
Convolution of Robust Fun
tions

1

Heriberto Rom

�

an-Flores

Departamento de Matem�ati
a,Universidad de Tarapa
�a, Chile

Rodney C. Bassanezi, La

�

e
io C. Barros

Departamento de Matem�ati
a Apli
ada, IMECC-UNICAMP, Brasil

Abstra
t- Re
ently Zheng [1,2℄, in the setting of global optimization, intro-

du
ed the 
on
epts of robust set and robust fun
tion as a generalization of open

set and upper semi
ontinuous (u.s.
) fun
tion, respe
tively. The aims of this pa-

per are to study the stru
ture of robust sets de�ned on a normed spa
e X as well

as to extend some multivalued 
onvergen
e results obtained by the author in [3,4℄

and Gre
o et al. [6℄ for semi
ontinuous fun
tions to the 
lass of robust fun
tions.

More pre
isely, we introdu
e the 
on
epts of level-
onvergen
e and epigraphi



onvergen
e on R(X); the spa
e of nonnegative robust fun
tions on a normed

spa
e X and, on one hand, we study its properties and relationships, and on the

other, we present some results on level-approximation and epi-approximation of

fun
tions by using 
onvolution of robust fun
tions.

Keywords- Normed spa
es, robust sets, Hausdor� pseudometri
, Kuratowski

limits, Level-
onvergen
e, Convolution of fun
tions.

1. INTRODUCTION

The study of level 
onvergen
e, hypographi
 
onvergen
e and epigraphi
 
onver-

gen
e of fun
tions and its appli
ations has been done by many authors, in
lud-

ing Rom�an-Flores [3,4,5℄ in the setting of 
onvergen
e of fuzzy sets on �nite-

dimensional spa
es, level-
onvergen
e of fun
tions on regular topologi
al spa
es

and 
ompa
tness of spa
es of fuzzy sets on a metri
 spa
e, respe
tively, Gre
o et

al. [6℄ in variational 
onvergen
e of fuzzy sets on metri
 spa
es and Attou
h [7℄

in 
al
ulus of variations.

The prin
ipal tools of this 
onvergen
e are based in the Hausdor� metri


and Kuratowski limits, and one of the most important properties of the hypo-


onvergen
e (epi-
onvergen
e) is the preservation of maximum (minimum) points
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in hypo-
onvergent (epi-
onvergent) sequen
es of fun
tions. This explains the

su

ess of these 
onvergen
e s
hemes in global optimization theory, see [7℄.

The aims of this paper are, on one hand, to study stru
tural properties of

robust sets and robust fun
tions on a normed spa
e X, and on the other, to

study several types of 
onvolution of fun
tions and its appli
ations to level-

approximation of fun
tions. In parti
ular, we study some 
onne
tions between

level-
onvergen
e and epi-
onvergen
e of robust fun
tions.

This paper is organized as follows. In Se
tion 2, we give the basi
 material that

will be used in the arti
le. In Se
tion 3, we introdu
e the 
on
ept of inf-
onvolution

of fun
tions and its appli
ations to level-approximation of fun
tions (approxima-

tion in D-pseudometri
). In this dire
tion we prove that (R(X); D) the spa
e of

robust fun
tions on X; is a dense subspa
e of (F(X); D); the spa
e of nonnegative

fun
tions with non-empty levels on X. In Se
tion 4, we give a 
hara
terization for

the existen
e of proper lo
al minimum points of robust fun
tions. In Se
tion 5,

we introdu
e the 
on
ept of sum-
onvolution of fun
tions and its appli
ations to

epi-approximation of fun
tions (approximation in D

e

-pseudometri
). In this 
on-

text we prove that (R

e

(X); D

e

) the spa
e of epi-robust fun
tions on X; is a dense

subspa
e of (F(X); D

e

). In Se
tion 6 we prove that, in general, D-
onvergen
e is

stronger than D

e

-
onvergen
e on F(X). Finally, in Se
tion 7, we prove the equiv-

alen
e between L-
onvergen
e and D

E

-
onvergen
e of fun
tions on R(X), under


ondition of level-
ontinuity of the limit fun
tion. Furthermore, some examples

and appli
ations are presented.

2. PRELIMINARIES

In the sequel, X will be assumed to be a normed ve
tor spa
e.

Definition 2.1 ([1℄). A set A � X is said to be robust i� A = IntA:

Remark 2.2. We observe that an open set is robust. A
tually, the 
on
ept of

robustness is a generalization of that of openness.

We re
all that if A;B � X, then A + B = fa + b= a 2 A; b 2 Bg, with the


onvention A+ ; = ;+ A = ;:

An important 
lass of robust sets is the family of 
onvex subsets of X.
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Proposition 2.3.([8℄). Let K be a 
onvex subset of a normed spa
e X. The


losure K of K and the interior IntK of K are 
onvex. Moreover, if IntK 6=

;; then K = IntK and IntK = IntK:

As a dire
t 
onsequen
e of the above result we obtain

Corollary 2.4. Let K be a 
onvex subset of a normed spa
e X with IntK 6=

;: Then K is robust.

Proposition 2.5([8, pp.62, Proposition 5℄). Let A and B be two nonempty

subsets of X: If A is open, then A+B is open.

Corollary 2.6([9℄). Let A and B be nonempty sets in X. If intA 6= ; then

intA +B � int(A +B):

Theorem 2.7. Let A and B be subsets in X. Then

i) If A is robust then A+B is robust.

ii) �A is robust, 8� > 0:

Proof.

i) We have the following 
ases

a) If A = ; or B = ; then A+B = ; is robust

b) If A 6= ; and B 6= ; then it is 
lear that Int(A +B) � A+B: On other hand,

if x 2 A+B then there exists a sequen
e (a

n

+b

n

) � A+B su
h that a

n

+b

n

! x:

Be
ause a

n

2 A � A = IntA then, for ea
h n 2 N ; there exists a sequen
e

(a

ni

) � IntA su
h that

lim

i!1

a

ni

= a

n

:

Thus, if � > 0 is given we 
an 
onstru
t a subsequen
e (a

ni

n

) � IntA su
h that

j a

n

� a

ni

n

j< �=2; 8n: So, we have that the sequen
e a

ni

n

+ b

n

2 IntA+B and

j a+ b� (a

ni

n

+ b

n

) j�j a+ b� (a

n

+ b

n

) j + j a

n

+ b

n

� (a

ni

n

+ b

n

) j

� j a� a

n

j + j b� b

n

j + j a

n

� a

ni

n

j< �

for every n suÆ
iently large.

Therefore, due Corollary 2.6, a + b 2 IntA+B � int(A +B):
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So, A+B = Int(A +B) and A+B is robust.

ii) A straightfoward 
al
ulus shows that

a) �A = �A; for every real number � 6= 0 and

b) �IntA = Int(�A), for every real number � > 0:

Thus, if A is a robust set and � > 0 then

�A = �A = �IntA = �IntA = Int(�A):

Therefore �A is robust and the proof is 
ompleted. �

3. CONVOLUTION OF ROBUST FUNCTIONS

The 
on
ept of robust fun
tions has been studied by many authors in the set-

ting of global optimization, in
luding Zheng [1,2℄. Also, in [2, Prop. 2.4℄ the

author shows that a bounded robust fun
tion 
an be uniformly approximated by

a sequen
e of robust step fun
tions.

Our main result in this se
tion is to show a level-approximation result for

robust fun
tions by using 5-
onvolution. More spe
i�
ally, we will prove that the

spa
e of robust fun
tions is a dense subspa
e of (F(X); D):

Definition 3.1. An extended pseudometri
 on Z is a fun
tion p : Z � Z !

[0;1℄ su
h that

(i) p(x; y) � p(x; z) + p(z; y); for all x; y; z in Z;

(ii) p(x; y) = p(y; x); for all x; y in Z;

(iii) p(x; x) = 0; for all x in Z:

Let P(X) = fA= A � Xg and P

0

(X) = fA 2 P(X)= A 6= ;g: If A 2

P

0

(X) we de�ne the \�-dilatation of A" as the set

N(A; �) = fx 2 X= d(x;A) < �g;

where d(x;A) =inf

a2A

kx� ak:
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If A;B 2 P

0

(X) de�ne

H(A;B) = inff� > 0= A � N(B; �) and B � N(A; �)g;

where, as usual, inf; = +1:

Thus, we allow +1 as a possible value for H.

Proposition 3.2. ([10℄). H is an extended pseudometri
 on P

0

(X):

Remark 3.3. An equivalent formula for H (see [8℄) is given by

H(A;B) = max

�

sup

a2A

d(a; B); sup

b2B

d(b; A)

�

:

H is 
alled the Hausdor� extended pseudometri
 on P

0

(X) derived from the norm.

Remark 3.4. If X is a Bana
h spa
e and

B(X) = fA 2 P

0

(X)=A is 
losed and boundedg

then (B(X); H) is a separable and 
omplete metri
 spa
e and, in this 
ase, H is


alled the Hausdor� metri
 on B(X) (see [10℄).

Proposition 3.5. ([10℄). If A

1

; A

2

; B

1

; B

2

2 P

0

(X) and � > 0 then

i) H(�A

1

; �B

1

) = �H(A

1

; B

1

);

ii) H(A

1

+ A

2

; B

1

+B

2

) � H(A

1

; B

1

) +H(A

2

; B

2

)

Let F(X) = ff : X ! [0;1℄ = ff < �g 2 P

0

(X); 8� > 0g and de�ne the


lass of non-negative robust fun
tion on X as

R(X) = ff 2 F(X)= ff < �g is robust; 8� > 0g :

where ff < �g = fx 2 X= f(x) < �g is the �-level of f .

Remark 3.6. We observe that, due Remark 2.2, an u.s.
. fun
tion is robust, so

is a 
ontinuous fun
tion.
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If f; g 2 F(X) we 
an de�ne a generalized Hausdor� extended pseudometri
 by

mean

D(f; g) =sup

�>0

H(ff < �g; fg < �g):

Definition 3.7. Let f and g be in F(X): Then, the inf-
onvolution is de�ned

by

[f 4 g℄(x) =Inf

y2X

ff(x� y) _ g(y)g

where _ +maximum.

Several important appli
ations justify the study of4-
onvolution (see [11,12℄).

Proposition 3.8.(Ro
kafellar [11, p. 40℄). Let f and g in F(X): Then, for all

� > 0, one has

ff 4 g < �g = ff < �g+ fg < �g:

As a dire
t 
onsequen
e of Theorem 2.7 and Proposition 3.8, we obtain

Proposition 3.9. Let f and g be in F(X) and suppose that f is robust. Then

f 4 g is robust.

Theorem 3.10. For ea
h f 2 F(X) there exists a sequen
e (f

p

) 2 R(X) su
h

that D(f; f

p

) � 1=p for p = 1; 2; ::::

Proof.

Let g

p

= I

B[0;1=p℄

the indi
ator fun
tion of the 
losed ball B[0; 1=p℄; i:e: :

I

B[0;1=p℄

(x) =

�

0 if x 2 B[0; 1=p℄

+1 if x =2 B[0; 1=p℄:

Then fg

p

< �g =B[0; 1=p℄; 8� > 0: Therefore, due 
onvexity of B[0; 1=p℄ and

Corollary 2.4, we have that g

p

is robust for every p 2 N:

Now, let f

p

= g

p

4 f be. Then, due Proposition 3.9, f

p

is robust for ea
h

p 2 N and

H(ff < �g; ff

p

< �g) = H(ff < �g; fg

p

< �g+ ff < �g)

= H(f0g+ ff < �g; fg

p

< �g+ ff < �g)
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� H(f0g; fg

p

< �g) +H(ff < �g; ff < �g) (by Prop:3:5)

= H(f0g; B[0; 1=p℄)

= 1=p:

So, taking supremum in � > 0; we obtain D(f; f

p

) � 1=p; for every p; and the

proof is 
omplete. �

Corollary 3.11. (R(X); D) is a dense subspa
e of (F(X); D):

4. ROBUSTNESS AND PROPER LOCAL MINIMUM POINTS

In this se
tion we shall prove a 
hara
terization, via level sets, of non-existen
e

of proper lo
al minimum points for robust fun
tions. This result generalize an

analogous ones for upper semi
ontinuous fun
tions obtained for the author in

[3,4℄.

Definition 4.1. If f : X ! [0;1℄ is a fun
tion in F(X); then x

0

2 X is said

to be a proper lo
al minimum point of f if f(x

0

) > 0 and there is a neighborhood

U at x

0

su
h that f(x

0

) � f(x); for every x 2 U:

Theorem 4.2. Let f 2 F(X) be a robust fun
tion. Then are equivalents:

i) f has no proper lo
al minimum points,

ii) ff � �g = Intff < �g:

Proof.

ii) ! i): Suppose that x

0

is a proper lo
al minimum point of f: Then f(x

0

) >

0 and there is a neighborhood U at x

0

su
h that 0 < �

0

= f(x

0

) � f(x); for

every x 2 U: So, x

0

2 ff � �

0

g and U \ ff < �

0

g = ;: Consequently, x

0

2

ff � �

0

g n ff < �

0

g:

But, due robustness of f; ff < �

0

g = Intff < �

0

g; therefore

x

0

2 ff � �

0

gnIntff < �

0

g:

i)! ii): Suppose that there exists �

0

> 0 su
h that ff � �

0

g 6= Intff < �

0

g:
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Then, due robustness of f; ff � �

0

g 6= ;: In fa
t,

ff � �

0

g = ; ) ff < �

0

g � ff � �

0

g = ; ) ff < �

0

g = ;

whi
h is impossible due ff < �

0

g 2 P

0

(X):

Moreover,

ff = �

0

g = ; ) ff � �

0

g = ff < �

0

g

) ff � �

0

g = ff < �

0

g

) ff � �

0

g = Intff < �

0

g (due f 2 R(X))

in 
ontradi
tion with our hypothesis.

Therefore, must be ff = �

0

g 6= ;: Consequently, there exists x

0

2 X su
h that

f(x

0

) = �

0

and x

0

=2 Intff < �

0

g = ff < �

0

g: So, there exists a neighborhood U

of x

0

su
h that U \ ff < �

0

g = ; whi
h implies that f(x) � �

0

= f(x

0

) for every

x 2 U:

Therefore x

0

is a proper lo
al minimum point of f and the proof is 
omplete. �

Remark 4.3. We observe that, under 
onditions of Theor. 4.2., any lo
al mini-

mum of f is a global minimum.

Example 4.4. Consider the fun
tion f : R ! [0;+1℄ as

f(x) =

8

>

>

<

>

>

:

0 if x < 0

x if 0 � x < 1

1 if 1 � x < 2

x� 1 if x � 2:

Then it is 
lear that, due 
ontinuity, f is a robust fun
tion. Furthermore, x is

a proper lo
al minimum point for every x 2 (1; 2℄: On other hand, for the level

� = 1 we have ff � 1g = ff � 1g = [0; 2℄; whereas

ff < 1g = [0; 1) ) Intff < 1g = (0; 1)

) Intff < 1g = [0; 1℄:

Therefore ff � 1g 6= Intff < 1g:
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Remark 4.5. In relation to Theor. 4.2, analogous optimization results have been

obtained for a more restri
ted 
lass of fun
tions. For instan
e:

(a) Martinez-Legaz [13, Cor. 2.19, p. 117℄: \If X = R

n

then the fun
tion f 2

F(X) is upper semi
ontinuous and has no lo
al maximum points in its domain if

and only if ff < �g = intff � �g; for every � > 0":

(b) Rom�an-Flores et al. [4℄: \If X is a regular topologi
al spa
e and f 2 F(X)

is an upper semi
ontinuous fun
tion with sup

x2X

f(x) = M; then are equivalents:

i) f is without proper lo
al maximum points

ii) ff � �g = ff > �g; 8 � 2 (0;M):

iii) f is level-
ontinuous.

We re
all that an upper semi
ontinuous fun
tion f 2 F(X) is level-
ontinuous

if, and only if,

�

p

! �) H(ff � �

p

g ! H(ff � �g); for every � 2

�

0; sup

x2X

f(x)

�

:

5. EPI-APPROXIMATION OF ROBUST FUNCTIONS

Analogously to the methods developed in Se
tion 3 for approximation of robust

fun
tions via level sets and4-
onvolution, we 
an to approximate robust fun
tions

via its epigraphs (epi-
onvergen
e). The fundamental variational property of epi-


onvergen
e 
an be established as follows: If f

n

; f : X ! R ; n = 1; 2; :::; is

a sequen
e of real (extended) fun
tions whi
h satis�es the 
ondition that there

exists a relative 
ompa
t subset K of X su
h that, for every n = 1; 2; :::;

inf

x2X

f

n

(x) =inf

x2K

f

n

(x);

then f = epi� lim f

n

implies

inf

x2X

f

n

(x)!inf

x2X

f(x) as n!1;

and every 
luster point x of a minimizing sequen
e (x

n

2 Argmin f

n

; n =

1; 2; :::) minimizes f; where Argmin f = fy= f(y) � inf fg: For details see [7℄.
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Definition 5.1. Let f 2 F(X) be. The epigraph of f is de�ned by

epi(f) = f(x; �) 2 X � [0;+1℄= f(x) < �g:

Remark 5.2. If f(x) = +1 then, as a dire
t 
onsequen
e of above de�nition we

obtain (x; �) =2 epi(f), for any � 2 [0;+1℄:

Definition 5.3. Let f and g be in F(X): Then, the sum-
onvolution is de�ned

by

(f2g)(x) =Inf

y2X

ff(x� y) + g(y)g:

Proposition 5.4. Let f and g in F(X): Then,

epi(f2g) = epi(f) + epi(g):

(For details, see [8℄, [11, [12℄).

Let R

e

(X) be the 
lass of all f in F(X) su
h that epi(f) is robust in the

produ
t spa
e X � [0;+1℄ endowed with the topology indu
ed by the usual

metri


�((x; �); (y; �)) = maxfkx� yk; j �� � jg:

If f 2 R

e

(X) then we say that f is epi-robust.

The next proposition shows that every robust fun
tion has a robust epigraph.

Theorem 5.5. R(X) � R

e

(X):

Proof.

Let f 2 R(X) be. It is suÆ
ient to show that epi(f) � Int epi(f):

In fa
t, if (x; �) 2 epi(f) then there exists a sequen
e ((x

n

; �

n

)) � epi(f) su
h

that lim (x

n

; �

n

) = (x; �) as n ! 1: Therefore f(x

n

) < �

n

and, due robustness

of f;

x

n

2 ff < �

n

g � ff < �

n

g = Intff < �

n

g; 8n:

Thus, for ea
h n 2 N there exists a sequen
e (x

ni

) � Intff < �

n

g su
h that

lim

i!1

x

ni

! x

n

: Thus, for ea
h n we 
an 
hoose i

n

; with i

n

< i

n+1

; su
h that

kx

n

� x

ni

n

k < 2

�n

for every n: So,

kx� x

ni

n

k � kx� x

n

k+ kx

n

� x

ni

n

k ! 0 as n!1:
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On other hand, due f(x

ni

n

) < �

n

for every n; we 
an 
onstru
t a sequen
e

(�

n

) su
h that �

n

! 0; 0 < �

n

< �

n

; B(x

ni

n

; �

n

) � Intff < �

n

g and f(x

ni

n

) <

�

n

� �

n

< �

n

; 8n:

We 
laim that B ((x

ni

n

; �

n

+ �

n

); �

n

) � epi(f): In fa
t,

(z; �) 2 B ((x

ni

n

; �

n

+ �

n

); �

n

)) maxfkz � x

ni

n

k; j �� (�

n

+ �

n

) jg < �

n

:

Then:

a) kz � x

ni

n

k < �

n

) z 2 B(x

ni

n

; �

n

) � Intff < �

n

g ) f(z) < �

n

:

b) j �� (�

n

+ �

n

) j< �

n

) ��

n

< �� (�

n

+ �

n

)) �

n

< �:

So, from a) and b) we obtain f(z) < �; that is to say (z; �) 2 epi(f) and,


onsequently, (x

ni

n

; �

n

+ �

n

) 2 Int epi(f) for every n:

Finally, due lim

n!1

(x

ni

n

; �

n

+ �

n

) = (x; �); we 
on
lude that (x; �) 2 Int epi(f):�

The following example shows that, a
tually, the in
lusion in above theorem is

proper.

Example 5.6. Let x

0

2 X be and f = �

fx

0

g

the indi
ator fun
tion of fx

0

g; i.e.:

�

fx

0

g

(x) =

�

1 if x = x

0

0 if x 6= x

0

:

Then

�

f = �

fx

0

g

< �

	

=

�

X if � > 1

fx

0

g if 0 < � � 1:

Thus, if 0 < �

0

� 1 we have ff < �

0

g = fx

0

g and, 
onsequently, Intff < �g =

; whereas ff < �g = fx

0

g: Therefore f is not a robust fun
tion.

Nevertheless, epi(f) = X n fx

0

g� (0;+1℄[ fx

0

g� (1;+1℄ whi
h is a robust set

in the produ
t spa
e X � [0;+1℄:

Proposition 5.7. Let f 2 F(X) be and g 2 R

e

(X): Then f2g 2 R

e

(X):

Proof.

By Proposition 5.4 we have epi(f2g) = epi(f) + epi(g); and on other hand, due

robustness of epi(g) then, by Theor. 2.7 we obtain f2g 2 R

e

(X): �

Now, if f; g 2 F(X) we 
an de�ne an epi-generalized Hausdor� extended pseu-

dometri
 by mean

D

e

(f; g) = H(epi(f); epi(g));

11



where H is the generalized Hausdor� extended pseudometri
 indu
ed by the dis-

tan
e � on the produ
t spa
e X � [0;+1℄:

Our main result in this se
tion is to show an epi-approximation result on F(X) by

using 2-
onvolution. More spe
i�
ally, we will prove that the spa
e of epi-robust

fun
tions is a dense subspa
e of (F(X); D

e

):

Theorem 5.8. For ea
h f 2 F(X) there exists a sequen
e (f

p

) 2 R

e

(X) su
h

that D

e

(f; f

p

) � 1=p for p = 1; 2; ::::

Proof.

Consider the sequen
e (g

p

) de�ned as the indi
ator fun
tion of the 
losed ball

B[0; 1=p℄; i:e: :

g

p

(x) =

�

0 if x 2 B[0; 1=p℄

+1 if x =2 B[0; 1=p℄:

Then epi(g

p

) =B[0; 1=p℄� (0;+1℄ whi
h is a robust set and, 
onsequently, g

p

2

R

e

(X); 8p. Now, de�ning f

p

= f2g

p

; due Proposition 5.7 and Proposition 5.4,

we have that f

p

2 R

e

(X) and epi(f

p

) = epi(f) + epi(g

p

); respe
tively, for every

p 2 N :

We 
laim that D

e

(f; f

p

) � 1=p; 8p:

In fa
t, if (x; �) 2 epi(f) then, be
ause (0; 1=p) 2 epi(g

p

); we obtain

(x; � + 1=p) 2 epi(f) + epi(g

p

) = epi(f

p

):

Therefore

d ((x; �); epi(f

p

)) = inf

z2epi(f

p

)

�((x; �); z)

� �((x; �); (x; � + 1=p)

=

1

p

:

Thus,

sup

(x;�)2epi(f)

d ((x; �); epi(f

p

)) �

1

p

: (1)

Conversely, if (y; �) 2 epi(f

p

) then (y; �) = (y

1

; �

1

) + (y

2

; �

2

); with (y

1

; �

1

) 2

epi(f) and (y

2

; �

2

) 2 epi(g

p

): So, due Remark 5.2, we observe that (y

2

; �

2

) 2

epi(g

p

) implies y

2

2 B[0; 1=p℄ and, 
onsequently, k y

2

k � 1=p: On other hand,

12



(y

1

; �

1

) 2 epi(f) implies f(y

1

) < �

1

; therefore (y

1

; �

1

+ �

2

+ 1=p) 2 epi(f): Thus,

d ((y; �); epi(f)) = inf

z2epi(f)

�((y; �); z)

� �((y; �); (y

1

; �

1

+ �

2

+ 1=p))

= maxfky

2

k; 1=pg

� 1=p:

Thus,

sup

(y;�)2epi(f

p

)

d ((y; �); epi(f)) �

1

p

: (2)

Therefore, from (1), (2) and Remark 3.3 we obtain

D

e

(f; f

p

) = H (epi(f); epi(f

p

))

= max

(

sup

(x;�)2epi(f)

d ((x; �); epi(f

p

)) ; sup

(y;�)2epi(f

p

)

d ((y; �); epi(f))

)

� 1=p;

and the proof is 
omplete. �

Corollary 5.9. (R

e

(X); D

e

) is a dense subspa
e of (F(X); D

e

):

6. D-CONVERGENCE IS STRONGER THAN D

e

-CONVERGENCE

An interesting problem is to 
ompare D-
onvergen
e and D

e

-
onvergen
e on

F(X): This problem, in a more restri
ted 
ontext, has been studied in [3,4℄, where

the authors proves some results on equivalen
e of 
onvergen
es for bounded an

upper semi
ontinuous fun
tions (whi
h are a parti
ular 
ase of robust fun
tions).

The following examples shows that, in general,D-
onvergen
e andD

e

-
onvergen
e

are not equivalents.

13



Example 6.1. Consider f

n

; f : R ! [0;+1) de�ned by

f

n

(x) =

8

>

<

>

:

1

n

if x =2 [�1=n; 1=n℄

0 if �

1

n

� x �

1

n

f(x) = 0; 8x 2 R:

Then f

n

; f are robust fun
tions with epi(f

n

) = R n [�1=n; 1=n℄ � (1nn;+1℄ [

[�1=n; 1=n℄�(0;+1℄ and epi(f) = R�(0;+1℄: Also, be
auseH(epi(f

n

); epi(f)) �

1=n; it is easy to see that f

n

D

e

-
onverges to f: Nevertheless, for � = 1=n we have

ff

n

< 1=ng = [�1=n; 1=n℄ whereas ff < 1=ng = R: Therefore

D(f; f

n

) = sup

�>0

H(ff < �g; fg < �g)

� H(ff < 1=ng; ff

n

< 1=ng)

= +1

for ea
h n 2 N : Therefore, f

n

does not 
onverges to f in D-pseudometri
.

Example 6.2. Consider f

n

; f : R ! [0;+1℄ de�ned by

f

n

(x) =

8

<

:

0 if 0 � x � 1

1

n

(x� 1) + 1�

1

n

if 1 < x � 2

+1 if x =2 [0; 2℄:

f(x) =

8

<

:

0 if 0 � x � 1

1 if 1 < x � 2

+1 if x =2 [0; 2℄:

Then, it is 
lear that H(epi(f

n

); epi(f)) � 1=n; therefore f

n

D

e

-
onverges to

f: On other hand, for � = 1 we have ff

n

< 1g = [0; 2) whereas ff < 1g =

[0; 1℄; therefore H(ff

n

< 1g; ff < 1g) = 1 for all n 2 N : Thus

D(f; f

n

) = sup

�>0

H(ff < �g; fg < �g)

� H(ff < 1g; ff

n

< 1g)

= 1

for all n 2 N : Consequently, f

n

does not 
onverges to f in D-pseudometri
.
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Remark 6.3. We note that in Example 6.1 the �-level sets of f

n

and f are not

bounded subsets of R, whereas in Example 6.2 the �-level sets of f

n

and f are

bounded subsets of R. Also, it is important to remark that, in the �rst 
ase, the

limit fun
tion f has no proper lo
al minimum points whereas, in the se
ond 
ase,

the limit fun
tion f possesses proper lo
al minimum points.

Theorem 6.4. Let f

n

; f 2 R(X) be. Then, f

n

D

! f implies f

n

D

e

-
onverges to f .

Proof.

If we suppose that f

n

D

! f then given � > 0 there exists N 2 N su
h that

D(f

n

; f) = sup

�>0

H(ff < �g; fg < �g) < �;

for all n � N: Now, if (y; �) 2 epi(f

n

) we have f

n

(y) < � whi
h implies y 2

ff

n

< �g: On other hand, as

H(ff

n

< �g; ff < �g = max

(

sup

x2ff

n

<�g

d (x; ff < �g) ; sup

z2ff<�g

d (z; ff

n

< �g)

)

< �

we 
on
lude that

sup

x2ff

n

<�g

d (x; ff < �g) < �

and, 
onsequently, d (y; ff < �g) < �:

Therefore, there exists z 2 ff < �g su
h that ky � zk < �: Thus, (z; �) 2

epi(f) and

�((y; �); (z; �)) = ky � zk < �;

whi
h implies that d((y; �); epi(f)) < �: As (y; �) is arbitrary in epi(f

n

) we obtain

sup

(y;�)2epi(f

n

)

d ((y; �); epi(f)) � �:

In a similar way, we 
an prove that

sup

(x;�)2epi(f)

d ((x; �); epi(f

n

)) � �;

whi
h implies that H(epi(f

n

); epi(f)) � � for all n � N and, 
onsequently, f

n

D

e

-
onverges to f . �
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7. D

E

-CONVERGENCE AND L-CONVERGENCE

In order to establish a type of reverse impli
ation of above Theorem 6.4 we need to

introdu
e the 
on
epts of \Kuratowski 
onvergen
e" of sets and D

E

-
onvergen
e

and L-
onvergen
e on F(X); and for this, we shall work with non-stri
t epigraphs

and levels.

Definition 7.1. Let fA

n

g

n2N

be a sequen
e of subsets in P

0

(X): De�ne

lim inf A

n

= fx 2 X= x = lim

n!1

x

n

; x

n

2 A

n

; 8ng

lim sup A

n

= fx 2 X= x = lim

k!1

x

n

k

; x

n

k

2 A

n

k

; 8kg

If lim inf A

n

= lim sup A

n

= A; then we say A is the limit of the sequen
e

fA

n

g

n

and the sequen
e fA

n

g

n


onverges to A (in the Kuratowski sense), and we

write A = lim A

n

(or A

n

K

! A).

Proposition 7.2. If fA

n

g

n

is a sequen
e of subsets in P

0

(X), then

i) lim inf A

n

� lim sup A

n

;

ii) lim inf A

n

and lim sup A

n

are 
losed subsets of X;

iii) lim inf A

n

= lim inf A

n

and lim sup A

n

= lim sup A

n

;

iv) lim sup A

n

=

1

T

n=1

S

k�n

A

k

;

iv) lim inf A

n

=

T

F

S

k2F

A

k

; where F denotes an arbitrary 
o�nal subset of

N and the interse
tion is over all su
h F:

For more details see [7,10℄.

Remark 7.3. We re
all that F is a 
o�nal subset of N if 8n 2 N ; 9m 2 F su
h

that m > n:
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Proposition 7.4.([6℄). Let fA

n

g

n

be a sequen
e of subsets in P

0

(X) and suppose

that there exists a 
ompa
t set K � X su
h that A

n

; A � K for all n 2 N : Then

A

n

H

! A if and only if

lim sup A

n

� A � lim inf A

n

:

Definition 7.5. If f 2 F(X) then we de�ne

Epi(f) = f(x; �)= f(x) � �g:

Definition 7.6. If f 2 F(X) then we de�ne L

�

f = fx 2 X= f(x) � �g:

Remark 7.7. It is well known that, if f 2 F(X); then Epi(f) is 
losed i� L

�

f is


losed (see [1℄).

Proposition 7.8.([1, Theor. 3.3℄). If f 2 F(X) then f is robust if and only if

Epi(f) is robust.

Definition 7.9.(L-
onvergen
e). If f

n

; f 2 F(X) then we said that f

n

L-


onverges to f (for short: f

n

L

! f) i� L

�

f

n

K

! L

�

f; 8� > 0:

Definition 7.10.(D

E

-
onvergen
e). If f

n

; f 2 F(X) then we said that f

n

D

E

-


onverges to f (for short: f

n

D

E

! f) i� Epi(f

n

)

K

! Epi(f):

Remark 7.11. We want to observe that in Examples 6.1 in above se
tion, the

limit fun
tion f is lower semi
ontinuous (i.e., Epi (f) is 
losed) and f

n

D

E

! f: Also,

in this 
ase, we have f

n

L

! f:

Example 7.12. Consider f

n

; f : R ! [0;+1℄ de�ned by

f

n

(x) =

8

<

:

0 if 0 � x � 1

1

n

(1� x) + 1 +

1

n

if 1 < x � 2

+1 if x =2 [0; 2℄:

f(x) =

8

<

:

0 if 0 � x � 1

1 if 1 < x � 2

+1 if x =2 [0; 2℄:
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Then, it is 
lear that Epi(f) is 
losed and

Epi(f) = [0; 1℄� [0;+1℄ [ (1; 2℄� [1;+1℄

=

1

\

n=1

[

k�n

Epi(f

k

);

therefore f

n

D

E

-
onverges to f: On other hand, for � = 1 we have L

1

f =

[0; 2℄ whereas L

1

f

n

= [0; 1℄ [ f2g and, 
onsequently, H(L

1

f

n

; L

1

f) = 1 for all

n 2 N : Thus, be
ause L

1

f

n

and L

1

f are 
ontained in [0; 2℄ whi
h is a 
ompa
t

subset of R then, due Proposition 7.4, L

1

f

n

does not 
onverges (in the Kuratowski

sense) to L

1

f; and this implies that f

n

does not L-
onverges to f:

Summarizing, we have the following result:

Theorem 7.13. Let f

n

; f 2 R(X) be with Epi(f) 
losed and suppose that f has

no proper lo
al minimum points. Then, the following 
onditions are equivalents:

i) f

n

L

! f

ii) f

n

D

E

! f

Proof.

i)!ii). In order to prove that f

n

D

E

! f; it is suÆ
ient to show that

lim sup Epi(f

n

) � Epi(f) � lim inf Epi(f

n

):

Let (x; �) 2 lim sup Epi(f

n

): Then

(x; �) 2

\

p�1

[

k�p

End(f

k

) : (3)

If we suppose that f(x) > �; then there exists � > 0 su
h that f(x) > � + � >

�: So, due f

n

L

! f; we obtain that x =2 L

�+�

f =

T

p�1

S

k�p

L

�+�

f

k

: This implies

that 9p

0

su
h that x =2

S

k�p

0

L

�+�

f

k

and, therefore, there exists a neighborhood

U(x) = U of x su
h that

U \ [

[

k�p

0

L

�+�

f

k

℄ = ;: (4)
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Now, we assure that [U � (0; �+ �)℄ \ [

S

k�p

0

Epi(f

k

)℄ = ;: In fa
t,

(y; �) 2 U� (0; �+ �)\ [

[

k�p

0

Epi(f

k

)℄)

�

� < � + � and

9k

0

� p

0

su
h that (y; �) 2 Epi(f

k

0

):

Therefore, f

k

o

(y) � � < � + �:: But, due (4), y 2 U implies y =2

S

k�p

0

L

�+�

f

k

:

That is, f

k

(y) > � + �; 8k � p

0

; whi
h is absurd.

Thus, U � (� � �;1) is an open in the produ
t topology whi
h noninterse
ting

S

k�p

0

Epi(f

k

):

So, be
ause (x; �) 2 U(x)� (0; �+ �); we obtain that (x; �) =2

S

k�p

0

Epi(f

k

):

Therefore, (x; �) =2

T

p�1

S

k�p

Epi(f

k

); in 
ontradi
tion with (3). So, must be f(x) �

� and, 
onsequently, (x; �) 2 Epi(f):

On the other hand, let (x; �) 2 Epi(f): Then f(x) � � and, due f

n

L

! f; we

obtain that

x 2 lim sup L

�

f

n

=

\

F

[

k2F

L

�

f

k

: (5)

If we suppose that (x; �) =2 lim inf Epi(f

n

); then there exists F

0


o�nal su
h

that (x; �) =2

S

k2F

0

Epi(f

k

):

Therefore, there exists a neighborhood V of (x; �) su
h that

V \ [

[

k2F

0

Epi(f

k

)℄ = ;: (6)

Without loss of generality, we 
an to suppose that V is a basi
 open of the

produ
t topology, that is, V = U � (�; �) where U is an open in X and (�; �) is

an open interval in R

+


ontaining �: We note that if y 2 U; then V = U �

(�; �) 
ontaining the segment fyg � (�; �):

Now, we assure that the proje
tion p

X

(V ) is an open set in X whi
h noninterse
t-

ing

S

k2F

0

L

�

f

k

(we re
all that p

X

is an open mapping). In fa
t, if we suppose that

p

X

(V ) \ [

S

k2F

0

L

�

f

k

℄ 6= ;; then there exists y 2 p

X

(V ) su
h that f

k

0

(y) � �; for

some k

0

2 F

0

:

Therefore, y 2 U and there is � � � su
h that (y; �) 2 V = U � (�; �):
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But then, (y; �) 2 V \ Epi(f

k

0

) � V \ [

S

k2F

0

Epi(f

k

)℄; in 
ontradi
tion with (6).

Thus, be
ause p

X

(V ) \ [

S

k2F

0

L

�

f

k

℄ = ; and x 2 p

X

(V ); we 
on
lude that x =2

S

k2F

0

L

�

f

k

whi
h, due (5), is absurd.

Summarizing, we must have (x; �) 2 lim inf Epi(f

n

):

Therefore, lim Epi(f

n

) = Epi(f); whi
h implies that f

n

�

! f; 
ompleting the �rst

part of our proof.

ii)!i): In order to prove that f

n

L

! f; it is suÆ
ient to show that

lim sup L

�

f

n

� L

�

f � lim inf L

�

f

n

; 8� > 0:

For this, let � 2 [0;1) be and suppose that

x 2 lim sup L

�

f

n

=

1

\

n=1

[

k�n

L

�

k

f: (7)

If f(x) > �; then (x; �) =2 Epi(f) =

1

T

n=1

S

k�n

Epi(f

k

):

Therefore, 9n

0

su
h that(x; �) =2

S

k�n

0

Epi(f

k

):

Consequently, there exists a neighborhood V of (x; �) su
h that

V \ [

[

k�n

0

Epi(f

k

)℄ = ;: (8)

Also, without loss of generality, we 
an suppose that V is an basi
 open of

the produ
t topology, that is, V = U � (�; �): But then, the proje
tion U =

p

X

(V ) is a neighborhood of x whi
h noninterse
ting

S

k�n

0

L

�

f

k

: In fa
t, if y 2

U \

S

k�n

0

L

�

f

k

then there exists � � � su
h that (y; �) 2 V; and 9k

0

� n

0

su
h

that f

k

0

(y) � � � �; that is, (y; �) 2 Epi(f

k

0

):

Thus, (y; �) 2 V \[

S

k�n

0

Epi(f

k

)℄ whi
h 
ontradi
ts (8). So, U\[

S

k�n

0

L

�

f

k

℄ = ; but,

be
ause x 2 U; we 
on
lude that x =2

S

k�n

0

L

�

f

k

; in 
ontradi
tion with (7).

Hen
e f(x) � � and, 
onsequently, x 2 L

�

f: Therefore, lim sup L

�

f

n

� L

�

f:
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On the other hand, let x 2 L

�

f be and suppose that f(x) < �: Then there is

� > 0 su
h that f(x) < �� �: So, due f

n

�

! f; we have

(x; �� �) 2 Epi(f) = lim inf Epi(f

n

) =

\

F

[

k2F

Epi(f

k

): (9)

Now, if we suppose that x =2 lim inf L

�

f

n

; then 9F

0


o�nal su
h that x =2

S

k2F

0

L

�

f

k

and, therefore, 9U = U(x) su
h that

U \ [

[

k2F

0

L

�

f

k

℄ = ;: (10)

We assure that [U � (0; �)℄\

S

k2F

0

Epi(f

k

) = ;:

In fa
t, if (y; �) 2 [U � (0; �)℄\

S

k2F

0

Epi(f

k

) then f

k

0

(y) � � � � for some

k

0

2 F

0

; and this implies y 2 U \ L

�

f

k

0

� U \ [

S

k2F

0

L

�

f

k

℄; in 
ontradi
tion with

(10).

Thus, be
ause (x; ���) 2 U�(0; �); we obtain that (x; ���) =2

S

k2F

0

Epi(f

k

) and,

therefore, (x; �� �) =2 lim inf Epi(f

n

) = Epi(f) whi
h, due (9), is absurd.

So, ne
essarily, we must have x 2 lim inf L

�

f

n

and, 
onsequently, ff < �g is


ontained in lim inf L

�

f

n

:

Finally, we observe that:

a) Epi(f) 
losed i� f lower semi
ontinuous (i:e: : L

�

f = ff � �g 
losed, 8�)

b) If f is a lower semi
ontinuous and robust fun
tion in F(X) then, due Theor.

4.2, the 
ondition \f has no proper lo
al minimum points" is equivalent to

ff � �g = Intff < �g; 8�:

Thus, be
ause f has no proper lo
al minimum points, lim inf L

�

f

n

is 
losed and ff <

�g � lim inf L

�

f

n

, we have

ff < �g � lim inf L

�

f

n

) ff < �g � lim inf L

�

f

n

) Intff < �g � lim inf L

�

f

n

) L

�

f � lim inf L

�

f

n

:
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Consequently, f

n

L

! f and the proof is 
omplete.�

Remark 7.14. The Example 7.12 shows that the 
ondition \f has no proper

lo
al minimum points" in above Theorem 7.13 
an not avoided.

Remark 7.15. If f 2 F(X) we say that f is level 
ontinuous if

�

p

! �) L

�

p

f

K

! L

�

f; 8� > 0:

There exists an interesting 
onne
tion between level-
ontinuity and existen
e of

proper lo
al minimum points and the following result is the dual version for lower

semi
ontinuous fun
tions obtained by the author in [4℄ for upper semi
ontinuous

fun
tions (
ompare with Remark 4.5 (b) in this paper):

If f 2 F(X) is a lower semi
ontinuous fun
tion; then are equivalents:

i) f has no proper lo
al maximum points

ii) ff � �g = ff < �g; 8 � > 0:

iii) f is level-
ontinuous.
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