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Abstrat- Reently Zheng [1,2℄, in the setting of global optimization, intro-

dued the onepts of robust set and robust funtion as a generalization of open

set and upper semiontinuous (u.s.) funtion, respetively. The aims of this pa-

per are to study the struture of robust sets de�ned on a normed spae X as well

as to extend some multivalued onvergene results obtained by the author in [3,4℄

and Greo et al. [6℄ for semiontinuous funtions to the lass of robust funtions.

More preisely, we introdue the onepts of level-onvergene and epigraphi

onvergene on R(X); the spae of nonnegative robust funtions on a normed

spae X and, on one hand, we study its properties and relationships, and on the

other, we present some results on level-approximation and epi-approximation of

funtions by using onvolution of robust funtions.

Keywords- Normed spaes, robust sets, Hausdor� pseudometri, Kuratowski

limits, Level-onvergene, Convolution of funtions.

1. INTRODUCTION

The study of level onvergene, hypographi onvergene and epigraphi onver-

gene of funtions and its appliations has been done by many authors, inlud-

ing Rom�an-Flores [3,4,5℄ in the setting of onvergene of fuzzy sets on �nite-

dimensional spaes, level-onvergene of funtions on regular topologial spaes

and ompatness of spaes of fuzzy sets on a metri spae, respetively, Greo et

al. [6℄ in variational onvergene of fuzzy sets on metri spaes and Attouh [7℄

in alulus of variations.

The prinipal tools of this onvergene are based in the Hausdor� metri

and Kuratowski limits, and one of the most important properties of the hypo-

onvergene (epi-onvergene) is the preservation of maximum (minimum) points
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in hypo-onvergent (epi-onvergent) sequenes of funtions. This explains the

suess of these onvergene shemes in global optimization theory, see [7℄.

The aims of this paper are, on one hand, to study strutural properties of

robust sets and robust funtions on a normed spae X, and on the other, to

study several types of onvolution of funtions and its appliations to level-

approximation of funtions. In partiular, we study some onnetions between

level-onvergene and epi-onvergene of robust funtions.

This paper is organized as follows. In Setion 2, we give the basi material that

will be used in the artile. In Setion 3, we introdue the onept of inf-onvolution

of funtions and its appliations to level-approximation of funtions (approxima-

tion in D-pseudometri). In this diretion we prove that (R(X); D) the spae of

robust funtions on X; is a dense subspae of (F(X); D); the spae of nonnegative

funtions with non-empty levels on X. In Setion 4, we give a haraterization for

the existene of proper loal minimum points of robust funtions. In Setion 5,

we introdue the onept of sum-onvolution of funtions and its appliations to

epi-approximation of funtions (approximation in D

e

-pseudometri). In this on-

text we prove that (R

e

(X); D

e

) the spae of epi-robust funtions on X; is a dense

subspae of (F(X); D

e

). In Setion 6 we prove that, in general, D-onvergene is

stronger than D

e

-onvergene on F(X). Finally, in Setion 7, we prove the equiv-

alene between L-onvergene and D

E

-onvergene of funtions on R(X), under

ondition of level-ontinuity of the limit funtion. Furthermore, some examples

and appliations are presented.

2. PRELIMINARIES

In the sequel, X will be assumed to be a normed vetor spae.

Definition 2.1 ([1℄). A set A � X is said to be robust i� A = IntA:

Remark 2.2. We observe that an open set is robust. Atually, the onept of

robustness is a generalization of that of openness.

We reall that if A;B � X, then A + B = fa + b= a 2 A; b 2 Bg, with the

onvention A+ ; = ;+ A = ;:

An important lass of robust sets is the family of onvex subsets of X.
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Proposition 2.3.([8℄). Let K be a onvex subset of a normed spae X. The

losure K of K and the interior IntK of K are onvex. Moreover, if IntK 6=

;; then K = IntK and IntK = IntK:

As a diret onsequene of the above result we obtain

Corollary 2.4. Let K be a onvex subset of a normed spae X with IntK 6=

;: Then K is robust.

Proposition 2.5([8, pp.62, Proposition 5℄). Let A and B be two nonempty

subsets of X: If A is open, then A+B is open.

Corollary 2.6([9℄). Let A and B be nonempty sets in X. If intA 6= ; then

intA +B � int(A +B):

Theorem 2.7. Let A and B be subsets in X. Then

i) If A is robust then A+B is robust.

ii) �A is robust, 8� > 0:

Proof.

i) We have the following ases

a) If A = ; or B = ; then A+B = ; is robust

b) If A 6= ; and B 6= ; then it is lear that Int(A +B) � A+B: On other hand,

if x 2 A+B then there exists a sequene (a

n

+b

n

) � A+B suh that a

n

+b

n

! x:

Beause a

n

2 A � A = IntA then, for eah n 2 N ; there exists a sequene

(a

ni

) � IntA suh that

lim

i!1

a

ni

= a

n

:

Thus, if � > 0 is given we an onstrut a subsequene (a

ni

n

) � IntA suh that

j a

n

� a

ni

n

j< �=2; 8n: So, we have that the sequene a

ni

n

+ b

n

2 IntA+B and

j a+ b� (a

ni

n

+ b

n

) j�j a+ b� (a

n

+ b

n

) j + j a

n

+ b

n

� (a

ni

n

+ b

n

) j

� j a� a

n

j + j b� b

n

j + j a

n

� a

ni

n

j< �

for every n suÆiently large.

Therefore, due Corollary 2.6, a + b 2 IntA+B � int(A +B):
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So, A+B = Int(A +B) and A+B is robust.

ii) A straightfoward alulus shows that

a) �A = �A; for every real number � 6= 0 and

b) �IntA = Int(�A), for every real number � > 0:

Thus, if A is a robust set and � > 0 then

�A = �A = �IntA = �IntA = Int(�A):

Therefore �A is robust and the proof is ompleted. �

3. CONVOLUTION OF ROBUST FUNCTIONS

The onept of robust funtions has been studied by many authors in the set-

ting of global optimization, inluding Zheng [1,2℄. Also, in [2, Prop. 2.4℄ the

author shows that a bounded robust funtion an be uniformly approximated by

a sequene of robust step funtions.

Our main result in this setion is to show a level-approximation result for

robust funtions by using 5-onvolution. More spei�ally, we will prove that the

spae of robust funtions is a dense subspae of (F(X); D):

Definition 3.1. An extended pseudometri on Z is a funtion p : Z � Z !

[0;1℄ suh that

(i) p(x; y) � p(x; z) + p(z; y); for all x; y; z in Z;

(ii) p(x; y) = p(y; x); for all x; y in Z;

(iii) p(x; x) = 0; for all x in Z:

Let P(X) = fA= A � Xg and P

0

(X) = fA 2 P(X)= A 6= ;g: If A 2

P

0

(X) we de�ne the \�-dilatation of A" as the set

N(A; �) = fx 2 X= d(x;A) < �g;

where d(x;A) =inf

a2A

kx� ak:
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If A;B 2 P

0

(X) de�ne

H(A;B) = inff� > 0= A � N(B; �) and B � N(A; �)g;

where, as usual, inf; = +1:

Thus, we allow +1 as a possible value for H.

Proposition 3.2. ([10℄). H is an extended pseudometri on P

0

(X):

Remark 3.3. An equivalent formula for H (see [8℄) is given by

H(A;B) = max

�

sup

a2A

d(a; B); sup

b2B

d(b; A)

�

:

H is alled the Hausdor� extended pseudometri on P

0

(X) derived from the norm.

Remark 3.4. If X is a Banah spae and

B(X) = fA 2 P

0

(X)=A is losed and boundedg

then (B(X); H) is a separable and omplete metri spae and, in this ase, H is

alled the Hausdor� metri on B(X) (see [10℄).

Proposition 3.5. ([10℄). If A

1

; A

2

; B

1

; B

2

2 P

0

(X) and � > 0 then

i) H(�A

1

; �B

1

) = �H(A

1

; B

1

);

ii) H(A

1

+ A

2

; B

1

+B

2

) � H(A

1

; B

1

) +H(A

2

; B

2

)

Let F(X) = ff : X ! [0;1℄ = ff < �g 2 P

0

(X); 8� > 0g and de�ne the

lass of non-negative robust funtion on X as

R(X) = ff 2 F(X)= ff < �g is robust; 8� > 0g :

where ff < �g = fx 2 X= f(x) < �g is the �-level of f .

Remark 3.6. We observe that, due Remark 2.2, an u.s.. funtion is robust, so

is a ontinuous funtion.
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If f; g 2 F(X) we an de�ne a generalized Hausdor� extended pseudometri by

mean

D(f; g) =sup

�>0

H(ff < �g; fg < �g):

Definition 3.7. Let f and g be in F(X): Then, the inf-onvolution is de�ned

by

[f 4 g℄(x) =Inf

y2X

ff(x� y) _ g(y)g

where _ +maximum.

Several important appliations justify the study of4-onvolution (see [11,12℄).

Proposition 3.8.(Rokafellar [11, p. 40℄). Let f and g in F(X): Then, for all

� > 0, one has

ff 4 g < �g = ff < �g+ fg < �g:

As a diret onsequene of Theorem 2.7 and Proposition 3.8, we obtain

Proposition 3.9. Let f and g be in F(X) and suppose that f is robust. Then

f 4 g is robust.

Theorem 3.10. For eah f 2 F(X) there exists a sequene (f

p

) 2 R(X) suh

that D(f; f

p

) � 1=p for p = 1; 2; ::::

Proof.

Let g

p

= I

B[0;1=p℄

the indiator funtion of the losed ball B[0; 1=p℄; i:e: :

I

B[0;1=p℄

(x) =

�

0 if x 2 B[0; 1=p℄

+1 if x =2 B[0; 1=p℄:

Then fg

p

< �g =B[0; 1=p℄; 8� > 0: Therefore, due onvexity of B[0; 1=p℄ and

Corollary 2.4, we have that g

p

is robust for every p 2 N:

Now, let f

p

= g

p

4 f be. Then, due Proposition 3.9, f

p

is robust for eah

p 2 N and

H(ff < �g; ff

p

< �g) = H(ff < �g; fg

p

< �g+ ff < �g)

= H(f0g+ ff < �g; fg

p

< �g+ ff < �g)
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� H(f0g; fg

p

< �g) +H(ff < �g; ff < �g) (by Prop:3:5)

= H(f0g; B[0; 1=p℄)

= 1=p:

So, taking supremum in � > 0; we obtain D(f; f

p

) � 1=p; for every p; and the

proof is omplete. �

Corollary 3.11. (R(X); D) is a dense subspae of (F(X); D):

4. ROBUSTNESS AND PROPER LOCAL MINIMUM POINTS

In this setion we shall prove a haraterization, via level sets, of non-existene

of proper loal minimum points for robust funtions. This result generalize an

analogous ones for upper semiontinuous funtions obtained for the author in

[3,4℄.

Definition 4.1. If f : X ! [0;1℄ is a funtion in F(X); then x

0

2 X is said

to be a proper loal minimum point of f if f(x

0

) > 0 and there is a neighborhood

U at x

0

suh that f(x

0

) � f(x); for every x 2 U:

Theorem 4.2. Let f 2 F(X) be a robust funtion. Then are equivalents:

i) f has no proper loal minimum points,

ii) ff � �g = Intff < �g:

Proof.

ii) ! i): Suppose that x

0

is a proper loal minimum point of f: Then f(x

0

) >

0 and there is a neighborhood U at x

0

suh that 0 < �

0

= f(x

0

) � f(x); for

every x 2 U: So, x

0

2 ff � �

0

g and U \ ff < �

0

g = ;: Consequently, x

0

2

ff � �

0

g n ff < �

0

g:

But, due robustness of f; ff < �

0

g = Intff < �

0

g; therefore

x

0

2 ff � �

0

gnIntff < �

0

g:

i)! ii): Suppose that there exists �

0

> 0 suh that ff � �

0

g 6= Intff < �

0

g:
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Then, due robustness of f; ff � �

0

g 6= ;: In fat,

ff � �

0

g = ; ) ff < �

0

g � ff � �

0

g = ; ) ff < �

0

g = ;

whih is impossible due ff < �

0

g 2 P

0

(X):

Moreover,

ff = �

0

g = ; ) ff � �

0

g = ff < �

0

g

) ff � �

0

g = ff < �

0

g

) ff � �

0

g = Intff < �

0

g (due f 2 R(X))

in ontradition with our hypothesis.

Therefore, must be ff = �

0

g 6= ;: Consequently, there exists x

0

2 X suh that

f(x

0

) = �

0

and x

0

=2 Intff < �

0

g = ff < �

0

g: So, there exists a neighborhood U

of x

0

suh that U \ ff < �

0

g = ; whih implies that f(x) � �

0

= f(x

0

) for every

x 2 U:

Therefore x

0

is a proper loal minimum point of f and the proof is omplete. �

Remark 4.3. We observe that, under onditions of Theor. 4.2., any loal mini-

mum of f is a global minimum.

Example 4.4. Consider the funtion f : R ! [0;+1℄ as

f(x) =

8

>

>

<

>

>

:

0 if x < 0

x if 0 � x < 1

1 if 1 � x < 2

x� 1 if x � 2:

Then it is lear that, due ontinuity, f is a robust funtion. Furthermore, x is

a proper loal minimum point for every x 2 (1; 2℄: On other hand, for the level

� = 1 we have ff � 1g = ff � 1g = [0; 2℄; whereas

ff < 1g = [0; 1) ) Intff < 1g = (0; 1)

) Intff < 1g = [0; 1℄:

Therefore ff � 1g 6= Intff < 1g:
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Remark 4.5. In relation to Theor. 4.2, analogous optimization results have been

obtained for a more restrited lass of funtions. For instane:

(a) Martinez-Legaz [13, Cor. 2.19, p. 117℄: \If X = R

n

then the funtion f 2

F(X) is upper semiontinuous and has no loal maximum points in its domain if

and only if ff < �g = intff � �g; for every � > 0":

(b) Rom�an-Flores et al. [4℄: \If X is a regular topologial spae and f 2 F(X)

is an upper semiontinuous funtion with sup

x2X

f(x) = M; then are equivalents:

i) f is without proper loal maximum points

ii) ff � �g = ff > �g; 8 � 2 (0;M):

iii) f is level-ontinuous.

We reall that an upper semiontinuous funtion f 2 F(X) is level-ontinuous

if, and only if,

�

p

! �) H(ff � �

p

g ! H(ff � �g); for every � 2

�

0; sup

x2X

f(x)

�

:

5. EPI-APPROXIMATION OF ROBUST FUNCTIONS

Analogously to the methods developed in Setion 3 for approximation of robust

funtions via level sets and4-onvolution, we an to approximate robust funtions

via its epigraphs (epi-onvergene). The fundamental variational property of epi-

onvergene an be established as follows: If f

n

; f : X ! R ; n = 1; 2; :::; is

a sequene of real (extended) funtions whih satis�es the ondition that there

exists a relative ompat subset K of X suh that, for every n = 1; 2; :::;

inf

x2X

f

n

(x) =inf

x2K

f

n

(x);

then f = epi� lim f

n

implies

inf

x2X

f

n

(x)!inf

x2X

f(x) as n!1;

and every luster point x of a minimizing sequene (x

n

2 Argmin f

n

; n =

1; 2; :::) minimizes f; where Argmin f = fy= f(y) � inf fg: For details see [7℄.
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Definition 5.1. Let f 2 F(X) be. The epigraph of f is de�ned by

epi(f) = f(x; �) 2 X � [0;+1℄= f(x) < �g:

Remark 5.2. If f(x) = +1 then, as a diret onsequene of above de�nition we

obtain (x; �) =2 epi(f), for any � 2 [0;+1℄:

Definition 5.3. Let f and g be in F(X): Then, the sum-onvolution is de�ned

by

(f2g)(x) =Inf

y2X

ff(x� y) + g(y)g:

Proposition 5.4. Let f and g in F(X): Then,

epi(f2g) = epi(f) + epi(g):

(For details, see [8℄, [11, [12℄).

Let R

e

(X) be the lass of all f in F(X) suh that epi(f) is robust in the

produt spae X � [0;+1℄ endowed with the topology indued by the usual

metri

�((x; �); (y; �)) = maxfkx� yk; j �� � jg:

If f 2 R

e

(X) then we say that f is epi-robust.

The next proposition shows that every robust funtion has a robust epigraph.

Theorem 5.5. R(X) � R

e

(X):

Proof.

Let f 2 R(X) be. It is suÆient to show that epi(f) � Int epi(f):

In fat, if (x; �) 2 epi(f) then there exists a sequene ((x

n

; �

n

)) � epi(f) suh

that lim (x

n

; �

n

) = (x; �) as n ! 1: Therefore f(x

n

) < �

n

and, due robustness

of f;

x

n

2 ff < �

n

g � ff < �

n

g = Intff < �

n

g; 8n:

Thus, for eah n 2 N there exists a sequene (x

ni

) � Intff < �

n

g suh that

lim

i!1

x

ni

! x

n

: Thus, for eah n we an hoose i

n

; with i

n

< i

n+1

; suh that

kx

n

� x

ni

n

k < 2

�n

for every n: So,

kx� x

ni

n

k � kx� x

n

k+ kx

n

� x

ni

n

k ! 0 as n!1:
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On other hand, due f(x

ni

n

) < �

n

for every n; we an onstrut a sequene

(�

n

) suh that �

n

! 0; 0 < �

n

< �

n

; B(x

ni

n

; �

n

) � Intff < �

n

g and f(x

ni

n

) <

�

n

� �

n

< �

n

; 8n:

We laim that B ((x

ni

n

; �

n

+ �

n

); �

n

) � epi(f): In fat,

(z; �) 2 B ((x

ni

n

; �

n

+ �

n

); �

n

)) maxfkz � x

ni

n

k; j �� (�

n

+ �

n

) jg < �

n

:

Then:

a) kz � x

ni

n

k < �

n

) z 2 B(x

ni

n

; �

n

) � Intff < �

n

g ) f(z) < �

n

:

b) j �� (�

n

+ �

n

) j< �

n

) ��

n

< �� (�

n

+ �

n

)) �

n

< �:

So, from a) and b) we obtain f(z) < �; that is to say (z; �) 2 epi(f) and,

onsequently, (x

ni

n

; �

n

+ �

n

) 2 Int epi(f) for every n:

Finally, due lim

n!1

(x

ni

n

; �

n

+ �

n

) = (x; �); we onlude that (x; �) 2 Int epi(f):�

The following example shows that, atually, the inlusion in above theorem is

proper.

Example 5.6. Let x

0

2 X be and f = �

fx

0

g

the indiator funtion of fx

0

g; i.e.:

�

fx

0

g

(x) =

�

1 if x = x

0

0 if x 6= x

0

:

Then

�

f = �

fx

0

g

< �

	

=

�

X if � > 1

fx

0

g if 0 < � � 1:

Thus, if 0 < �

0

� 1 we have ff < �

0

g = fx

0

g and, onsequently, Intff < �g =

; whereas ff < �g = fx

0

g: Therefore f is not a robust funtion.

Nevertheless, epi(f) = X n fx

0

g� (0;+1℄[ fx

0

g� (1;+1℄ whih is a robust set

in the produt spae X � [0;+1℄:

Proposition 5.7. Let f 2 F(X) be and g 2 R

e

(X): Then f2g 2 R

e

(X):

Proof.

By Proposition 5.4 we have epi(f2g) = epi(f) + epi(g); and on other hand, due

robustness of epi(g) then, by Theor. 2.7 we obtain f2g 2 R

e

(X): �

Now, if f; g 2 F(X) we an de�ne an epi-generalized Hausdor� extended pseu-

dometri by mean

D

e

(f; g) = H(epi(f); epi(g));
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where H is the generalized Hausdor� extended pseudometri indued by the dis-

tane � on the produt spae X � [0;+1℄:

Our main result in this setion is to show an epi-approximation result on F(X) by

using 2-onvolution. More spei�ally, we will prove that the spae of epi-robust

funtions is a dense subspae of (F(X); D

e

):

Theorem 5.8. For eah f 2 F(X) there exists a sequene (f

p

) 2 R

e

(X) suh

that D

e

(f; f

p

) � 1=p for p = 1; 2; ::::

Proof.

Consider the sequene (g

p

) de�ned as the indiator funtion of the losed ball

B[0; 1=p℄; i:e: :

g

p

(x) =

�

0 if x 2 B[0; 1=p℄

+1 if x =2 B[0; 1=p℄:

Then epi(g

p

) =B[0; 1=p℄� (0;+1℄ whih is a robust set and, onsequently, g

p

2

R

e

(X); 8p. Now, de�ning f

p

= f2g

p

; due Proposition 5.7 and Proposition 5.4,

we have that f

p

2 R

e

(X) and epi(f

p

) = epi(f) + epi(g

p

); respetively, for every

p 2 N :

We laim that D

e

(f; f

p

) � 1=p; 8p:

In fat, if (x; �) 2 epi(f) then, beause (0; 1=p) 2 epi(g

p

); we obtain

(x; � + 1=p) 2 epi(f) + epi(g

p

) = epi(f

p

):

Therefore

d ((x; �); epi(f

p

)) = inf

z2epi(f

p

)

�((x; �); z)

� �((x; �); (x; � + 1=p)

=

1

p

:

Thus,

sup

(x;�)2epi(f)

d ((x; �); epi(f

p

)) �

1

p

: (1)

Conversely, if (y; �) 2 epi(f

p

) then (y; �) = (y

1

; �

1

) + (y

2

; �

2

); with (y

1

; �

1

) 2

epi(f) and (y

2

; �

2

) 2 epi(g

p

): So, due Remark 5.2, we observe that (y

2

; �

2

) 2

epi(g

p

) implies y

2

2 B[0; 1=p℄ and, onsequently, k y

2

k � 1=p: On other hand,

12



(y

1

; �

1

) 2 epi(f) implies f(y

1

) < �

1

; therefore (y

1

; �

1

+ �

2

+ 1=p) 2 epi(f): Thus,

d ((y; �); epi(f)) = inf

z2epi(f)

�((y; �); z)

� �((y; �); (y

1

; �

1

+ �

2

+ 1=p))

= maxfky

2

k; 1=pg

� 1=p:

Thus,

sup

(y;�)2epi(f

p

)

d ((y; �); epi(f)) �

1

p

: (2)

Therefore, from (1), (2) and Remark 3.3 we obtain

D

e

(f; f

p

) = H (epi(f); epi(f

p

))

= max

(

sup

(x;�)2epi(f)

d ((x; �); epi(f

p

)) ; sup

(y;�)2epi(f

p

)

d ((y; �); epi(f))

)

� 1=p;

and the proof is omplete. �

Corollary 5.9. (R

e

(X); D

e

) is a dense subspae of (F(X); D

e

):

6. D-CONVERGENCE IS STRONGER THAN D

e

-CONVERGENCE

An interesting problem is to ompare D-onvergene and D

e

-onvergene on

F(X): This problem, in a more restrited ontext, has been studied in [3,4℄, where

the authors proves some results on equivalene of onvergenes for bounded an

upper semiontinuous funtions (whih are a partiular ase of robust funtions).

The following examples shows that, in general,D-onvergene andD

e

-onvergene

are not equivalents.

13



Example 6.1. Consider f

n

; f : R ! [0;+1) de�ned by

f

n

(x) =

8

>

<

>

:

1

n

if x =2 [�1=n; 1=n℄

0 if �

1

n

� x �

1

n

f(x) = 0; 8x 2 R:

Then f

n

; f are robust funtions with epi(f

n

) = R n [�1=n; 1=n℄ � (1nn;+1℄ [

[�1=n; 1=n℄�(0;+1℄ and epi(f) = R�(0;+1℄: Also, beauseH(epi(f

n

); epi(f)) �

1=n; it is easy to see that f

n

D

e

-onverges to f: Nevertheless, for � = 1=n we have

ff

n

< 1=ng = [�1=n; 1=n℄ whereas ff < 1=ng = R: Therefore

D(f; f

n

) = sup

�>0

H(ff < �g; fg < �g)

� H(ff < 1=ng; ff

n

< 1=ng)

= +1

for eah n 2 N : Therefore, f

n

does not onverges to f in D-pseudometri.

Example 6.2. Consider f

n

; f : R ! [0;+1℄ de�ned by

f

n

(x) =

8

<

:

0 if 0 � x � 1

1

n

(x� 1) + 1�

1

n

if 1 < x � 2

+1 if x =2 [0; 2℄:

f(x) =

8

<

:

0 if 0 � x � 1

1 if 1 < x � 2

+1 if x =2 [0; 2℄:

Then, it is lear that H(epi(f

n

); epi(f)) � 1=n; therefore f

n

D

e

-onverges to

f: On other hand, for � = 1 we have ff

n

< 1g = [0; 2) whereas ff < 1g =

[0; 1℄; therefore H(ff

n

< 1g; ff < 1g) = 1 for all n 2 N : Thus

D(f; f

n

) = sup

�>0

H(ff < �g; fg < �g)

� H(ff < 1g; ff

n

< 1g)

= 1

for all n 2 N : Consequently, f

n

does not onverges to f in D-pseudometri.
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Remark 6.3. We note that in Example 6.1 the �-level sets of f

n

and f are not

bounded subsets of R, whereas in Example 6.2 the �-level sets of f

n

and f are

bounded subsets of R. Also, it is important to remark that, in the �rst ase, the

limit funtion f has no proper loal minimum points whereas, in the seond ase,

the limit funtion f possesses proper loal minimum points.

Theorem 6.4. Let f

n

; f 2 R(X) be. Then, f

n

D

! f implies f

n

D

e

-onverges to f .

Proof.

If we suppose that f

n

D

! f then given � > 0 there exists N 2 N suh that

D(f

n

; f) = sup

�>0

H(ff < �g; fg < �g) < �;

for all n � N: Now, if (y; �) 2 epi(f

n

) we have f

n

(y) < � whih implies y 2

ff

n

< �g: On other hand, as

H(ff

n

< �g; ff < �g = max

(

sup

x2ff

n

<�g

d (x; ff < �g) ; sup

z2ff<�g

d (z; ff

n

< �g)

)

< �

we onlude that

sup

x2ff

n

<�g

d (x; ff < �g) < �

and, onsequently, d (y; ff < �g) < �:

Therefore, there exists z 2 ff < �g suh that ky � zk < �: Thus, (z; �) 2

epi(f) and

�((y; �); (z; �)) = ky � zk < �;

whih implies that d((y; �); epi(f)) < �: As (y; �) is arbitrary in epi(f

n

) we obtain

sup

(y;�)2epi(f

n

)

d ((y; �); epi(f)) � �:

In a similar way, we an prove that

sup

(x;�)2epi(f)

d ((x; �); epi(f

n

)) � �;

whih implies that H(epi(f

n

); epi(f)) � � for all n � N and, onsequently, f

n

D

e

-onverges to f . �
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7. D

E

-CONVERGENCE AND L-CONVERGENCE

In order to establish a type of reverse impliation of above Theorem 6.4 we need to

introdue the onepts of \Kuratowski onvergene" of sets and D

E

-onvergene

and L-onvergene on F(X); and for this, we shall work with non-strit epigraphs

and levels.

Definition 7.1. Let fA

n

g

n2N

be a sequene of subsets in P

0

(X): De�ne

lim inf A

n

= fx 2 X= x = lim

n!1

x

n

; x

n

2 A

n

; 8ng

lim sup A

n

= fx 2 X= x = lim

k!1

x

n

k

; x

n

k

2 A

n

k

; 8kg

If lim inf A

n

= lim sup A

n

= A; then we say A is the limit of the sequene

fA

n

g

n

and the sequene fA

n

g

n

onverges to A (in the Kuratowski sense), and we

write A = lim A

n

(or A

n

K

! A).

Proposition 7.2. If fA

n

g

n

is a sequene of subsets in P

0

(X), then

i) lim inf A

n

� lim sup A

n

;

ii) lim inf A

n

and lim sup A

n

are losed subsets of X;

iii) lim inf A

n

= lim inf A

n

and lim sup A

n

= lim sup A

n

;

iv) lim sup A

n

=

1

T

n=1

S

k�n

A

k

;

iv) lim inf A

n

=

T

F

S

k2F

A

k

; where F denotes an arbitrary o�nal subset of

N and the intersetion is over all suh F:

For more details see [7,10℄.

Remark 7.3. We reall that F is a o�nal subset of N if 8n 2 N ; 9m 2 F suh

that m > n:
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Proposition 7.4.([6℄). Let fA

n

g

n

be a sequene of subsets in P

0

(X) and suppose

that there exists a ompat set K � X suh that A

n

; A � K for all n 2 N : Then

A

n

H

! A if and only if

lim sup A

n

� A � lim inf A

n

:

Definition 7.5. If f 2 F(X) then we de�ne

Epi(f) = f(x; �)= f(x) � �g:

Definition 7.6. If f 2 F(X) then we de�ne L

�

f = fx 2 X= f(x) � �g:

Remark 7.7. It is well known that, if f 2 F(X); then Epi(f) is losed i� L

�

f is

losed (see [1℄).

Proposition 7.8.([1, Theor. 3.3℄). If f 2 F(X) then f is robust if and only if

Epi(f) is robust.

Definition 7.9.(L-onvergene). If f

n

; f 2 F(X) then we said that f

n

L-

onverges to f (for short: f

n

L

! f) i� L

�

f

n

K

! L

�

f; 8� > 0:

Definition 7.10.(D

E

-onvergene). If f

n

; f 2 F(X) then we said that f

n

D

E

-

onverges to f (for short: f

n

D

E

! f) i� Epi(f

n

)

K

! Epi(f):

Remark 7.11. We want to observe that in Examples 6.1 in above setion, the

limit funtion f is lower semiontinuous (i.e., Epi (f) is losed) and f

n

D

E

! f: Also,

in this ase, we have f

n

L

! f:

Example 7.12. Consider f

n

; f : R ! [0;+1℄ de�ned by

f

n

(x) =

8

<

:

0 if 0 � x � 1

1

n

(1� x) + 1 +

1

n

if 1 < x � 2

+1 if x =2 [0; 2℄:

f(x) =

8

<

:

0 if 0 � x � 1

1 if 1 < x � 2

+1 if x =2 [0; 2℄:
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Then, it is lear that Epi(f) is losed and

Epi(f) = [0; 1℄� [0;+1℄ [ (1; 2℄� [1;+1℄

=

1

\

n=1

[

k�n

Epi(f

k

);

therefore f

n

D

E

-onverges to f: On other hand, for � = 1 we have L

1

f =

[0; 2℄ whereas L

1

f

n

= [0; 1℄ [ f2g and, onsequently, H(L

1

f

n

; L

1

f) = 1 for all

n 2 N : Thus, beause L

1

f

n

and L

1

f are ontained in [0; 2℄ whih is a ompat

subset of R then, due Proposition 7.4, L

1

f

n

does not onverges (in the Kuratowski

sense) to L

1

f; and this implies that f

n

does not L-onverges to f:

Summarizing, we have the following result:

Theorem 7.13. Let f

n

; f 2 R(X) be with Epi(f) losed and suppose that f has

no proper loal minimum points. Then, the following onditions are equivalents:

i) f

n

L

! f

ii) f

n

D

E

! f

Proof.

i)!ii). In order to prove that f

n

D

E

! f; it is suÆient to show that

lim sup Epi(f

n

) � Epi(f) � lim inf Epi(f

n

):

Let (x; �) 2 lim sup Epi(f

n

): Then

(x; �) 2

\

p�1

[

k�p

End(f

k

) : (3)

If we suppose that f(x) > �; then there exists � > 0 suh that f(x) > � + � >

�: So, due f

n

L

! f; we obtain that x =2 L

�+�

f =

T

p�1

S

k�p

L

�+�

f

k

: This implies

that 9p

0

suh that x =2

S

k�p

0

L

�+�

f

k

and, therefore, there exists a neighborhood

U(x) = U of x suh that

U \ [

[

k�p

0

L

�+�

f

k

℄ = ;: (4)
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Now, we assure that [U � (0; �+ �)℄ \ [

S

k�p

0

Epi(f

k

)℄ = ;: In fat,

(y; �) 2 U� (0; �+ �)\ [

[

k�p

0

Epi(f

k

)℄)

�

� < � + � and

9k

0

� p

0

suh that (y; �) 2 Epi(f

k

0

):

Therefore, f

k

o

(y) � � < � + �:: But, due (4), y 2 U implies y =2

S

k�p

0

L

�+�

f

k

:

That is, f

k

(y) > � + �; 8k � p

0

; whih is absurd.

Thus, U � (� � �;1) is an open in the produt topology whih noninterseting

S

k�p

0

Epi(f

k

):

So, beause (x; �) 2 U(x)� (0; �+ �); we obtain that (x; �) =2

S

k�p

0

Epi(f

k

):

Therefore, (x; �) =2

T

p�1

S

k�p

Epi(f

k

); in ontradition with (3). So, must be f(x) �

� and, onsequently, (x; �) 2 Epi(f):

On the other hand, let (x; �) 2 Epi(f): Then f(x) � � and, due f

n

L

! f; we

obtain that

x 2 lim sup L

�

f

n

=

\

F

[

k2F

L

�

f

k

: (5)

If we suppose that (x; �) =2 lim inf Epi(f

n

); then there exists F

0

o�nal suh

that (x; �) =2

S

k2F

0

Epi(f

k

):

Therefore, there exists a neighborhood V of (x; �) suh that

V \ [

[

k2F

0

Epi(f

k

)℄ = ;: (6)

Without loss of generality, we an to suppose that V is a basi open of the

produt topology, that is, V = U � (�; �) where U is an open in X and (�; �) is

an open interval in R

+

ontaining �: We note that if y 2 U; then V = U �

(�; �) ontaining the segment fyg � (�; �):

Now, we assure that the projetion p

X

(V ) is an open set in X whih noninterset-

ing

S

k2F

0

L

�

f

k

(we reall that p

X

is an open mapping). In fat, if we suppose that

p

X

(V ) \ [

S

k2F

0

L

�

f

k

℄ 6= ;; then there exists y 2 p

X

(V ) suh that f

k

0

(y) � �; for

some k

0

2 F

0

:

Therefore, y 2 U and there is � � � suh that (y; �) 2 V = U � (�; �):
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But then, (y; �) 2 V \ Epi(f

k

0

) � V \ [

S

k2F

0

Epi(f

k

)℄; in ontradition with (6).

Thus, beause p

X

(V ) \ [

S

k2F

0

L

�

f

k

℄ = ; and x 2 p

X

(V ); we onlude that x =2

S

k2F

0

L

�

f

k

whih, due (5), is absurd.

Summarizing, we must have (x; �) 2 lim inf Epi(f

n

):

Therefore, lim Epi(f

n

) = Epi(f); whih implies that f

n

�

! f; ompleting the �rst

part of our proof.

ii)!i): In order to prove that f

n

L

! f; it is suÆient to show that

lim sup L

�

f

n

� L

�

f � lim inf L

�

f

n

; 8� > 0:

For this, let � 2 [0;1) be and suppose that

x 2 lim sup L

�

f

n

=

1

\

n=1

[

k�n

L

�

k

f: (7)

If f(x) > �; then (x; �) =2 Epi(f) =

1

T

n=1

S

k�n

Epi(f

k

):

Therefore, 9n

0

suh that(x; �) =2

S

k�n

0

Epi(f

k

):

Consequently, there exists a neighborhood V of (x; �) suh that

V \ [

[

k�n

0

Epi(f

k

)℄ = ;: (8)

Also, without loss of generality, we an suppose that V is an basi open of

the produt topology, that is, V = U � (�; �): But then, the projetion U =

p

X

(V ) is a neighborhood of x whih noninterseting

S

k�n

0

L

�

f

k

: In fat, if y 2

U \

S

k�n

0

L

�

f

k

then there exists � � � suh that (y; �) 2 V; and 9k

0

� n

0

suh

that f

k

0

(y) � � � �; that is, (y; �) 2 Epi(f

k

0

):

Thus, (y; �) 2 V \[

S

k�n

0

Epi(f

k

)℄ whih ontradits (8). So, U\[

S

k�n

0

L

�

f

k

℄ = ; but,

beause x 2 U; we onlude that x =2

S

k�n

0

L

�

f

k

; in ontradition with (7).

Hene f(x) � � and, onsequently, x 2 L

�

f: Therefore, lim sup L

�

f

n

� L

�

f:
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On the other hand, let x 2 L

�

f be and suppose that f(x) < �: Then there is

� > 0 suh that f(x) < �� �: So, due f

n

�

! f; we have

(x; �� �) 2 Epi(f) = lim inf Epi(f

n

) =

\

F

[

k2F

Epi(f

k

): (9)

Now, if we suppose that x =2 lim inf L

�

f

n

; then 9F

0

o�nal suh that x =2

S

k2F

0

L

�

f

k

and, therefore, 9U = U(x) suh that

U \ [

[

k2F

0

L

�

f

k

℄ = ;: (10)

We assure that [U � (0; �)℄\

S

k2F

0

Epi(f

k

) = ;:

In fat, if (y; �) 2 [U � (0; �)℄\

S

k2F

0

Epi(f

k

) then f

k

0

(y) � � � � for some

k

0

2 F

0

; and this implies y 2 U \ L

�

f

k

0

� U \ [

S

k2F

0

L

�

f

k

℄; in ontradition with

(10).

Thus, beause (x; ���) 2 U�(0; �); we obtain that (x; ���) =2

S

k2F

0

Epi(f

k

) and,

therefore, (x; �� �) =2 lim inf Epi(f

n

) = Epi(f) whih, due (9), is absurd.

So, neessarily, we must have x 2 lim inf L

�

f

n

and, onsequently, ff < �g is

ontained in lim inf L

�

f

n

:

Finally, we observe that:

a) Epi(f) losed i� f lower semiontinuous (i:e: : L

�

f = ff � �g losed, 8�)

b) If f is a lower semiontinuous and robust funtion in F(X) then, due Theor.

4.2, the ondition \f has no proper loal minimum points" is equivalent to

ff � �g = Intff < �g; 8�:

Thus, beause f has no proper loal minimum points, lim inf L

�

f

n

is losed and ff <

�g � lim inf L

�

f

n

, we have

ff < �g � lim inf L

�

f

n

) ff < �g � lim inf L

�

f

n

) Intff < �g � lim inf L

�

f

n

) L

�

f � lim inf L

�

f

n

:
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Consequently, f

n

L

! f and the proof is omplete.�

Remark 7.14. The Example 7.12 shows that the ondition \f has no proper

loal minimum points" in above Theorem 7.13 an not avoided.

Remark 7.15. If f 2 F(X) we say that f is level ontinuous if

�

p

! �) L

�

p

f

K

! L

�

f; 8� > 0:

There exists an interesting onnetion between level-ontinuity and existene of

proper loal minimum points and the following result is the dual version for lower

semiontinuous funtions obtained by the author in [4℄ for upper semiontinuous

funtions (ompare with Remark 4.5 (b) in this paper):

If f 2 F(X) is a lower semiontinuous funtion; then are equivalents:

i) f has no proper loal maximum points

ii) ff � �g = ff < �g; 8 � > 0:

iii) f is level-ontinuous.
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