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Abstract- Recently Zheng [1,2], in the setting of global optimization, intro-
duced the concepts of robust set and robust function as a generalization of open
set and upper semicontinuous (u.s.c) function, respectively. The aims of this pa-
per are to study the structure of robust sets defined on a normed space X as well
as to extend some multivalued convergence results obtained by the author in [3,4]
and Greco et al. [6] for semicontinuous functions to the class of robust functions.
More precisely, we introduce the concepts of level-convergence and epigraphic
convergence on R(X), the space of nonnegative robust functions on a normed
space X and, on one hand, we study its properties and relationships, and on the
other, we present some results on level-approximation and epi-approximation of
functions by using convolution of robust functions.

Keywords- Normed spaces, robust sets, Hausdorff pseudometric, Kuratowski
limits, Level-convergence, Convolution of functions.

1. INTRODUCTION

The study of level convergence, hypographic convergence and epigraphic conver-
gence of functions and its applications has been done by many authors, includ-
ing Roman-Flores [3,4,5] in the setting of convergence of fuzzy sets on finite-
dimensional spaces, level-convergence of functions on regular topological spaces
and compactness of spaces of fuzzy sets on a metric space, respectively, Greco et
al. [6] in variational convergence of fuzzy sets on metric spaces and Attouch [7]
in calculus of variations.

The principal tools of this convergence are based in the Hausdorff metric
and Kuratowski limits, and one of the most important properties of the hypo-
convergence (epi-convergence) is the preservation of maximum (minimum) points
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in hypo-convergent (epi-convergent) sequences of functions. This explains the
success of these convergence schemes in global optimization theory, see [7].

The aims of this paper are, on one hand, to study structural properties of
robust sets and robust functions on a normed space X, and on the other, to
study several types of convolution of functions and its applications to level-
approximation of functions. In particular, we study some connections between
level-convergence and epi-convergence of robust functions.

This paper is organized as follows. In Section 2, we give the basic material that
will be used in the article. In Section 3, we introduce the concept of inf-convolution
of functions and its applications to level-approximation of functions (approxima-
tion in D-pseudometric). In this direction we prove that (R(X), D) the space of
robust functions on X, is a dense subspace of (F(X), D), the space of nonnegative
functions with non-empty levels on X. In Section 4, we give a characterization for
the existence of proper local minimum points of robust functions. In Section 5,
we introduce the concept of sum-convolution of functions and its applications to
epi-approximation of functions (approximation in D.-pseudometric). In this con-
text we prove that (R.(X), D.) the space of epi-robust functions on X, is a dense
subspace of (F(X), D,). In Section 6 we prove that, in general, D-convergence is
stronger than D.-convergence on F(X). Finally, in Section 7, we prove the equiv-
alence between L-convergence and Dg-convergence of functions on R(X), under
condition of level-continuity of the limit function. Furthermore, some examples
and applications are presented.

2. PRELIMINARIES

In the sequel, X will be assumed to be a normed vector space.
DEFINITION 2.1 ([1]). A set A C X is said to be robust iff A= IntA.

REMARK 2.2. We observe that an open set is robust. Actually, the concept of
robustness is a generalization of that of openness.

We recall that if A,B C X, then A+ B ={a+b/ a € A, b € B}, with the
convention A +0 =0+ A = 0.
An important class of robust sets is the family of convex subsets of X.



PROPOSITION 2.3.([8]). Let K be a conver subset of a normed space X. The
closure K of K and the interior IntK of K are conver. Moreover, if IntK #
0, then K = IntK and IntK = IntK.

As a direct consequence of the above result we obtain

COROLLARY 2.4. Let K be a conver subset of a normed space X with IntK #
(0. Then K is robust.

PROPOSITION 2.5(/8, pp.62, Proposition 5]). Let A and B be two nonempty
subsets of X. If A is open, then A+ B is open.

COROLLARY 2.6([9]). Let A and B be nonempty sets in X. If intA # 0 then
intA+ B Cint(A+ B).

THEOREM 2.7. Let A and B be subsets in X. Then

i) If A is robust then A+ B is robust.

i) AA is robust, YA > 0.

PROOF.
i) We have the following cases
a)If A=0 or B=0{then A+ B = is robust
b) If A # () and B # () then it is clear that Int(A + B) C A+ B. On other hand,
if z € A+ B then there exists a sequence (a,+b,) C A+ B such that a, +b, — =.
Because a, € A C A = IntA then, for each n € N, there exists a sequence
(an;) C IntA such that
-le QAni = Qp.-
Thus, if € > 0 is given we can construct a subsequence (ay,;,) C IntA such that
| an — an;, |< €/2, ¥n. So, we have that the sequence a,;, + b, € IntA+ B and

| a+b— (an, +bu) |[<|a+b—(an+by) |+ | an+ by — (ani, +bn) |
< Ja—ap |+ |b=by |+ |an—an, |<e€

for every n sufficiently large.
Therefore, due Corollary 2.6, a +b € IntA + B C int(A + B).
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So, A+ B = Int(A + B) and A + B is robust.

ii) A straightfoward calculus shows that

a) M = MA, for every real number \ # 0 and

b) AMntA = Int(AA), for every real number A > 0.
Thus, if A is a robust set and A > 0 then

M = M = \TntA = MntA = Tnt()\A).

Therefore A\A is robust and the proof is completed. |
3. CONVOLUTION OF ROBUST FUNCTIONS

The concept of robust functions has been studied by many authors in the set-
ting of global optimization, including Zheng [1,2]. Also, in [2, Prop. 2.4] the
author shows that a bounded robust function can be uniformly approximated by
a sequence of robust step functions.

Our main result in this section is to show a level-approximation result for
robust functions by using $7-convolution. More specifically, we will prove that the
space of robust functions is a dense subspace of (F(X), D).

DEFINITION 3.1. An extended pseudometric on Z is a function p : Z X Z —
[0, 0] such that

(i) plz,y) <plx,2) +p(2,y), for al z,y,z in Z;

(i) plz,y) = ply, ), for all z,y in Z;
(iii) p(xz,x) =0, for all z in Z.

Let P(X) = {A/ A C X} and Po(X) = {4 € P(X)/ A # 0}. It A €
Po(X) we define the “e-dilatation of A” as the set

N(A,e) = {z € X/ d(z, A) < €},

where d(z, A) =inf ||z — al|.
a€A



If A, B € Py(X) define
H(A,B)=inf{e >0/ AC N(B,e) and B C N(A,¢€)},

where, as usual, inf() = +oo.
Thus, we allow +o00 as a possible value for H.

PROPOSITION 3.2. ([10]). H is an extended pseudometric on Py(X).
REMARK 3.3. An equivalent formula for H (see [8]) is given by

H(A, B) = max {Sup d(a, B), sup d(b, A) } .

acA beB

H is called the Hausdorff extended pseudometric on Py(X) derived from the norm.

REMARK 3.4. If X is a Banach space and
B(X) ={A € Py(X)/A is closed and bounded}

then (B(X), H) is a separable and complete metric space and, in this case, H is
called the Hausdorff metric on B(X) (see [10]).

PROPOSITION 3.5. ([10]). If Ay, As, Bi, By € Po(X) and A > 0 then
1) H()\Al,)\Bl) == )\H(Al,Bl),

Let F(X) ={f: X = [0,00] / {f < a} € Po(X), Ya > 0} and define the
class of non-negative robust function on X as

R(X)={feFX)/{f <a}isrobust, Va > 0}.

where {f < a} = {z € X/ f(z) < a} is the a-level of f.

REMARK 3.6. We observe that, due Remark 2.2, an u.s.c. function is robust, so
is a continuous function.



If f,g€ F(X) we can define a generalized Hausdorff extended pseudometric by
mean

D(f,9) =sup H({f <a},{g <a}).

DEFINITION 3.7. Let f and g be in F(X). Then, the inf-convolution is defined
by
[f Agl(x) =Inf {f(x—y) Vg(y)}

yeX

where V =maximum.

Several important applications justify the study of A-convolution (see [11,12]).

PROPOSITION 3.8.(Rockafellar [11, p. 40]). Let f and g in F(X). Then, for all
a >0, one has

{fAag<at={f<a}+{g<al
As a direct consequence of Theorem 2.7 and Proposition 3.8, we obtain

PROPOSITION 3.9. Let f and g be in F(X) and suppose that f is robust. Then
f A\ g is robust.

THEOREM 3.10. For each f € F(X) there exists a sequence (f,) € R(X) such

that D(f, f,) <1/p for p=1,2,....
PROOF.

Let g, = Igio.1/» the indicator function of the closed ball B|0,1/p]|, i.e. :
p [ ) /p]

; (2) = 0 if =€ B[0,1/p]
B\ =\ 400 it ¢ BJO,1/p].

Then {g, < a} =BI[0,1/p], Ya > 0. Therefore, due convexity of B[0,1/p] and
Corollary 2.4, we have that g, is robust for every p € N.

Now, let f, = g, A f be. Then, due Proposition 3.9, f, is robust for each
p € N and

H{f < o} {fp<a})=H{[f <a},{g <a}+{f <a})
= H{0} +{f <a},{g <a}+{f <a})



< H({0},{gy < o)) + H(Lf < a},{f < a}) (by Prop35)
H({0}, B[0,1/p])
= 1/p.

So, taking supremum in o > 0, we obtain D(f, f,) < 1/p, for every p, and the
proof is complete. [ |

COROLLARY 3.11. (R(X), D) is a dense subspace of (F(X), D).

4. ROBUSTNESS AND PROPER LOCAL MINIMUM POINTS

In this section we shall prove a characterization, via level sets, of non-existence
of proper local minimum points for robust functions. This result generalize an
analogous ones for upper semicontinuous functions obtained for the author in
[3,4].

DEFINITION 4.1. If f: X — [0,00] is a function in F(X), then zo € X is said

to be a proper local minimum point of f if f(xo) > 0 and there is a neighborhood
U at xqg such that f(xg) < f(x), for every x € U.

THEOREM 4.2. Let f € F(X) be a robust function. Then are equivalents:

i) [ has no proper local minimum. points,

i) {f <a}=Int{f <a}l.

PROOF.

i1) — 1i). Suppose that z, is a proper local minimum point of f. Then f(zy) >
0 and there is a neighborhood U at xy such that 0 < ag = f(zo) < f(z), for
every ¥ € U. So, g € {f < ag} and U N {f < ap} = 0. Consequently, z, €

{f < ao}\ {f <ao}.
But, due robustness of f, {f < ap} = Int{f < «ap}, therefore

zo € {f < apf\Int{f < ap}.

i) — ii). Suppose that there exists ag > 0 such that {f < ap} # Int{f < a}.




Then, due robustness of f, {f < ag} # 0. In fact,

{ffat=0={f<a}C{f<a}=0={f<a}=0

which is impossible due {f < ag} € Py(X).
Moreover,

{f=a}=0 = {f<a}={f<ao}
= {f<a}={f <}
= {f<ap} =Int{f <} (due f € R(X))

in contradiction with our hypothesis.

Therefore, must be {f = ag} # (). Consequently, there exists 7o € X such that
f(xo) = ap and o & Int{f < ap} = {f < ap}. So, there exists a neighborhood U
of g such that UN{f < ag} = 0 which implies that f(z) > ag = f(xg) for every
zeU.

Therefore xqy is a proper local minimum point of f and the proof is complete. W

REMARK 4.3. We observe that, under conditions of Theor. 4.2., any local mini-
mum of f is a global minimum.

EXAMPLE 4.4. Consider the function f : R — [0, +0o0] as

0 if <0
oz if 0<z<l1
F@) =197 if 1<z<?2
r—1 if x>2.

Then it is clear that, due continuity, f is a robust function. Furthermore, x is
a proper local minimum point for every = € (1,2]. On other hand, for the level
a=1we have {f <1} = {f <1} =10,2], whereas

{f<1}=[0,1) = Int{f <1}=(0,1)
= Int{f <1} =10,1].

Therefore {f <1} # Int{f < 1}.



REMARK 4.5. In relation to Theor. 4.2, analogous optimization results have been
obtained for a more restricted class of functions. For instance:

(a) Martinez-Legaz [13, Cor. 2.19, p. 117): “If X = R then the function f €
F(X) is upper semicontinuous and has no local maximum points in its domain if
and only if {f < a} = int{f < a}, for every o > 0".

(b) Roman-Flores et al. [4]: “If X is a regular topological space and f € F(X)

is an upper semicontinuous function with sup f(x) = M, then are equivalents:
reX

i) f is without proper local maximum points
i) {f>a}={f>a}, YVae (0,M).
iii) f is level-continuous.

We recall that an upper semicontinuous function f € F(X) is level-continuous
if, and only if,

ap =~ a=H{f>a,} > H{f>a}), for every a € <0, sup f(:r;))

zeX
5. EPI-APPROXIMATION OF ROBUST FUNCTIONS

Analogously to the methods developed in Section 3 for approximation of robust
functions via level sets and A-convolution, we can to approximate robust functions
via its epigraphs (epi-convergence). The fundamental variational property of epi-
convergence can be established as follows: If f,, f: X = R, n = 1,2,..., is
a sequence of real (extended) functions which satisfies the condition that there
exists a relative compact subset K of X such that, for every n =1, 2, ...,

inf fo(z) =inf fo(x),

reX reK
then f = epi — lim f, implies

inf fo(x) —inf f(x) as n — oo,
reX zeX

and every cluster point z of a minimizing sequence (z,, € Argmin f,, n =
1,2,...) minimizes f, where Argmin f = {y/ f(y) <inf f}. For details see [7].

9



DEFINITION 5.1. Let f € F(X) be. The epigraph of f is defined by

epi(f) = {(z,0) € X x [0, +0]/ f(2) < a}.

REMARK 5.2. If f(z) = 400 then, as a direct consequence of above definition we
obtain (z,a) ¢ epi(f), for any « € [0, +00].

DEFINITION 5.3. Let f and g be in F(X). Then, the sum-convolution is defined
by
(fBg)(x) =Inf {f(x—y)+9(y)}-

yeX
PROPOSITION 5.4. Let f and g in F(X). Then,

epi(fOg) = epi(f) + epi(g).

(For details, see [8], [11, [12]).

Let R.(X) be the class of all f in F(X) such that epi(f) is robust in the
product space X x [0,+00] endowed with the topology induced by the usual
metric

p((w,a), (y, ) = mazfllz —yll,| o = 5 [}.

If f € Re(X) then we say that f is epi-robust.
The next proposition shows that every robust function has a robust epigraph.

THEOREM 5.5. R(X) C R.(X).

PROOF.

Let f € R(X) be. It is sufficient to show that epi(f) C Int epi(f).

In fact, if (z,«) € epi(f) then there exists a sequence ((zn,a;)) C epi(f) such
that lim (xp, ay) = (z,a) as n — oco. Therefore f(x,) < a, and, due robustness

of f,

zn, € {f <an} C{f <an}=Int{f <a,}, ¥n.

Thus, for each n € N there exists a sequence (x,;) C Int{f < «,} such that
lim x,, — x,. Thus, for each n we can choose i,, with 7, < 4,1, such that
1— 00
|xn — xpi, || < 27" for every n. So,

|z — Zni, || < |2 — 2u|| + |20 — 2ns, || — 0 as n — oo.
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On other hand, due f(x,;,) < «, for every n, we can construct a sequence
(€n) such that €, — 0, 0 < €, < ay, B(zpi,,€,) C Int{f < oy} and f(xy;,) <
ap — €, <, Vn.

We claim that B ((wp;,, on + €,), €,) C epi(f). In fact,

(z,A) € B((zni,,an + €n),€,) = max{||z — zpi, ||, | A — (an + €,) |} < €.

Then:
a) ||z — Tpi || < €n = 2 € Blxp,, ) C Int{f < an} = f(2) < ay.
b) [ A—(an+6) |< €= —€n <A —(a +€6,) = a, <\
So, from a) and b) we obtain f(z) < A, that is to say (z,\) € epi(f) and,
consequently, (Z,i, , @, + €,) € Int epi(f) for every n.
Finally, due 7{@_@0 (s, , O + €,) = (2, @), we conclude that (z,a) € Int epi(f). R

The following example shows that, actually, the inclusion in above theorem is
proper.

EXAMPLE 5.6. Let z9 € X be and f = xy,,, the indicator function of {z,}, i.e.:

1 it xz=ux
X(wo} (%) = 0 if xz+# x.
Then
if a>1

X
{f:X{x0}<CY}:{ {zo} if O0<a<l.

Thus, if 0 < ap < 1 we have {f < ap} = {0} and, consequently, Int{f < a} =
() whereas {f < a} = {z¢}. Therefore f is not a robust function.

Nevertheless, epi(f) = X \ {zo} x (0, +00] U {xp} x (1, +00] which is a robust set
in the product space X x [0, +00].

PROPOSITION 5.7. Let f € F(X) be and g € Re(X). Then fOg € R (X).
PROOF.

By Proposition 5.4 we have epi(fOg) = epi(f) + epi(g), and on other hand, due
robustness of epi(g) then, by Theor. 2.7 we obtain fOg € R.(X). |

Now, if f,g € F(X) we can define an epi-generalized Hausdorff extended pseu-
dometric by mean

D.(f,g) = H(epi(f), epi(g)),
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where H is the generalized Hausdorff extended pseudometric induced by the dis-
tance p on the product space X x [0, +oc].

Our main result in this section is to show an epi-approximation result on F(X) by
using O-convolution. More specifically, we will prove that the space of epi-robust
functions is a dense subspace of (F(X), D,).

THEOREM 5.8. For each f € F(X) there ezists a sequence (f,) € Re(X) such
that D.(f, f,) <1/p forp=1,2,....
PROOF.
Consider the sequence (g,) defined as the indicator function of the closed ball
B[0,1/p], i.e.:

0 if z € B[0,1/p)
9(7) = { too if x ¢ B[0,1/p].

Then epi(g,) =B[0,1/p] x (0, +oc] which is a robust set and, consequently, g, €
Re(X), Vp. Now, defining f, = fOg,, due Proposition 5.7 and Proposition 5.4,
we have that f, € R.(X) and epi(f,) = epi(f) + epi(g,), respectively, for every
pe N

We claim that D.(f, f,) < 1/p, Vp.

In fact, if (z,«) € epi(f) then, because (0,1/p) € epi(g,), we obtain

(7,0 +1/p) € epi(f) + epi(gy) = epi(fy)-

Therefore
d((z,a),epi(f,)) = inf p((r,a),2)
z€epi(fp)
< p((z,a), (x,a+1/p)
_ 1
o
Thus,

sup  d((z,a),epi(fy)) < —. (1)
(z,)€epi(f)

Conversely, if (y,5) € epi(f,) then (y,8) = (y1,81) + (y2, B2), With (y1,5;) €
epi(f) and (y2, 5y) € epi(gy). So, due Remark 5.2, we observe that (ys,3,) €
epi(gp) implies y» € B[0,1/p] and, consequently, || y2|| < 1/p. On other hand,

=
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(y1, B,) € epi(f) implies f(y1) < B, therefore (y1, 8, + By + 1/p) € epi(f). Thus,

d((y,B),epi(f)) = inf p((y,B),2)

z€epi(f)
< p((y,8), (g1, By + By +1/p))
maz{||yz||, 1/p}
1/p.

IN

Thus,

sup  d((y,B),epi(f)) <
(y,8)€epi(fp)

Therefore, from (1), (2) and Remark 3.3 we obtain
De(fa fp) = H (epl(f)a epl(fp))
= max {( sup  d((z,a),epi(fy)),  sup d((y,ﬁ),epi(f))}

z,a)€epi(f) (y,B)€epi(fp)

SR

< 1/p,

and the proof is complete. [ |

COROLLARY 5.9. (R.(X), D,) is a dense subspace of (F(X), D,).

6. D-CONVERGENCE IS STRONGER THAN D,-CONVERGENCE

An interesting problem is to compare D-convergence and D,.-convergence on
F(X). This problem, in a more restricted context, has been studied in [3,4], where
the authors proves some results on equivalence of convergences for bounded an
upper semicontinuous functions (which are a particular case of robust functions).
The following examples shows that, in general, D-convergence and D,-convergence
are not equivalents.
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EXAMPLE 6.1. Consider f,, f : R — [0, +00) defined by

1
— if x¢[-1/n,1/n]
fal@)=q " 1 1
0 if ——<r<—
n n
f(z) =0, Vz € R.

Then f,, f are robust functions with epi(f,) = R\ [-1/n,1/n] x (1\n, +oo] U
[—1/n,1/n]x (0, 4+00] and epi(f) = Rx (0, +oc]. Also, because H (epi(fy), epi(f)) <
1/n, it is easy to see that f,, D.-converges to f. Nevertheless, for « = 1/n we have
{fn <1/n} =[-1/n,1/n] whereas {f < 1/n} = R. Therefore
D(f.fn) = sup H{f <o} {g <o})
> H{f <1/n},{fn <1/n})

= 40

for each n € N. Therefore, f,, does not converges to f in D-pseudometric.

EXAMPLE 6.2. Consider f,, f : R — [0, 00| defined by

0 if 0<z<1
falr) =% -1 +1-1 if 1<a<2
+00 if x¢][0,2].

0 if 0<z<1
fo)=4 1 if 1<z<2
+oo if x¢10,2].
Then, it is clear that H(epi(f,),epi(f)) < 1/n, therefore f, D.-converges to
f. On other hand, for &« = 1 we have {f, < 1} = [0,2) whereas {f < 1} =
0, 1], therefore H({f, < 1},{f <1}) =1 for all n € N. Thus

D(f. fn) = sup H{f <a},{g <a})

a>0

> H({f <1}, {f. <1}
= 1

for all n € N. Consequently, f, does not converges to f in D-pseudometric.
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REMARK 6.3. We note that in Example 6.1 the a-level sets of f,, and f are not
bounded subsets of R, whereas in Example 6.2 the a-level sets of f,, and f are
bounded subsets of R. Also, it is important to remark that, in the first case, the
limit function f has no proper local minimum points whereas, in the second case,
the limit function f possesses proper local minimum points.

D
THEOREM 6.4. Let f, f € R(X) be. Then, f, — f implies f, D.-converges to f.
PROOF.

D
If we suppose that f, — f then given € > 0 there exists N € N such that
D(fa, f) = sup H({f <o}, {g <a}) <,
a>

for all n > N. Now, if (y,3) € epi(f,) we have f,(y) < B which implies y €
{f. < B}. On other hand, as

H({fn<6}7{f<6} = max{ sup d(xa{f<6})a sup d(za{fn<6})}

ze{fn<B} ze{f<B}
< €

we conclude that

sup d(z, {f <B}) <e
ze{fn<B}

and, consequently, d (y, {f < 8}) < e.
Therefore, there exists z € {f < [} such that ||y — z|| < e. Thus, (z,05) €
epi(f) and
p((yaﬁ)a (zaﬁ)) = ||y - Z“ <€,
which implies that d((y, ), epi(f)) < €. As (y, §) is arbitrary in epi(f,) we obtain
sup  d((y,B),epi(f)) < e
(y.8)€epi(fn)
In a similar way, we can prove that
sup  d((z,),epi(fn)) <e,
(z,a)€epi(f)

which implies that H(epi(f,),epi(f)) < € for all n > N and, consequently, f,
D.-converges to f. |
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7. Dp-CONVERGENCE AND L-CONVERGENCE

In order to establish a type of reverse implication of above Theorem 6.4 we need to
introduce the concepts of “Kuratowski convergence” of sets and Dpg-convergence
and L-convergence on F(X), and for this, we shall work with non-strict epigraphs
and levels.

DEFINITION 7.1. Let {A,}, oy be a sequence of subsets in Py(X). Define

liminf A, = {x€ X/z=Ilim x,, x, € A,, Vn}
n—o0
limsup A, = {rxe€eX/zx :klgrgo Tpy, Tn, € An,, Vk}

If lim inf A, = lim sup A, = A, then we say A is the limit of the sequence
{An},, and the sequence {A,}, convergesto A (in the Kuratowski sense), and we
write A = lim A, (or A, 5 A).

PROPOSITION 7.2. If {A,}, is a sequence of subsets in Py(X), then
i) liminf A, Clim sup Ay;
ii) liminf A, and lim sup A, are closed subsets of X;

i) liminf A, = liminf A, and lim sup A, = lim sup A,;

i) lim sup A, = () U Ag;

n=1k>n

iv) lim inf A, = (U Ak, where F denotes an arbitrary cofinal subset of
F keF
N and the intersection is over all such F.

For more details see [7,10].

REMARK 7.3. We recall that F'is a cofinal subset of Nif Vn € N, dm € F such
that m > n.
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PROPOSITION 7.4.([6]). Let {A,}, be a sequence of subsets in Py(X) and suppose
that there exists a compact set K C X such that A,, A C K for all n € N. Then

A, oA if and only if
lim sup A, CACliminf A,.
DEFINITION 7.5. If f € F(X) then we define
Epi(f) ={(z, )/ f(z) < a}.
DEFINITION 7.6. If f € F(X) then we define Lnf ={z € X/ f(x) < a}.

REMARK 7.7. It is well known that, if f € F(X), then Epi(f) is closed iff L, f is
closed (see [1]).

PROPOSITION 7.8.([1, Theor. 3.3]). If f € F(X) then f is robust if and only if
Epi(f) is robust.

DEFINITION 7.9.(L-convergence). If f.,f € F(X) then we said that f, L-
converges to f (for short: f, £ ) iff Lafn LS Lof, Ya > 0.

DEFINITION 7.10.( Dg-convergence). If f,, f € F(X) then we said that f, Dg-
converges to f (for short: f, Dg ) iff Epi(fn) LS Epi(f).

REMARK 7.11. We want to observe that in Examples 6.1 in above section, the
limit function f is lower semicontinuous (i.e., Epi (f) is closed) and f, 2g £ Also,

. . I
in this case, we have f,, — f.

ExXAMPLE 7.12. Consider f,, f : R — [0, +00] defined by

0 if 0<z<1
fa@)=¢ L1-2)+14+1 if 1<a<2
+00 if x¢]0,2].

0 if 0<z<1
flz)=¢ 1 if 1<x<2
+oo if x¢10,2].

17



Then, it is clear that Epi(f) is closed and

Epi(f) = [0,1] x [0,+00] U (1,2] x [1, +00]

oo

= (U Epi(f).

n=1k>n

therefore f,, Dg-converges to f. On other hand, for « = 1 we have Lif =
[0,2] whereas Ly f, = [0,1] U {2} and, consequently, H(Lif,, L1f) = 1 for all
n € N. Thus, because L;f, and L, f are contained in [0, 2] which is a compact
subset of R then, due Proposition 7.4, L f, does not converges (in the Kuratowski
sense) to Ly f, and this implies that f,, does not L-converges to f.

Summarizing, we have the following result:

THEOREM 7.13. Let f,, f € R(X) be with Epi(f) closed and suppose that f has
no proper local minimum points. Then, the following conditions are equivalents:

i) fu D f
i) fo 5 f

PROOF. 5
i)—ii). In order to prove that f, = f, it is sufficient to show that
-

lim sup Epi(f,) C Epi(f) Clim inf Epi(fa).

Let (z,«) € lim sup Epi(f,). Then

(z,a) € (| End(fs) - (3)

If we suppose that f(z) > «, then there exists € > 0 such that f(z) > a+¢€ >
a. So, due f, L f, we obtain that © ¢ L,i.f = [ U Lasefe- This implies

p>1k>p

that Jpy such that x ¢ |J Lascfr and, therefore, there exists a neighborhood
k>po

U(x) = U of x such that

UN[ Lasefi] = 0. (4)

k>po

18



Now, we assure that [U x (0, +€)]N[ J Epi(fi)] = 0. In fact,
k>po

. B<a-+e and
(y,8) € Ux (0,a+e€)N| U Epi(fir)] = { ko > po such that (y, B) € Epi(fi,).

k>po

Therefore, fi,(y) < 8 < a+e.. But, due (4), y € U implies y ¢ |J Lot/
k>po
That is, fx(y) > a+ €, Yk > po, which is absurd.
Thus, U X (o — €,00) is an open in the product topology which nonintersecting

U Epi(fi)-
k>po
So, because (z,«) € U(x) x (0, + €), we obtain that (z,a) ¢ |J Epi(fr).
k>po
Therefore, (z,a) ¢ (| U Epi(fx), in contradiction with (3). So, must be f(z) >

p>1k>p
« and, consequently, (z,«) € Epi(f).
On the other hand, let (x,«) € Epi(f). Then f(z) < « and, due f, L f, we
obtain that

x € lim sup Lo fp, = ﬂ U Lo fe. (5)

F keF

If we suppose that (x,«) ¢ lim inf Epi(f,), then there exists F, cofinal such
that (z,0) ¢ U Epilfi).

keFy
Therefore, there exists a neighborhood V' of (x, ) such that

V[l Epi(fe)] =0. (6)
keF,
Without loss of generality, we can to suppose that V is a basic open of the
product topology, that is, V' = U x (#,n) where U is an open in X and (#,7) is
an open interval in R*containing . We note that if y € U, then V = U x
(6,n) containing the segment {y} x (6, 7).
Now, we assure that the projection px (V') is an open set in X which nonintersect-

ing |J Lafk (we recall that px is an open mapping). In fact, if we suppose that
ke Fy

px(V)N[ U Lafi] # 0, then there exists y € px(V) such that fi,(y) < a, for
ke Fy
some ko € Fy.

Therefore, y € U and there is 5 > « such that (y,5) € V. =U x (0,n).
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But then, (y,5) € VN Epi(fr,) CV N[ J Epi(fr)], in contradiction with (6).

ke Fy
Thus, because px(V) N[ U Lafi] = 0 and = € px(V), we conclude that z ¢
ke Fy
U Lafr which, due (5), is absurd.
keFy

Summarizing, we must have (z,«) € lim inf Epi(f,).

Therefore, lim Epi(f,) = Epi(f), which implies that f, I f, completing the first
part of our proof.

ii)—i). In order to prove that f, L £, it is sufficient to show that
lim sup Lo f, € Lof Climinf Lo fn, Ya > 0.

For this, let a € [0, 00) be and suppose that

x € lim sup Lo f, = ﬁ ULakf- (7)

n=1k>n

If f(x) > «, then (z,a) ¢ Epi(f) = ﬁ U Epi(fk)-

n=1k>n
Therefore, Ing such that(z,a) ¢ | Epi(fi).
k>no
Consequently, there exists a neighborhood V' of (x, @) such that

VLl Epi(fi)] =0. (8)

k>no

Also, without loss of generality, we can suppose that V is an basic open of
the product topology, that is, V' = U x (6,n). But then, the projection U =
px(V) is a neighborhood of z which nonintersecting |J Lqfs.In fact, if y €
k>nop
UN U Laofr then there exists > « such that (y,3) € V, and Jky > ngy such
k>nop
that fko(y) Sa< 57 that iS, (yaﬁ) S Epi(fko)'
Thus, (y,3) € VN[ U Epi(fx)] which contradicts (8). So, UN[ |J Lafkx] = 0 but,
k>ng k>no
because = € U, we conclude that x ¢ |J Lqfx, in contradiction with (7).
k>nop
Hence f(z) < « and, consequently, = € L, f. Therefore, lim sup Lo fn, C Lo f-
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On the other hand, let © € L,f be and suppose that f(z) < a. Then there is
e > 0 such that f(z) < a —e€. So, due f, 5 f, we have

(x,0 =€) € Epi(f) = lim inf Epi(fa) = [ || Epi(f). (9)

F keF

Now, if we suppose that = ¢ lim inf L,f,, then 3F; cofinal such that = ¢
U Lafx and, therefore, 3U = U(x) such that

keFy

A Lafil = 0. (10)

ke Fy

We assure that [U x (0,)]N |J Epi(fr) = 0.
kEFy

In fact, if (y,5) € [U x (0,a)]n |J Epi(fi) then fr,(y) < f < « for some
keFy
ky € Fy, and this implies y € UN Lo fr, CU N[ |J Lafk], in contradiction with

keFy
(10).

Thus, because (x,a—¢) € U x (0, @), we obtain that (x,a—e€) ¢ |J FEpi(f;) and,
keFy

therefore, (x,ac — €) ¢ lim inf Epi(f,) = Epi(f) which, due (9), is absurd.

So, necessarily, we must have x € lim inf L.f, and, consequently, {f < «a} is

contained in lim inf Lq fp.

Finally, we observe that:

a) Epi(f) closed iff f lower semicontinuous (i.e. : Lo f = {f < a} closed, Va)

b) If f is a lower semicontinuous and robust function in F(X) then, due Theor.
4.2, the condition “f has no proper local minimum points” is equivalent to

{f <a} =Int{f < a}, Va.

Thus, because f has no proper local minimum points, lim inf L, f, is closed and {f <

a} Climinf Lgfn, we have
{f<a}Climinf Lof, = {f<a} Climinf Lufn

. Tni{f <a} C lim inf Lo,
= Lof Climinf Lafa.
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Consequently, f, L f and the proof is complete.ll

REMARK 7.14. The Example 7.12 shows that the condition “f has no proper
local minimum points” in above Theorem 7.13 can not avoided.

REMARK 7.15. If f € F(X) we say that f is level continuous if

ay = a= Lo f S Lyf, Va>0.

There exists an interesting connection between level-continuity and existence of
proper local minimum points and the following result is the dual version for lower
semicontinuous functions obtained by the author in [4] for upper semicontinuous
functions (compare with Remark 4.5 (b) in this paper):

If fe F(X)isalower semicontinuous function, then are equivalents:

i) f has no proper local maximum points
i) {f<a}={f<a}, Va>0.

iii) f is level-continuous.
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