
Perfet simulation for a ontinuous one-dimensional loss

network

Nany L. Garia

Nevena Mari�

Universidade Estadual de Campinas

�

May 3, 2002

Abstrat SuÆient onditions for ergodiity of a one-dimensional loss networks on R with length

distribution G and able apaity C are found. These proesses are spatial birth-and-death proesses

with an invariant measure whih is absolutely ontinuous with respet to a Poisson proess and we

implement the perfet simulation sheme based on the lan of anestors introdued by Fern�andez,

Ferrari and Garia (2002) to obtain perfet samples viewed in a �nite window of the in�nite-volume

invariant measure. Moreover, by a better understanding of the simulation proess it is possible to

get a better ondition for ergodiity.

Key words: lan of anestors, branhing proess, Peron-Frobenius root, perfet simulation

AMS Classi�ation: Primary: 93E30, 60G55; Seondary: 15A18

1 Introdution

Kelly (1991) introdued a ontinuous unbounded loss network desribed as follows. Imagine that

users are arranged along an in�nitely long able and that a all between two points on the able

�
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s

1

, s

2

2 R involves just that setion of the able between s

1

and s

2

. Past any point along its

length the able has the apaity to arry simultaneously up to C alls: a all attempt between s

1

,

s

2

2 R, s

1

< s

2

, is lost if past any point of the interval [s

1

; s

2

℄ the able is already arrying C alls.

Suppose that alls are attempted at points in R following a homogeneous Poisson proess with rate

�. Assume that the setion of the able demanded by a all has distribution � with �nite mean �

1

and the duration of a all has exponential distribution with mean one. Assume that the loation of

a all, the able setion needed and its duration are independent. Let m(s; t) be the number of alls

in progress past point s on the able at time t. Kelly (1991) onjetured that ((m(s; t); s 2 R); t � 0)

has a unique invariant measure, given by a stationary M=G=1 queue (Markov arrivals, general

servie time and in�nite servers) onditioned to have at most C lients at all times. Ferrari and

Garia (1998) used a ontinuous (non-oriented) perolation argument to prove the above onjeture

whenever � has �nite third moment and the arrival rate � is suÆiently small. Fern�andez, Ferrari

and Garia (2002) using an oriented perolation argument improved this bound to

�(�

2

+ �

1

+ 1) < 1 (1.1)

where �

1

and �

2

are the �rst and seond moment of distribution � respetively. This argument is

based on a graphial representation of the birth and death proess and it is the basis for the per-

fet simulation sheme \Bakward-Forward Algorithm", desribed in Fern�andez, Ferrari and Garia

(2002). This algorithm involves the \thinning" of a marked Poisson proess |the free proess|

whih dominates the birth-and-death proess, and it involves a time-bakward and a time-forward

sweep. The initial stage of the onstrution is done toward the past, starting with a �nite window

and retrospetively looking to anestors, namely to those births in the past that ould have (had)

an inuene on the urrent birth. The onstrution of the lan of anestors onstitutes the time-

bakward sweep of the algorithm. One this lan is ompletely onstruted, the algorithm proeeds

in a time-forward fashion \leaning up" suessive generations aording to appropriate penalization

shemes. The relation \being anestor of" indues a bakward in time ontat/oriented perolation

proess. The algorithm is appliable as long as this oriented perolation proess is sub-ritial.

In this work, using the Peron-Frobenius theory for sub-ritiality of branhing proess we obtain
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a new bound given by

�(

p

�

2

+ �

1

) < 1: (1.2)

However, studying the harateristis of the lan of anestors through simulation in Setion 9 it

is lear that the domination by the branhing proess is not sharp. That is, the number of anestors

is muh smaller than the total number of the population in the branhing proess and the lan of

anestors an be �nite even though the branhing is superritial. By studying the perfet simulation

algorithm it is possible to improve bound (1.2) to

� <

2

�

1

+ b

1

=2 +

p

�

2

+ a

1

+ b

2

1

=4

(1.3)

where a

1

and b

1

are positive onstants related to higher moments of the � distribution.

2 Spae proesses of interest

2.1 Point proesses

A point proess models the random distribution of indistinguishable points in some spae, for on-

reteness we take this spae to be R

d

. We identify a point proess N with the ounting measure N

given by assigning unit mass to eah point, that is, N(A) is the number of points in a set A. The

latter assumption implies that suh a proess N is determined by the probability distribution of the

random variables N(A) = number of points in A 2 B(R

d

), the bounded subsets of R

d

. With this

identi�ation in mind, onsider N (R

d

) be the set of ounting measures on R

d

. For a more general

disussion, see Daley and Vere-Jones (1988).

2.1.1 Poisson point proesses

The Poisson point proess is one of the most popular models for ounting problems. Besides being

a good desription of many natural phenomena, it is very simple from the omputational point of

view. Furthermore, or perhaps relatedly, it is used as a referene measure to de�ne other types of

proesses. Its general de�nition is as follows.
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De�nition 2.1 Let � be a Radon measure on R

d

. A point proess N

�

on R

d

is a Poisson proess

with mean measure � if its state spae is fN 2 f0; 1g

R

d

: N(x) = 1 for only a ountable number of

x 2 R

d

g, and de�ning N

�

(A) =

R

A

N

�

(dx),

(i) For any disjoint A

1

; A

2

; : : : ; A

k

2 B(R

d

) the random variables N

�

(A

1

); N

�

(A

2

); : : : ; N

�

(A

k

) are

independent, and

(ii) For eah A 2 B(R

d

) and k � 0

P[N

�

(A) = k℄ =

e

��(A)

�(A)

k

k!

: (2.2)

We an think the proess N

�

either as a random ounting measure or as the random set of points

fx 2 R

d

: N

�

(x) = 1g.

A �-homogeneous Poisson proess is a proess with � = �m

d

, where � is a onstant and m

d

the

Lebesgue measure on R

d

. The simulation of suh a proess is simple:

� For eah �nite window W , generate R � Poisson

�

�m

d

(W )

�

;

� Given R = r generate U

1

; : : : ; U

r

independently distributed aording to the uniform distribu-

tion in W .

� Repeat independently for disjoint windows.

More general Poisson proesses in whih � is absolutely ontinuous with respet to the Lebesgue

measure in R

d

with density f , an be simulated using the projetion method desribed by Garia

(1995). Consider the set

C

f

=

n

(x; s); x 2 R

d

; s 2 R; 0 � s � f(x)

o

; (2.3)

and the Poisson proess N

m

d+1

on R

d+1

with Lebesgue mean measure m

d+1

. Then the proess N

C

f

on R

d

de�ned by

N

C

f

(A) = N

m

d+1

�

C

f

\ (A� R)

�

(2.4)
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is Poisson with mean �. In words, it is enough to simulate N

m

d+1

as above, and then take the

points that lie in C

f

and projet them onto R

d

. More generally, this sheme an be used for Poisson

proesses whose measure � has the form

�(A) = m

d+1

�

C \ (A� R)

�

(2.5)

for some C 2 R

d+1

.

3 Marked Poisson proesses

Sometimes it is onvenient to allow eah point of the proess to have a mark belonging to a set M.

That is, a marked point proess is a point proess M on R

d

�M suh that the marginal proess of

loations M(� �M) is a point proess on R

d

.

Notie that not all point proesses on a produt spae are marked point proesses, for example a

�-homogeneous Poisson proess on R

2

annot be represented as a marked point proess on R � R.

An important example is the ompletely independent marked point proess. Let N be a marked

point proess on R

d

�M with the property that the n random variables of the set

fN(A

i

� B

i

) : bounded A

i

2 B

R

d
; B

i

2 B

M

; i = 1; 2; : : : ; ng (3.1)

are mutually independent whenever A

i

are disjoint. It is easy to see Daley and Vere-Jones (1988)

that a marked point proess with the omplete independene property is fully spei�ed by two

omponents:

(i) a Poisson proess of loations N(� �M); and

(ii) a family of probability distributions fP (� j x); x 2 R

d

g giving the distribution of the mark inM.

A very important example of a ompletely independent marked point proess is the so alled

Boolean model. Let N be a �-homogeneous Poisson point proess in R

d

, represent it by the loation

of its points as

N = f�

1

; �

2

; : : :g: (3.2)

Let S

1

; S

2

; : : : be a olletion of independent B

R

d-valued random variables. That is, S

i

is a random

Borel set on R

d

and onstrut the marked point proess

M = f(�

1

; S

1

); (�

2

; S

2

); : : :g (3.3)
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or represent it as a overage proess on R

d

given by

C = f�

i

+ S

i

; i = 1; 2; : : :g (3.4)

where �+S = f�+ z; z 2 Sg. Boolean models have the property that the number of sets C 2 C that

over a �xed point x 2 R

d

is a Poisson random variable with mean �E (vol(S)). For more details

about overage proesses see Hall (1988).

3.1 Spatial birth-and-death proesses (in R

d

)

A spatial birth-and-death proess is a ontinuous time Markovian proess. Its state spae N :=

N (R

d

) is the family of point on�gurations in R

d

. The evolution of these proesses in time are

given either by the birth of a new point to be added to the atual on�guration or by the death

of an existing point that will be eliminated from the atual on�guration. Moreover, they have the

Markovian property in time that, the probability of a hange depends only on the atual on�guration

of the system. Births are ontrolled by a birth rate b, a non-negative measurable funtion

b : R

d

�N ! [0;1)

satisfying

Z

B

b(x; �)dx <1

for eah B, bounded Borel set, and for all � 2 N . The probability of a birth to our in the set B,

during [t; t+ s), given the on�guration at time t to be � t, is

s

Z

B

b(x; �)dx+ o(s):

The death rate d is also a non-negative measurable funtion

d : R

d

�N ! [0;1):

The probability of a point from x 2 � be eliminated during the time interval [t; t+ s), given that �

is the on�guration of the proess at t is:

s � d(x; �) + o(s):
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These funtions b and d haraterize the birth-and-death proess whose in�nitesimal generator is

given by:

Af(�) =

Z

b(x; �)[f(� [ fxg)� f(�)℄dx+

Z

d(x; �nfxg)[f(�nfxg)� f(�)℄�(dx): (3.5)

for \suitable" funtions f .

We are going to onsider a partiular lass of birth-and-death proesses. Let G be a family of

objets  ( � R

d

), whih we will all individuals, and onsider a state spae S = f� 2 N

G

: �() 6= 0

only for a ountable set of  2 Gg. A birth-and-death proess �

t

is de�ned by a marked Poisson

proess haraterized by non-negative measurable funtion b(; �) (same sense as before) The marks

inlude a life-time exponentially distributed with mean one and the length of the all. If the rate

densities are independent of the atual on�guration there exists ! : G! [0;1) suh that

b(; �) = !() (3.6)

we all the proess a free proess. Suh a proess is just a spae-time marked Poisson proess. It

exists and is ergodi whihever the hoie of w. In the partiular ase where !() = � the invariant

measure is the �-homogeneous Poisson proess. If the birth rate is uniformly bounded, it an be

deomposed as

b(; �) = !()M(; �) (3.7)

where, 0 � M(; �) � 1. The �rst fator represents a basi birth-rate density due to an \internal"

Poissonian lok and the last fator ats as an unnormalized probability for the individual to be

atually born one the internal lok has rang. The birth is hindered or reinfored aording to the

on�guration �.

We introdue a funtion I : G�G! f0; 1g

I(; �) = 1fsup

�

fjM(; �)�M(; � + Æ

�

)gj > 0g: (3.8)

where Æ

�

() = 1f = �g is the on�guration having unique individual � and the supremum is taken

over the set of all on�gurations � suh that � and � + Æ

�

are in the set of allowed on�gurations

(either f0; 1g

G

or N

G

). The funtion I(; �) indiates whih individuals � may have an inuene in

the birth-rate of the individual , that is if I(; �) =1, the presene (or absene) of � modi�es the

birth rate of  and then we say that � is inompatible to .

7



4 Graphial onstrution for the loss networks

Loss networks are spatial birth and death proesses, the individuals are alls ( = (x; x+u); x; u 2 R)

and births are regulated by the exlusion priniple, depending on the apaity (C) of the network.

The generator of the proess is given by

Af(�) =

Z

(f(� + Æ



)� f(�))b(; �)d +

Z

(f(� � Æ



)� f(�))�(d) (4.1)

where � 2 f0; 1g

B(R)

. The death rate 1 is inluded in the seond expression. In the rate of the

assoiated free proess, we get the fator �(u) (following the notation of Setion 3.1):

!((x; x+ u)) = ��(u) (4.2)

The birth rate, aording to (3.7) is:

b((x; x + u); �) = � �(u) M((x; x + u); �): (4.3)

where, for apaity C = 1,

M(; �) =

Y

�:�(�)6=0

(1� I(; �)) (4.4)

I(; �) =

8

<

:

1  \ � 6= ;

0 otherwise

(4.5)

where ; � are of the form (x; x + u). For C > 1, the expression is less simple

M((x; x + u); �) =

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

1 otherwise

0 there exists y 2 (x; x + u) and

�

1

; :::; �

C

suh that �(�

i

) = 1

and y 2 �

i

for all i = 1; :::; C:

Observe that

b((x; x + u); �) � �; for all x; u; � ) sup

x;u;�

b((x; x + u); �) � �: (4.6)

Let N = f (�

1

; T

1

); (�

2

; T

2

),...g be a homogeneous Poisson Proess with rate � in R � [0;1), and

let S

1

; S

2

; ::: be i.i.d. random variables exponentially distributed with mean one and let U

1

; U

2

; ::: be

i.i.d. random variables with ommon distribution �. Assume the family of variables fS

1

; S

2

; : : :g,

fU

1

; U

2

; : : :g and the Poisson proess are all independent. Consider the random retangles
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R

i

= f(x; y); �

i

� x � �

i

+ U

i

; T

i

� y � T

i

+ S

i

g.

Then fR

i

; i � 1g = f(�

i

; T

i

)+D

i

; i � 1g is a Boolean model in R

2

where D

i

= [0; U

i

℄� [0; S

i

℄ and

represents the free proess of alls.

Now, for eah retangle R

i

we assoiate an independent mark Z

i

� U(0; 1), and eah marked

retangle we identify with the marked point (�

i

; T

i

; S

i

; U

i

; Z

i

). We reognize in the marked point

proess R = f(�

i

; T

i

; S

i

; U

i

; Z

i

); i = 1; 2; : : :g a graphial representation of the birth and death

proess with onstant birth rate �, and onstant death rate, equal to 1. We all this free proess �

and Z

i

will serve as a ag of allowed births. Calling R = (�; �; s; u; z), we use the notation

Basis(R)= (�; � + u), Birth(R)= � , Life(R)= [�; �+s℄, Flag(R)= z.

We also de�ne, for two retangles R and R

0

,

R

0

� R, if R

0

\ R 6= ;

R

0

� R, otherwise.

We need a series of de�nitions:

� For an arbitrary point (x; t) 2 R

2

de�ne the olletion of all retangles in R that ontain this

point

A

(x;t)

1

= fR 2 Rj x 2 Basis(R); t 2 Life(R)g (4.7)

� For eah retangle R de�ne its anestor set

A

R

1

= fR

0

2 Rj Birth(R

0

) � Birth(R); R

0

� Rg (4.8)

� De�ne reursively the generations (n > 1) of the above sets that is, the nth generation of

anestors:

A

(x;t)

n

= fR

00

jR

00

2 A

R

0

1

for some R

0

2 A

(x;t)

n�1

g (4.9)

A

R

n

= fR

00

jR

00

2 A

R

0

1

for some R

0

2 A

R

n�1

g (4.10)
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We say that there is bakward oriented perolation if there exists one point (x; t) suh that

A

(x;t)

n

6= ; for all n, that is, if there exists one point with an in�nite number of anestors. Call

lan of anestors of (x; t) the union of all its anestors:

A

(x;t)

=

[

n�1

A

(x;t)

n

(4.11)

and R[0; t℄ = fR 2 Rj Birth(R) 2 [0; t℄g.

To estimate the size of the lan A

(x;t)

we will use two random variables assoiated to the free

proess: the time-length and spae-width of the lan:

TL(A

(x;t)

) = t� supfsjs 2 Life(R) for some R 2 A

(x;t)

g (4.12)

SW (A

(x;t)

) = m

1

([

R2A

(x;t)

Basis(R)) (4.13)

The existene of the proess in in�nite volume for any time interval is guaranteed as long as the

proess do not explode, that is, no retangle has an in�nite number of anestors in a �nite time. The

following theorem is proved in Fern�andez, Ferrari and Garia (2001).

Theorem 4.14 If A

(x;t)

\R[0; t℄ is �nite with probability one, for any x 2 R and t � 0, then for all

� � R the loss network proess de�ned in � is well-de�ned and has at least one invariant measure

�

�

.

For the existene of the proess in in�nite time, it is needed that the lan of anestors of all

retangles are �nite with probability one, that is, there is no bakward oriented perolation. In

order to onstrut the invariant measure for stationary Markov proesses it is usual to onstrut

the proess beginning at �1 with an arbitrary on�guration and look at the proess at time 0. If

the on�guration at time 0 does not depend on the initial on�guration then we have a sample of

invariant measure. The graphial onstrution desribed above allow us to onstrut the proess �

t

by a thinning of the free proess �

t

for all t 2 R. Moreover, the same argument shows that the

distribution of �

0

does not depend on the initial on�guration. The next theorem summarizes the

results about the proess, see Fern�andez et al. (2001, 2002) and Garia (2000).

Theorem 4.15 If with probability one there is no bakward oriented perolation in R, then the loss

network proess an be onstruted in (�1;1) in suh a way that the marginal distribution of �

t

is

invariant. Moreover, this distribution is unique and the veloity of onvergene is exponential.
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One way of determining the lak of perolation is the domination through a branhing proess.

Establishing sub-ritiality onditions for the branhing proess we obtain suÆient onditions for

lak of perolation. Looking bakward, the anestors will be the branhes. The time of the death

will be the birth time for the branhing proess. The lan of anestors in itself is not a branhing

proess beause the lak of independene.

5 Dominating the lan of anestors by a branhing proess.

Critial value.

Let R be a retangle with basis  = (x; x+ u) with length u, born at time 0. De�ne

~

b

u

n

(v) as the

number of retangles in the nth generation of anestors of R having basis with length v:

~

b

u

n

(v) = jfR

0

2 A

R

n

j jBasis(R

0

)j = vgj: (5.1)

The proess

~

b

n

is not a Galton-Watson proess but it an be dominated by one (all it b

n

) as

desribed by Fern�andez et al. (2001), where eah all length represents a type. The number of types

an fe �nite, ountable or unountable depending upon the distribution �.

Lemma 5.2 The o�spring distribution of b

n

is Poisson distributed with mean

m(u; v) = � �(v) (u+ v) (5.3)

where m(u; v) is the mean number of hildren type v for parents type u.

Proof. In the proof we use the terms \parent" and \anestor" in the original sense. If  = (0; u)

and we onsider the retangle R born at time 0 suh that Basis(R) = , it is easy to see that a

retangle (x; x + v)� (y; y + s) an be a parent of R if, and only if, x 2 (�v; u) and y + s > 0.

Let �

uv

(t) the number of parents of R type v born after time �t. Then

b

u

1

(v) = lim

t!1

�

uv

(t) a.s. (5.4)

Let us all � the set [�v; u℄� [�t; 0℄, and N(�) the homogeneous Poisson proess with rate � in

�. Then, for k = 0; 1; :::

P (�

uv

(t) = k) =

X

n�k

P (N(�) = n and among n retangles k are parents of R type v) (5.5)
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Let (x

1

; y

1

); : : : ; (x

n

; y

n

) a realization of N(�). To eah point we assoiate two independent

marks{ w, the all length � distributed and s time length exponentially distributed with mean one.

Given N(�) = n, the points (x

i

; y

i

) are uniformly distributed in �, that is, x

i

� U(�v; u) and

y

i

� U(�t; 0). Consider the retangles R

i

= [x

i

; x

i

+ w

i

℄� [y

i

; y

i

+ s

i

℄. Thus,

P (R

i

is a parent of R type v) = �(v) P (y

i

+ s

i

> 0): (5.6)

and we have

P (y

i

+ s

i

> 0) =

Z

0

�t

P (s

i

> �y)

1

t

dy =

1� e

�t

t

: (5.7)

To larify the omputations we use the following notation:

�

t

= � (u+ v) t; p

t

= �(v) (1� e

�t

)=t:

From (5.5),(5.6) and (5.7) we have

P(�

uv

(t) = k) =

X

n�k

0

�

n

k

1

A

(p

t

)

k

(1� p

t

)

n�k

e

��

t

(�

t

)

n

n!

= e

�p

t

�

t

(p

t

�

t

)

k

k!

: (5.8)

Observe that

lim

t!1

p

t

�

t

= lim

t!1

��(v)(u+ v)(1� e

�t

) = ��(v)(u+ v): (5.9)

From (5.4) it follows that �

uv

(t) onverges to b

u

1

(v) in distribution

P(b

u

1

(v) = k) = lim

t!1

P (�

uv

(t) = k); k = 0; 1; ::: (5.10)

Therefore we onlude that b

u

1

(v) has Poisson distribution with mean ��(v)(u+ v).

We are interested to �nd onditions under whih the proess b

n

is sub-ritial and a suÆient

ondition for this is that the mean of the total number of hildren in all generations when the initial

parent is of type u is �nite for all u. Thus we are interested in the onvergene of the series

X

n�1

X

v

m

(n)

(u; v) (5.11)

where m

(n)

(u; v) is the mean o�spring number of type v from a parent type u in the nth generation

and it is given indutively by

m

(n)

(u; v) =

X

w

m

(n�1)

(u; w)m(w; v): (5.12)
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Thus,

X

v

m

(n)

(u; v) =

X

v

X

v

1

: : :

X

v

n�1

�

n

�(v

1

)(u+ v

1

)�(v

2

)(v

1

+ v

2

) : : : �(v)(v

n�1

+ v): (5.13)

In order to simplify the reading, reall that �

1

and �

2

are the �rst and seond moment of the

distribution � respetively, that is �

1

= E

�

u and �

2

= E

�

u

2

.

Observe that

X

v

�(v)(v

n�1

+ v) = v

n�1

X

v

�(v) +

X

v

�(v)v = v

n�1

+ � = f

1

+ v

n�1

g

1

(5.14)

where f

1

= �

1

, g

1

= 1. Also,

X

v

n�1

�(v

n�1

)(v

n�2

+ v

n�1

)(f

1

+ v

n�1

g

1

) =

X

v

n�1

�(v

n�1

)(v

n�2

+ v

n�1

)(v

n�1

+ �

1

)

=

X

v

n�1

v

2

n�1

�(v

n�1

) + v

n�1

�(v

n�1

)(v

n�2

+ �

1

) + �(v

n�1

)(v

n�2

�

1

)

= �

2

+ �

1

(v

n�2

+ �

1

) + v

n�2

�

1

= �

2

+ �

2

1

+ v

n�2

2�

1

= f

2

+ v

n�2

g

2

(5.15)

where f

2

= �

2

+ �

2

1

, g

2

= 2�

1

.

Let us establish the relationship among f

j

; g

j

ef

j+1

; g

j+1

:

X

v

n�j

�(v

n�j

)(v

n�j�1

+ v

n�j

)(f

j

+ v

n�j

g

j

) (5.16)

=

X

v

n�j

g

j

v

2

n�j

�(v

n�j

) + v

n�j

�(v

n�j

)(f

j

+ v

n�j�1

g

j

) + �(v

n�j

)(v

n�j�1

f

j

)

= g

j

�

2

+ f

j

�

1

+ v

n�j�1

(g

j

�

1

+ f

j

) = f

j+1

+ v

n�j�1

g

j+1

: (5.17)

Then

f

j+1

= �

1

f

j

+ �

2

g

j

; g

j+1

= f

j

+ �

1

g

j

(5.18)

or written in matriial form

2

4

f

j+1

g

j+1

3

5

=

2

4

�

1

�

2

1 �

1

3

5

�

2

4

f

j

g

j

3

5

=

2

4

�

1

�

2

1 �

1

3

5

j

�

2

4

�

1

1

3

5

(5.19)

From (5.13) it follows

X

v

m

(n)

(u; v) = �

n

(f

n

+ u g

n

): (5.20)
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Computation of f

n

and g

n

We need to �nd T

n

, where T =

2

4

�

1

�

2

1 �

1

3

5

. Consider the eigenvalues (�

1

, �

2

) and the orrespond-

ing eigenvetors (x

1

;x

2

) in order to fator T . We have

det(T � � I) = �

2

� 2�

1

�+ �

2

1

� �

2

(5.21)

and the eigenvalues are

�

1

= �

1

+

p

�

2

; �

2

= �

1

�

p

�

2

: (5.22)

Solving the equation Tx = �x we �nd the right normalized eigenvetors whih are

x

1

=

1

p

�

2

+ 1

2

4

p

�

2

1

3

5

; x

2

=

1

p

�

2

+ 1

2

4

p

�

2

�1

3

5

: (5.23)

Let Q = [x

1

x

2

℄ and D be a diagonal matrix with elements �

1

and �

2

. Thus,

T

n

= Q D

n

Q

�1

: (5.24)

Expliitly,

Q =

1

p

�

2

+ 1

2

4

p

�

2

p

�

2

1 �1

3

5

; D =

2

4

�

1

0

0 �

2

3

5

; Q

�1

=

p

�

2

+ 1

2

p

�

2

2

4

1

p

�

2

1 �

p

�

2

3

5

: (5.25)

Then

T

n

=

1

2

p

�

2

2

4

p

�

2

p

�

2

1 �1

3

5

�

2

4

�

n

1

0

0 �

n

2

3

5

�

2

4

1

p

�

2

1 �

p

�

2

3

5

T

n

=

1

2

p

�

2

2

4

p

�

2

(�

n

1

+ �

n

2

) �

2

(�

n

1

� �

n

2

)

�

n

1

� �

n

2

p

�

2

(�

n

1

+ �

n

2

)

3

5

: (5.26)

Now

2

4

f

n

g

n

3

5

= T

n�1

�

2

4

�

1

1

3

5

=

1

2

p

�

2

2

4

�

1

p

�

2

(�

n�1

1

+ �

n�1

2

) + �

2

(�

n�1

1

� �

n�1

2

)

�

1

(�

n�1

1

� �

n�1

2

) +

p

�

2

(�

n�1

1

+ �

n�1

2

)

3

5

=

1

2

p

�

2

2

4

p

�

2

�

n�1

1

(�

1

+

p

�

2

) +

p

�

2

�

n�1

2

(�

1

�

p

�

2

)

�

n�1

1

(�

1

+

p

�

2

)� �

n�1

2

(�

1

�

p

�

2

)

3

5

: (5.27)
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Finally,

f

n

=

1

2

(�

n

1

+ �

n

2

); g

n

=

1

2

p

�

2

(�

n

1

� �

n

2

): (5.28)

Returning to expression (5.11) we verify the onvergene of the series

X

n

X

v

m

(n)

(u; v) =

X

n

�

n

(f

n

+ u g

n

): (5.29)

The radius of onvergene of this series, given by the Cauhy-Hadamard formula, is

R =

1

lim

n!1

(f

n

+ ug

n

)

1=n

: (5.30)

In order to �nd R, notie

f

n

+ ug

n

=

1

2

[(1 +

u

p

�

2

)�

n

1

+ (1�

u

p

�

2

)�

n

2

℄ (5.31)

= �

n

1

1

2

[(1 +

u

p

�

2

) + (1�

u

p

�

2

)(

�

2

�

1

)

n

℄: (5.32)

We know that �

1

= �

1

+

p

�

2

is positive sine �([0;1)) = 1 and if we had �

1

= 0 then �(f0g) = 1

whih an be exluded. Also �

2

is non-positive, sine �

1

�

p

�

2

.

Moreover, �

2

+ �

1

= 2�

1

> 0 and we get

�

2

�

1

2 [�1; 0℄.

Therefore,

1

2

2min(1;

u

p

�

2

) �

1

2

[(1 +

u

p

�

2

) + (1�

u

p

�

2

)(

�

2

�

1

)

n

℄ �

1

2

2max(1;

u

p

�

2

): (5.33)

From (5.33) and (5.32) we get

�

1

(min(1;

u

p

�

2

))

1=n

� (f

n

+ ug

n

)

1=n

� �

1

(max(1;

u

p

�

2

))

1=n

(5.34)

where both bounds go to �

1

when n!1. Then,

lim

n!1

(f

n

+ ug

n

)

1=n

= �

1

(5.35)

and

R =

1

�

1

=

1

�

1

+

p

�

2

: (5.36)

Sine, � > 0, we obtain
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1. If

� <

1

�

1

+

p

�

2

(5.37)

then the series (5.29) onverges absolutely and onsequently b

n

is sub-ritial.

2. If � >

1

�

1

+

p

�

2

the series (5.29) is divergent and the proess b

n

an be superritial.

Call lambda ritial for b

n

, the following

�

�



=

1

�

1

+

p

�

2

: (5.38)

In the general ase, we an have an unountable number of types. Let V be the set of all possible

types and we observe that

X

n�1

Z

V

m

(n)

(u; dv) (5.39)

where

m

(n)

(u; dv) =

Z

V

m

(n�1)

(u; dw)m(w; dv) (5.40)

an be obtained indutively. Then,

Z

V

m

(n)

(u; dv) =

Z

V

Z

V

: : :

Z

V

m(u; dv

1

)m(v

1

; dv

2

) : : :m(v

n�1

; dv): (5.41)

Suppose that the distribution of the length of the alls is absolutely ontinuous with respet to the

Lebesgue measure and � is its density. We an write

m(u; dv) = �(u+ x)�(x)dx: (5.42)

Then,

Z

V

m(v

n�1

; dv) =

Z

1

0

�(v

n�1

+ x)�(x)dx = �(v

n�1

+ �

1

) = �(f

1

+ v

n�1

g

1

) (5.43)

and

Z

V

m(v

n�2

; dv

n�1

) � �(f

1

+ v

n�1

g

1

) (5.44)

=

Z

1

0

�(v

n�2

+ x)�(x) � �(x + �

1

)dx

= �

2

Z

1

0

x

2

�(x) + x(v

n�2

+ �

1

)�(x) + v

n�2

�

1

�(x)dx

= �

2

(�

2

+ �

1

(v

n�2

+ �

1

) + v

n�2

�

1

) = �

2

(�

2

+ �

2

1

+ v

n�2

2�

1

) = �

2

(f

2

+ v

n�2

g

2

) (5.45)
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where f

1

; g

1

; f

2

; g

2

; ::: are given by (5.19). Therefore, the omputation is ompletely analogous to the

disrete ase and

Z

V

m

(n)

(u; dv) = �

n

(f

n

+ ug

n

) (5.46)

and the proess is sub-ritial if the series (5.29) is onvergent.

Remark: If � is the density of the U(0; 1) distribution then �

�



� 0:9282.

Fern�andez et al. (2002) obtained a suÆient ondition for sub-ritiality of the branhing proess

whih an be written as

� = sup

G

1

�(G)

Z

R

�dx

Z

G

x

�

x

(dH)�(H)I(H;G) < 1 (5.47)

where G

x

is the possible set of alls beginning at x and I is de�ned by (4.5). Due to the translation

invariane property of the proess, we an onsider, without loss of generality, a all G = (0; L),

beginning at the origin. Its anestors would be retangles, with suÆient long lives, with basis that

interset the all G. This inludes any all beginning at any point inside the all G and also all

alls beginning before the origin but with suÆient large length to interset the all G. If we hoose,

�(v) = , where  is an arbitrary onstant � 1 we obtain

� = sup

G

�

Z

R

dx

Z

G

x

I(G;H)�(dH): (5.48)

Then,

� = � sup

L

(

Z

0

�1

P (jHj > �x)dx +

Z

L

0

dx) (5.49)

= � sup

L

(�

1

+ L) = �(�

1

+ sup

L

L): (5.50)

When the length of the all is uniformly bounded a.s. and M = inffy � 0jP (jHj � y) = 1g,

ondition (5.48) turns out to be

� (�

1

+M) < 1 , � <

1

�

1

+M

: (5.51)

And this oinides with (5.37) only in the ase of �xed length all, for all other ases it is weaker

than(5.37) sine

p

�

2

� M . For the partiular ase, U(0; 1), this ondition guarantees the sub-

ritiality of the proess for � <

2

3

� 0:6667 while our ondition gives � < 0:9282.
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6 Bakward-Forward Algorithm (BFA) applied to loss net-

works

7 Bakward-Forward Algorithm (BFA)

The BFA was introdued by Fern�andez, Ferrari e Garia (2002) to perfet simulate from spatial

point proesses whih are absolutely ontinuous with respet to a Poisson point proess and that are

invariant measures of spatial birth and death proesses.

The algorithm does involve the \thinning" of a marked Poisson proess |the free proess|whih

dominates the birth-and-death proess, and it involves a time-bakward and a time-forward sweep.

But these proedures are performed in a form quite di�erent from previous algorithms. The initial

stage of our onstrution is done toward the past, starting with a �nite window and retrospetively

looking to anestors, namely to those births in the past that ould have (had) an inuene on the

urrent birth. The onstrution of the lan of anestors onstitutes the time-bakward sweep of

the algorithm. One this lan is ompletely onstruted, the algorithm proeeds in a time-forward

fashion \leaning up" suessive generations aording to appropriate penalization shemes.

The relation \being anestor of" indues a bakward in time ontat/oriented perolation proess.

The algorithm is appliable as long as this oriented perolation proess is sub-ritial.

8 Appliation to loss networks

To simplify the implementation of BFA to the loss network proess we are going to assume that � have

ompat support. This assumption is not neessary and an be removed with a little modi�ation

on the generation of the free proess. De�ne M = inffy j �((0; y)) = 1g.

8.1 Constrution of the lan of anestors of a �nite window � = [a; b℄ � R

We are interested in sampling a �nite window � = [a; b℄ of the equilibrium measure in in�nite-volume.

C1. Generate the free proess �

0

= f�

0

1

; :::; �

0

m

g; a homogeneous Poisson proess with rate � in the
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interval [a�M; b℄.

s

0

L

= a; s

0

R

= b.

C2. Generate U

0

1

; :::; U

0

m

iid random variables with ommon distribution � and let � = ;.

For eah i from 1 to m

if (�

0

i

; �

0

i

+ U

0

i

) \ [a; b℄ 6= ; then � = � [ (�

0

i

; �

0

i

+ U

0

i

) (8.1)

We are simply generating retangles with basis interseting [a; b℄. We have n

0

= j�j � N basis.

C3. Generate S

0

1

; :::; S

0

n

0

iid exponential random variables with mean one and onstrut the retan-

gles

R

0

=f(�

0

i

; �

0

i

+ U

0

i

)� [�S

0

i

; 0℄; i = 1; :::; ng: (8.2)

Consider now the following subset of R � (�1; 0℄

�

0

=

n

[

i=1

(�

0

i

�M; �

0

i

+ U

0

i

)� [�S

0

i

; 0℄ (8.3)

C4. k = 1; � = �

0

;

C5. s

k

L

= min(s

k�1

L

;min

i�n

k�1

(�

k�1

i

�M))

s

k

R

= max(s

k�1

R

;max

i�n

k�1

(�

k�1

i

+ U

k�1

i

))

C6. Generate a �-homogeneous Poisson proess f(�

k

1

; �

k

1

); :::; (�

k

n

k

; �

k

n

k

)g on �[ [s

k

L

; s

k�1

L

)[(s

k�1

R

; s

k

R

℄.

C7. Generate U

k

1

; :::; U

k

n

k

iid random variables with distribution � and S

k

1

; :::; S

k

n

k

iid exponential

random variables with mean one and onstrut the retangles

R

k

=f(�

k

i

; �

k

i

+ U

k

i

)� [�

k

i

� S

k

i

; �

k

i

℄; i = 1; :::; n

k

g: (8.4)

Consider

�

k

=

n

k

[

i=1

(�

k

i

�M; �

k

i

+ U

k

i

)� [�

k

i

� S

k

i

; 0℄: (8.5)

C8. { if n

k

= 0 then onstrut the lan of anestors of �

A

�

:=

k�1

[

i=0

R

i

(8.6)

and STOP.
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{ otherwise, do

� = �

k

n�

k�1

;

k=k+1;

return to C5;

In order to improve the performane of the algorithm we suggest at step C6. to exlude the

retangles satisfying

�

k

i

� S

k

i

< min

j=1;:::;n

k�1

(�

k�1

i

� S

k�1

i

)

.

We �nish performing the BACKWARD step of the algorithm: the onstrution of the lan of

anestors. The FORWARD step orresponds to move to the beginning of the lan of anestors and

deide whih retangles are going to be kept and whih ones are going to be erased. One these lans

are perfetly simulated, it is only neessary to apply the deterministi \leaning proedure", based

on the apaity C of the network , to obtain a perfet sample of the interating proess. In this ase,

if a point (x; t) belongs to more than C retangles, keep the C retangles born �rst and erase the

others.

8.2 The leaning algorithm

Call T the set of retangles to be tested and K the set of kept retangles.

L1. K=;; T= A

�

;

L2. If T = ; go to L4.

otherwise, order T by birth time. Let R

1

be the �rst retangle following suh ordering.

K = K [ R

1

; T = TnR

1

L3. Depending upon C

1. If C = 1; For all R 2 T suh that R � R

1

, T = TnR.

return to L2.
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2. Se C > 1;

para i=1 at�e jTj � C

R

i

2 T, if R

i

� R

1

all Area=R

i

\ R

1

, C(Area)=2 and K = K [ R

i

; T = TnR

i

;

for j=1 to jTj

if R

j

\ Area 6= ; take C(Area) = C(Area) + 1, if C(Area) > C then T = TnR

j

return to L2.

L4. Take K

�

= K and STOP.

Obtaining K

�

, we de�ne

�

�

() =

8

<

:

1 �() = 1 and 9R 2 K

�

suh that Basis(R) = 

0 otherwise

(8.7)

Theorem 3.18 of Fern�andez et al. (2002) guarantees that �

�

is a perfet sample from the invariant

measure of the loss network desribed above.

8.3 Simulation results

In this setion we present some of the simulation results for several values of �, C ( network apaity)

and window �. The distribution � is taken to be U(0; 1). In this ase, by (5.37), � < 0:9282 is a

suÆient ondition for the simulation. The programs were written in MATLAB 5.0. For easiness of

reading the results are presented in two steps: the lan of anestors and the leaning result. The

basis of the retangles kept at time t = 0 onstitutes the perfet sample.
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Figure 8.1: Clan of anestors for U(0; 1), � = 0:5, � = [0; 10℄.

−2 0 2 4 6 8 10 12
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Figure 8.2: Cleaning proedure C = 1 for the lan presented in Figure 8.1
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Figure 8.3: Clan of anestors for U(0; 1), � = 0:9, � = [0; 10℄.
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Figure 8.4: Cleaning proedure for the lan presented in Figure 8.3. a) C = 1 b) C = 2.
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Figure 8.5: Clan of anestors for U(0; 1), � = 1, � = [0; 10℄.
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Figure 8.6: Cleaning proedure for the lan presented in Figure 8.5. a) C = 1 b) C = 2.

1 2 3 4 5 6 7 8 9 10 11
0

0.5

1

1.5

2

2.5

3

3.5

4

1 2 3 4 5 6 7 8 9 10 11
0

0.5

1

1.5

2

2.5

3

3.5

4

26



Figure 8.7: Clan of anestors for U(0; 1), � = 1:2, � = [0; 8℄.
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Figure 8.8: Cleaning proedure for the lan presented in Figure 8.7. a) C = 1 b) C = 3.

−1 0 1 2 3 4 5 6 7 8 9
0

1

2

3

4

5

6

7

8

−1 0 1 2 3 4 5 6 7 8 9
0

1

2

3

4

5

6

7

8

28



9 Studying the harateristis of the lan of anestors through

simulation results

We perform a 1,000 simulations for several values of � < �

�



. Conditioned on the event \the point

(x; 0) is present at the free proess" (whih has probability 1� expf���g), we observed the values

of the following random variables related to the lan of anestors:

1. SW (A

(x;0)

) { spae width of the lan of the point (x; t), de�ned by (4.12);

2. TL(A

(x;0)

) { time length of the lan of the point (x; t) de�ned by (4.13); and

3. N(A

(x;0)

) { total number of retangles present in the lan.

The expetation of these variables were estimated through the sample mean and ompared then

to the expeted values for the assoiated branhing proess used to �nd the sub-ritiality ondition.

The simulations were performed in two ases, when � is the U(0; 1) distribution and when � is

onentrated in one point (�xed all length). From (5.38), the ritial value for � to assure sub-

ritiality is

� When � = U(0; 1)

�

�



=

1

1

2

+

q

1

3

� 0:9282 (9.1)

� When �(d) = 1

�

�



=

1

2d

(9.2)

Figures 9.9, 9.10 and 9.11 show that the branhing proess dominated the lan of anestors (we

onstruted then this way). However, it is amazing to see that as � inreases, the number of retangles

of the branhing proess is muh bigger that the number of retangles of the lan of anestors. We

an see also, that this di�erene ours also for the time-length and spae-width but less notieable.

This is a onsequene of the fat that in the branhing proess we an have subsequent generations

of retangles to be born in the same area as the predeessor generations.

The distribution of these random variables are not known in this ase. Hall (1988) have a

derivation of the \time length" of a overage proess of intervals in R, but nothing is known in the

29



Figure 9.9: Expeted total number of retangles in the branhing proess and the lan of anestors.
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Figure 9.10: Expeted time length (E (TL)) for the branhing proess and the lan of anestors. a)

U(0; 1) b) d = 0:5
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Figure 9.11: Expeted spae width (E (SW )) for the branhing proess and the lan of anestors. a)

U(0; 1) b) d = 0:5
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ase of retangles in R

2

. Just by the simulation results we an have an idea of these distributions

through the histograms (Figures 9.12, 9.13 and 9.14).

Figure 9.12: Histogram for TL for 1,000 simulations for U(0; 1) and � = 1
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Figure 9.13: Histogram for SW for 1,000 simulations for U(0; 1) and � = 1
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Figure 9.14: Histogram for N for 1,000 simulations for U(0; 1) and � = 1
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9.1 Estimation of the ritial value using simulations

The purpose of this setion is to study the behavior of the lan of anestors as � inreases above �

�



.

From Figures 9.9, 9.10 and 9.11 we an see that the ritial value obtained through the domination

by a branhing proess underestimates the true value of the �niteness of the lan of anestors. The

idea behind these results is to generate samples for inreasing values of � and to study the total

number of retangles. Our onjeture is that, lose to the true ritial value �



the total number

of retangles should grow exponentially fast. Thus �nding an assintote for E (N) would give us an

estimate of �



. This is true for the branhing proess, omparing the value of E (N) as � approahes

�

�



in Figure 9.9 we an see visually a vertial assintote at �

�



.

From now on, for all distributions, we sampled 1,000 observations of the lan of anestors and

omputed

�

N (the sample mean) for eah value of �. Figure 9.15 present the results for �xed length

alls, d = 0:5.

At �rst sight we see that there is an assintote lose to 2.8. To be more preise, we tried to

�nd a root for the equation 1=log(

�

N) = 0 ( see Figure 9.16). We used a degree 19 polynomial to

approximate 1=log(

�

N) and found a root in � = 2:8231.

Several simulations were performed for several values of d just to get a more preise estimate for

�



sine due to the invariane of the Poisson proess for �xed all length there is a linear relationship

among the ritial values for all d, see Table 9.1 and Figure 9.17.
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Figure 9.15: Expeted number of retangles in the lan of anestors (E (N)) for d = 0:5
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N) for d = 0:5
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Table 9.1: Critial value of �



obtained through simulation for several all lengths

d 0.3 0.5 0.7 1.0 1.2 1.4 1.6 1.8 2.0 2.5 3.0

�



4.6688 2.8231 2.0641 1.4193 1.1905 1.0254 0.9120 0.8084 0.7312 0.5682 0.4537

d 3.5 4.0 4.5 5.0

�



0.3931 0.3530 0.3103 0.2833

Figure 9.17: Critial value of �



obtained through simulation for several all lengths
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Table 9.2: Critial value of �



obtained through simulation for distributions U(0; 1) and Beta(�; �)

Distribution �



�



=�

�



U(0,1) 2.6135 2.8157

Beta(2,1) 2.0888 2.8695

Beta(2,2) 2.6746 2.8022

Beta(3,1) 1.8597 2.8353

Beta(3,2) 2.3079 2.8444

Beta(1,2) 3.7981 2.8166

Comparing the values of �

�



=

1

2d

and �



we an see learly a linear tendeny and we an adjust

a regression model with no interept using weighted least squares to get

�



= 2:8246 �

1

2d

: (9.3)

The question now is to perform the same omparison using di�erent random distributions for �.

We simulated lan of anestors for several Beta distributions and ompared �

�



and �



. Table 9.2

presents these results along with the ratio �



=�

�



. We an see that �



� 2:82�

�



. Adjusting a least

square model without any interept:

�



= 2:8243 � �

�



: (9.4)

10 A better theoretial bound for �



Consider two inompatible retangles R and R

0

suh that R is an anestor of R

0

. Let R be of

type u and R

0

of type w, R = [x; x + u℄ � [t

i

+ s

1

; t

i

℄ and R

0

= [0; w℄ � [t

i�1

+ s

2

; t

i�1

℄. Indexes i

and i� 1 should be assoiated to the generation number of anestors of some initial retangle alive

at time 0. Life spans s

1

; s

2

are exponentially distributed with mean 1, as usual. Now onsider the

areas A = [x � v; x + u℄ � [0; t

i

℄ and A

0

= [�v; w℄ � [0; t

i�1

℄. In these areas the parents of type v
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are generated for R and R

0

respetively. Here lies a di�erene between the branhing proess and

the anestors lan sine in the branhing ase the rate of reprodution is not inuened by other

retangles whih is not the ase for the anestors proess. By onstrutivisti approah, following

the bakward step of the perfet simulation sheme, Setion 8.1, one an see that in the area A \A

0

we do not generate new points ( one we generated all possible anestors of R

0

) in order to keep

the driving proess �-homogeneous. As for the branhing proess, new points are generated in the

entire area A, and the Poisson proess rate is therefore dupliated in A\A

0

. Our goal is to estimate

the number of suh retangles that should be exluded from the branhing proess in order to get

better sub-ritiality ondition for the anestors proess. Observe that we exlude retangles just

from the areas of type A\A

0

, onsidering \parent-hild" relation whih is still far away of obtaining

the anestors proess where exists dependene even among \hildren".

Reall the retangles R and R

0

and onsider the area D = A \ A

0

D = A(x)� [0; t

i�1

℄; where (10.1)

A(x) = [max(x� v;�v);min(x + u; w)℄: (10.2)

De�ne d

i

(u; v) as the number of anestors of type v of a retangle R, type u, whih is in the i-th

generation, that are also anestors of the \hild" of R, say R

0

. Then

d

i

(u; v) = d

i

1

(u; v) + d

i

2

(u; v) (10.3)

where d

i

1

(u; v),d

i

2

(u; v) is the number of suh anestors that died before and after time t = 0, respe-

tively. Now, we have

P (d

i

1

(u; v) = kjw; t

i

; t

i�1

) = e

�p

1

�jDj

(�p

1

�jDj)

k

k!

(10.4)

and

P (d

i

2

(u; v) = kjw; t

i

; t

i�1

) = e

�p

2

�jA(x)j

(�p

2

�jA(x)j)

k

k!

(10.5)

where p

1

is the probability that a retangle who died in the area D is really an anestral of R of type

v, and analogously for p

2

p

1

= �(v)P (Y + S > t

i

) (10.6)

= �(v)e

�t

i

(e

t

i�1

� 1)=t

i�1

(10.7)
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and

p

2

= �(v)P (S > t

i

) (10.8)

= �(v)e

�t

i

(10.9)

where Y � U(0; t

i�1

) and S � exp(1) are independent random variables.

Sine d

i

1

(u; v) and d

i

2

(u; v) are independent d

i

(u; v) is Poisson distributed with mean

�(v)(p

1

�jDj+ p

2

�jA(x)j) = �(v)�jA(x)je

�(t

i

�t

i�1

)

: (10.10)

In order to �nd the distribution of t

i

� t

i�1

, i � 1, notie that t

i

> t

i�1

and we are given the

parent relation, so for Y � U(0; t

i�1

) and S � exp(1) independent, t

i

= Y + S. Then, for t � 0

P (t

i

� t

i�1

� t) = P (Y + S � t

i�1

� tjY + S > t

i�1

) =

P (t

i�1

< Y + S � t

i�1

+ t)

P (Y + S > t

i�1

)

(10.11)

=

1

t

i�1

(e

t

i�1

� 1)(e

�t

i�1

� e

�t

i�1

�t

)

1

t

i�1

(1� e

�t

i�1

)

= 1� e

�t

(10.12)

that gives exatly distribution exp(1). Therefore E (e

�(t

i

�t

i�1

)

) = 1=2.

Furthermore

jA(x)j = min(x + u; w)�max(x� v;�v) (10.13)

and given w, x is distributed uniformly in (�u; w) so it is easy to get

E (jA(x)jjw) = v +

uw

u+ w

: (10.14)

De�ning a funtion �(y) =

R

u

y+u

�(du), for y � 0 we have that

E (jA(x)j) = v + u�(u): (10.15)

Therefore

Æ(u; v) = E (d

i

(u; v)) =

1

2

��(v)(v + u�(u)): (10.16)
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10.1 Sub-ritiality:

We are interested in sub-ritiality onditions for the branhing proess after the exlusions desribed

above. Therefore, our aim is to establish onditions for the onvergene of the series

X

n�1

X

v

m

(n)

�

(u; v) (10.17)

where

m

(1)

�

(u; v) = m(u; v)

and

m

(n)

�

(u; v) =

X

w

m

(n�1)

�

(u; w)m

�

(w; v); for n > 1:

Independently of the generation number the mean of exluded o�springs of type v, of an u-individual

is Æ(u; v), so the mean of \not-exluded" o�springs is

m

�

(u; v) = m(u; v)� Æ(u; v) (10.18)

= ��(v)(u+ v � 1=2(v + u�(u)))

= ��(v)(h(u) +

v

2

) (10.19)

where

h(u) = u(1�

�(u)

2

): (10.20)

We may perform the same tehnique used in Setion 5 to simplify this series:

X

v

m

(n)

�

(u; v) =

X

v

X

v

1

� � �

X

v

n�1

m(u; v

1

)m

�

(v

1

; v

2

) � � �m

�

(v

n�1

; v) (10.21)

= �

n

X

v

X

v

1

� � �

X

v

n�1

�(v

1

)(u+ v

1

)�(v

2

)(h(v

1

) +

v

2

2

) � � ��(v)(h(v

n�1

) +

v

2

)

Observe that

X

v

�(v)(h(v

n�1

) +

v

2

) = h(v

n�1

) +

�

1

2

= f

�

1

+ g

�

1

h(v

n�1

) (10.22)

where f

�

1

=

�

1

2

and g

�

1

= 1, and de�ne indutively

X

v

n�i+1

�(v

n�i+1

)(h(v

n�i

) +

v

n�i+1

2

)(f

�

i�1

+ g

�

i�1

h(v

n�i+1

)) = f

�

i

+ g

�

i

h(v

n�i

): (10.23)
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Let

a =

Z

u h(u) �(du) (10.24)

b =

Z

h(u) �(du) (10.25)

then we have

2

4

f

�

j+1

g

�

j+1

3

5

=

2

4

�=2 a=2

1 b

3

5

�

2

4

f

�

j

g

�

j

3

5

=

2

4

�=2 a=2

1 b

3

5

j�1

�

2

4

�=2

1

3

5

(10.26)

and onsequently

X

v

m

(n)

�

(u; v) = �

n

X

v

1

�(v

1

)(u+ v

1

)(g

�

n�1

v

1

+ f

�

n�1

) = (10.27)

= �

n

(u(g

�

n�1

�

1

+ f

�

n�1

) + �

2

g

�

n�1

+ �

1

f

�

n�1

): (10.28)

In order to �nd f

�

n

; g

�

n

we exponentiate T

�

=

2

4

�

1

=2 a=2

1 b

3

5

. For this operation suÆes the

eigenvalues of T

�

, "

1

and "

2

given by

"

1;2

=

�

1

=2 + b�

p

(�

1

=2� b)

2

+ 2a

2

: (10.29)

and two orresponding normalized eigenvetors

1

p

1 + ("

1

� b)

2

2

4

"

1

� b

1

3

5

;

1

p

1 + ("

2

� b)

2

2

4

"

2

� b

1

3

5

: (10.30)

From (10.26) it follows

f

�

n

=

1

"

1

� "

2

("

n

1

("

1

� b) + "

n

2

(b� "

2

)) (10.31)

g

�

n

=

1

"

1

� "

2

("

n

1

� "

n

2

): (10.32)

Using the fat that j"

2

="

1

j � 1 in (10.28) and the Cauhy-Hadamard formula, we obtain that the

radius of onvergene of the series (10.17) is

R

�

=

1

"

1

=

2

�

1

=2 + b +

p

(�

1

=2� b)

2

+ 2a

: (10.33)
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Therefore, as long as � < R

�

the anestors proess is sub-ritial. Although this ondition is obtained

for ountably many types it an be extended to an unountable ase in the same manner we did in

Setion 5.

This bound (10.33) an be expressed more simply. For this, let

b

1

=

Z

u

2

�(u) �(du)

a

1

=

Z

u

3

�(u) �(du)

�(y) =

Z

1

y + u

�(du):

Then

�(a) = 1� a�(a) (10.34)

b = (�

1

+ b

1

)=2 (10.35)

a = (�

2

+ a

1

)=2 (10.36)

and

R

�

=

2

�

1

+ b

1

=2 +

p

�

2

+ a

1

+ b

2

1

=4

: (10.37)

So, sub-ritiality is guaranteed as long as

� <

2

�

1

+ b

1

=2 +

p

�

2

+ a

1

+ b

2

1

=4

: (10.38)

Remark: for � being density of U(0,1) the ondition is � < 1:4302

Observe that 0 � �(y) � 1 for y � 0 implies b

1

� �

1

and a

1

� �

2

while the Jensen's inequality

assures b

1

� �

1

=2 and a

1

� �

2

1

=2. Consequently
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8
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+

p

16�
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1
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(10.39)

R

�

�

4
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1

+

p

�

2

1

+ 8�

2

�

4

3(�

1

+

p

�

2

)

= 4=3�

�



: (10.40)

The last inequality proves that a better bound for the ritial value is obtained.
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11 Conlusion

This is one of the �rst works where the lan of anestors algorithm was implemented. Berthelsen

and M�ller (2001) ompared it to the dominated CFTP introdued by Kendall and M�ller (2000).

Based on simulation results, they show that the dominated CFTP is better than the algorithm based

on the lan of anestors in the partiular ase of a Strauss proess

�

�

(dN) =

1

Z

�

e

�

1

N(�)+�

2

S(N;�)

�

0

�

(dN) (11.1)

de�ned on a unit square with e

�

1

= 100 and e

�

2

= 0 (the so-alled hard-ore proess), 0:5 and 1 (a

Poisson proesses with rate 100). This is obviously the ase from the desription of the proesses sine

the bakward onstrution of BFA stops when the dominated Poisson proess regenerates and usually

the oupling of CFTP is ahieved before it in the �nite ase. However, it should be notied that

the algorithm based on the lan of anestors was designed for sampling the in�nite-volume proess

viewed in a �nite window. This seems to be a muh more interesting and hallenging problem whih

has been studied in this work for the spei� ase of one-dimensional loss networks with bounded

alls. No omparison was made to other perfet simulation shemes.

Moreover, we an see that the simulation of the invariant measure an bring information about

unknown variables related to the lan of anestors. The bound desribed in Setion 10 was found by

a better understanding of the simulation proedure.
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