which completes the verification that hcd satisfies (43).

3.3 Case n = 2 mod 4

In this section we assume n = 2i, where i ≥ 3 is odd. Suppose there are nonnegative integers

{h0, h1, . . . , h2i+1, h
c
1, hd1, . . . , h

c
2i, h

d
2i} that satisfy the linear system





hc1 = h0 − 1

hcj + hdj = hj, for j = 1, . . . , 2i− 1

hd2i−1 = h2i − 1

hdj − hcj+1 + hd2i−1−j − hc2i−j = 0, for j = 1, . . . , i− 1

(70)

If system (70) has a solution, then so does system (71), obtained from (70) by adding variable

δ in the i+ 1-th equation, since any solution of (70) may be transformed into a solution of (71) by

setting δ to zero.





hc1 = h0 − 1

hcj + hdj = hj, for j = 1, . . . , i− 1

hci + δ + hdi = hi

hcj + hdj = hj, for j = i+ 1, . . . , 2i− 1

hd2i−1 = h2i − 1

hdj − hcj+1 + hd2i−1−j − hc2i−j = 0, for j = 1, . . . , i− 1.

(71)

Notice that system (71) is of the same type as system (43). Furthermore, in order for (70) to

have a solution, we must have, see [1],
∑i−1

j=0(−1)j+1hj+
∑2i

j=i(−1)jhj even. If we multiply by −1 the
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odd equations with index in the range {1, . . . , i}, and the even equations with higher indices, the

resulting system, equivalent to (71), may be decomposed into the two independent linear systems.

The first is given by (45) and the second by (72). Therefore the first system is a network-flow

problem defined on a digraph whose incidence matrix is the coefficient matrix of (13) for n = 2i−1.

This digraph has i − 2 cycles of length four plus a nonoriented path also of lenght four. The j-th

cycle contains arcs associated with variables hdj+1, hc2i−1−j, h
d
2i−1−j and hcj+1, and the orientation

of the first two arcs is opposite to the orientation of the last two, with respect to an arbitrary

orientation of the cycle. Nodes of the j-th cycle are associated with equations j + 2, 2i + 2 + j,

2i− j and 2i+ 1 + j.
{
−hci − δ − hdi = −hi
−hci + hdi =

∑i−1
j=0(−1)j+1hj +

∑2i
j=i+1(−1)jhj

(72)

Proposition 3.5 If, for a given set of nonnegative integers (h0, h1, . . . , h2i), the system (70) has a

nonnegative integral solution, then there exist nonnegative integers (γ0, γ1, . . . , γ2i) satisfying

2i−k∑

j=0

(−1)j+1γj





=
∑2i

j=0(−1)j+1hj, if k = 0

≤
2i−k∑

j=0

(−1)j+1hj, if 1 ≤ k ≤ 2i, k odd

≥
2i−k∑

j=0

(−1)j+1hj, if 1 ≤ k ≤ 2i, k even

, (73)

γ0 = γ2i = 1

γj = γ2i−j, if 1 ≤ j ≤ i− 1
(74)

and such that γi is even.

Proof: Let hcd = (hc1, h
d
1, . . . , h

c
i , 0, h

d
i , . . . , h

c
2i−1, h

d
2i−1) be a nonnegative integral solution of (71)

obtained by taking a nonnegative integral solution of (70) and extending it to a solution of (71)

by setting δ to zero. Employing the circulation-based argument worked out in the proof of

Proposition 3.1, we may justify the assumption that hcd satisfies the equations

hcjh
d
2i−j = 0, for j = 2, . . . , i− 1. (75)

When j = i, the homogeneous system solution h̃cd that is added to hcd is such that (h̃ci , δ̃, h̃
d
i ) =

min{hci , hdi }(−1, 2,−1) and the remaining components are zero. Thus the value of δ in the solution

considered is either zero or a positive even number.

The remainder of the proof is analogous to the proof of Proposition 3.3 from (51) on.
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Proposition 3.6 If, for a given set of nonnegative integers (h0, h1, . . . , h2i, h2i), there is a

nonnegative integral γ = (γ0, γ1, . . . , γ2i), with γi even, that satisfies (73)–(74), then system (70)

has a nonnegative integral solution.

Proof: First we construct a nonnegative integral solution h̃cd = (hc1, h
d
1, . . . , h

c
i , δ, h

d
i , . . . , h

c
2i−1, h

d
2i−1)

to (71), with δ even:

hd2i−` = (−1)`+1

2i−∑̀

j=0

(−1)j+1(hj − γj), for 1 ≤ ` ≤ i (76)

hc2i+1−` = (−1)`+1

2i−∑̀

j=0

(−1)j+1(hj − γj), for i+ 1 ≤ ` ≤ 2i (77)

hd` = γ` + hc`+1, for 1 ≤ ` ≤ i− 1 (78)

hc` = γ` + hd`−1, for i+ 1 ≤ j ≤ 2i− 1 (79)

δ = γi. (80)

Since the equations of (71) fall in the same pattern as (43), the proof of Proposition 3.4 may be

easily adapted to show that h̃cd is a nonnegative integral solution of (71). The assumption that γi

is even implies that δ is even.

Finally, suppose δ = 2k, where k is a nonnegative integer. We claim hcd = (hc1, h
d
1, . . . , h

c
i + k,

hdi + k, . . . , hc2i−1, h
d
2i−1) is a nonnegative integral solution of (70). In order to see that we only need

to check the equations containing hci and hdi :

hi =hci + δ + hdi = hci + 2k + hdi = (hci + k) + (hdi + k),

0 =hdi−1 − hci + hdi − hci+1 = hdi−1 − hci − k + k + hdi − hci+1 = hdi−1 − (hci + k) + (hdi + k)− hci+1.

4 Polytopes

In this section we study the Morse polyhedron restricted to the nonnegative orthant P , i.e., the set

of nonnegative γ = (γ0, . . . , γn) satisfying the Morse inequalities (1) for a pre-assigned index data

(h0, . . . , hn), and the duality conditions γk = γn−k, for k = 0, . . . , n and γn/2 even if n is even.

First of all we point out that P is a polytope, i.e., a bounded polyhedron. This follows from the

nonnegative restriction on γ and the fact that taking all possible pairs of consecutive inequalities

in (1) we conclude γj ≤ hj, for j = 1, . . . , n.
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We will show that this polytope has integral vertices, which implies P is the convex hull of

the integral vectores in P . Or, equivalently, P is the convex hull of the collection of Betti number

vectors which satisfy the Morse inequalities.

4.1 Case n odd

Propositions 3.1 and 3.2 not only establish that (12) has a solution if and only if (14)–(16) also

has one, they also show how to construct a nonnegative γ satisfying (14)–(16) from an appropriate

nonnegative hcd satisfying (12) and vice-versa. This suggest a kinship between the polyhedra defined

by the two systems of inequalities.

The polyhedron made up of the nonnegative hcd satisfying (12) was studied in [1], where it was

shown that it is in fact an integral polytope, that is, a limited polyhedron with integral vertices.

Moreover, from the development in [1] we may extract a “recipe” for constructing all nonnegative

integral hcd satisfying.

We show in this section that similar properties hold for the polytope of nonnegative γ satisfying

(14)–(16). Furthermore, the knowledge gained about the generation of feasible hcd in [1], the

construction exhibited in the proof of Proposition 3.2, and the characteristics that will be established

for this polytope, will lead to a mechanism to construct all γ therein.

In order to simplify the exposition, conditions (15)–(16) will be used to eliminate more than

half the variables, namely γ0, γi+1, . . . , γ2i+1. Using equations (15)–(16), we have that

2i+1−k∑

j=0

(−1)j+1γj = −1 +

min{k−1,2i+1−k}∑

j=1

(−1)j+1γj.

Also note that, conditions (15) and (16) imply that the constraints corresponding to k = 0,

1 and 2i + 1 in (14) represent, in fact, constraints on h = (h0, . . . , hn). There is a 1-

to-1 correspondence between the nonnegative γ = (γ0, . . . , γ2i+1) satisfying (14)–(16) and the

nonnegative γr = (γ1, . . . , γi) satisfying (81) below. Thus, instead of P , we may consider the
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polytope Pr = {γr ∈ Ri | constraints in (81)}.

0 =
∑2i+1

j=0 (−1)j+1hj, 0 ≤ h0 − 1, 0 ≤ h2i+1 − 1

∑min{k−1,2i+1−k}
j=1 (−1)j+1γj ≤ 1 +

2i+1−k∑

j=0

(−1)j+1hj, for 2 ≤ k ≤ 2i, k even

∑min{k−1,2i+1−k}
j=1 (−1)j+1γj ≥ 1 +

2i+1−k∑

j=0

(−1)j+1hj, for 2 ≤ k ≤ 2i, k odd

γr ≥ 0.

(81)

Proposition 4.1 Polytope Pr given by (81) satisfies the following properties:

1. The vertices of Pr are integral.

2. Each vertex of Pr belongs to one of the faces: Ft = {γ ∈ Pr | ∑i
j=1(−1)j+1γj =

1 +
∑i

j=1(−1)j+1hj} or F0 = {γ ∈ Pr | γi = 0}.

3. Each (integral) nonnegative γr in Ft corresponds to an (integral) nonnegative hcd satisfying

(12).

Proof:

1. Let A be the coefficient matrix of the system of inequalities in Pr, excepting the nonnegativity

inequalities. Variable γj shows up only in constraints 3 + j through 3 + 2i− j with coefficient

(−1)j+1. Thus the 0, 1 matrix Ã = (ãij) = (|aij|) has the consecutive ones property, which

implies it is totally unimodular, see [4, 5]. Since A is obtained from Ã by myltiplying even

columns by −1, A is also totally unimodular. Finally note that the right-hand-side elements in

the inequalities that define polytope Pr are clearly integral. Thus the polytope Pr defined by

(81) has integral vertices, or equivalently, it is the convex hull of the integral vectors satisfying

the inequalities in (81).

2. Let γ̄r ∈ Pr and let Mγ̄r = q be the constraints that are tight at γ̄r. Then γ̄r is vertex of

P if and only if the rank of M is i. Now Ā contains precisely i columns, which implies it

cannot contain a column of zeros. Since there are only two inequalities containing γi, one of

these must be tight at γ̄, otherwise the i-th column of M will be the zero vector. Therefore

if γ̄ is a vertex it must belong to one of the faces Ft = {γ ∈ Pr | (−1)i+1
∑i

j=1(−1)j+1γj ≤
(−1)i+1(1 +

∑i
j=1(−1)j+1hj)} or F0 = {γ ∈ Pr | γi = 0}.
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3. If (integral) γr ∈ Pr belongs to Ft, then the nonnegative γ given by γ0 = γ2i+1 = 1 and

γ2i+1−j = γj, for j = 1, . . . , i satisfies (14)–(16) and saturates the inequality corresponding to

k = i+ 1 in (14). But then hcd given by equations (36)–(41) is a (integral) nonnegative vector

satisfying (12), as shown in the proof of Proposition 3.2.

Suppose the system of equations (13) admits nonnegative solutions. Let h̃cd be the1 nonnegative

integral solution that also satisfies the complementarity conditions given in (17). Let γ̃ =

(γ̃0, γ̃1, . . . , γ̃2i+1) be the corresponding integral nonnegative solution of (14)–(16) given by (18).

Its restriction γ̃r plays a special role in Pr, as shown in the next proposition.

Proposition 4.2 Suppose the system of equations (13) admits nonnegative solutions. Then the

polytope Pr may be rewritten as

Pr = {0 ≤ γr ∈ Ri | (−1)k+1

k∑

j=0

(−1)j+1γj ≤ (−1)k+1

k∑

j=0

(−1)j+1γ̃j, for 1 ≤ k ≤ i}. (82)

Furthermore, γ̃r is a vertex of Pr and also its maximum vector, componentwise.

Proof: If (13) admits nonnegative solutions, the constraints 0 =
∑2i+1

j=0 (−1)j+1hj, 0 ≤ h0 − 1 and

0 ≤ h2i+1 − 1 are redundant and may be dropped. Now notice that

min{k − 1, 2i+ 1− k} =





k − 1, if 2 ≤ k ≤ i

i = k − 1 = 2i+ 1− k, if k = i+ 1

2i+ 1− k, if i+ 2 ≤ k ≤ 2i

Therefore the partial sum
∑`

j=1(−1)j+1γj, for 1 ≤ ` ≤ i− 1, appears twice in (81): when k = `+ 1

and when k = 2i+ 1− `. Since `+ 1 and 2i+ 1− ` are either both odd or both even, we may collect

these two inequalities as follows:

∑̀

j=1

(−1)j+1γj

{
≥ 1 + max{∑2i−`

j=0 (−1)j+1hj,
∑`

j=0(−1)j+1hj}, if 1 ≤ ` ≤ i− 1, ` even

≤ 1 + min{∑2i−`
j=0 (−1)j+1hj,

∑`
j=0(−1)j+1hj}, if 1 ≤ ` ≤ i− 1, ` odd.

The fact that γ̃ is a nonnegative integral solution of (14)–(16) implies that γ̃r ∈ Pr. Furthermore,

using (16), equations (26) and (31), for 2 ≤ ` ≤ i and k = 2i + 2 − ` (thus i + 2 ≤ k ≤ 2i), we

1If the complementarity conditions (17) are satisfied then the subgraph induced by the support of h̃cd is a forest,

which implies it is the unique solution with such a support.
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obtain

2i+1−`∑

j=0

(−1)j+1γ̃j + (−1)2i+2−`h̃d2i+1−`=
`−1∑

j=0

(−1)j+1γ̃j + (−1)2i+2−`h̃d2i+1−` =
2i+1−`∑

j=0

(−1)j+1hj (83)

2i+1−k∑

j=0

(−1)j+1γ̃j + (−1)2i+2−kh̃c2i+2−k =
`−1∑

j=0

(−1)j+1γ̃j + (−1)`h̃c` =
`−1∑

j=0

(−1)j+1hj. (84)

Since, by (17), h̃c`h̃
d
2i+1−` = 0, at least one of the two inequalities above involving the partial sum∑`−1

j=0(−1)j+1γ̃j, must be satisfied as equality. Thus γ̃r satisfies:

`−1∑

j=0

(−1)j+1γ̃j =

{
max{∑2i+1−`

j=0 (−1)j+1hj,
∑`−1

j=0(−1)j+1hj}, if 2 ≤ ` ≤ i, ` odd

min{∑2i+1−`
j=0 (−1)j+1hj,

∑`−1
j=0(−1)j+1hj}, if 2 ≤ ` ≤ i, ` even

(85)

which imply (82) for k 6= i, taking into account that γ̃0 = 1. Finally, the inequality in (81)

corresponding to k = i is satisfied as equality by γ̃, as seen in (29) and thus

i∑

j=0

(−1)j+1γ̃j =
i∑

j=0

(−1)j+1hj.

Odd and even cases may be combined by the appropriate multiplication, producing the desired

inequalities, that, together with the nonnegative constraints, provide an alternative definition of

Pr:

(−1)`+1
∑`

j=1(−1)j+1γj ≤ (−1)`+1
∑`

j=1(−1)j+1γ̃j, for 1 ≤ ` ≤ i

γr ≥ 0
(86)

This completes the proof of the equivalence between (81) and (82).

Finally, the first inequality in (86) gives γ1 ≤ γ̃1, and, if we add inequalities j − 1 and j of (86)

we obtain γj ≤ γ̃j. Thus γ̃r is the maximum vector, componentwise, of P . Then γ̃r must be a

vertex of Pr.
Proposition 4.1 and the argument in the proof of Proposition 3.2 expressed in (35) imply that

F0 is the projection of Ft onto the γi = 0 hyperplane, and P is the convex hull of Ft ∪F0. Also by

Proposition 4.1, each (integral) vector in Ft may be obtained from a corresponding hcd satisfying

(12) (or, equivalently, (13)), although this is not, in general, a 1-to-1 correspondence. Now, given

the solution h̃cd we may construct all integral vectors in Ft by the successive addition of circulations

thereto and computation of the corresponding γr. The following example illustrates these facts in

a concrete setting.
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Example Let n = 2i + 1 = 7, (h0, . . . , h7) = (2, 5, 11, 10, 5, 3, 3, 3). Using formulas developed

in [1] for the general solution hcd of (13) we may obtain the (particular) solution h̃cd that

satisfies (17) is h̃cd = (1, 4, 3, 8, 5, 5, 5, 0, 3, 0, 1, 2), shown in Figure 2. All other nonnegative

integral solutions of (13) may be obtained by adding integer multiples of the unit circulation

along cycle 1, hcd 1 = (0, 0, 1,−1, 0, 0, 0, 0,−1, 1, 0, 0), and/or the unit circulation along cycle 2,

hcd 2 = (0, 0, 0, 0, 1,−1,−1, 1, 0, 0, 0, 0). From h̃cd we obtain vector γ̃ = (1, 1, 3, 5, 5, 3, 1, 1), and,

using Proposition 4.2, the polytope Pr is given by the inequalities

γ1 ≤ 1

γ1 − γ2 ≥ −2

γ1 − γ2 + γ3 ≤ 3

γ1, γ2, γ3 ≥ 0

cycle 1 cycle 2����
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Figure 2: Solution h̃cd of example.

Figure 3 depicts four views of the polytope Pr. In this example no inequality is redundant, and

the polytope has six facets. Facet F0 is always hidden, but one can realize, perhaps with the aid

of Figure 4, it is the projection of the top facet Ft on the γ3 = 0 plane. The maximum vector γ̃r is

labeled on the first view of Pr.
In order to see the relationship between the solutions hcd obtained as we add circulations and the

corresponding γr, it is more convenient to look at the frame of polytope Pr, depicted in Figure 4(a),

together with the lattice determined by the integral vectors in the nonnegative orthant. The

nonnegative integral points belonging to Pr are emphasized. Denote by γ1 = γ̃r, γ2, . . . , γ7

33



               

γ1

γ2

γ3

γ1
γ2

γ3

γ1
γ2

γ3

γ1

γ2

γ3
γ̃r

Ft -

Figure 3: Four views of the polytope Pr.

the integral vectors belonging to Ft, in counterclockwise order. Notice that adding hcd 1 to hcd has

the effect of subtracting 1 from γ1 and γ2. Similarly, adding hcd 2 to hcd has the effect of subtracting

1 from γ2 and γ3. Figure 4(b) focuses on Ft and the integral points therein. The following diagram

summarizes the operations with circulations on hcd needed to generate all points in Ft. Notice there

is not a 1-to-1 correspondence between nonnegative integral hcd satisfying (13) and the nonnegative

integral γr in Ft. For instance, the vector hcd(4) + hcd 2 = (1, 4, 4, 7, 8, 2, 2, 3, 2, 1, 1, 2) is a valid

nonnegative integral solution of (13), but the corresponding γr violates the nonnegative constraint

γ2 ≥ 0.

γ̃r = γ1 - γ2 - γ3 - γ4 - γ5 - γ6 - γ7 - γ1

6

?

6

?

6

?

6

?

6

?

6

?

6

?

6

?

h̃cd = hcd(1) -+hcd 1
hcd(2) -+hcd 2

hcd(3) -+hcd 2
hcd(4) -+hcd 2

−hcd 1
hcd(5) -−hcd 2

hcd(6) -−hcd 2
hcd(7) -−hcd 2

hcd(1)

The knowledge of γ1, . . . , γ7 in fact makes it possible to compute all the integral points in Pr,
since they lie in one of the segments [γi, γ̂i], for i = 1, . . . , 7, where γ̂ij = γij, for j 6= 3, and γ̂3 = 0.

4.2 Case n = 0 mod 4

Supppose n = 2i, where i ≥ 2 is even. Consider the linear system in γ = {γ0, γ1, . . . , γ2i} constituted

by (47)–(49) and the nonnegative constraints (87) below.

γ ≥ 0, (87)

where the vector (h0, . . . , h2i) is such that
∑2i

j=0(−1)jhj is even.

The first equality in (47) may be used to eliminate γi from the system. This is accomplished by
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γ1

γ2

γ3

(a) Lattice of integral points in Pr.
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(b) Integral points in facet Ft of Pr.

Figure 4: Frame of polytope Pr.
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substituting

γi = (−1)i+1

(
2i∑

j=0

(−1)j+1hj −
i−1∑

j=0

(−1)j+1γj −
2i∑

j=i+1

(−1)j+1γj

)
. (88)

in the equations containing γi in (47), i.e., those corresponding to k = 1, . . . , i. The constraint

corresponding to a generic k ∈ {1, . . . , i} is thus transformed:

(−1)k+1




2i−k∑

j = 0
j 6= i

(−1)j+1γj + (−1)2(i+1)

(
−

i−1∑

j=0

(−1)j+1γj −
2i∑

j=i+1

(−1)j+1γj)

)



= −(−1)k+1

2i∑

j=2i+1−k
(−1)j+1γj

≤ (−1)k+1

(
2i−k∑

j=0

(−1)j+1hj − (−1)2(i+1)

2i∑

j=0

(−1)j+1hj

)

= −(−1)k+1

2i∑

j=2i+1−k
(−1)j+1hj

Using (49) the above constraint becomes

−(−1)k+1

2i∑

j=2i+1−k
(−1)j+1γj = −(−1)k+1

2i∑

j=2i+1−k
(−1)j+1γ2i−j

= −(−1)k+1

k−1∑

j=0

(−1)j+1γj

≤ −(−1)k+1

2i∑

j=2i+1−k
(−1)j+1hj,
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and γi ≥ 0 implies

(−1)i+1

(
2i∑

j=0

(−1)j+1hj −
i−1∑

j=0

(−1)j+1γj −
2i∑

j=i+1

(−1)j+1γj

)
=

(−1)i+1

(
2i∑

j=0

(−1)j+1hj −
i−1∑

j=0

(−1)j+1γj −
2i∑

j=i+1

(−1)j+1γ2i−j

)
=

(−1)i+1

(
2i∑

j=0

(−1)j+1hj −
i−1∑

j=0

(−1)j+1γj −
i−1∑

`=0

(−1)j+1γ`

)
=

(−1)i+1

(
2i∑

j=0

(−1)j+1hj − 2
i−1∑

j=0

(−1)j+1γj

)
≥ 0.

Therefore there is a 1-to-1 relationship between solutions γ = (γ0, γ1, . . . , γ2i) of (47)–(87) and

the solutions γr = (γ1, . . . , γi−1) of (89). Thus we may simplify our study of P by considering

Pr = {γr ∈ Ri−1 | constraints in (89)} instead.

0 ≥ 1− h2i

k∑

j=1

(−1)j+1γj





≤

≥

1 +
2i∑

j=2i−k
(−1)j+1hj, if 1 ≤ k ≤ i− 1, k odd

1 +
2i∑

j=2i−k
(−1)j+1hj, if 1 ≤ k ≤ i− 1, k even

(−1)i
i−1∑

j=1

(−1)j+1γj ≥ (−1)i

(
1 +

1

2

2i∑

j=0

(−1)j+1hj

)
(89)

2i−k∑

j=1

(−1)j+1γj





≤

≥

1 +
2i−k∑

j=0

(−1)j+1hj, if i+ 1 ≤ k ≤ 2i− 1, k odd

1 +
2i−k∑

j=0

(−1)j+1hj, if i+ 1 ≤ k ≤ 2i− 1, k even

0 ≥ 1− h0

γj ≥ 0, for 1 ≤ j ≤ i− 1

Proposition 4.3 The polytope Pr defined by (89) has integral vertices and each (integral) γr in

the polytope corresponds to an (integral) nonnegative hcd satisfying (43). Each vertex of Pr belongs
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to one of three faces:

Ft =

{
γ ∈ Pr |

i−1∑

j=1

(−1)j+1γj = 1 + min

{
2i∑

j=i+1

(−1)j+1hj,

2i∑

j=i+1

(−1)j+1hj

}}

Fb =

{
γ ∈ Pr |

i−1∑

j=1

(−1)j+1γj = 1 +
1

2

2i∑

j=0

(−1)j+1hj

}

F0 = {γr ∈ Pr | γi−1 = 0}.

Proof: The matrix of coefficients A corresponding to the inequalities in (89), excepting the

nonnegativity ones, is a 0,±1 matrix. Its is easy to see that the 0, 1 matrix Ã = (|aij|) has

the consecutive ones property and thus is totally unimodular. Since A is obtained from Ã by

multiplying the even columns by −1, it is also totally unimodular. Taking into account the fact

that the righ-hand-side of (89) is integral, we conclude all vertices in Pr are integral.

The correspondence between integral points of Pr and hcd satisfying (43) mimics the proof of

item 3 of Proposition 4.1.

The argument for the last assertion is similar to the one given in the proof of item 2 of Proposition

4.1. In order for a γ̄r in Pr to be a vertex, the set of saturated constraints at γ̄r must include one of

the four inequalities invoving γi−1 in (89), repeated below for convenience. Notice we use the fact

that i is even.

i−1∑

j=1

(−1)j+1γj ≤ 1 +
2i∑

j=i+1

(−1)j+1hj (90)

i−1∑

j=1

(−1)j+1γj ≤ 1 +
2i∑

j=i+1

(−1)j+1hj (91)

i−1∑

j=1

(−1)j+1γj ≥ 1 +
1

2

2i∑

j=0

(−1)j+1hj (92)

γi−1 ≥ 0 (93)

Inequalities (90)–(91) are equivalent to the inequality below.

i−1∑

j=1

(−1)j+1γj ≤ 1 + min

{
2i∑

j=i+1

(−1)j+1hj,

2i∑

j=i+1

(−1)j+1hj

}
. (94)
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Since one of the three inequalities (94), (92) or (93), must be tight at a vertex, the vertex must

belong to Ft, Fb or F0, respectively.

The next proposition is the analogue of Proposition 4.2 for the n = 0 mod 4 case. As before

we single out the vector γ̃ corresponding to the solution h̃cd of (44) satisfying (50).

Proposition 4.4 Assume (44) has a nonnegative solution. Let γ̃ be the nonnegative integral

solution of (47)–(49) corresponding to h̃cd, the nonnegative integral solution of (44) that satisfies

(50). The polytope Pr may be recast as

Pr =





0 ≤ γr

∣∣∣∣∣∣∣∣∣∣

(−1)k+1

k∑

j=0

(−1)j+1γj ≤ (−1)k+1

k∑

j=0

(−1)j+1γj, for 1 ≤ k ≤ i− 1

i−1∑

j=0

(−1)j+1γj ≥
1

2

2i∑

j=0

(−1)j+1hj





(95)

Furthermore, γ̃ (resp., γ̃r) is a vertex and the maximum vector in P (resp. Pr), componentwise.

Proof: If we assume (44) has a solution, the inequalities 0 ≥ 1− h2i and 0 ≥ 1− h0 are redundant

and may be eliminated. Grouping togheter the remaining inequalities in (47) we have

k∑

j=1

(−1)j+1γj





≤

≥

1 + min

{
2i∑

j=2i−k
(−1)j+1hj,

k∑

j=0

(−1)j+1hj

}
if 1 ≤ k ≤ i− 1, k odd

1 + max

{
2i∑

j=2i−k
(−1)j+1hj,

0∑

j=0

(−1)j+1hj

}
if 1 ≤ k ≤ i− 1, k even

i−1∑

j=1

(−1)j+1γj ≥ 1 +
1

2

2i∑

j=0

(−1)j+1hj (96)

γj ≥ 0, for 1 ≤ j ≤ i− 1

Now γ̃ satisfies the first equation in (47) and (60). Using the first equation in (47) to eliminate

γ̃i in (60), and then using (49), we have

−
2i∑

j=2i+1−k
(−1)j+1γ̃j + (−1)2i+1−khd2i−k

= −
k−1∑

j=0

(−1)j+1γ̃j + (−1)2i+1−khd2i−k

= −
2i∑

j=2i+1−k
(−1)j+1hj, for 1 ≤ k ≤ i (97)
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Equation (63) may be rewritten as

k−1∑

j=0

(−1)j+1γ̃j + (−1)khck =
k−1∑

j=0

(−1)j+1hj, for 2 ≤ k ≤ i. (98)

Equations (97)–(98), the facts that h̃cd satisfies (17), γ̃0 = 1 and that γ̃r satisfies (89) imply

min

{
2i∑

j=2i−k
(−1)j+1hj,

k∑

j=0

(−1)j+1hj

}
=

k∑

j=0

(−1)j+1γ̃j, for 1 ≤ k ≤ i− 1, k odd

and

max

{
2i∑

j=2i−k
(−1)j+1hj,

0∑

j=0

(−1)j+1hj

}
=

k∑

j=0

(−1)j+1γ̃j, for 1 ≤ k ≤ i− 1, k even.

Substituting the above expressions in (96) we obtain (95).

Concerning the last assertion of the proposition, notice that the first inequality in (96) reads

γ1 ≤ γ̃1 and inequalities corresponding to k = ` − 1 and k = ` imply γ` ≤ γ̃`, for 2 ≤ `ı − 1.

Therefore γ̃r is the maximum vector, componenetwise, of Pr. This implies it is a vertex of Pr.
Finally, (88) and (95) imply, using the fact that i is even,

γi = 2(
i−1∑

j=0

(−1)j+1γj −
2i∑

j=0

(−1)j+1hj) ≤ 2(
i−1∑

j=0

(−1)j+1γ̃j −
2i∑

j=0

(−1)j+1hj),

which gives an upper bound for γi, achieved by γ̃i. Thus γ̃ is the maximum vector in P ,

componentwise, and therefore a vertex thereof.

The next example illustrates the relationship between the nonnegative integral solutions hcd of

(44) and the integral vectors γr of Pr.
Example Let n = 2i = 8 and (h0, . . . , h8) = (3, 5, 7, 8, 5, 2, 2, 2, 2). Figure 5 gives an unorthodox

representation for the constraints (44). Notice that the two arcs dangling down from the two

rightmost nodes represent the same variable, namely hd4. This deviates from the network-flow

framework. Thus, while hcd 1 and hcd 2, are associated with cycles 1 and 2 as in the last example,

there is a third “circulation” hcd 3 whose support is given by (hc4, β, h
d
4) = (1,−2, 1). Nevertheless,

if we keep this anomaly in mind, we can still use the picture to quickly compute all the different

solutions, which may be obtained by adding integer multiples of hcd i, for 1 ≤ i ≤ 3, to the solution

h̃cd satisfying (50) depicted in Figure 5.
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γ1 ≤ 1

γ1 − γ2 ≥ −1

γ1 − γ2 + γ3 ≤ 1

γ1 − γ2 + γ3 ≥ 0

γ1, γ2, γ3 ≥ 0

cycle 1 cycle 2����
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−53

hc4
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Figure 5: Solution h̃cd of example.

Polytope Pr corresponding to the given data is shown in Figure 6. All integral γr my be

obtained starting at the maximum vector γ̃r and adding appropriate integer multiples of the vectors

(−1,−1, 0), (0,−1,−1), (0, 0,−1), (1, 0,−1) and (−1, 0, 0). The corresponding operation on hcd is

shown below.

γ̄ -
(−1,−1, 0)

γ̂

6

?

6

?

h̄cd -+hcd 1
ĥcd

γ̄ -
(0,−1,−1)

γ̂

6

?

6

?

h̄cd -+hcd 2
ĥcd

γ̄ -
(0, 0,−1)

γ̂

6

?

6

?

h̄cd -+hcd 3
ĥcd

γ̄ -
(1, 0,−1)

γ̂

6

?

6

?

h̄cd -+hcd 2 − hcd 1
ĥcd

γ̄ -
(1, 0, 0)

γ̂

6

?

6

?

h̄cd -−hcd 1 + hcd 2 − hcd 3
ĥcd
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γ1

γ2

γ3

γ̃r

(a) F1 = {γr ∈ Pr | γ1 = 1}.

γ1

γ2

γ3

(b) F2 = {γr ∈ Pr | γ1 − γ2 = −1}.

γ1

γ2

γ3

(c) F3 = Ft = {γr ∈ Pr |
γ1 − γ2 + γ3 = 1}.

γ1

γ2

γ3

(d) F4 = Fb = {γr ∈ Pr |
γ1 − γ2 + γ3 = 0}.

γ1

γ2

γ3

(e) F5 = {γr ∈ Pr | γ1 = 0}.

γ1

γ2

γ3

(f) F6 = {γr ∈ Pr | γ2 = 0}.

γ1

γ2

γ3

(g) F7 = F0 = {γr ∈ Pr | γ3 = 0}.

Figure 6: Facets of Pr and integer grid.
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4.3 Case n = 2 mod 4

Suppose n = 2i, where i ≥ 3 is odd, and
∑2i

j=o(−1)j+1hj is even. The constraints (73) are a copy

of (47) and may be manipulated as in section 4.2 in order to obtain the smaller equivalent system

(89) in γr = (γ1, . . . , γi−1). Propositions 4.3 and 4.4 thus also hold for the case n = 2 mod 4, with

the slightly different construction rule for hcd corresponding to a given γ satisfying (73) given at

the end of the proof of Proposition 3.6.
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