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Abstra
t. In this paper we lift to homogeneous polynomials and multilinear

mappings a linear result due to Lindenstrauss and Pe l
zy�nski for absolutely

summing mappings. We explore the notion of 
otype to obtain stronger re-

sults and provide various examples of situations in whi
h we have the spa
e

of absolutely summing polynomials di�erent from the whole spa
e. Among

other 
onsequen
es, these results enable us to obtain answers to some open

questions about absolutely summing polynomials and multilinear mappings

on L

1

spa
es.

1. Introdu
tion

The theory of absolutely summing multilinear mappings was �rst sket
hed by

A. Piets
h in 1983 [15℄ and it was rapidly developed thereafter ([2℄,[6℄,[11℄,[9℄).

In this paper, the de�nitions of absolutely summing polynomials and multilinear

mappings we will work with were outlined by Piets
h and �rst explored by Alen
ar

and Matos [1℄ and have been broadly used (see [2℄,[4℄,[6℄,[14℄).

In the seminal paper [7℄ \Absolutely summing operators in L

p

spa
es and

their appli
ations", Lindenstrauss and Pe l
zy�nski provide a beautiful Theorem

whi
h states that if E is an in�nite dimensional Bana
h spa
e with un
onditional

S
hauder basis, dimF = 1 and every linear mapping from E into F is absolutely

(1; 1)-summing, then E is isomorphi
 to l

1

(�) and F is isomorphi
 to a Hilbert

spa
e. We will re�ne this statement by exploring the 
otype of F; not only for

the linear 
ases, but also and mainly for polynomial and multilinear mappings.

As 
orollaries we obtain several negative results, showing, in parti
ular, that

various of the known Coin
iden
e Theorems (see e.g. [2℄,[11℄) for polynomials

and multilinear mappings 
annot be improved in many natural ways.

2. Ba
kground and Notation

Throughout this paper E;E

1

; :::; E

n

; F;X; Y will stand for Bana
h spa
es. The

s
alar �eld K 
an be either R or C :

The Bana
h spa
e of all 
ontinuous n-linear mappings from E

1

� :::�E

n

into F

endowed with the 
anoni
al norm will be denoted by L(E

1

; :::; E

n

;F ): The Bana
h

spa
e of all 
ontinuous n-homogeneous polynomials P from E into F with the

norm kPk = supfkPxk; kxk � 1g will be denoted by P(

n

E;F ):
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For the natural isometry

	 : L(E

1

; :::; E

n

;F ) ! L(E

1

; :::; E

t

;L(E

t+1

; :::; E

n

;F ))

we will use the following 
onvention: If T 2 L(E

1

; :::; E

n

;F ) then 	(T ) = T

1

and

if T 2 L(E

1

; :::; E

t

;L(E

t+1

; :::; E

n

;F )); then 	

�1

(T ) = T

0

:

The linear spa
e of all sequen
es (x

j

)

1

j=1

in E su
h that

k(x

j

)

1

j=1

k

p

= (

1

X

j=1

kx

j

k

p

)

1

p

<1

will be denoted by l

p

(E): We will also denote by l

w

p

(E) the linear subspa
e of

l

p

(E) 
omposed by the sequen
es (x

j

)

1

j=1

in E su
h that (< '; x

j

>)

1

j=1

2 l

p

(K )

for every 
ontinuous linear fun
tional ' : E ! K : We de�ne k:k

w;p

in l

w

p

(E) by

k(x

j

)

1

j=1

k

w;p

:= Sup

'2B

E

�

(

1

X

j=1

j< '; x

j

>j

p

)

1

p

:

The 
ase p = 1 is the 
ase of bounded sequen
es and in l

1

(E) we use the sup

norm. One 
an see that k:k

p

(k:k

w;p

) is a p-norm in l

p

(E)( l

w

p

(E)) for p < 1 and a

norm in l

p

(E)( l

w

p

(E)) for p � 1: In any 
ase, they are 
omplete metrizable linear

spa
es.

Re
all that if 2 � q � 1 and (r

j

)

1

j=1

are the Radema
her fun
tions, E has


otype q if there exists C

q

(E) � 0 su
h that, no matter how we 
hoose k 2 N and

x

1

; :::; x

k

2 E;

(

k

X

j=1

kx

j

k

q

)

1

q

� C

q

(E)(

1

Z

0

k

k

X

j=1

r

j

(t)x

j

k

2

dt)

1

2

:

To 
over the 
ase q = 1 we repla
e (

P

k

j=1

kx

j

k

q

)

1

q

by max

j�n

kx

j

k. We will

de�ne the 
otype of E by


otE = inff2 � q � 1;E has 
otype qg:

The 
on
ept of absolutely summing polynomials and multilinear mappings we

will work with is the following natural generalization of the linear 
ase.

De�nition 1. (Alen
ar-Matos) A 
ontinuous multilinear mapping

T : E

1

� :::�E

n

! F

is absolutely (p; q

1

; :::; q

n

)-summing (or (p; q

1

; :::; q

n

)-summing) if

(T (x

(1)

j

; :::; x

(n)

j

))

1

j=1

2 l

p

(F )

for all (x

(s)

j

)

1

j=1

2 l

w

q

s

(E), s = 1; :::; n: A 
ontinuous n-homogeneous polynomial

P : E ! F is absolutely (p; q)-summing (or (p; q)-summing) if

(P (x

j

))

1

j=1

2 l

p

(F )

for all (x

j

)

1

j=1

2 l

w

q

(E):
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In order to avoid trivialities we assume that p �

q

n

in the polynomial 
ase

and

1

p

�

1

q

1

+ ::: +

1

q

n

in the n-linear 
ase. We will denote the spa
e of ab-

solutely (p; q

1

; :::; q

n

)-summing n-linear mappings from E

1

� ::: � E

n

into F by

L

as(p;q

1

;:::;q

n

)

(E

1

; :::; E

n

;F ): When q

1

= ::: = q

n

= q; we write L

as(p;q)

(E

1

; :::; E

n

;F ):

Analogously, the spa
e of all absolutely (p; q)-summing polynomials from E into

F is denoted by P

as(p;q)

(

n

E;F ):

For n-homogeneous polynomials and n-linear mappings, the polynomials (n-

linear mappings) (

p

n

; p)-summing will be 
alled p-dominated polynomials (n-linear

mappings), as it 
an be seen in Matos and Tonge-Mel�endez [9℄[11℄. For the

p-dominated polynomials (n-linear mappings) several natural versions of linear

results are appli
able, su
h as Fa
torization Theorems, Domination Theorem,

Extrapolation Theorems, et
. (see [9℄,[11℄,[13℄).

As in the linear 
ase, we have a 
hara
terization Theorem whi
h plays a promi-

nent role in the theory.

Theorem 1. (Matos [9℄) Let P be an m-homogeneous polynomial from E into

F . Then the following statements are equivalent:

(1) P is absolutely (p; q)-summing.

(2)There exists L > 0 su
h that

(

k

X

j=1

kP (x

j

)k

p

)

1

p

� Lk(x

j

)

k

j=1

k

m

w;q

8k 2 N and x

j

2 E:

(3)There exists L > 0 su
h that

(2.1) (

1

X

j=1

kP (x

j

)k

p

)

1

p

� Lk(x

j

)

1

j=1

k

m

w;q

8(x

j

)

1

j=1

2 l

w

q

(E):

The in�mum of the L > 0 for whi
h inequality (2.1) always holds is a norm

for the 
ase p � 1 or a p-norm for the 
ase p < 1([9℄) on the spa
e of absolutely

(p; q)-summing polynomials. In any 
ase, we have 
omplete topologi
al metrizable

spa
es. This norm (p-norm) will be denoted by k:k

as(p;q)

:

The 
hara
terization for the multilinear 
ase and the de�nition of the norm

(p-norm) follow the same reasoning. The forth
oming Theorem 
onstitutes the

de�nitive 
ru
ial joining of absolutely summing linear mappings and 
otype.

Theorem 2. (Maurey-Talagrand) E has 
otype q > 2 if, an only if,

id : E ! E is (q; 1)-summing.

If E has 
otype 2; then id : E ! E is (2; 1)-summing. The 
onverse is not true.

As a 
onsequen
e of Theorem 2 and the Generalized H�older Inequality one 
an

prove the following result:

Theorem 3. (Botelho [2℄) If Y has 
otype q, then

L(

n

X;Y ) = L

as(q;1)

(

n

X;Y ) for all Bana
h spa
e X:
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If X has 
otype q, then

L(

n

X;Y ) = L

as(

q

n

;1)

(

n

X;Y ) for all Bana
h spa
e Y:

In the next se
tions, among other results, we will prove that, in general, we


annot expe
t a result stronger than Theorem 3.

3. Absolutely summing polynomials from Bana
h spa
es with

un
onditional S
hauder basis

The remarkable works of Maurey-Pisier [10℄ and Lindenstrauss-Pe l
zy�nski [7℄

will play a fundamental role in this paper. We start with the following Theorem,

whi
h proof has inspired our results.

Theorem 4. (Lindenstrauss-Pe l
zy�nski [7℄, Th. 4.2) If X has an un
onditional

S
hauder basis, dim X = dimY = 1 and every bounded linear operator from X

into Y is absolutely (1; 1)-summing, then X is isomorphi
 to l

1

(�) and Y is a

Hilbert spa
e.

This result and the Multilinear Grothendie
k-Piets
h domination Theorem

lead us to interesting, although restri
t, initial results as we will see below.

Example 1. Adapting an idea of [8℄ one 
an proof, for instan
e, that if X has

an un
onditional S
hauder basis, then

L(

n

X;K ) 6= L

as(

1

n

;1)

(

n

X;K )

and thus,

L(

n

X;Y ) 6= L

as(

1

n

;1)

(

n

X;Y ) for every Bana
h spa
e Y:

Indeed, if we had L(

2

X;K ) = L

as(

1

2

;1)

(

2

X;K ); then given S : X ! X

0

; we


ould de�ne T

S

: X �X ! K su
h that (T

S

)

1

= S: By hypothesis, T

S

would be

(

1

2

; 1; 1)-summing. Hen
e, by the Grothendie
k-Piets
h domination Theorem,

kT

S

(x; y)k � C(

Z

B

X

�

j '(x) j d�

1

)(

Z

B

X

�

j  (y) j d�

2

)

and

k(T

S

)

1

(x)k = Sup

kyk�1

kT

S

(x; y)k �

� Sup

kyk�1

C(

Z

B

X

�

j '(x) j d�

1

)(

Z

B

X

�

j  (y) j d�

2

) �

� C(

Z

B

X

�

j '(x) j d�

1

):

Then kS(x)k � C(

R

B

X

�

j '(x) j d�

1

) and then

L(X;X

0

) = L

as(1;1)

(X;X

0

)

(
ontradi
tion by Theorem 4). The general 
ase follows by a standard indu
tive

pro
ess. Observe that the natural isometry between homogeneous polynomial
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and symmetri
 multilinear mappings is not enough to yield, mutatis mutandis, a

polynomial version to the example above.

It is also easy to prove the following result:

Proposition 1. If E is an in�nite dimensional Hilbert spa
e, then

L(

n

E;F ) 6= L

as(

r

n

;r)

(

n

E;F ) for all r � 1 and every F .

Proof. It suÆ
es to 
onsider the 
ase F = K : Sin
e E is Hilbert, E� is also

Hilbert and

L(E;E�) 6= L

as(1;1)

(E;E�) = L

as(r;r)

(E;E�)(see [5℄, page 224)

and the proof of the last example yields the 
ase n = 2: The general 
ase is

obtained by a standard indu
tive pro
ess. Q.E.D.

The same simple 
onstru
tion give us many other results. However, the pre-

vious negative results, albeit interesting, are 
on�ned to the dominated 
ases

(whi
h have Grothendie
k-Piets
h domination Theorem as a fundamental gun)

and they do not give us the full story. In general, the spa
es of p-dominated

homogeneous polynomials and multilinear mappings are small and negative re-

sults are not surprising. We will present new negative results whi
h signi�
antly

improve the last ones. Our approa
h 
onsists in lifting Theorem 4 to polynomial

and multilinear versions and re�ning them by exploring the properties of 
otype.

Our de�nition of S
hauder basis is the same as in [7℄ and does not ask for

a separate spa
e, but it is 
lear that in the following proofs there is no loss of

generality if we restri
t ourselves to the separate 
ases.

Theorem 5. Let X and Y be in�nite dimensional Bana
h spa
es. Suppose that

X has an un
onditional S
hauder basis. If q is su
h that

1

m

< q < 2 and

(3.1) P

as(q;1)

(

m

X;Y ) = P(

m

X;Y )

then regardless of the un
onditional normalized S
hauder basis fx

n

g of X, the

natural mapping

(3.2) ' : X ! l

1

: x =

X

a

i

x

i

! (a

i

)

1

i=1

is su
h that '(X) � l
2mq

2�q

: If, in parti
ular,

1

m

� q � 1 and (3.1) holds, then, for

any un
onditional normalized S
hauder basis fx

n

g of X , we obtain '(X) � l

mq

;

whi
h is a better estimate than (3.2).

Proof. Consider q su
h that

1

m

� q < 2: By hypothesis, there exists K > 0

su
h that kPk

as(q;1)

� KkPk for all 
ontinuous m-homogeneous polynomial P :

X ! Y:

By the main Lemma of Dvoretzky-Rogers Theorem, for every n, there are

normalized y

1

; :::; y

n

in E su
h that

k

n

X

j=1

�

j

y

j

k � 2(

n

X

j=1

j �

j

j

2

)

1=2

:
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Let f�

i

g

n

i=1

be su
h that

n

P

j=1

j �

j

j

s

= 1 with s =

2

q

: De�ne P : X ! Y by

Px =

n

X

j=1

�

1=q

j

a

m

j

y

j

; if x =

1

X

j=1

a

j

x

j

:

Sin
e fx

n

g is an un
onditional basis, there exists � > 0 su
h that

k

1

P

j=1

"

j

a

j

x

j

k � �k

1

P

j=1

a

j

x

j

k = �kxk for all "

j

= 1 or �1:

Hen
e k

n

P

j=1

"

j

a

j

x

j

k � �kxk for all n and any "

j

= 1 or �1: We have

kPxk = k

n

X

j=1

�

1=q

j

a

m

j

y

j

k � 2(

n

X

j=1

j �

1=q

j

a

m

j

j

2

)

1=2

� 2(

n

X

j=1

j �

j

j

2=q

�

2m

kxk

2m

)

1=2

�

(3.3) � 2�

m

kxk

m

(

n

X

j=1

j �

j

j

2=q

)

1=2

= 2�

m

kxk

m

(

n

X

j=1

j �

j

j

s

)

1=2

� 2�

m

kxk

m

:

Then kPk � 2�

m

and kPk

as(q;1)

� 2K�

m

: Therefore

[

n

X

j=1

(j a

m

j

�

1=q

j

j)

q

℄

1=q

= (

n

X

j=1

kPa

j

x

j

k

q

)

1=q

� kPk

as(q;1)

k(a

j

x

j

)

n

j=1

k

m

w;1

=

(3.4)

= kPk

as(q;1)

max

"

j

2f1;�1g

fk

n

X

j=1

"

j

a

j

x

j

kg

m

� kPk

as(q;1)

(�kxk)

m

� 2K�

2m

kxk

m

:

Re
all that (3.4) holds whenever

n

P

j=1

j �

j

j

s

= 1: Hen
e

[

n

X

j=1

( j a

j

j

s

s�1

mq

)℄

1=(

s

s�1

)

= [

n

X

j=1

(j a

mq

j

j

s

s�1

)℄

1=(

s

s�1

)

= k(a

mq

j

)

n

j=1

k

s

s�1

= Supfj

n

X

j=1

�

j

a

mq

j

j;

n

X

j=1

j �

j

j

s

= 1g �

� Supf

n

X

j=1

(j �

j

j : j a

mq

j

j);

n

X

j=1

j �

j

j

s

= 1g

and by (3.4) we get

[

n

X

j=1

(j a

j

j

s

s�1

mq

)℄

1=(

s

s�1

)

� (2K�

2m

kxk

m

)

q
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and then

[

n

X

j=1

(j a

j

j

s

s�1

mq

)℄

1=(

s

s�1

mq)

� (2K�

2m

kxk

m

)

1=m

:

Sin
e

s

s�1

mq =

2mq

2�q

; and n is arbitrary, the �rst part of our Theorem is proved.

If, in parti
ular,

1

m

� q � 1; let us de�ne S : X ! Y by

Sx =

n

X

j=1

a

m

j

y

j

; if x =

1

X

j=1

a

j

x

j

:

We have

kSxk = k

n

X

j=1

a

m

j

y

j

k � 2(

n

X

j=1

j a

m

j

j

2

)

1=2

= 2[(

n

X

j=1

j a

j

j

2m

)

1=2m

℄

m

�

� 2[(

n

X

j=1

j a

j

j

s

s�1

mq

)

1=

s

s�1

mq

℄

m

� 2(2K�

2m

kxk

m

)

sin
e m �

1

2

:

s

s�1

mq =

mq

2�q

: Then kSk � 2(2K�

2m

) and

kSk

as(r;1)

� 2K(2K�

2m

): Hen
e

n

X

j=1

j a

j

j

qm

=

n

X

j=1

kSa

j

x

j

k

q

� kSk

q

as(r;1)

max

"

j

2f1;�1g

fk

n

X

j=1

"

j

a

j

x

j

kg

qm

�

� [2K(2K�

2m

)℄

q

(�kxk)

qm

and 
onsequently, sin
e n is arbitrary, we obtain

1

P

j=1

j a

j

j

qm

< 1 whenever

x =

1

P

j=1

a

j

x

j

2 X: Q.E.D.

It is worthwhile observing that dimY = 1 is unavoidable in our approa
h sin
e

we ought to have "enough dimension " to apply the Dvoretzky-Rogers Lemma

for suÆ
iently large n.

In this paper ' will always denote the natural mapping (3.2) from a Bana
h

spa
e with a normalized un
onditional S
hauder basis fx

n

g into l

1

:

Corollary 1. If q < 2; r � 1 and m 2 N, we have

P(

m




0

;Y ) 6= P

as(q;r)

(

m




0

;Y )

regardless of the in�nite dimensional Bana
h spa
e Y . When Y is �nite di-

mensional the statement is not valid sin
e it is well known that P(

2




0

;K ) =

P

as(1;1)

(

2




0

;K ):

A standard lo
alization argument 
an be used to obtain the Corollary above for

L

1

spa
es in the pla
e of 


0

:

Theorems 3 and 5 furnish interesting spe
ial 
orollaries.
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Corollary 2. If Y is an in�nite dimensional Bana
h spa
e,

1

m

� q � 1 and

p � 2; then

P(

m

l

p

;Y ) = P

as(q;1)

(

m

l

p

;Y ) , qm � p:

Corollary 3. If Y is an in�nite dimensional Bana
h spa
e, 1 � p � 2 and

1

m

� q � 1; then

P(

m

l

p

;Y ) = P

as(q;1)

(

m

l

p

;Y ) ) qm � p and qm � 2 ) P(

m

l

p

;Y ) =

P

as(q;1)

(

m

l

p

;Y ):

4. Absolutely summing polynomials from Bana
h spa
es with

un
onditional S
hauder basis into Bana
h spa
es with finite


otype

In this se
tion we will explore 
otype properties to obtain signi�
ant improve-

ments for the Theorem 5.

The following de�nition and Lemma 
an be found in [10℄.

De�nition 2. We say that Y �nitely fa
tors (ff) the formal in
lusion l

q

! l

1

for 0 < Æ < 1 if for every n there are y

1

; :::; y

n

su
h that

(1� Æ)kak

1

� k

X

k�n

a

k

y

k

k � kak

q

for all a = (a

k

)

n

k=1

2 l

n

q

:

Note that (1� Æ) j a

k

j� ka

k

y

k

k �j a

k

j and then (1� Æ) � ky

k

k � 1 for all k:

Lemma 1. (Maurey-Pisier) For any in�nite dimensional Bana
h spa
e Y we

have

inff2 � q � 1;Y has 
otype qg =

= supf2 � q � 1;9Æ su
h that Y ff l

q

! l

1

g:

The next Theorem shows that we 
an push a little further if we properly take

advantage of the 
otype of the range.

Theorem 6. Let X denote an in�nite dimensional Bana
h spa
e with un
on-

ditional S
hauder basis and Y an in�nite dimensional Bana
h spa
e with �nite


otype p: If P(

m

X;Y ) = P

as(q;1)

(

m

X;Y ) and

1

m

� q < p; we 
on
lude that for

any un
onditional normalized S
hauder basis fx

n

g for X; '(X) � l

mqp

p�q

: When,

in parti
ular,

1

m

� q �

p

2

; we have '(X) � l

mq

; whi
h is a better estimate.

Proof. By hypothesis, there exists a positive K su
h that kPk

as(q;1)

� KkPk

for all P 2 P(

m

X;Y ):

Let f�

i

g

n

i=1

be su
h that

n

P

j=1

j �

j

j

s

= 1; with s =

p

q

: De�ne P : X ! Y by

Px =

n

X

j=1

�

1=q

j

a

m

j

y

j

; se x =

1

X

j=1

a

j

x

j
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where the y

j

are given by the foregoing Lemma 1 and De�nition 2. Sin
e fx

n

g is

an un
onditional basis, there exists a positive � su
h that

k

1

X

j=1

"

j

a

j

x

j

k � �k

1

X

j=1

a

j

x

j

k = �kxk for any "

j

= 1 or "

j

= �1:

Hen
e k

n

P

j=1

"

j

a

j

x

j

k � �kxk for all n and any "

j

= 1 or �1 and then we have

kPxk = k

n

X

j=1

�

1=q

j

a

m

j

y

j

k � (

n

X

j=1

j �

1=q

j

a

m

j

j

p

)

1=p

�

� �

m

kxk

m

(

n

X

j=1

j �

j

j

p=q

)

1=p

� �

m

kxk

m

(

n

X

j=1

j �

j

j

p=q

)

1=p

=

(4.1) = �

m

kxk

m

(

n

X

j=1

j �

j

j

s

)

1=p

� �

m

kxk

m

:

We arrive at kPk � �

m

and kPk

as(q;1)

� K�

m

: We 
an now a
hieve the estimate

below:

[

n

X

j=1

(j a

m

j

�

1=q

j

(1� Æ) j)

q

℄

1=q

� [

n

X

j=1

(ka

m

j

�

1=q

j

y

j

k)

q

℄

1=q

=

(

n

X

j=1

kPa

j

x

j

k

q

)

1=q

� kPk

as(q;1)

k(a

j

x

j

)

n

j=1

k

m

w;1

=

= kPk

as(q;1)

max

"

j

2f1;�1g

fk

n

X

j=1

"

j

a

j

x

j

kg

m

�

(4.2) � kPk

as(q;1)

(�kxk)

m

� K�

2m

kxk

m

:

However, it is 
ru
ial that (4.2) holds whenever

n

P

j=1

j �

j

j

s

= 1: Hen
e, sin
e

1

s

+

1

s

s�1

= 1

we have

[

n

X

j=1

( j a

j

j

s

s�1

mq

)℄

1=(

s

s�1

)

= [

n

X

j=1

(j a

mq

j

j

s

s�1

)℄

1=(

s

s�1

)

= k(a

mq

j

)

n

j=1

k

s

s�1

= Supfj

n

X

j=1

�

j

a

mq

j

j;

n

X

j=1

j �

j

j

s

= 1g �
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� Supf

n

X

j=1

(j �

j

jj a

mq

j

j);

n

X

j=1

j �

j

j

s

= 1g:

Again, by (4.2), it follows that

(4.3) [

n

X

j=1

(j a

j

j

s

s�1

mq

)℄

1=(

s

s�1

)

� [(1� Æ)

�1

K�

2m

kxk

m

℄

q

;

and then

[

n

X

j=1

j a

j

j

s

s�1

mq

℄

1=(

s

s�1

)mq

� [(1 � Æ)

�1

K�

2m

kxk

m

℄

1=m

:

Sin
e

s

s�1

mq =

mpq

p�q

and n is arbitrary, the �rst part of the Theorem is proved.

Now, if

1

m

� q �

p

2

; de�ne S : X ! Y by

Sx =

n

X

j=1

a

m

j

y

j

if x =

1

X

j=1

a

j

x

j

:

We obtain

kSxk = k

n

X

j=1

a

m

j

y

j

k � (

n

X

j=1

j a

m

j

j

p

)

1=p

=

= [(

n

X

j=1

j a

j

j

mp

)

1=mp

℄

m

� [(

n

X

j=1

j a

j

j

s

s�1

mq

)

1=

s

s�1

mq

℄

m

=

= [(1� Æ)

�1

K�

2m

kxk

m

℄

sin
e

2q � p) p� q � q ) 1 �

q

p� q

)

) mp � mp

q

p� q

=

s

s� 1

mq:

Thus kSk � (1� Æ)

�1

K�

2m

and kSk

as(q;1)

� (1� Æ)

�1

K

2

�

2m

and hen
e

n

X

j=1

j a

m

j

(1� Æ) j

q

�

n

X

j=1

ka

m

j

y

j

k

q

=

n

X

j=1

kSa

j

x

j

k

q

�

� kSk

q

as(q;1)

max

"

j

2f1;�1g

fk

n

X

j=1

"

j

a

j

x

j

kg

mq

� ((1� Æ)

�1

K

2

�

2m

)

q

(�kxk)

mq

:

Consequently, sin
e n is arbitrary, we have

1

P

j=1

j a

j

j

mq

< 1 whenever x =

1

P

j=1

a

j

x

j

2 X : Q.E.D.

Corollary 4. If Y has �nite 
otype and P (

m

l

t

;Y ) = P

as(q;1)

(

m

l

t

;Y ) for some q

su
h that

1

m

� q �


ot Y

2

; then t � mq.

By Theorems 3 and 6 we obtain the next Corollary.
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Corollary 5. If Y is in�nite dimensional and has �nite 
otype then

P(

m




0

;Y ) = P

as(q;1)

(

m




0

;Y ) , q � 
ot Y:

It is 
lear that one 
an repla
e 


0

by any L

1

spa
e.

Corollary 6. If P(

m

l

t

; l

p

) = P

as(q;1)

(

m

l

t

; l

p

) for some q su
h that

1

m

� q < 
ot l

p

then

t �

mqmaxfp; 2g

maxfp; 2g � q

:

5. Absolutely summing polynomials from Bana
h spa
es with

un
onditional S
hauder basis into Bana
h spa
es without finite


otype

If Y does not have �nite 
otype, a slight modi�
ation of the proof of Theorem

6 gives us the strongest negative result we 
ould ever wish.

Theorem 7. If Y does not have �nite 
otype and X is an L

1

spa
e, then

P(

m

X;Y ) 6= P

as(r;s)

(

m

X;Y )

regardless of the r > 0 and s � 1:

Proof. It suÆ
es to prove that P(

m




0

;Y ) 6= P

as(q;1)

(

m




0

;Y ) for every q �

1

m

.

Suppose that there exists q �

1

m

su
h that

P(

m




0

;Y ) = P

as(q;1)

(

m




0

;Y ):

As before, we 
an �nd a positive K su
h that kPk

as(q;1)

� KkPk regardless of

the P 2 P(

m




0

;Y ):

Sin
e Y does not have �nite 
otype, Y 
ontains l

n

1

��uniformly for all n and

some � > 1. Hen
e there are y

1

; :::; y

n

in Y su
h that

�

�1

kak

1

� k

X

k�n

a

k

y

k

k � kak

1

:

Noti
e that �

�1

� ky

k

k � 1 for all k:

Choose an arbitrary s > 1: Let f�

i

g

n

i=1

be su
h that

n

P

j=1

j �

j

j

s

= 1: De�ne

P : X ! Y by

Px =

n

X

j=1

�

1=q

j

a

m

j

y

j

if x =

1

X

j=1

a

j

x

j

:

As usual, sin
e fx

n

g is an un
onditional basis, there exists a positive � su
h that

k

1

X

j=1

"

j

a

j

x

j

k � �k

1

X

j=1

a

j

x

j

k = �kxk for any "

j

= 1 or� 1:
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Hen
e k

n

P

j=1

"

j

a

j

x

j

k � �kxk for all n and any "

j

= 1 or �1: We get

kPxk = k

n

X

j=1

�

1=q

j

a

m

j

y

j

k � k(�

1=q

j

a

m

j

)

n

j=1

k

1

� (

n

X

j=1

j �

1=q

j

a

m

j

j

sq

)

1=sq

�

(5.1) � �

m

kxk

m

(

n

X

j=1

j �

j

j

s

)

1=sq

� �

m

kxk

m

(

n

X

j=1

j �

j

j

s

)

1=sq

� �

m

kxk

m

:

So, inequality (5.1) gives us kPk � �

m

and kPk

as(q;1)

� K�

m

:Then

[

n

X

j=1

(j a

m

j

�

1=q

j

�

�1

j)

q

℄

1=q

� [

n

X

j=1

(ka

m

j

�

1=q

j

y

j

k)

q

℄

1=q

= (

n

X

j=1

kPa

j

x

j

k

q

)

1=q

�

� kPk

as(q;1)

k(a

j

x

j

)

n

j=1

k

m

w;1

= kPk

as(q;1)

max

"

j

2f1;�1g

fk

n

X

j=1

"

j

a

j

x

j

kg

m

�

(5.2) � kPk

as(q;1)

(�kxk)

m

� K�

2m

kxk

m

:

Re
alling that (5.2) holds whenever

n

P

j=1

j �

j

j

s

= 1 we obtain

[

n

X

j=1

( j a

j

j

s

s�1

mq

)℄

1=

s

s�1

= [

n

X

j=1

(j a

mq

j

j

s

s�1

)℄

1=

s

s�1

= k(a

mq

j

)

n

j=1

k

s

s�1

=

= Supfj

n

X

j=1

�

j

a

mq

j

j;

n

X

j=1

j �

j

j

s

= 1g �

� Supf

n

X

j=1

(j �

j

jj a

mq

j

j);

n

X

j=1

j �

j

j

s

= 1g:

By (5.2) it follows that

n

P

j=1

(j a

j

j

s

s�1

mq

)℄

1=

s

s�1

� (�K�

2m

kxk

m

)

q

and then

[

n

X

j=1

(j a

j

j

s

s�1

mq

)℄

1=

s

s�1

mq

� (�K�

2m

kxk

m

)

1=m

:

Sin
e n is arbitrary, we have thus shown that

1

X

j=1

j a

j

j

s

s�1

mq

<1

whenever x =

1

P

j=1

a

j

x

j

2 


0

and it is far from the truth. Q.E.D.

As a simple out
ome of the last Theorem we obtain the following Corollary.
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Corollary 7. If Y does not have �nite 
otype then

(5.3) P(

m

l

t

;Y ) = P

as(q;1)

(

m

l

t

;Y ) ) t � mq:

and

(5.4) maxft; 2g � mq ) P(

m

l

t

;Y ) = P

as(q;1)

(

m

l

t

;Y )

Proof. The proof of (5.3) is the same as the last proof. It suÆ
es to realize

that sin
e s > 1 is arbitrary, we have

x =

1

X

j=1

a

j

x

j

2 l

t

) (a

j

)

1

j=1

2 l

s

s�1

mq

and thus

t � lim

s!1

s

s� 1

mq = mq:

The proof of (5.4) is straightforward by Theorem 3. Q.E.D.

With another immediate 
onsequen
e of a slight variation of the proof of Theorem

7 we get the next result.

Theorem 8. If E is an in�nite dimensional Bana
h spa
e with normalized un-


onditional S
hauder basis fx

n

g and P(

m

E;F ) = P

as(q;1)

(

m

E;F ) for some F

with 
otF = 1; then for any x 2 E, x =

1

P

n=1

a

n

x

n

we have (a

n

)

1

n=1

2 l

mq

:

6. Multilinear mappings from Bana
h spa
es with un
onditional

S
hauder basis

It is 
lear that every negative polynomial result P(

n

E;F ) 6= P

as(r;s)

(

n

E;F )

furnishes a multilinear negative result L(

n

E;F ) 6= L

as(r;s)

(

n

E;F ): However, the

reader shall realize that the same reasoning we have used for polynomials 
an

be adjusted to other multilinear 
ases, as we sket
h in the Theorem below.

Theorem 9. Let Y be an in�nite dimensional Bana
h spa
e and E

1

; :::; E

m

de-

note in�nite dimensional Bana
h spa
es with un
onditional S
hauder basis. If

q is su
h that

1

m

� q < 2 and L

as(q;1)

(E

1

; :::; E

m

;Y ) = L(E

1

; :::; E

m

;Y ) we


on
lude that for any normalized un
onditional S
hauder basis fx

1

j

g; :::; fx

m

j

g for

E

1

; :::; E

m

; respe
tively, the natural mapping

 : E

1

� :::�E

m

! l

1

: (

X

a

(1)

i

x

1

i

; :::;

X

a

(m)

i

x

m

i

) ! (a

(1)

i

:::a

(m)

i

)

1

i=1

is su
h that  (E

1

� :::�E

m

) � l
2q

2�q

: If, in parti
ular,

1

m

� q � 1 and

L

as(q;1)

(E

1

� :::�E

m

;Y ) = L(E

1

� :::�E

m

;Y )

we 
on
lude that  (X) � l

q

:

Proof. For ea
h k = 1; :::;m, 
onsider a

k

=

P

i

a

(k)

i

x

k

i

: For ea
h natural n it

suÆ
es to de�ne T : E

1

� :::�E

m

! Y by

T (a

1

; :::; a

m

) =

n

X

j=1

�

1=q

j

a

(1)

j

:::a

(m)

j

y

j

;
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where the y

j

are given by the main Lemma of Dvoretzky Rogers Theorem, and

pro
eed as before.

Corollary 8. If E

1

is an L

1

spa
e and E

2

is an in�nite dimensional Bana
h

spa
e, then L(E

1

; E

2

;F ) 6= L

as(

r

2

;r)

(E

1

; E

2

;F ) for every 1 � r < 2 and every

Bana
h spa
e F:

Proof. If we had

L(E

1

; E

2

;F ) = L

as(

r

2

;r)

(E

1

; E

2

;F )

we would have( Lemma 3.4 of [2℄)

L(E

1

;L(E

2

;F )) = L

as(r;r)

(E

1

;L(E

2

;F ))

for r < 2: However, by Theorem 9, we know that

L(E

1

;L(E

2

;F )) 6= L

as(r;1)

(E

1

;L(E

2

;F ))

for all r < 2: Q.E.D.

For an in�nite dimensional F; the last Corollary is a parti
ular 
ase of a result

of Botelho (Theorem 3.5 of [2℄). However, for an arbitrary Bana
h spa
e F it is a

new result whi
h states the impossibility of improving ( for r < 2 ) a Theorem of

Tonge-Melendez [11℄ and Botelho-Floret [2℄, whi
h asserts that every 
ontinuous

bilinear mapping from an L

1

spa
e into K is 2-dominated.

The multilinear versions of Theorems 6 and 7 are also straightforward.

Remark 1. The argument of lo
alization works in L

p

spa
es not only if p = 1:

Using a Theorem of Pe l
zy�nski and Rosenthal (Corollary 2.1 of [12℄) it is not

hard to prove that if 1 � p � 1 X and Z are L

p

spa
es and

L(

n

X;Y ) = L

as(r;s

1

;:::;s

n

)

(

n

X;Y )

then

L(

n

Z;Y ) = L

as(r;s

1

;:::;s

n

)

(

n

Z;Y ):

Therefore it is 
lear that every negative result that we have stated for l

p

(e.g.

Corollaries 4, 6, 7) 
an be extended to L

p

spa
es, no matter they do not have an

un
onditional S
hauder basis.

7. Final appli
ations

The following simple result, whi
h proof we will omit, added to our negative

results will provide some simple answers to interesting questions about absolutely

summing polynomials.

Proposition 2. If L(E

1

; :::; E

n

;F ) = L

as(r;s

1

;:::;s

t

;1;:::;1)

(E

1

; :::; E

n

;F ) then

L(E

1

; :::; E

t

;L(E

t+1

; :::; E

n

;F ) = L

as(r;s

1

;:::;s

t

)

(E

1

; :::; E

t

;L(E

t+1

; :::; E

n

;F ):

and re
ipro
ally.

The multilinear version of Theorem 7 and Proposition 2 yield the results below.
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Proposition 3. Let n � 3; r

1

; :::; r

n

2 [1;1℄ and X

1

; :::;X

n

be in�nite dimen-

sional L

1

spa
es su
h that

L(X

1

; :::;X

n

;K ) = L

as(s;r

1

;:::;r

n

)

(X

1

; :::;X

n

;K ):

Then, no more than one of the r

j


an be 1:

Proof. There is no loss of generality if we admit r

n�1

= r

n

= 1: Hen
e, by

Proposition 2 we would have

L(X

1

; :::;X

n�2

;L(X

n�1

;X

n

;K )) = L

as(s;r

1

;:::;r

t

;)

(X

1

; :::;X

n�2

;L(X

n�1

;X

n

;K ))

whi
h is impossible by Theorem 7 sin
e L(X

(n�1)

;X

(n)

;K ) has only in�nite 
o-

type.

Proposition 4. Let n � 2 and r

1

; ::::; r

n

� 1: If X is an in�nite dimensional

L

1

spa
e and L(

n

X;F ) = L

as(s;r

1

;:::;r

n

)

(

n

X;F ), with dimF = 1, then r

j

6= 1

for all j.

Proof. It suÆ
es to observe that 
otL(X;F ) = 1 and use the multilinear

version of Theorem 7. We will make the 
ase n = 2 to be more pre
ise. If

L(

2

X;F ) = L

as(s;r;1)

(

2

X;F ) then Proposition 2 give us

L(X;L(X;F )) = L

as(s;r)

(X;L(X;F ))

and that is impossible. Q.E.D.

The same reasoning applies for L(X

1

; :::;X

n

;F ) with X

1

; :::;X

n

in�nite dimen-

sional L

1

spa
es.

As a �nal appli
ation, we will list some two re
ent positive results and our

negative results will be able to show that they 
annot be generalized in some

natural ways.

Theorem 10. (D.Perez [14℄) If ea
h X

j

is an L

1;�

j

spa
e, then every 
ontinuous

multilinear mapping from X

1

� :::�X

n

into K is (1; 2; :::; 2) -summing and

kTk

as(1;2;:::;2)

� K

G

3

n�2

2

kTk

n

Y

j=1

�

j

:

Proof. It is an interesting appli
ation of an Inequality of Grothendie
k. [14℄

It is 
lear that, in parti
ular, Theorem 9 applied to E

1

; :::; E

n

= 


0

and a

standard lo
alization argument imply that Theorem 10 
annot be improved to

an in�nite dimensional F in the pla
e of the s
alar �eld K .

Theorem 11. If ea
h X

j

is an L

1;�

j

spa
e and F has 
otype q 6= 1; then every


ontinuous n-linear mapping from X

1

� :::�X

n

into F is (q; 2; :::; 2)- summing

and

kTk

as(q;2;:::;2)

� C

q

(F )K

G

3

n�2

2

kTk

n

Y

j=1

�

j

:

In parti
ular, if X is an L

1;�

spa
e and F has 
otype q 6= 1, then

P(

n

X;F ) = P

as(q;2)

(

n

X;F ):
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Proof. Let (f

(1)

j

)

1

j=1

2 l

w

2

(X

j

); :::; (f

(n)

j

)

1

j=1

2 l

w

2

(X

n

): Sin
e for every R 2

L(X

1

; :::;X

n

;K ) we have

kRk

as(1;2;:::;2)

� K

G

3

n�2

2

kRk

n

Y

j=1

�

j

then,

(

1

X

j=1

kT (f

(1)

j

; :::; f

(n)

j

)k

q

)

1

q

� C

q

(F )k(T (f

(1)

j

; :::; f

(n)

j

))

1

j=1

k

w;1

=

= C

q

(F ) sup

y

;

2B

F

;

1

X

j=1

j< y

0

; T (f

(1)

j

; :::; f

(n)

j

) >j=

= C

q

(F ) sup

y

;

2B

F

;

1

X

j=1

j (y

0

Æ T )(f

(1)

j

; :::; f

(n)

j

) j�

� C

q

(F )CkTkk(f

(1)

j

)

1

j=1

k

w;2

:::k(f

(n)

j

)

1

j=1

k

w;2

where C = K

G

3

n�2

2

n

Q

j=1

�

j

. Q.E.D.

As a 
onsequen
e of the last Theorem, we have the following result, answering

a question posed by Botelho in [3℄.

Corollary 9. If n � 2 and ea
h X

j

is a L

1;�

j

spa
e then

(7.1) L(X

1

; :::;X

n

;K ) = L

as(2;2;:::;2;1)

(X

1

; :::;X

n

;K )

and

kTk

as(2;2;:::;2;1)

� C

2

(X

n

�)K

G

3

n�2

2

kTk

n

Y

j=1

�

j

:

Proof. Let T : X

1

� :::�X

n

! K be a 
ontinuous n-linear mapping. Then

T

1

: X

1

� ::: � X

n�1

! X

n

0

is (2; 2; :::; 2)-summing sin
e X

n

0

has 
otype 2.

Hen
e

(

1

X

j=1

kT

1

(x

(1)

j

; :::; x

(n�1)

j

)k

2

)

1=2

� C k (x

(1)

j

)

1

j=1

k

w;2

::: k (x

(n�1)

j

)

1

j=1

k

w;2

and

(

1

X

j=1

Sup

x

(n)

j

2B

X

j

kT

1

(x

(1)

j

; :::; x

(n�1)

j

)(x

(n)

j

)k

2

)

1=2

�

� C k (x

(1)

j

)

1

j=1

k

w;2

::: k (x

(n�1)

j

)

1

j=1

k

w;2

If (x

(n)

j

)

1

j=1

2 l

1

(X

n

) is non zero, we have

(

1

X

j=1

kT

1

(x

(1)

j

; :::; x

(n�1)

j

)(

x

(n)

j

k (x

(n)

j

)

1

j=1

k

1

)k

2

)

1=2

�
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� C k (x

(1)

j

)

1

j=1

k

w;2

::: k (x

(n�1)

j

)

1

j=1

k

w;2

:

Hen
e

(

1

X

j=1

kT (x

(1)

j

; :::; x

(n)

j

)k

2

)

1=2

� C k (x

(1)

j

)

1

j=1

k

w;2

::: k (x

(n�1)

j

)

1

j=1

k

w;2

k (x

(n)

j

)

1

j=1

k

1

where C = C

2

(X

n

�)K

G

3

n�2

2

kTk

n

Q

j=1

�

j

:

The 
ase (x

(n)

j

)

1

j=1

= 0 does not o�er any trouble. Q.E.D.

The above result generalizes the 
ase n = 2 due to Botelho ([2℄ and [3℄). In [3℄

is asked whether

L(

2

C(K);K ) = L

as(2;2;1)

(

2

C(K);K )


ould be improved to some in�nite dimensional Bana
h spa
e F in the pla
e of

K or not.

In parti
ular, Proposition 4 answers negatively this question and not only for

the bilinear 
ase, but for any n-linear 
ase of (7.1). As we 
an see, the answer

extends to several other 
ases. In fa
t, we do not need that every spa
e on the

domain is a L

1

spa
e. For instan
e, in the bilinear 
ase, we have the following

straightforward result.

Proposition 5. If E and F are in�nite dimensional then

L(C(K); E;F ) 6= L

as(s;r;1)

(C(K); E;F )

for all r � 1 and s > 0:

We 
an also point some other interesting remarks about the 
oin
iden
e re-

sult (7.1). We shall observe that it is also impossible to improve (7.1) with

(s; t

1

; t

2

; :::; t

n�1

;1) and s < 2 and t

1

; :::; t

n�1

� 1 . In fa
t, if it was possible, we

would obtain that every T : C(K)�:::�C(K) ! C(K)�would be (s; t

1

; t

2

; :::; t

n�1

)

-summing (
ontradi
tion by Theorem 9 and a simple lo
alization argument, sin
e




0

and C(K) are L

1

spa
es).

Other questions raised in [3℄ were:

� P(

2

C(K);F ) 6= P

as(

r

2

;r)

(

2

C(K);F ) for every in�nite dimensional Bana
h

spa
e F and every r <1 ?

� P(

n

C(K);F ) 6= P

as(

r

n

;r)

(

n

C(K);F ) for every n > 2; r < 1 and every

Bana
h spa
e F ?

It is worth remarking that the questions are for the dominated 
ases, and our

answers, albeit partial in some situations, go beyond the dominated 
ases and

sometimes furnish mu
h 
ompleter results, su
h as when 
otF = 1.

For n > 2; Corollary 1 gives a partial answer when

r

n

< 2: But Corollary 5

a
hieves a more general result when 
otF < 1 sin
e it asserts that whenever

r < n 
otF we have

P(

n

C(K);F ) 6= P

as(

r

n

;r)

(

n

C(K);F ):
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Finally, Theorem 7 shows that when F does not have �nite 
otype, we have for

any s > 0 and r � 1

P(

n

C(K);F ) 6= P

as(r;s)

(

n

C(K);F )

whi
h is a 
omplete answer and goes beyond the dominated 
ase.

Remark 2. This paper forms a portion of the author�s do
toral thesis whi
h is

being written at UNICAMP under supervision of M.Matos. The author thanks

Professor M.Matos and Professor J. Muji
a for the suggestions.
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