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Abstra
t SuÆ
ient 
onditions for ergodi
ity of a one-dimensional loss networks on R with length

distribution G and 
able 
apa
ity C are found. These pro
esses are spatial birth-and-death pro
esses

with an invariant measure whi
h is absolutely 
ontinuous with respe
t to a Poisson pro
ess and we

implement the perfe
t simulation s
heme based on the 
lan of an
estors introdu
ed by Fern�andez,

Ferrari and Gar
ia (2002) to obtain perfe
t samples viewed in a �nite window of the in�nite-volume

invariant measure. Moreover, by a better understanding of the simulation pro
ess it is possible to

get a better 
ondition for ergodi
ity.
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1 Introdu
tion

Kelly (1991) introdu
ed a 
ontinuous unbounded loss network des
ribed as follows. Imagine that

users are arranged along an in�nitely long 
able and that a 
all between two points on the 
able

�
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s

1

, s

2

2 R involves just that se
tion of the 
able between s

1

and s

2

. Past any point along its

length the 
able has the 
apa
ity to 
arry simultaneously up to C 
alls: a 
all attempt between s

1

,

s

2

2 R, s

1

< s

2

, is lost if past any point of the interval [s

1

; s

2

℄ the 
able is already 
arrying C 
alls.

Suppose that 
alls are attempted at points in R following a homogeneous Poisson pro
ess with rate

�. Assume that the se
tion of the 
able demanded by a 
all has distribution � with �nite mean �

1

and the duration of a 
all has exponential distribution with mean one. Assume that the lo
ation of

a 
all, the 
able se
tion needed and its duration are independent. Let m(s; t) be the number of 
alls

in progress past point s on the 
able at time t. Kelly (1991) 
onje
tured that ((m(s; t); s 2 R); t � 0)

has a unique invariant measure, given by a stationary M=G=1 queue (Markov arrivals, general

servi
e time and in�nite servers) 
onditioned to have at most C 
lients at all times. Ferrari and

Gar
ia (1998) used a 
ontinuous (non-oriented) per
olation argument to prove the above 
onje
ture

whenever � has �nite third moment and the arrival rate � is suÆ
iently small. Fern�andez, Ferrari

and Gar
ia (2002) using an oriented per
olation argument improved this bound to

�(�

2

+ �

1

+ 1) < 1 (1.1)

where �

1

and �

2

are the �rst and se
ond moment of distribution � respe
tively. This argument is

based on a graphi
al representation of the birth and death pro
ess and it is the basis for the per-

fe
t simulation s
heme \Ba
kward-Forward Algorithm", des
ribed in Fern�andez, Ferrari and Gar
ia

(2002). This algorithm involves the \thinning" of a marked Poisson pro
ess |the free pro
ess|

whi
h dominates the birth-and-death pro
ess, and it involves a time-ba
kward and a time-forward

sweep. The initial stage of the 
onstru
tion is done toward the past, starting with a �nite window

and retrospe
tively looking to an
estors, namely to those births in the past that 
ould have (had)

an in
uen
e on the 
urrent birth. The 
onstru
tion of the 
lan of an
estors 
onstitutes the time-

ba
kward sweep of the algorithm. On
e this 
lan is 
ompletely 
onstru
ted, the algorithm pro
eeds

in a time-forward fashion \
leaning up" su

essive generations a

ording to appropriate penalization

s
hemes. The relation \being an
estor of" indu
es a ba
kward in time 
onta
t/oriented per
olation

pro
ess. The algorithm is appli
able as long as this oriented per
olation pro
ess is sub-
riti
al.

In this work, using the Peron-Frobenius theory for sub-
riti
ality of bran
hing pro
ess we obtain
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a new bound given by

�(

p

�

2

+ �

1

) < 1: (1.2)

However, studying the 
hara
teristi
s of the 
lan of an
estors through simulation in Se
tion 9 it

is 
lear that the domination by the bran
hing pro
ess is not sharp. That is, the number of an
estors

is mu
h smaller than the total number of the population in the bran
hing pro
ess and the 
lan of

an
estors 
an be �nite even though the bran
hing is super
riti
al. By studying the perfe
t simulation

algorithm it is possible to improve bound (1.2) to

� <

2

�

1

+ b

1

=2 +

p

�

2

+ a

1

+ b

2

1

=4

(1.3)

where a

1

and b

1

are positive 
onstants related to higher moments of the � distribution.

2 Spa
e pro
esses of interest

2.1 Point pro
esses

A point pro
ess models the random distribution of indistinguishable points in some spa
e, for 
on-


reteness we take this spa
e to be R

d

. We identify a point pro
ess N with the 
ounting measure N

given by assigning unit mass to ea
h point, that is, N(A) is the number of points in a set A. The

latter assumption implies that su
h a pro
ess N is determined by the probability distribution of the

random variables N(A) = number of points in A 2 B(R

d

), the bounded subsets of R

d

. With this

identi�
ation in mind, 
onsider N (R

d

) be the set of 
ounting measures on R

d

. For a more general

dis
ussion, see Daley and Vere-Jones (1988).

2.1.1 Poisson point pro
esses

The Poisson point pro
ess is one of the most popular models for 
ounting problems. Besides being

a good des
ription of many natural phenomena, it is very simple from the 
omputational point of

view. Furthermore, or perhaps relatedly, it is used as a referen
e measure to de�ne other types of

pro
esses. Its general de�nition is as follows.
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De�nition 2.1 Let � be a Radon measure on R

d

. A point pro
ess N

�

on R

d

is a Poisson pro
ess

with mean measure � if its state spa
e is fN 2 f0; 1g

R

d

: N(x) = 1 for only a 
ountable number of

x 2 R

d

g, and de�ning N

�

(A) =

R

A

N

�

(dx),

(i) For any disjoint A

1

; A

2

; : : : ; A

k

2 B(R

d

) the random variables N

�

(A

1

); N

�

(A

2

); : : : ; N

�

(A

k

) are

independent, and

(ii) For ea
h A 2 B(R

d

) and k � 0

P[N

�

(A) = k℄ =

e

��(A)

�(A)

k

k!

: (2.2)

We 
an think the pro
ess N

�

either as a random 
ounting measure or as the random set of points

fx 2 R

d

: N

�

(x) = 1g.

A �-homogeneous Poisson pro
ess is a pro
ess with � = �m

d

, where � is a 
onstant and m

d

the

Lebesgue measure on R

d

. The simulation of su
h a pro
ess is simple:

� For ea
h �nite window W , generate R � Poisson

�

�m

d

(W )

�

;

� Given R = r generate U

1

; : : : ; U

r

independently distributed a

ording to the uniform distribu-

tion in W .

� Repeat independently for disjoint windows.

More general Poisson pro
esses in whi
h � is absolutely 
ontinuous with respe
t to the Lebesgue

measure in R

d

with density f , 
an be simulated using the proje
tion method des
ribed by Gar
ia

(1995). Consider the set

C

f

=

n

(x; s); x 2 R

d

; s 2 R; 0 � s � f(x)

o

; (2.3)

and the Poisson pro
ess N

m

d+1

on R

d+1

with Lebesgue mean measure m

d+1

. Then the pro
ess N

C

f

on R

d

de�ned by

N

C

f

(A) = N

m

d+1

�

C

f

\ (A� R)

�

(2.4)
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is Poisson with mean �. In words, it is enough to simulate N

m

d+1

as above, and then take the

points that lie in C

f

and proje
t them onto R

d

. More generally, this s
heme 
an be used for Poisson

pro
esses whose measure � has the form

�(A) = m

d+1

�

C \ (A� R)

�

(2.5)

for some C 2 R

d+1

.

3 Marked Poisson pro
esses

Sometimes it is 
onvenient to allow ea
h point of the pro
ess to have a mark belonging to a set M.

That is, a marked point pro
ess is a point pro
ess M on R

d

�M su
h that the marginal pro
ess of

lo
ations M(� �M) is a point pro
ess on R

d

.

Noti
e that not all point pro
esses on a produ
t spa
e are marked point pro
esses, for example a

�-homogeneous Poisson pro
ess on R

2


annot be represented as a marked point pro
ess on R � R.

An important example is the 
ompletely independent marked point pro
ess. Let N be a marked

point pro
ess on R

d

�M with the property that the n random variables of the set

fN(A

i

� B

i

) : bounded A

i

2 B

R

d
; B

i

2 B

M

; i = 1; 2; : : : ; ng (3.1)

are mutually independent whenever A

i

are disjoint. It is easy to see Daley and Vere-Jones (1988)

that a marked point pro
ess with the 
omplete independen
e property is fully spe
i�ed by two


omponents:

(i) a Poisson pro
ess of lo
ations N(� �M); and

(ii) a family of probability distributions fP (� j x); x 2 R

d

g giving the distribution of the mark inM.

A very important example of a 
ompletely independent marked point pro
ess is the so 
alled

Boolean model. Let N be a �-homogeneous Poisson point pro
ess in R

d

, represent it by the lo
ation

of its points as

N = f�

1

; �

2

; : : :g: (3.2)

Let S

1

; S

2

; : : : be a 
olle
tion of independent B

R

d-valued random variables. That is, S

i

is a random

Borel set on R

d

and 
onstru
t the marked point pro
ess

M = f(�

1

; S

1

); (�

2

; S

2

); : : :g (3.3)
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or represent it as a 
overage pro
ess on R

d

given by

C = f�

i

+ S

i

; i = 1; 2; : : :g (3.4)

where �+S = f�+ z; z 2 Sg. Boolean models have the property that the number of sets C 2 C that


over a �xed point x 2 R

d

is a Poisson random variable with mean �E (vol(S)). For more details

about 
overage pro
esses see Hall (1988).

3.1 Spatial birth-and-death pro
esses (in R

d

)

A spatial birth-and-death pro
ess is a 
ontinuous time Markovian pro
ess. Its state spa
e N :=

N (R

d

) is the family of point 
on�gurations in R

d

. The evolution of these pro
esses in time are

given either by the birth of a new point to be added to the a
tual 
on�guration or by the death

of an existing point that will be eliminated from the a
tual 
on�guration. Moreover, they have the

Markovian property in time that, the probability of a 
hange depends only on the a
tual 
on�guration

of the system. Births are 
ontrolled by a birth rate b, a non-negative measurable fun
tion

b : R

d

�N ! [0;1)

satisfying

Z

B

b(x; �)dx <1

for ea
h B, bounded Borel set, and for all � 2 N . The probability of a birth to o

ur in the set B,

during [t; t+ s), given the 
on�guration at time t to be � t, is

s

Z

B

b(x; �)dx+ o(s):

The death rate d is also a non-negative measurable fun
tion

d : R

d

�N ! [0;1):

The probability of a point from x 2 � be eliminated during the time interval [t; t+ s), given that �

is the 
on�guration of the pro
ess at t is:

s � d(x; �) + o(s):
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These fun
tions b and d 
hara
terize the birth-and-death pro
ess whose in�nitesimal generator is

given by:

Af(�) =

Z

b(x; �)[f(� [ fxg)� f(�)℄dx+

Z

d(x; �nfxg)[f(�nfxg)� f(�)℄�(dx): (3.5)

for \suitable" fun
tions f .

We are going to 
onsider a parti
ular 
lass of birth-and-death pro
esses. Let G be a family of

obje
ts 
 (
 � R

d

), whi
h we will 
all individuals, and 
onsider a state spa
e S = f� 2 N

G

: �(
) 6= 0

only for a 
ountable set of 
 2 Gg. A birth-and-death pro
ess �

t

is de�ned by a marked Poisson

pro
ess 
hara
terized by non-negative measurable fun
tion b(
; �) (same sense as before) The marks

in
lude a life-time exponentially distributed with mean one and the length of the 
all. If the rate

densities are independent of the a
tual 
on�guration there exists ! : G! [0;1) su
h that

b(
; �) = !(
) (3.6)

we 
all the pro
ess a free pro
ess. Su
h a pro
ess is just a spa
e-time marked Poisson pro
ess. It

exists and is ergodi
 whi
hever the 
hoi
e of w. In the parti
ular 
ase where !(
) = � the invariant

measure is the �-homogeneous Poisson pro
ess. If the birth rate is uniformly bounded, it 
an be

de
omposed as

b(
; �) = !(
)M(
; �) (3.7)

where, 0 � M(
; �) � 1. The �rst fa
tor represents a basi
 birth-rate density due to an \internal"

Poissonian 
lo
k and the last fa
tor a
ts as an unnormalized probability for the individual to be

a
tually born on
e the internal 
lo
k has rang. The birth is hindered or reinfor
ed a

ording to the


on�guration �.

We introdu
e a fun
tion I : G�G! f0; 1g

I(
; �) = 1fsup

�

fjM(
; �)�M(
; � + Æ

�

)gj > 0g: (3.8)

where Æ

�

(
) = 1f
 = �g is the 
on�guration having unique individual � and the supremum is taken

over the set of all 
on�gurations � su
h that � and � + Æ

�

are in the set of allowed 
on�gurations

(either f0; 1g

G

or N

G

). The fun
tion I(
; �) indi
ates whi
h individuals � may have an in
uen
e in

the birth-rate of the individual 
, that is if I(
; �) =1, the presen
e (or absen
e) of � modi�es the

birth rate of 
 and then we say that � is in
ompatible to 
.
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4 Graphi
al 
onstru
tion for the loss networks

Loss networks are spatial birth and death pro
esses, the individuals are 
alls (
 = (x; x+u); x; u 2 R)

and births are regulated by the ex
lusion prin
iple, depending on the 
apa
ity (C) of the network.

The generator of the pro
ess is given by

Af(�) =

Z

(f(� + Æ




)� f(�))b(
; �)d
 +

Z

(f(� � Æ




)� f(�))�(d
) (4.1)

where � 2 f0; 1g

B(R)

. The death rate 1 is in
luded in the se
ond expression. In the rate of the

asso
iated free pro
ess, we get the fa
tor �(u) (following the notation of Se
tion 3.1):

!((x; x+ u)) = ��(u) (4.2)

The birth rate, a

ording to (3.7) is:

b((x; x + u); �) = � �(u) M((x; x + u); �): (4.3)

where, for 
apa
ity C = 1,

M(
; �) =

Y

�:�(�)6=0

(1� I(
; �)) (4.4)

I(
; �) =

8

<

:

1 
 \ � 6= ;

0 otherwise

(4.5)

where 
; � are of the form (x; x + u). For C > 1, the expression is less simple

M((x; x + u); �) =

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

1 otherwise

0 there exists y 2 (x; x + u) and

�

1

; :::; �

C

su
h that �(�

i

) = 1

and y 2 �

i

for all i = 1; :::; C:

Observe that

b((x; x + u); �) � �; for all x; u; � ) sup

x;u;�

b((x; x + u); �) � �: (4.6)

Let N = f (�

1

; T

1

); (�

2

; T

2

),...g be a homogeneous Poisson Pro
ess with rate � in R � [0;1), and

let S

1

; S

2

; ::: be i.i.d. random variables exponentially distributed with mean one and let U

1

; U

2

; ::: be

i.i.d. random variables with 
ommon distribution �. Assume the family of variables fS

1

; S

2

; : : :g,

fU

1

; U

2

; : : :g and the Poisson pro
ess are all independent. Consider the random re
tangles
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R

i

= f(x; y); �

i

� x � �

i

+ U

i

; T

i

� y � T

i

+ S

i

g.

Then fR

i

; i � 1g = f(�

i

; T

i

)+D

i

; i � 1g is a Boolean model in R

2

where D

i

= [0; U

i

℄� [0; S

i

℄ and

represents the free pro
ess of 
alls.

Now, for ea
h re
tangle R

i

we asso
iate an independent mark Z

i

� U(0; 1), and ea
h marked

re
tangle we identify with the marked point (�

i

; T

i

; S

i

; U

i

; Z

i

). We re
ognize in the marked point

pro
ess R = f(�

i

; T

i

; S

i

; U

i

; Z

i

); i = 1; 2; : : :g a graphi
al representation of the birth and death

pro
ess with 
onstant birth rate �, and 
onstant death rate, equal to 1. We 
all this free pro
ess �

and Z

i

will serve as a 
ag of allowed births. Calling R = (�; �; s; u; z), we use the notation

Basis(R)= (�; � + u), Birth(R)= � , Life(R)= [�; �+s℄, Flag(R)= z.

We also de�ne, for two re
tangles R and R

0

,

R

0

� R, if R

0

\ R 6= ;

R

0

� R, otherwise.

We need a series of de�nitions:

� For an arbitrary point (x; t) 2 R

2

de�ne the 
olle
tion of all re
tangles in R that 
ontain this

point

A

(x;t)

1

= fR 2 Rj x 2 Basis(R); t 2 Life(R)g (4.7)

� For ea
h re
tangle R de�ne its an
estor set

A

R

1

= fR

0

2 Rj Birth(R

0

) � Birth(R); R

0

� Rg (4.8)

� De�ne re
ursively the generations (n > 1) of the above sets that is, the nth generation of

an
estors:

A

(x;t)

n

= fR

00

jR

00

2 A

R

0

1

for some R

0

2 A

(x;t)

n�1

g (4.9)

A

R

n

= fR

00

jR

00

2 A

R

0

1

for some R

0

2 A

R

n�1

g (4.10)
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We say that there is ba
kward oriented per
olation if there exists one point (x; t) su
h that

A

(x;t)

n

6= ; for all n, that is, if there exists one point with an in�nite number of an
estors. Call


lan of an
estors of (x; t) the union of all its an
estors:

A

(x;t)

=

[

n�1

A

(x;t)

n

(4.11)

and R[0; t℄ = fR 2 Rj Birth(R) 2 [0; t℄g.

To estimate the size of the 
lan A

(x;t)

we will use two random variables asso
iated to the free

pro
ess: the time-length and spa
e-width of the 
lan:

TL(A

(x;t)

) = t� supfsjs 2 Life(R) for some R 2 A

(x;t)

g (4.12)

SW (A

(x;t)

) = m

1

([

R2A

(x;t)

Basis(R)) (4.13)

The existen
e of the pro
ess in in�nite volume for any time interval is guaranteed as long as the

pro
ess do not explode, that is, no re
tangle has an in�nite number of an
estors in a �nite time. The

following theorem is proved in Fern�andez, Ferrari and Gar
ia (2001).

Theorem 4.14 If A

(x;t)

\R[0; t℄ is �nite with probability one, for any x 2 R and t � 0, then for all

� � R the loss network pro
ess de�ned in � is well-de�ned and has at least one invariant measure

�

�

.

For the existen
e of the pro
ess in in�nite time, it is needed that the 
lan of an
estors of all

re
tangles are �nite with probability one, that is, there is no ba
kward oriented per
olation. In

order to 
onstru
t the invariant measure for stationary Markov pro
esses it is usual to 
onstru
t

the pro
ess beginning at �1 with an arbitrary 
on�guration and look at the pro
ess at time 0. If

the 
on�guration at time 0 does not depend on the initial 
on�guration then we have a sample of

invariant measure. The graphi
al 
onstru
tion des
ribed above allow us to 
onstru
t the pro
ess �

t

by a thinning of the free pro
ess �

t

for all t 2 R. Moreover, the same argument shows that the

distribution of �

0

does not depend on the initial 
on�guration. The next theorem summarizes the

results about the pro
ess, see Fern�andez et al. (2001, 2002) and Gar
ia (2000).

Theorem 4.15 If with probability one there is no ba
kward oriented per
olation in R, then the loss

network pro
ess 
an be 
onstru
ted in (�1;1) in su
h a way that the marginal distribution of �

t

is

invariant. Moreover, this distribution is unique and the velo
ity of 
onvergen
e is exponential.
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One way of determining the la
k of per
olation is the domination through a bran
hing pro
ess.

Establishing sub-
riti
ality 
onditions for the bran
hing pro
ess we obtain suÆ
ient 
onditions for

la
k of per
olation. Looking ba
kward, the an
estors will be the bran
hes. The time of the death

will be the birth time for the bran
hing pro
ess. The 
lan of an
estors in itself is not a bran
hing

pro
ess be
ause the la
k of independen
e.

5 Dominating the 
lan of an
estors by a bran
hing pro
ess.

Criti
al value.

Let R be a re
tangle with basis 
 = (x; x+ u) with length u, born at time 0. De�ne

~

b

u

n

(v) as the

number of re
tangles in the nth generation of an
estors of R having basis with length v:

~

b

u

n

(v) = jfR

0

2 A

R

n

j jBasis(R

0

)j = vgj: (5.1)

The pro
ess

~

b

n

is not a Galton-Watson pro
ess but it 
an be dominated by one (
all it b

n

) as

des
ribed by Fern�andez et al. (2001), where ea
h 
all length represents a type. The number of types


an fe �nite, 
ountable or un
ountable depending upon the distribution �.

Lemma 5.2 The o�spring distribution of b

n

is Poisson distributed with mean

m(u; v) = � �(v) (u+ v) (5.3)

where m(u; v) is the mean number of 
hildren type v for parents type u.

Proof. In the proof we use the terms \parent" and \an
estor" in the original sense. If 
 = (0; u)

and we 
onsider the re
tangle R born at time 0 su
h that Basis(R) = 
, it is easy to see that a

re
tangle (x; x + v)� (y; y + s) 
an be a parent of R if, and only if, x 2 (�v; u) and y + s > 0.

Let �

uv

(t) the number of parents of R type v born after time �t. Then

b

u

1

(v) = lim

t!1

�

uv

(t) a.s. (5.4)

Let us 
all � the set [�v; u℄� [�t; 0℄, and N(�) the homogeneous Poisson pro
ess with rate � in

�. Then, for k = 0; 1; :::

P (�

uv

(t) = k) =

X

n�k

P (N(�) = n and among n re
tangles k are parents of R type v) (5.5)
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Let (x

1

; y

1

); : : : ; (x

n

; y

n

) a realization of N(�). To ea
h point we asso
iate two independent

marks{ w, the 
all length � distributed and s time length exponentially distributed with mean one.

Given N(�) = n, the points (x

i

; y

i

) are uniformly distributed in �, that is, x

i

� U(�v; u) and

y

i

� U(�t; 0). Consider the re
tangles R

i

= [x

i

; x

i

+ w

i

℄� [y

i

; y

i

+ s

i

℄. Thus,

P (R

i

is a parent of R type v) = �(v) P (y

i

+ s

i

> 0): (5.6)

and we have

P (y

i

+ s

i

> 0) =

Z

0

�t

P (s

i

> �y)

1

t

dy =

1� e

�t

t

: (5.7)

To 
larify the 
omputations we use the following notation:

�

t

= � (u+ v) t; p

t

= �(v) (1� e

�t

)=t:

From (5.5),(5.6) and (5.7) we have

P(�

uv

(t) = k) =

X

n�k

0

�

n

k

1

A

(p

t

)

k

(1� p

t

)

n�k

e

��

t

(�

t

)

n

n!

= e

�p

t

�

t

(p

t

�

t

)

k

k!

: (5.8)

Observe that

lim

t!1

p

t

�

t

= lim

t!1

��(v)(u+ v)(1� e

�t

) = ��(v)(u+ v): (5.9)

From (5.4) it follows that �

uv

(t) 
onverges to b

u

1

(v) in distribution

P(b

u

1

(v) = k) = lim

t!1

P (�

uv

(t) = k); k = 0; 1; ::: (5.10)

Therefore we 
on
lude that b

u

1

(v) has Poisson distribution with mean ��(v)(u+ v).

We are interested to �nd 
onditions under whi
h the pro
ess b

n

is sub-
riti
al and a suÆ
ient


ondition for this is that the mean of the total number of 
hildren in all generations when the initial

parent is of type u is �nite for all u. Thus we are interested in the 
onvergen
e of the series

X

n�1

X

v

m

(n)

(u; v) (5.11)

where m

(n)

(u; v) is the mean o�spring number of type v from a parent type u in the nth generation

and it is given indu
tively by

m

(n)

(u; v) =

X

w

m

(n�1)

(u; w)m(w; v): (5.12)
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Thus,

X

v

m

(n)

(u; v) =

X

v

X

v

1

: : :

X

v

n�1

�

n

�(v

1

)(u+ v

1

)�(v

2

)(v

1

+ v

2

) : : : �(v)(v

n�1

+ v): (5.13)

In order to simplify the reading, re
all that �

1

and �

2

are the �rst and se
ond moment of the

distribution � respe
tively, that is �

1

= E

�

u and �

2

= E

�

u

2

.

Observe that

X

v

�(v)(v

n�1

+ v) = v

n�1

X

v

�(v) +

X

v

�(v)v = v

n�1

+ � = f

1

+ v

n�1

g

1

(5.14)

where f

1

= �

1

, g

1

= 1. Also,

X

v

n�1

�(v

n�1

)(v

n�2

+ v

n�1

)(f

1

+ v

n�1

g

1

) =

X

v

n�1

�(v

n�1

)(v

n�2

+ v

n�1

)(v

n�1

+ �

1

)

=

X

v

n�1

v

2

n�1

�(v

n�1

) + v

n�1

�(v

n�1

)(v

n�2

+ �

1

) + �(v

n�1

)(v

n�2

�

1

)

= �

2

+ �

1

(v

n�2

+ �

1

) + v

n�2

�

1

= �

2

+ �

2

1

+ v

n�2

2�

1

= f

2

+ v

n�2

g

2

(5.15)

where f

2

= �

2

+ �

2

1

, g

2

= 2�

1

.

Let us establish the relationship among f

j

; g

j

ef

j+1

; g

j+1

:

X

v

n�j

�(v

n�j

)(v

n�j�1

+ v

n�j

)(f

j

+ v

n�j

g

j

) (5.16)

=

X

v

n�j

g

j

v

2

n�j

�(v

n�j

) + v

n�j

�(v

n�j

)(f

j

+ v

n�j�1

g

j

) + �(v

n�j

)(v

n�j�1

f

j

)

= g

j

�

2

+ f

j

�

1

+ v

n�j�1

(g

j

�

1

+ f

j

) = f

j+1

+ v

n�j�1

g

j+1

: (5.17)

Then

f

j+1

= �

1

f

j

+ �

2

g

j

; g

j+1

= f

j

+ �

1

g

j

(5.18)

or written in matri
ial form

2

4

f

j+1

g

j+1

3

5

=

2

4

�

1

�

2

1 �

1

3

5

�

2

4

f

j

g

j

3

5

=

2

4

�

1

�

2

1 �

1

3

5

j

�

2

4

�

1

1

3

5

(5.19)

From (5.13) it follows

X

v

m

(n)

(u; v) = �

n

(f

n

+ u g

n

): (5.20)
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Computation of f

n

and g

n

We need to �nd T

n

, where T =

2

4

�

1

�

2

1 �

1

3

5

. Consider the eigenvalues (�

1

, �

2

) and the 
orrespond-

ing eigenve
tors (x

1

;x

2

) in order to fa
tor T . We have

det(T � � I) = �

2

� 2�

1

�+ �

2

1

� �

2

(5.21)

and the eigenvalues are

�

1

= �

1

+

p

�

2

; �

2

= �

1

�

p

�

2

: (5.22)

Solving the equation Tx = �x we �nd the right normalized eigenve
tors whi
h are

x

1

=

1

p

�

2

+ 1

2

4

p

�

2

1

3

5

; x

2

=

1

p

�

2

+ 1

2

4

p

�

2

�1

3

5

: (5.23)

Let Q = [x

1

x

2

℄ and D be a diagonal matrix with elements �

1

and �

2

. Thus,

T

n

= Q D

n

Q

�1

: (5.24)

Expli
itly,

Q =

1

p

�

2

+ 1

2

4

p

�

2

p

�

2

1 �1

3

5

; D =

2

4

�

1

0

0 �

2

3

5

; Q

�1

=

p

�

2

+ 1

2

p

�

2

2

4

1

p

�

2

1 �

p

�

2

3

5

: (5.25)

Then

T

n

=

1

2

p

�

2

2

4

p

�

2

p

�

2

1 �1

3

5

�

2

4

�

n

1

0

0 �

n

2

3

5

�

2

4

1

p

�

2

1 �

p

�

2

3

5

T

n

=

1

2

p

�

2

2

4

p

�

2

(�

n

1

+ �

n

2

) �

2

(�

n

1

� �

n

2

)

�

n

1

� �

n

2

p

�

2

(�

n

1

+ �

n

2

)

3

5

: (5.26)

Now

2

4

f

n

g

n

3

5

= T

n�1

�

2

4

�

1

1

3

5

=

1

2

p

�

2

2

4

�

1

p

�

2

(�

n�1

1

+ �

n�1

2

) + �

2

(�

n�1

1

� �

n�1

2

)

�

1

(�

n�1

1

� �

n�1

2

) +

p

�

2

(�

n�1

1

+ �

n�1

2

)

3

5

=

1

2

p

�

2

2

4

p

�

2

�

n�1

1

(�

1

+

p

�

2

) +

p

�

2

�

n�1

2

(�

1

�

p

�

2

)

�

n�1

1

(�

1

+

p

�

2

)� �

n�1

2

(�

1

�

p

�

2

)

3

5

: (5.27)

14



Finally,

f

n

=

1

2

(�

n

1

+ �

n

2

); g

n

=

1

2

p

�

2

(�

n

1

� �

n

2

): (5.28)

Returning to expression (5.11) we verify the 
onvergen
e of the series

X

n

X

v

m

(n)

(u; v) =

X

n

�

n

(f

n

+ u g

n

): (5.29)

The radius of 
onvergen
e of this series, given by the Cau
hy-Hadamard formula, is

R =

1

lim

n!1

(f

n

+ ug

n

)

1=n

: (5.30)

In order to �nd R, noti
e

f

n

+ ug

n

=

1

2

[(1 +

u

p

�

2

)�

n

1

+ (1�

u

p

�

2

)�

n

2

℄ (5.31)

= �

n

1

1

2

[(1 +

u

p

�

2

) + (1�

u

p

�

2

)(

�

2

�

1

)

n

℄: (5.32)

We know that �

1

= �

1

+

p

�

2

is positive sin
e �([0;1)) = 1 and if we had �

1

= 0 then �(f0g) = 1

whi
h 
an be ex
luded. Also �

2

is non-positive, sin
e �

1

�

p

�

2

.

Moreover, �

2

+ �

1

= 2�

1

> 0 and we get

�

2

�

1

2 [�1; 0℄.

Therefore,

1

2

2min(1;

u

p

�

2

) �

1

2

[(1 +

u

p

�

2

) + (1�

u

p

�

2

)(

�

2

�

1

)

n

℄ �

1

2

2max(1;

u

p

�

2

): (5.33)

From (5.33) and (5.32) we get

�

1

(min(1;

u

p

�

2

))

1=n

� (f

n

+ ug

n

)

1=n

� �

1

(max(1;

u

p

�

2

))

1=n

(5.34)

where both bounds go to �

1

when n!1. Then,

lim

n!1

(f

n

+ ug

n

)

1=n

= �

1

(5.35)

and

R =

1

�

1

=

1

�

1

+

p

�

2

: (5.36)

Sin
e, � > 0, we obtain
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1. If

� <

1

�

1

+

p

�

2

(5.37)

then the series (5.29) 
onverges absolutely and 
onsequently b

n

is sub-
riti
al.

2. If � >

1

�

1

+

p

�

2

the series (5.29) is divergent and the pro
ess b

n


an be super
riti
al.

Call lambda 
riti
al for b

n

, the following

�

�




=

1

�

1

+

p

�

2

: (5.38)

In the general 
ase, we 
an have an un
ountable number of types. Let V be the set of all possible

types and we observe that

X

n�1

Z

V

m

(n)

(u; dv) (5.39)

where

m

(n)

(u; dv) =

Z

V

m

(n�1)

(u; dw)m(w; dv) (5.40)


an be obtained indu
tively. Then,

Z

V

m

(n)

(u; dv) =

Z

V

Z

V

: : :

Z

V

m(u; dv

1

)m(v

1

; dv

2

) : : :m(v

n�1

; dv): (5.41)

Suppose that the distribution of the length of the 
alls is absolutely 
ontinuous with respe
t to the

Lebesgue measure and � is its density. We 
an write

m(u; dv) = �(u+ x)�(x)dx: (5.42)

Then,

Z

V

m(v

n�1

; dv) =

Z

1

0

�(v

n�1

+ x)�(x)dx = �(v

n�1

+ �

1

) = �(f

1

+ v

n�1

g

1

) (5.43)

and

Z

V

m(v

n�2

; dv

n�1

) � �(f

1

+ v

n�1

g

1

) (5.44)

=

Z

1

0

�(v

n�2

+ x)�(x) � �(x + �

1

)dx

= �

2

Z

1

0

x

2

�(x) + x(v

n�2

+ �

1

)�(x) + v

n�2

�

1

�(x)dx

= �

2

(�

2

+ �

1

(v

n�2

+ �

1

) + v

n�2

�

1

) = �

2

(�

2

+ �

2

1

+ v

n�2

2�

1

) = �

2

(f

2

+ v

n�2

g

2

) (5.45)
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where f

1

; g

1

; f

2

; g

2

; ::: are given by (5.19). Therefore, the 
omputation is 
ompletely analogous to the

dis
rete 
ase and

Z

V

m

(n)

(u; dv) = �

n

(f

n

+ ug

n

) (5.46)

and the pro
ess is sub-
riti
al if the series (5.29) is 
onvergent.

Remark: If � is the density of the U(0; 1) distribution then �

�




� 0:9282.

Fern�andez et al. (2002) obtained a suÆ
ient 
ondition for sub-
riti
ality of the bran
hing pro
ess

whi
h 
an be written as

� = sup

G

1

�(G)

Z

R

�dx

Z

G

x

�

x

(dH)�(H)I(H;G) < 1 (5.47)

where G

x

is the possible set of 
alls beginning at x and I is de�ned by (4.5). Due to the translation

invarian
e property of the pro
ess, we 
an 
onsider, without loss of generality, a 
all G = (0; L),

beginning at the origin. Its an
estors would be re
tangles, with suÆ
ient long lives, with basis that

interse
t the 
all G. This in
ludes any 
all beginning at any point inside the 
all G and also all


alls beginning before the origin but with suÆ
ient large length to interse
t the 
all G. If we 
hoose,

�(v) = 
, where 
 is an arbitrary 
onstant � 1 we obtain

� = sup

G

�

Z

R

dx

Z

G

x

I(G;H)�(dH): (5.48)

Then,

� = � sup

L

(

Z

0

�1

P (jHj > �x)dx +

Z

L

0

dx) (5.49)

= � sup

L

(�

1

+ L) = �(�

1

+ sup

L

L): (5.50)

When the length of the 
all is uniformly bounded a.s. and M = inffy � 0jP (jHj � y) = 1g,


ondition (5.48) turns out to be

� (�

1

+M) < 1 , � <

1

�

1

+M

: (5.51)

And this 
oin
ides with (5.37) only in the 
ase of �xed length 
all, for all other 
ases it is weaker

than(5.37) sin
e

p

�

2

� M . For the parti
ular 
ase, U(0; 1), this 
ondition guarantees the sub-


riti
ality of the pro
ess for � <

2

3

� 0:6667 while our 
ondition gives � < 0:9282.
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6 Ba
kward-Forward Algorithm (BFA) applied to loss net-

works

7 Ba
kward-Forward Algorithm (BFA)

The BFA was introdu
ed by Fern�andez, Ferrari e Gar
ia (2002) to perfe
t simulate from spatial

point pro
esses whi
h are absolutely 
ontinuous with respe
t to a Poisson point pro
ess and that are

invariant measures of spatial birth and death pro
esses.

The algorithm does involve the \thinning" of a marked Poisson pro
ess |the free pro
ess|whi
h

dominates the birth-and-death pro
ess, and it involves a time-ba
kward and a time-forward sweep.

But these pro
edures are performed in a form quite di�erent from previous algorithms. The initial

stage of our 
onstru
tion is done toward the past, starting with a �nite window and retrospe
tively

looking to an
estors, namely to those births in the past that 
ould have (had) an in
uen
e on the


urrent birth. The 
onstru
tion of the 
lan of an
estors 
onstitutes the time-ba
kward sweep of

the algorithm. On
e this 
lan is 
ompletely 
onstru
ted, the algorithm pro
eeds in a time-forward

fashion \
leaning up" su

essive generations a

ording to appropriate penalization s
hemes.

The relation \being an
estor of" indu
es a ba
kward in time 
onta
t/oriented per
olation pro
ess.

The algorithm is appli
able as long as this oriented per
olation pro
ess is sub-
riti
al.

8 Appli
ation to loss networks

To simplify the implementation of BFA to the loss network pro
ess we are going to assume that � have


ompa
t support. This assumption is not ne
essary and 
an be removed with a little modi�
ation

on the generation of the free pro
ess. De�ne M = inffy j �((0; y)) = 1g.

8.1 Constru
tion of the 
lan of an
estors of a �nite window � = [a; b℄ � R

We are interested in sampling a �nite window � = [a; b℄ of the equilibrium measure in in�nite-volume.

C1. Generate the free pro
ess �

0

= f�

0

1

; :::; �

0

m

g; a homogeneous Poisson pro
ess with rate � in the
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interval [a�M; b℄.

s

0

L

= a; s

0

R

= b.

C2. Generate U

0

1

; :::; U

0

m

iid random variables with 
ommon distribution � and let � = ;.

For ea
h i from 1 to m

if (�

0

i

; �

0

i

+ U

0

i

) \ [a; b℄ 6= ; then � = � [ (�

0

i

; �

0

i

+ U

0

i

) (8.1)

We are simply generating re
tangles with basis interse
ting [a; b℄. We have n

0

= j�j � N basis.

C3. Generate S

0

1

; :::; S

0

n

0

iid exponential random variables with mean one and 
onstru
t the re
tan-

gles

R

0

=f(�

0

i

; �

0

i

+ U

0

i

)� [�S

0

i

; 0℄; i = 1; :::; ng: (8.2)

Consider now the following subset of R � (�1; 0℄

�

0

=

n

[

i=1

(�

0

i

�M; �

0

i

+ U

0

i

)� [�S

0

i

; 0℄ (8.3)

C4. k = 1; � = �

0

;

C5. s

k

L

= min(s

k�1

L

;min

i�n

k�1

(�

k�1

i

�M))

s

k

R

= max(s

k�1

R

;max

i�n

k�1

(�

k�1

i

+ U

k�1

i

))

C6. Generate a �-homogeneous Poisson pro
ess f(�

k

1

; �

k

1

); :::; (�

k

n

k

; �

k

n

k

)g on �[ [s

k

L

; s

k�1

L

)[(s

k�1

R

; s

k

R

℄.

C7. Generate U

k

1

; :::; U

k

n

k

iid random variables with distribution � and S

k

1

; :::; S

k

n

k

iid exponential

random variables with mean one and 
onstru
t the re
tangles

R

k

=f(�

k

i

; �

k

i

+ U

k

i

)� [�

k

i

� S

k

i

; �

k

i

℄; i = 1; :::; n

k

g: (8.4)

Consider

�

k

=

n

k

[

i=1

(�

k

i

�M; �

k

i

+ U

k

i

)� [�

k

i

� S

k

i

; 0℄: (8.5)

C8. { if n

k

= 0 then 
onstru
t the 
lan of an
estors of �

A

�

:=

k�1

[

i=0

R

i

(8.6)

and STOP.
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{ otherwise, do

� = �

k

n�

k�1

;

k=k+1;

return to C5;

In order to improve the performan
e of the algorithm we suggest at step C6. to ex
lude the

re
tangles satisfying

�

k

i

� S

k

i

< min

j=1;:::;n

k�1

(�

k�1

i

� S

k�1

i

)

.

We �nish performing the BACKWARD step of the algorithm: the 
onstru
tion of the 
lan of

an
estors. The FORWARD step 
orresponds to move to the beginning of the 
lan of an
estors and

de
ide whi
h re
tangles are going to be kept and whi
h ones are going to be erased. On
e these 
lans

are perfe
tly simulated, it is only ne
essary to apply the deterministi
 \
leaning pro
edure", based

on the 
apa
ity C of the network , to obtain a perfe
t sample of the intera
ting pro
ess. In this 
ase,

if a point (x; t) belongs to more than C re
tangles, keep the C re
tangles born �rst and erase the

others.

8.2 The 
leaning algorithm

Call T the set of re
tangles to be tested and K the set of kept re
tangles.

L1. K=;; T= A

�

;

L2. If T = ; go to L4.

otherwise, order T by birth time. Let R

1

be the �rst re
tangle following su
h ordering.

K = K [ R

1

; T = TnR

1

L3. Depending upon C

1. If C = 1; For all R 2 T su
h that R � R

1

, T = TnR.

return to L2.
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2. Se C > 1;

para i=1 at�e jTj � C

R

i

2 T, if R

i

� R

1


all Area=R

i

\ R

1

, C(Area)=2 and K = K [ R

i

; T = TnR

i

;

for j=1 to jTj

if R

j

\ Area 6= ; take C(Area) = C(Area) + 1, if C(Area) > C then T = TnR

j

return to L2.

L4. Take K

�

= K and STOP.

Obtaining K

�

, we de�ne

�

�

(
) =

8

<

:

1 �(
) = 1 and 9R 2 K

�

su
h that Basis(R) = 


0 otherwise

(8.7)

Theorem 3.18 of Fern�andez et al. (2002) guarantees that �

�

is a perfe
t sample from the invariant

measure of the loss network des
ribed above.

8.3 Simulation results

In this se
tion we present some of the simulation results for several values of �, C ( network 
apa
ity)

and window �. The distribution � is taken to be U(0; 1). In this 
ase, by (5.37), � < 0:9282 is a

suÆ
ient 
ondition for the simulation. The programs were written in MATLAB 5.0. For easiness of

reading the results are presented in two steps: the 
lan of an
estors and the 
leaning result. The

basis of the re
tangles kept at time t = 0 
onstitutes the perfe
t sample.
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Figure 8.1: Clan of an
estors for U(0; 1), � = 0:5, � = [0; 10℄.
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Figure 8.2: Cleaning pro
edure C = 1 for the 
lan presented in Figure 8.1
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Figure 8.3: Clan of an
estors for U(0; 1), � = 0:9, � = [0; 10℄.
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Figure 8.4: Cleaning pro
edure for the 
lan presented in Figure 8.3. a) C = 1 b) C = 2.
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Figure 8.5: Clan of an
estors for U(0; 1), � = 1, � = [0; 10℄.
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Figure 8.6: Cleaning pro
edure for the 
lan presented in Figure 8.5. a) C = 1 b) C = 2.
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Figure 8.7: Clan of an
estors for U(0; 1), � = 1:2, � = [0; 8℄.
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Figure 8.8: Cleaning pro
edure for the 
lan presented in Figure 8.7. a) C = 1 b) C = 3.
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9 Studying the 
hara
teristi
s of the 
lan of an
estors through

simulation results

We perform a 1,000 simulations for several values of � < �

�




. Conditioned on the event \the point

(x; 0) is present at the free pro
ess" (whi
h has probability 1� expf���g), we observed the values

of the following random variables related to the 
lan of an
estors:

1. SW (A

(x;0)

) { spa
e width of the 
lan of the point (x; t), de�ned by (4.12);

2. TL(A

(x;0)

) { time length of the 
lan of the point (x; t) de�ned by (4.13); and

3. N(A

(x;0)

) { total number of re
tangles present in the 
lan.

The expe
tation of these variables were estimated through the sample mean and 
ompared then

to the expe
ted values for the asso
iated bran
hing pro
ess used to �nd the sub-
riti
ality 
ondition.

The simulations were performed in two 
ases, when � is the U(0; 1) distribution and when � is


on
entrated in one point (�xed 
all length). From (5.38), the 
riti
al value for � to assure sub-


riti
ality is

� When � = U(0; 1)

�

�




=

1

1

2

+

q

1

3

� 0:9282 (9.1)

� When �(d) = 1

�

�




=

1

2d

(9.2)

Figures 9.9, 9.10 and 9.11 show that the bran
hing pro
ess dominated the 
lan of an
estors (we


onstru
ted then this way). However, it is amazing to see that as � in
reases, the number of re
tangles

of the bran
hing pro
ess is mu
h bigger that the number of re
tangles of the 
lan of an
estors. We


an see also, that this di�eren
e o

urs also for the time-length and spa
e-width but less noti
eable.

This is a 
onsequen
e of the fa
t that in the bran
hing pro
ess we 
an have subsequent generations

of re
tangles to be born in the same area as the prede
essor generations.

The distribution of these random variables are not known in this 
ase. Hall (1988) have a

derivation of the \time length" of a 
overage pro
ess of intervals in R, but nothing is known in the
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Figure 9.9: Expe
ted total number of re
tangles in the bran
hing pro
ess and the 
lan of an
estors.
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Figure 9.10: Expe
ted time length (E (TL)) for the bran
hing pro
ess and the 
lan of an
estors. a)

U(0; 1) b) d = 0:5
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Figure 9.11: Expe
ted spa
e width (E (SW )) for the bran
hing pro
ess and the 
lan of an
estors. a)

U(0; 1) b) d = 0:5
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ase of re
tangles in R

2

. Just by the simulation results we 
an have an idea of these distributions

through the histograms (Figures 9.12, 9.13 and 9.14).

Figure 9.12: Histogram for TL for 1,000 simulations for U(0; 1) and � = 1
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Figure 9.13: Histogram for SW for 1,000 simulations for U(0; 1) and � = 1
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Figure 9.14: Histogram for N for 1,000 simulations for U(0; 1) and � = 1

0 7 14 21 28 35 42 49
N

0

200

400

600

800

9.1 Estimation of the 
riti
al value using simulations

The purpose of this se
tion is to study the behavior of the 
lan of an
estors as � in
reases above �

�




.

From Figures 9.9, 9.10 and 9.11 we 
an see that the 
riti
al value obtained through the domination

by a bran
hing pro
ess underestimates the true value of the �niteness of the 
lan of an
estors. The

idea behind these results is to generate samples for in
reasing values of � and to study the total

number of re
tangles. Our 
onje
ture is that, 
lose to the true 
riti
al value �




the total number

of re
tangles should grow exponentially fast. Thus �nding an assintote for E (N) would give us an

estimate of �




. This is true for the bran
hing pro
ess, 
omparing the value of E (N) as � approa
hes

�

�




in Figure 9.9 we 
an see visually a verti
al assintote at �

�




.

From now on, for all distributions, we sampled 1,000 observations of the 
lan of an
estors and


omputed

�

N (the sample mean) for ea
h value of �. Figure 9.15 present the results for �xed length


alls, d = 0:5.

At �rst sight we see that there is an assintote 
lose to 2.8. To be more pre
ise, we tried to

�nd a root for the equation 1=log(

�

N) = 0 ( see Figure 9.16). We used a degree 19 polynomial to

approximate 1=log(

�

N) and found a root in � = 2:8231.

Several simulations were performed for several values of d just to get a more pre
ise estimate for

�




sin
e due to the invarian
e of the Poisson pro
ess for �xed 
all length there is a linear relationship

among the 
riti
al values for all d, see Table 9.1 and Figure 9.17.
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Figure 9.15: Expe
ted number of re
tangles in the 
lan of an
estors (E (N)) for d = 0:5
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Figure 9.16: 1=log(
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N) for d = 0:5
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Table 9.1: Criti
al value of �




obtained through simulation for several 
all lengths

d 0.3 0.5 0.7 1.0 1.2 1.4 1.6 1.8 2.0 2.5 3.0

�




4.6688 2.8231 2.0641 1.4193 1.1905 1.0254 0.9120 0.8084 0.7312 0.5682 0.4537

d 3.5 4.0 4.5 5.0

�




0.3931 0.3530 0.3103 0.2833

Figure 9.17: Criti
al value of �




obtained through simulation for several 
all lengths
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Table 9.2: Criti
al value of �




obtained through simulation for distributions U(0; 1) and Beta(�; �)

Distribution �




�




=�

�




U(0,1) 2.6135 2.8157

Beta(2,1) 2.0888 2.8695

Beta(2,2) 2.6746 2.8022

Beta(3,1) 1.8597 2.8353

Beta(3,2) 2.3079 2.8444

Beta(1,2) 3.7981 2.8166

Comparing the values of �

�




=

1

2d

and �




we 
an see 
learly a linear tenden
y and we 
an adjust

a regression model with no inter
ept using weighted least squares to get

�




= 2:8246 �

1

2d

: (9.3)

The question now is to perform the same 
omparison using di�erent random distributions for �.

We simulated 
lan of an
estors for several Beta distributions and 
ompared �

�




and �




. Table 9.2

presents these results along with the ratio �




=�

�




. We 
an see that �




� 2:82�

�




. Adjusting a least

square model without any inter
ept:

�




= 2:8243 � �

�




: (9.4)

10 A better theoreti
al bound for �




Consider two in
ompatible re
tangles R and R

0

su
h that R is an an
estor of R

0

. Let R be of

type u and R

0

of type w, R = [x; x + u℄ � [t

i

+ s

1

; t

i

℄ and R

0

= [0; w℄ � [t

i�1

+ s

2

; t

i�1

℄. Indexes i

and i� 1 should be asso
iated to the generation number of an
estors of some initial re
tangle alive

at time 0. Life spans s

1

; s

2

are exponentially distributed with mean 1, as usual. Now 
onsider the

areas A = [x � v; x + u℄ � [0; t

i

℄ and A

0

= [�v; w℄ � [0; t

i�1

℄. In these areas the parents of type v
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are generated for R and R

0

respe
tively. Here lies a di�eren
e between the bran
hing pro
ess and

the an
estors 
lan sin
e in the bran
hing 
ase the rate of reprodu
tion is not in
uen
ed by other

re
tangles whi
h is not the 
ase for the an
estors pro
ess. By 
onstru
tivisti
 approa
h, following

the ba
kward step of the perfe
t simulation s
heme, Se
tion 8.1, one 
an see that in the area A \A

0

we do not generate new points ( on
e we generated all possible an
estors of R

0

) in order to keep

the driving pro
ess �-homogeneous. As for the bran
hing pro
ess, new points are generated in the

entire area A, and the Poisson pro
ess rate is therefore dupli
ated in A\A

0

. Our goal is to estimate

the number of su
h re
tangles that should be ex
luded from the bran
hing pro
ess in order to get

better sub-
riti
ality 
ondition for the an
estors pro
ess. Observe that we ex
lude re
tangles just

from the areas of type A\A

0

, 
onsidering \parent-
hild" relation whi
h is still far away of obtaining

the an
estors pro
ess where exists dependen
e even among \
hildren".

Re
all the re
tangles R and R

0

and 
onsider the area D = A \ A

0

D = A(x)� [0; t

i�1

℄; where (10.1)

A(x) = [max(x� v;�v);min(x + u; w)℄: (10.2)

De�ne d

i

(u; v) as the number of an
estors of type v of a re
tangle R, type u, whi
h is in the i-th

generation, that are also an
estors of the \
hild" of R, say R

0

. Then

d

i

(u; v) = d

i

1

(u; v) + d

i

2

(u; v) (10.3)

where d

i

1

(u; v),d

i

2

(u; v) is the number of su
h an
estors that died before and after time t = 0, respe
-

tively. Now, we have

P (d

i

1

(u; v) = kjw; t

i

; t

i�1

) = e

�p

1

�jDj

(�p

1

�jDj)

k

k!

(10.4)

and

P (d

i

2

(u; v) = kjw; t

i

; t

i�1

) = e

�p

2

�jA(x)j

(�p

2

�jA(x)j)

k

k!

(10.5)

where p

1

is the probability that a re
tangle who died in the area D is really an an
estral of R of type

v, and analogously for p

2

p

1

= �(v)P (Y + S > t

i

) (10.6)

= �(v)e

�t

i

(e

t

i�1

� 1)=t

i�1

(10.7)
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and

p

2

= �(v)P (S > t

i

) (10.8)

= �(v)e

�t

i

(10.9)

where Y � U(0; t

i�1

) and S � exp(1) are independent random variables.

Sin
e d

i

1

(u; v) and d

i

2

(u; v) are independent d

i

(u; v) is Poisson distributed with mean

�(v)(p

1

�jDj+ p

2

�jA(x)j) = �(v)�jA(x)je

�(t

i

�t

i�1

)

: (10.10)

In order to �nd the distribution of t

i

� t

i�1

, i � 1, noti
e that t

i

> t

i�1

and we are given the

parent relation, so for Y � U(0; t

i�1

) and S � exp(1) independent, t

i

= Y + S. Then, for t � 0

P (t

i

� t

i�1

� t) = P (Y + S � t

i�1

� tjY + S > t

i�1

) =

P (t

i�1

< Y + S � t

i�1

+ t)

P (Y + S > t

i�1

)

(10.11)

=

1

t

i�1

(e

t

i�1

� 1)(e

�t

i�1

� e

�t

i�1

�t

)

1

t

i�1

(1� e

�t

i�1

)

= 1� e

�t

(10.12)

that gives exa
tly distribution exp(1). Therefore E (e

�(t

i

�t

i�1

)

) = 1=2.

Furthermore

jA(x)j = min(x + u; w)�max(x� v;�v) (10.13)

and given w, x is distributed uniformly in (�u; w) so it is easy to get

E (jA(x)jjw) = v +

uw

u+ w

: (10.14)

De�ning a fun
tion �(y) =

R

u

y+u

�(du), for y � 0 we have that

E (jA(x)j) = v + u�(u): (10.15)

Therefore

Æ(u; v) = E (d

i

(u; v)) =

1

2

��(v)(v + u�(u)): (10.16)
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10.1 Sub-
riti
ality:

We are interested in sub-
riti
ality 
onditions for the bran
hing pro
ess after the ex
lusions des
ribed

above. Therefore, our aim is to establish 
onditions for the 
onvergen
e of the series

X

n�1

X

v

m

(n)

�

(u; v) (10.17)

where

m

(1)

�

(u; v) = m(u; v)

and

m

(n)

�

(u; v) =

X

w

m

(n�1)

�

(u; w)m

�

(w; v); for n > 1:

Independently of the generation number the mean of ex
luded o�springs of type v, of an u-individual

is Æ(u; v), so the mean of \not-ex
luded" o�springs is

m

�

(u; v) = m(u; v)� Æ(u; v) (10.18)

= ��(v)(u+ v � 1=2(v + u�(u)))

= ��(v)(h(u) +

v

2

) (10.19)

where

h(u) = u(1�

�(u)

2

): (10.20)

We may perform the same te
hnique used in Se
tion 5 to simplify this series:

X

v

m

(n)

�

(u; v) =

X

v

X

v

1

� � �

X

v

n�1

m(u; v

1

)m

�

(v

1

; v

2

) � � �m

�

(v

n�1

; v) (10.21)

= �

n

X

v

X

v

1

� � �

X

v

n�1

�(v

1

)(u+ v

1

)�(v

2

)(h(v

1

) +

v

2

2

) � � ��(v)(h(v

n�1

) +

v

2

)

Observe that

X

v

�(v)(h(v

n�1

) +

v

2

) = h(v

n�1

) +

�

1

2

= f

�

1

+ g

�

1

h(v

n�1

) (10.22)

where f

�

1

=

�

1

2

and g

�

1

= 1, and de�ne indu
tively

X

v

n�i+1

�(v

n�i+1

)(h(v

n�i

) +

v

n�i+1

2

)(f

�

i�1

+ g

�

i�1

h(v

n�i+1

)) = f

�

i

+ g

�

i

h(v

n�i

): (10.23)
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Let

a =

Z

u h(u) �(du) (10.24)

b =

Z

h(u) �(du) (10.25)

then we have

2

4

f

�

j+1

g

�

j+1

3

5

=

2

4

�=2 a=2

1 b

3

5

�

2

4

f

�

j

g

�

j

3

5

=

2

4

�=2 a=2

1 b

3

5

j�1

�

2

4

�=2

1

3

5

(10.26)

and 
onsequently

X

v

m

(n)

�

(u; v) = �

n

X

v

1

�(v

1

)(u+ v

1

)(g

�

n�1

v

1

+ f

�

n�1

) = (10.27)

= �

n

(u(g

�

n�1

�

1

+ f

�

n�1

) + �

2

g

�

n�1

+ �

1

f

�

n�1

): (10.28)

In order to �nd f

�

n

; g

�

n

we exponentiate T

�

=

2

4

�

1

=2 a=2

1 b

3

5

. For this operation suÆ
es the

eigenvalues of T

�

, "

1

and "

2

given by

"

1;2

=

�

1

=2 + b�

p

(�

1

=2� b)

2

+ 2a

2

: (10.29)

and two 
orresponding normalized eigenve
tors

1

p

1 + ("

1

� b)

2

2
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1

� b

1

3

5

;

1
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1 + ("

2
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2

2

4

"

2

� b

1

3

5

: (10.30)

From (10.26) it follows

f

�
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=

1

"

1

� "

2

("

n

1

("

1

� b) + "

n

2

(b� "

2

)) (10.31)

g

�

n

=

1

"

1

� "

2

("

n

1

� "

n

2

): (10.32)

Using the fa
t that j"

2

="

1

j � 1 in (10.28) and the Cau
hy-Hadamard formula, we obtain that the

radius of 
onvergen
e of the series (10.17) is

R

�

=

1

"

1

=

2

�

1

=2 + b +

p

(�

1

=2� b)

2

+ 2a

: (10.33)
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Therefore, as long as � < R

�

the an
estors pro
ess is sub-
riti
al. Although this 
ondition is obtained

for 
ountably many types it 
an be extended to an un
ountable 
ase in the same manner we did in

Se
tion 5.

This bound (10.33) 
an be expressed more simply. For this, let

b

1

=

Z

u

2

�(u) �(du)

a

1

=

Z

u

3

�(u) �(du)

�(y) =

Z

1

y + u

�(du):

Then

�(a) = 1� a�(a) (10.34)

b = (�

1

+ b

1

)=2 (10.35)

a = (�

2

+ a

1

)=2 (10.36)

and

R

�

=

2

�

1

+ b

1

=2 +

p

�

2

+ a

1

+ b

2

1

=4

: (10.37)

So, sub-
riti
ality is guaranteed as long as

� <

2

�

1

+ b

1

=2 +

p

�

2

+ a

1

+ b

2

1

=4

: (10.38)

Remark: for � being density of U(0,1) the 
ondition is � < 1:4302

Observe that 0 � �(y) � 1 for y � 0 implies b

1

� �

1

and a

1

� �

2

while the Jensen's inequality

assures b

1

� �

1

=2 and a

1

� �

2

1

=2. Consequently

R
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1
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p

16�
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(10.39)
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�

4
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1

+
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�

2

)

= 4=3�

�




: (10.40)

The last inequality proves that a better bound for the 
riti
al value is obtained.
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11 Con
lusion

This is one of the �rst works where the 
lan of an
estors algorithm was implemented. Berthelsen

and M�ller (2001) 
ompared it to the dominated CFTP introdu
ed by Kendall and M�ller (2000).

Based on simulation results, they show that the dominated CFTP is better than the algorithm based

on the 
lan of an
estors in the parti
ular 
ase of a Strauss pro
ess

�

�

(dN) =

1

Z

�

e

�

1

N(�)+�

2

S(N;�)

�

0

�

(dN) (11.1)

de�ned on a unit square with e

�

1

= 100 and e

�

2

= 0 (the so-
alled hard-
ore pro
ess), 0:5 and 1 (a

Poisson pro
esses with rate 100). This is obviously the 
ase from the des
ription of the pro
esses sin
e

the ba
kward 
onstru
tion of BFA stops when the dominated Poisson pro
ess regenerates and usually

the 
oupling of CFTP is a
hieved before it in the �nite 
ase. However, it should be noti
ed that

the algorithm based on the 
lan of an
estors was designed for sampling the in�nite-volume pro
ess

viewed in a �nite window. This seems to be a mu
h more interesting and 
hallenging problem whi
h

has been studied in this work for the spe
i�
 
ase of one-dimensional loss networks with bounded


alls. No 
omparison was made to other perfe
t simulation s
hemes.

Moreover, we 
an see that the simulation of the invariant measure 
an bring information about

unknown variables related to the 
lan of an
estors. The bound des
ribed in Se
tion 10 was found by

a better understanding of the simulation pro
edure.
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