
COTYPE AND ABSOLUTELY SUMMING HOMOGENEOUS

POLYNOMIALS IN L

p

SPACES

DANIEL PELLEGRINO

Abstrat. In this paper we lift to homogeneous polynomials and multilinear

mappings a linear result due to Lindenstrauss and Pe lzy�nski for absolutely

summing mappings. We explore the notion of otype to obtain stronger re-

sults and provide various examples of situations in whih we have the spae

of absolutely summing polynomials di�erent from the whole spae. Among

other onsequenes, these results enable us to obtain answers to some open

questions about absolutely summing polynomials and multilinear mappings

on L

1

spaes.

1. Introdution

The theory of absolutely summing multilinear mappings was �rst skethed by

A. Pietsh in 1983 [15℄ and it was rapidly developed thereafter ([2℄,[6℄,[11℄,[9℄).

In this paper, the de�nitions of absolutely summing polynomials and multilinear

mappings we will work with were outlined by Pietsh and �rst explored by Alenar

and Matos [1℄ and have been broadly used (see [2℄,[4℄,[6℄,[14℄).

In the seminal paper [7℄ \Absolutely summing operators in L

p

spaes and

their appliations", Lindenstrauss and Pe lzy�nski provide a beautiful Theorem

whih states that if E is an in�nite dimensional Banah spae with unonditional

Shauder basis, dimF = 1 and every linear mapping from E into F is absolutely

(1; 1)-summing, then E is isomorphi to l

1

(�) and F is isomorphi to a Hilbert

spae. We will re�ne this statement by exploring the otype of F; not only for

the linear ases, but also and mainly for polynomial and multilinear mappings.

As orollaries we obtain several negative results, showing, in partiular, that

various of the known Coinidene Theorems (see e.g. [2℄,[11℄) for polynomials

and multilinear mappings annot be improved in many natural ways.

2. Bakground and Notation

Throughout this paper E;E

1

; :::; E

n

; F;X; Y will stand for Banah spaes. The

salar �eld K an be either R or C :

The Banah spae of all ontinuous n-linear mappings from E

1

� :::�E

n

into F

endowed with the anonial norm will be denoted by L(E

1

; :::; E

n

;F ): The Banah

spae of all ontinuous n-homogeneous polynomials P from E into F with the

norm kPk = supfkPxk; kxk � 1g will be denoted by P(

n

E;F ):
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For the natural isometry

	 : L(E

1

; :::; E

n

;F ) ! L(E

1

; :::; E

t

;L(E

t+1

; :::; E

n

;F ))

we will use the following onvention: If T 2 L(E

1

; :::; E

n

;F ) then 	(T ) = T

1

and

if T 2 L(E

1

; :::; E

t

;L(E

t+1

; :::; E

n

;F )); then 	

�1

(T ) = T

0

:

The linear spae of all sequenes (x

j

)

1

j=1

in E suh that

k(x

j

)

1

j=1

k

p

= (

1

X

j=1

kx

j

k

p

)

1

p

<1

will be denoted by l

p

(E): We will also denote by l

w

p

(E) the linear subspae of

l

p

(E) omposed by the sequenes (x

j

)

1

j=1

in E suh that (< '; x

j

>)

1

j=1

2 l

p

(K )

for every ontinuous linear funtional ' : E ! K : We de�ne k:k

w;p

in l

w

p

(E) by

k(x

j

)

1

j=1

k

w;p

:= Sup

'2B

E

�

(

1

X

j=1

j< '; x

j

>j

p

)

1

p

:

The ase p = 1 is the ase of bounded sequenes and in l

1

(E) we use the sup

norm. One an see that k:k

p

(k:k

w;p

) is a p-norm in l

p

(E)( l

w

p

(E)) for p < 1 and a

norm in l

p

(E)( l

w

p

(E)) for p � 1: In any ase, they are omplete metrizable linear

spaes.

Reall that if 2 � q � 1 and (r

j

)

1

j=1

are the Rademaher funtions, E has

otype q if there exists C

q

(E) � 0 suh that, no matter how we hoose k 2 N and

x

1

; :::; x

k

2 E;

(

k

X

j=1

kx

j

k

q

)

1

q

� C

q

(E)(

1

Z

0

k

k

X

j=1

r

j

(t)x

j

k

2

dt)

1

2

:

To over the ase q = 1 we replae (

P

k

j=1

kx

j

k

q

)

1

q

by max

j�n

kx

j

k. We will

de�ne the otype of E by

otE = inff2 � q � 1;E has otype qg:

The onept of absolutely summing polynomials and multilinear mappings we

will work with is the following natural generalization of the linear ase.

De�nition 1. (Alenar-Matos) A ontinuous multilinear mapping

T : E

1

� :::�E

n

! F

is absolutely (p; q

1

; :::; q

n

)-summing (or (p; q

1

; :::; q

n

)-summing) if

(T (x

(1)

j

; :::; x

(n)

j

))

1

j=1

2 l

p

(F )

for all (x

(s)

j

)

1

j=1

2 l

w

q

s

(E), s = 1; :::; n: A ontinuous n-homogeneous polynomial

P : E ! F is absolutely (p; q)-summing (or (p; q)-summing) if

(P (x

j

))

1

j=1

2 l

p

(F )

for all (x

j

)

1

j=1

2 l

w

q

(E):
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In order to avoid trivialities we assume that p �

q

n

in the polynomial ase

and

1

p

�

1

q

1

+ ::: +

1

q

n

in the n-linear ase. We will denote the spae of ab-

solutely (p; q

1

; :::; q

n

)-summing n-linear mappings from E

1

� ::: � E

n

into F by

L

as(p;q

1

;:::;q

n

)

(E

1

; :::; E

n

;F ): When q

1

= ::: = q

n

= q; we write L

as(p;q)

(E

1

; :::; E

n

;F ):

Analogously, the spae of all absolutely (p; q)-summing polynomials from E into

F is denoted by P

as(p;q)

(

n

E;F ):

For n-homogeneous polynomials and n-linear mappings, the polynomials (n-

linear mappings) (

p

n

; p)-summing will be alled p-dominated polynomials (n-linear

mappings), as it an be seen in Matos and Tonge-Mel�endez [9℄[11℄. For the

p-dominated polynomials (n-linear mappings) several natural versions of linear

results are appliable, suh as Fatorization Theorems, Domination Theorem,

Extrapolation Theorems, et. (see [9℄,[11℄,[13℄).

As in the linear ase, we have a haraterization Theorem whih plays a promi-

nent role in the theory.

Theorem 1. (Matos [9℄) Let P be an m-homogeneous polynomial from E into

F . Then the following statements are equivalent:

(1) P is absolutely (p; q)-summing.

(2)There exists L > 0 suh that

(

k

X

j=1

kP (x

j

)k

p

)

1

p

� Lk(x

j

)

k

j=1

k

m

w;q

8k 2 N and x

j

2 E:

(3)There exists L > 0 suh that

(2.1) (

1

X

j=1

kP (x

j

)k

p

)

1

p

� Lk(x

j

)

1

j=1

k

m

w;q

8(x

j

)

1

j=1

2 l

w

q

(E):

The in�mum of the L > 0 for whih inequality (2.1) always holds is a norm

for the ase p � 1 or a p-norm for the ase p < 1([9℄) on the spae of absolutely

(p; q)-summing polynomials. In any ase, we have omplete topologial metrizable

spaes. This norm (p-norm) will be denoted by k:k

as(p;q)

:

The haraterization for the multilinear ase and the de�nition of the norm

(p-norm) follow the same reasoning. The forthoming Theorem onstitutes the

de�nitive ruial joining of absolutely summing linear mappings and otype.

Theorem 2. (Maurey-Talagrand) E has otype q > 2 if, an only if,

id : E ! E is (q; 1)-summing.

If E has otype 2; then id : E ! E is (2; 1)-summing. The onverse is not true.

As a onsequene of Theorem 2 and the Generalized H�older Inequality one an

prove the following result:

Theorem 3. (Botelho [2℄) If Y has otype q, then

L(

n

X;Y ) = L

as(q;1)

(

n

X;Y ) for all Banah spae X:
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If X has otype q, then

L(

n

X;Y ) = L

as(

q

n

;1)

(

n

X;Y ) for all Banah spae Y:

In the next setions, among other results, we will prove that, in general, we

annot expet a result stronger than Theorem 3.

3. Absolutely summing polynomials from Banah spaes with

unonditional Shauder basis

The remarkable works of Maurey-Pisier [10℄ and Lindenstrauss-Pe lzy�nski [7℄

will play a fundamental role in this paper. We start with the following Theorem,

whih proof has inspired our results.

Theorem 4. (Lindenstrauss-Pe lzy�nski [7℄, Th. 4.2) If X has an unonditional

Shauder basis, dim X = dimY = 1 and every bounded linear operator from X

into Y is absolutely (1; 1)-summing, then X is isomorphi to l

1

(�) and Y is a

Hilbert spae.

This result and the Multilinear Grothendiek-Pietsh domination Theorem

lead us to interesting, although restrit, initial results as we will see below.

Example 1. Adapting an idea of [8℄ one an proof, for instane, that if X has

an unonditional Shauder basis, then

L(

n

X;K ) 6= L

as(

1

n

;1)

(

n

X;K )

and thus,

L(

n

X;Y ) 6= L

as(

1

n

;1)

(

n

X;Y ) for every Banah spae Y:

Indeed, if we had L(

2

X;K ) = L

as(

1

2

;1)

(

2

X;K ); then given S : X ! X

0

; we

ould de�ne T

S

: X �X ! K suh that (T

S

)

1

= S: By hypothesis, T

S

would be

(

1

2

; 1; 1)-summing. Hene, by the Grothendiek-Pietsh domination Theorem,

kT

S

(x; y)k � C(

Z

B

X

�

j '(x) j d�

1

)(

Z

B

X

�

j  (y) j d�

2

)

and

k(T

S

)

1

(x)k = Sup

kyk�1

kT

S

(x; y)k �

� Sup

kyk�1

C(

Z

B

X

�

j '(x) j d�

1

)(

Z

B

X

�

j  (y) j d�

2

) �

� C(

Z

B

X

�

j '(x) j d�

1

):

Then kS(x)k � C(

R

B

X

�

j '(x) j d�

1

) and then

L(X;X

0

) = L

as(1;1)

(X;X

0

)

(ontradition by Theorem 4). The general ase follows by a standard indutive

proess. Observe that the natural isometry between homogeneous polynomial
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and symmetri multilinear mappings is not enough to yield, mutatis mutandis, a

polynomial version to the example above.

It is also easy to prove the following result:

Proposition 1. If E is an in�nite dimensional Hilbert spae, then

L(

n

E;F ) 6= L

as(

r

n

;r)

(

n

E;F ) for all r � 1 and every F .

Proof. It suÆes to onsider the ase F = K : Sine E is Hilbert, E� is also

Hilbert and

L(E;E�) 6= L

as(1;1)

(E;E�) = L

as(r;r)

(E;E�)(see [5℄, page 224)

and the proof of the last example yields the ase n = 2: The general ase is

obtained by a standard indutive proess. Q.E.D.

The same simple onstrution give us many other results. However, the pre-

vious negative results, albeit interesting, are on�ned to the dominated ases

(whih have Grothendiek-Pietsh domination Theorem as a fundamental gun)

and they do not give us the full story. In general, the spaes of p-dominated

homogeneous polynomials and multilinear mappings are small and negative re-

sults are not surprising. We will present new negative results whih signi�antly

improve the last ones. Our approah onsists in lifting Theorem 4 to polynomial

and multilinear versions and re�ning them by exploring the properties of otype.

Our de�nition of Shauder basis is the same as in [7℄ and does not ask for

a separate spae, but it is lear that in the following proofs there is no loss of

generality if we restrit ourselves to the separate ases.

Theorem 5. Let X and Y be in�nite dimensional Banah spaes. Suppose that

X has an unonditional Shauder basis. If q is suh that

1

m

< q < 2 and

(3.1) P

as(q;1)

(

m

X;Y ) = P(

m

X;Y )

then regardless of the unonditional normalized Shauder basis fx

n

g of X, the

natural mapping

(3.2) ' : X ! l

1

: x =

X

a

i

x

i

! (a

i

)

1

i=1

is suh that '(X) � l
2mq

2�q

: If, in partiular,

1

m

� q � 1 and (3.1) holds, then, for

any unonditional normalized Shauder basis fx

n

g of X , we obtain '(X) � l

mq

;

whih is a better estimate than (3.2).

Proof. Consider q suh that

1

m

� q < 2: By hypothesis, there exists K > 0

suh that kPk

as(q;1)

� KkPk for all ontinuous m-homogeneous polynomial P :

X ! Y:

By the main Lemma of Dvoretzky-Rogers Theorem, for every n, there are

normalized y

1

; :::; y

n

in E suh that

k

n

X

j=1

�

j

y

j

k � 2(

n

X

j=1

j �

j

j

2

)

1=2

:
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Let f�

i

g

n

i=1

be suh that

n

P

j=1

j �

j

j

s

= 1 with s =

2

q

: De�ne P : X ! Y by

Px =

n

X

j=1

�

1=q

j

a

m

j

y

j

; if x =

1

X

j=1

a

j

x

j

:

Sine fx

n

g is an unonditional basis, there exists � > 0 suh that

k

1

P

j=1

"

j

a

j

x

j

k � �k

1

P

j=1

a

j

x

j

k = �kxk for all "

j

= 1 or �1:

Hene k

n

P

j=1

"

j

a

j

x

j

k � �kxk for all n and any "

j

= 1 or �1: We have

kPxk = k

n

X

j=1

�

1=q

j

a

m

j

y

j

k � 2(

n

X

j=1

j �

1=q

j

a

m

j

j

2

)

1=2

� 2(

n

X

j=1

j �

j

j

2=q

�

2m

kxk

2m

)

1=2

�

(3.3) � 2�

m

kxk

m

(

n

X

j=1

j �

j

j

2=q

)

1=2

= 2�

m

kxk

m

(

n

X

j=1

j �

j

j

s

)

1=2

� 2�

m

kxk

m

:

Then kPk � 2�

m

and kPk

as(q;1)

� 2K�

m

: Therefore

[

n

X

j=1

(j a

m

j

�

1=q

j

j)

q

℄

1=q

= (

n

X

j=1

kPa

j

x

j

k

q

)

1=q

� kPk

as(q;1)

k(a

j

x

j

)

n

j=1

k

m

w;1

=

(3.4)

= kPk

as(q;1)

max

"

j

2f1;�1g

fk

n

X

j=1

"

j

a

j

x

j

kg

m

� kPk

as(q;1)

(�kxk)

m

� 2K�

2m

kxk

m

:

Reall that (3.4) holds whenever

n

P

j=1

j �

j

j

s

= 1: Hene

[

n

X

j=1

( j a

j

j

s

s�1

mq

)℄

1=(

s

s�1

)

= [

n

X

j=1

(j a

mq

j

j

s

s�1

)℄

1=(

s

s�1

)

= k(a

mq

j

)

n

j=1

k

s

s�1

= Supfj

n

X

j=1

�

j

a

mq

j

j;

n

X

j=1

j �

j

j

s

= 1g �

� Supf

n

X

j=1

(j �

j

j : j a

mq

j

j);

n

X

j=1

j �

j

j

s

= 1g

and by (3.4) we get

[

n

X

j=1

(j a

j

j

s

s�1

mq

)℄

1=(

s

s�1

)

� (2K�

2m

kxk

m

)

q
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and then

[

n

X

j=1

(j a

j

j

s

s�1

mq

)℄

1=(

s

s�1

mq)

� (2K�

2m

kxk

m

)

1=m

:

Sine

s

s�1

mq =

2mq

2�q

; and n is arbitrary, the �rst part of our Theorem is proved.

If, in partiular,

1

m

� q � 1; let us de�ne S : X ! Y by

Sx =

n

X

j=1

a

m

j

y

j

; if x =

1

X

j=1

a

j

x

j

:

We have

kSxk = k

n

X

j=1

a

m

j

y

j

k � 2(

n

X

j=1

j a

m

j

j

2

)

1=2

= 2[(

n

X

j=1

j a

j

j

2m

)

1=2m

℄

m

�

� 2[(

n

X

j=1

j a

j

j

s

s�1

mq

)

1=

s

s�1

mq

℄

m

� 2(2K�

2m

kxk

m

)

sine m �

1

2

:

s

s�1

mq =

mq

2�q

: Then kSk � 2(2K�

2m

) and

kSk

as(r;1)

� 2K(2K�

2m

): Hene

n

X

j=1

j a

j

j

qm

=

n

X

j=1

kSa

j

x

j

k

q

� kSk

q

as(r;1)

max

"

j

2f1;�1g

fk

n

X

j=1

"

j

a

j

x

j

kg

qm

�

� [2K(2K�

2m

)℄

q

(�kxk)

qm

and onsequently, sine n is arbitrary, we obtain

1

P

j=1

j a

j

j

qm

< 1 whenever

x =

1

P

j=1

a

j

x

j

2 X: Q.E.D.

It is worthwhile observing that dimY = 1 is unavoidable in our approah sine

we ought to have "enough dimension " to apply the Dvoretzky-Rogers Lemma

for suÆiently large n.

In this paper ' will always denote the natural mapping (3.2) from a Banah

spae with a normalized unonditional Shauder basis fx

n

g into l

1

:

Corollary 1. If q < 2; r � 1 and m 2 N, we have

P(

m



0

;Y ) 6= P

as(q;r)

(

m



0

;Y )

regardless of the in�nite dimensional Banah spae Y . When Y is �nite di-

mensional the statement is not valid sine it is well known that P(

2



0

;K ) =

P

as(1;1)

(

2



0

;K ):

A standard loalization argument an be used to obtain the Corollary above for

L

1

spaes in the plae of 

0

:

Theorems 3 and 5 furnish interesting speial orollaries.



8 DANIEL PELLEGRINO

Corollary 2. If Y is an in�nite dimensional Banah spae,

1

m

� q � 1 and

p � 2; then

P(

m

l

p

;Y ) = P

as(q;1)

(

m

l

p

;Y ) , qm � p:

Corollary 3. If Y is an in�nite dimensional Banah spae, 1 � p � 2 and

1

m

� q � 1; then

P(

m

l

p

;Y ) = P

as(q;1)

(

m

l

p

;Y ) ) qm � p and qm � 2 ) P(

m

l

p

;Y ) =

P

as(q;1)

(

m

l

p

;Y ):

4. Absolutely summing polynomials from Banah spaes with

unonditional Shauder basis into Banah spaes with finite

otype

In this setion we will explore otype properties to obtain signi�ant improve-

ments for the Theorem 5.

The following de�nition and Lemma an be found in [10℄.

De�nition 2. We say that Y �nitely fators (ff) the formal inlusion l

q

! l

1

for 0 < Æ < 1 if for every n there are y

1

; :::; y

n

suh that

(1� Æ)kak

1

� k

X

k�n

a

k

y

k

k � kak

q

for all a = (a

k

)

n

k=1

2 l

n

q

:

Note that (1� Æ) j a

k

j� ka

k

y

k

k �j a

k

j and then (1� Æ) � ky

k

k � 1 for all k:

Lemma 1. (Maurey-Pisier) For any in�nite dimensional Banah spae Y we

have

inff2 � q � 1;Y has otype qg =

= supf2 � q � 1;9Æ suh that Y ff l

q

! l

1

g:

The next Theorem shows that we an push a little further if we properly take

advantage of the otype of the range.

Theorem 6. Let X denote an in�nite dimensional Banah spae with unon-

ditional Shauder basis and Y an in�nite dimensional Banah spae with �nite

otype p: If P(

m

X;Y ) = P

as(q;1)

(

m

X;Y ) and

1

m

� q < p; we onlude that for

any unonditional normalized Shauder basis fx

n

g for X; '(X) � l

mqp

p�q

: When,

in partiular,

1

m

� q �

p

2

; we have '(X) � l

mq

; whih is a better estimate.

Proof. By hypothesis, there exists a positive K suh that kPk

as(q;1)

� KkPk

for all P 2 P(

m

X;Y ):

Let f�

i

g

n

i=1

be suh that

n

P

j=1

j �

j

j

s

= 1; with s =

p

q

: De�ne P : X ! Y by

Px =

n

X

j=1

�

1=q

j

a

m

j

y

j

; se x =

1

X

j=1

a

j

x

j
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where the y

j

are given by the foregoing Lemma 1 and De�nition 2. Sine fx

n

g is

an unonditional basis, there exists a positive � suh that

k

1

X

j=1

"

j

a

j

x

j

k � �k

1

X

j=1

a

j

x

j

k = �kxk for any "

j

= 1 or "

j

= �1:

Hene k

n

P

j=1

"

j

a

j

x

j

k � �kxk for all n and any "

j

= 1 or �1 and then we have

kPxk = k

n

X

j=1

�

1=q

j

a

m

j

y

j

k � (

n

X

j=1

j �

1=q

j

a

m

j

j

p

)

1=p

�

� �

m

kxk

m

(

n

X

j=1

j �

j

j

p=q

)

1=p

� �

m

kxk

m

(

n

X

j=1

j �

j

j

p=q

)

1=p

=

(4.1) = �

m

kxk

m

(

n

X

j=1

j �

j

j

s

)

1=p

� �

m

kxk

m

:

We arrive at kPk � �

m

and kPk

as(q;1)

� K�

m

: We an now ahieve the estimate

below:

[

n

X

j=1

(j a

m

j

�

1=q

j

(1� Æ) j)

q

℄

1=q

� [

n

X

j=1

(ka

m

j

�

1=q

j

y

j

k)

q

℄

1=q

=

(

n

X

j=1

kPa

j

x

j

k

q

)

1=q

� kPk

as(q;1)

k(a

j

x

j

)

n

j=1

k

m

w;1

=

= kPk

as(q;1)

max

"

j

2f1;�1g

fk

n

X

j=1

"

j

a

j

x

j

kg

m

�

(4.2) � kPk

as(q;1)

(�kxk)

m

� K�

2m

kxk

m

:

However, it is ruial that (4.2) holds whenever

n

P

j=1

j �

j

j

s

= 1: Hene, sine

1

s

+

1

s

s�1

= 1

we have

[

n

X

j=1

( j a

j

j

s

s�1

mq

)℄

1=(

s

s�1

)

= [

n

X

j=1

(j a

mq

j

j

s

s�1

)℄

1=(

s

s�1

)

= k(a

mq

j

)

n

j=1

k

s

s�1

= Supfj

n

X

j=1

�

j

a

mq

j

j;

n

X

j=1

j �

j

j

s

= 1g �



10 DANIEL PELLEGRINO

� Supf

n

X

j=1

(j �

j

jj a

mq

j

j);

n

X

j=1

j �

j

j

s

= 1g:

Again, by (4.2), it follows that

(4.3) [

n

X

j=1

(j a

j

j

s

s�1

mq

)℄

1=(

s

s�1

)

� [(1� Æ)

�1

K�

2m

kxk

m

℄

q

;

and then

[

n

X

j=1

j a

j

j

s

s�1

mq

℄

1=(

s

s�1

)mq

� [(1 � Æ)

�1

K�

2m

kxk

m

℄

1=m

:

Sine

s

s�1

mq =

mpq

p�q

and n is arbitrary, the �rst part of the Theorem is proved.

Now, if

1

m

� q �

p

2

; de�ne S : X ! Y by

Sx =

n

X

j=1

a

m

j

y

j

if x =

1

X

j=1

a

j

x

j

:

We obtain

kSxk = k

n

X

j=1

a

m

j

y

j

k � (

n

X

j=1

j a

m

j

j

p

)

1=p

=

= [(

n

X

j=1

j a

j

j

mp

)

1=mp

℄

m

� [(

n

X

j=1

j a

j

j

s

s�1

mq

)

1=

s

s�1

mq

℄

m

=

= [(1� Æ)

�1

K�

2m

kxk

m

℄

sine

2q � p) p� q � q ) 1 �

q

p� q

)

) mp � mp

q

p� q

=

s

s� 1

mq:

Thus kSk � (1� Æ)

�1

K�

2m

and kSk

as(q;1)

� (1� Æ)

�1

K

2

�

2m

and hene

n

X

j=1

j a

m

j

(1� Æ) j

q

�

n

X

j=1

ka

m

j

y

j

k

q

=

n

X

j=1

kSa

j

x

j

k

q

�

� kSk

q

as(q;1)

max

"

j

2f1;�1g

fk

n

X

j=1

"

j

a

j

x

j

kg

mq

� ((1� Æ)

�1

K

2

�

2m

)

q

(�kxk)

mq

:

Consequently, sine n is arbitrary, we have

1

P

j=1

j a

j

j

mq

< 1 whenever x =

1

P

j=1

a

j

x

j

2 X : Q.E.D.

Corollary 4. If Y has �nite otype and P (

m

l

t

;Y ) = P

as(q;1)

(

m

l

t

;Y ) for some q

suh that

1

m

� q �

ot Y

2

; then t � mq.

By Theorems 3 and 6 we obtain the next Corollary.
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Corollary 5. If Y is in�nite dimensional and has �nite otype then

P(

m



0

;Y ) = P

as(q;1)

(

m



0

;Y ) , q � ot Y:

It is lear that one an replae 

0

by any L

1

spae.

Corollary 6. If P(

m

l

t

; l

p

) = P

as(q;1)

(

m

l

t

; l

p

) for some q suh that

1

m

� q < ot l

p

then

t �

mqmaxfp; 2g

maxfp; 2g � q

:

5. Absolutely summing polynomials from Banah spaes with

unonditional Shauder basis into Banah spaes without finite

otype

If Y does not have �nite otype, a slight modi�ation of the proof of Theorem

6 gives us the strongest negative result we ould ever wish.

Theorem 7. If Y does not have �nite otype and X is an L

1

spae, then

P(

m

X;Y ) 6= P

as(r;s)

(

m

X;Y )

regardless of the r > 0 and s � 1:

Proof. It suÆes to prove that P(

m



0

;Y ) 6= P

as(q;1)

(

m



0

;Y ) for every q �

1

m

.

Suppose that there exists q �

1

m

suh that

P(

m



0

;Y ) = P

as(q;1)

(

m



0

;Y ):

As before, we an �nd a positive K suh that kPk

as(q;1)

� KkPk regardless of

the P 2 P(

m



0

;Y ):

Sine Y does not have �nite otype, Y ontains l

n

1

��uniformly for all n and

some � > 1. Hene there are y

1

; :::; y

n

in Y suh that

�

�1

kak

1

� k

X

k�n

a

k

y

k

k � kak

1

:

Notie that �

�1

� ky

k

k � 1 for all k:

Choose an arbitrary s > 1: Let f�

i

g

n

i=1

be suh that

n

P

j=1

j �

j

j

s

= 1: De�ne

P : X ! Y by

Px =

n

X

j=1

�

1=q

j

a

m

j

y

j

if x =

1

X

j=1

a

j

x

j

:

As usual, sine fx

n

g is an unonditional basis, there exists a positive � suh that

k

1

X

j=1

"

j

a

j

x

j

k � �k

1

X

j=1

a

j

x

j

k = �kxk for any "

j

= 1 or� 1:
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Hene k

n

P

j=1

"

j

a

j

x

j

k � �kxk for all n and any "

j

= 1 or �1: We get

kPxk = k

n

X

j=1

�

1=q

j

a

m

j

y

j

k � k(�

1=q

j

a

m

j

)

n

j=1

k

1

� (

n

X

j=1

j �

1=q

j

a

m

j

j

sq

)

1=sq

�

(5.1) � �

m

kxk

m

(

n

X

j=1

j �

j

j

s

)

1=sq

� �

m

kxk

m

(

n

X

j=1

j �

j

j

s

)

1=sq

� �

m

kxk

m

:

So, inequality (5.1) gives us kPk � �

m

and kPk

as(q;1)

� K�

m

:Then

[

n

X

j=1

(j a

m

j

�

1=q

j

�

�1

j)

q

℄

1=q

� [

n

X

j=1

(ka

m

j

�

1=q

j

y

j

k)

q

℄

1=q

= (

n

X

j=1

kPa

j

x

j

k

q

)

1=q

�

� kPk

as(q;1)

k(a

j

x

j

)

n

j=1

k

m

w;1

= kPk

as(q;1)

max

"

j

2f1;�1g

fk

n

X

j=1

"

j

a

j

x

j

kg

m

�

(5.2) � kPk

as(q;1)

(�kxk)

m

� K�

2m

kxk

m

:

Realling that (5.2) holds whenever

n

P

j=1

j �

j

j

s

= 1 we obtain

[

n

X

j=1

( j a

j

j

s

s�1

mq

)℄

1=

s

s�1

= [

n

X

j=1

(j a

mq

j

j

s

s�1

)℄

1=

s

s�1

= k(a

mq

j

)

n

j=1

k

s

s�1

=

= Supfj

n

X

j=1

�

j

a

mq

j

j;

n

X

j=1

j �

j

j

s

= 1g �

� Supf

n

X

j=1

(j �

j

jj a

mq

j

j);

n

X

j=1

j �

j

j

s

= 1g:

By (5.2) it follows that

n

P

j=1

(j a

j

j

s

s�1

mq

)℄

1=

s

s�1

� (�K�

2m

kxk

m

)

q

and then

[

n

X

j=1

(j a

j

j

s

s�1

mq

)℄

1=

s

s�1

mq

� (�K�

2m

kxk

m

)

1=m

:

Sine n is arbitrary, we have thus shown that

1

X

j=1

j a

j

j

s

s�1

mq

<1

whenever x =

1

P

j=1

a

j

x

j

2 

0

and it is far from the truth. Q.E.D.

As a simple outome of the last Theorem we obtain the following Corollary.
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Corollary 7. If Y does not have �nite otype then

(5.3) P(

m

l

t

;Y ) = P

as(q;1)

(

m

l

t

;Y ) ) t � mq:

and

(5.4) maxft; 2g � mq ) P(

m

l

t

;Y ) = P

as(q;1)

(

m

l

t

;Y )

Proof. The proof of (5.3) is the same as the last proof. It suÆes to realize

that sine s > 1 is arbitrary, we have

x =

1

X

j=1

a

j

x

j

2 l

t

) (a

j

)

1

j=1

2 l

s

s�1

mq

and thus

t � lim

s!1

s

s� 1

mq = mq:

The proof of (5.4) is straightforward by Theorem 3. Q.E.D.

With another immediate onsequene of a slight variation of the proof of Theorem

7 we get the next result.

Theorem 8. If E is an in�nite dimensional Banah spae with normalized un-

onditional Shauder basis fx

n

g and P(

m

E;F ) = P

as(q;1)

(

m

E;F ) for some F

with otF = 1; then for any x 2 E, x =

1

P

n=1

a

n

x

n

we have (a

n

)

1

n=1

2 l

mq

:

6. Multilinear mappings from Banah spaes with unonditional

Shauder basis

It is lear that every negative polynomial result P(

n

E;F ) 6= P

as(r;s)

(

n

E;F )

furnishes a multilinear negative result L(

n

E;F ) 6= L

as(r;s)

(

n

E;F ): However, the

reader shall realize that the same reasoning we have used for polynomials an

be adjusted to other multilinear ases, as we sketh in the Theorem below.

Theorem 9. Let Y be an in�nite dimensional Banah spae and E

1

; :::; E

m

de-

note in�nite dimensional Banah spaes with unonditional Shauder basis. If

q is suh that

1

m

� q < 2 and L

as(q;1)

(E

1

; :::; E

m

;Y ) = L(E

1

; :::; E

m

;Y ) we

onlude that for any normalized unonditional Shauder basis fx

1

j

g; :::; fx

m

j

g for

E

1

; :::; E

m

; respetively, the natural mapping

 : E

1

� :::�E

m

! l

1

: (

X

a

(1)

i

x

1

i

; :::;

X

a

(m)

i

x

m

i

) ! (a

(1)

i

:::a

(m)

i

)

1

i=1

is suh that  (E

1

� :::�E

m

) � l
2q

2�q

: If, in partiular,

1

m

� q � 1 and

L

as(q;1)

(E

1

� :::�E

m

;Y ) = L(E

1

� :::�E

m

;Y )

we onlude that  (X) � l

q

:

Proof. For eah k = 1; :::;m, onsider a

k

=

P

i

a

(k)

i

x

k

i

: For eah natural n it

suÆes to de�ne T : E

1

� :::�E

m

! Y by

T (a

1

; :::; a

m

) =

n

X

j=1

�

1=q

j

a

(1)

j

:::a

(m)

j

y

j

;
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where the y

j

are given by the main Lemma of Dvoretzky Rogers Theorem, and

proeed as before.

Corollary 8. If E

1

is an L

1

spae and E

2

is an in�nite dimensional Banah

spae, then L(E

1

; E

2

;F ) 6= L

as(

r

2

;r)

(E

1

; E

2

;F ) for every 1 � r < 2 and every

Banah spae F:

Proof. If we had

L(E

1

; E

2

;F ) = L

as(

r

2

;r)

(E

1

; E

2

;F )

we would have( Lemma 3.4 of [2℄)

L(E

1

;L(E

2

;F )) = L

as(r;r)

(E

1

;L(E

2

;F ))

for r < 2: However, by Theorem 9, we know that

L(E

1

;L(E

2

;F )) 6= L

as(r;1)

(E

1

;L(E

2

;F ))

for all r < 2: Q.E.D.

For an in�nite dimensional F; the last Corollary is a partiular ase of a result

of Botelho (Theorem 3.5 of [2℄). However, for an arbitrary Banah spae F it is a

new result whih states the impossibility of improving ( for r < 2 ) a Theorem of

Tonge-Melendez [11℄ and Botelho-Floret [2℄, whih asserts that every ontinuous

bilinear mapping from an L

1

spae into K is 2-dominated.

The multilinear versions of Theorems 6 and 7 are also straightforward.

Remark 1. The argument of loalization works in L

p

spaes not only if p = 1:

Using a Theorem of Pe lzy�nski and Rosenthal (Corollary 2.1 of [12℄) it is not

hard to prove that if 1 � p � 1 X and Z are L

p

spaes and

L(

n

X;Y ) = L

as(r;s

1

;:::;s

n

)

(

n

X;Y )

then

L(

n

Z;Y ) = L

as(r;s

1

;:::;s

n

)

(

n

Z;Y ):

Therefore it is lear that every negative result that we have stated for l

p

(e.g.

Corollaries 4, 6, 7) an be extended to L

p

spaes, no matter they do not have an

unonditional Shauder basis.

7. Final appliations

The following simple result, whih proof we will omit, added to our negative

results will provide some simple answers to interesting questions about absolutely

summing polynomials.

Proposition 2. If L(E

1

; :::; E

n

;F ) = L

as(r;s

1

;:::;s

t

;1;:::;1)

(E

1

; :::; E

n

;F ) then

L(E

1

; :::; E

t

;L(E

t+1

; :::; E

n

;F ) = L

as(r;s

1

;:::;s

t

)

(E

1

; :::; E

t

;L(E

t+1

; :::; E

n

;F ):

and reiproally.

The multilinear version of Theorem 7 and Proposition 2 yield the results below.
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Proposition 3. Let n � 3; r

1

; :::; r

n

2 [1;1℄ and X

1

; :::;X

n

be in�nite dimen-

sional L

1

spaes suh that

L(X

1

; :::;X

n

;K ) = L

as(s;r

1

;:::;r

n

)

(X

1

; :::;X

n

;K ):

Then, no more than one of the r

j

an be 1:

Proof. There is no loss of generality if we admit r

n�1

= r

n

= 1: Hene, by

Proposition 2 we would have

L(X

1

; :::;X

n�2

;L(X

n�1

;X

n

;K )) = L

as(s;r

1

;:::;r

t

;)

(X

1

; :::;X

n�2

;L(X

n�1

;X

n

;K ))

whih is impossible by Theorem 7 sine L(X

(n�1)

;X

(n)

;K ) has only in�nite o-

type.

Proposition 4. Let n � 2 and r

1

; ::::; r

n

� 1: If X is an in�nite dimensional

L

1

spae and L(

n

X;F ) = L

as(s;r

1

;:::;r

n

)

(

n

X;F ), with dimF = 1, then r

j

6= 1

for all j.

Proof. It suÆes to observe that otL(X;F ) = 1 and use the multilinear

version of Theorem 7. We will make the ase n = 2 to be more preise. If

L(

2

X;F ) = L

as(s;r;1)

(

2

X;F ) then Proposition 2 give us

L(X;L(X;F )) = L

as(s;r)

(X;L(X;F ))

and that is impossible. Q.E.D.

The same reasoning applies for L(X

1

; :::;X

n

;F ) with X

1

; :::;X

n

in�nite dimen-

sional L

1

spaes.

As a �nal appliation, we will list some two reent positive results and our

negative results will be able to show that they annot be generalized in some

natural ways.

Theorem 10. (D.Perez [14℄) If eah X

j

is an L

1;�

j

spae, then every ontinuous

multilinear mapping from X

1

� :::�X

n

into K is (1; 2; :::; 2) -summing and

kTk

as(1;2;:::;2)

� K

G

3

n�2

2

kTk

n

Y

j=1

�

j

:

Proof. It is an interesting appliation of an Inequality of Grothendiek. [14℄

It is lear that, in partiular, Theorem 9 applied to E

1

; :::; E

n

= 

0

and a

standard loalization argument imply that Theorem 10 annot be improved to

an in�nite dimensional F in the plae of the salar �eld K .

Theorem 11. If eah X

j

is an L

1;�

j

spae and F has otype q 6= 1; then every

ontinuous n-linear mapping from X

1

� :::�X

n

into F is (q; 2; :::; 2)- summing

and

kTk

as(q;2;:::;2)

� C

q

(F )K

G

3

n�2

2

kTk

n

Y

j=1

�

j

:

In partiular, if X is an L

1;�

spae and F has otype q 6= 1, then

P(

n

X;F ) = P

as(q;2)

(

n

X;F ):
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Proof. Let (f

(1)

j

)

1

j=1

2 l

w

2

(X

j

); :::; (f

(n)

j

)

1

j=1

2 l

w

2

(X

n

): Sine for every R 2

L(X

1

; :::;X

n

;K ) we have

kRk

as(1;2;:::;2)

� K

G

3

n�2

2

kRk

n

Y

j=1

�

j

then,

(

1

X

j=1

kT (f

(1)

j

; :::; f

(n)

j

)k

q

)

1

q

� C

q

(F )k(T (f

(1)

j

; :::; f

(n)

j

))

1

j=1

k

w;1

=

= C

q

(F ) sup

y

;

2B

F

;

1

X

j=1

j< y

0

; T (f

(1)

j

; :::; f

(n)

j

) >j=

= C

q

(F ) sup

y

;

2B

F

;

1

X

j=1

j (y

0

Æ T )(f

(1)

j

; :::; f

(n)

j

) j�

� C

q

(F )CkTkk(f

(1)

j

)

1

j=1

k

w;2

:::k(f

(n)

j

)

1

j=1

k

w;2

where C = K

G

3

n�2

2

n

Q

j=1

�

j

. Q.E.D.

As a onsequene of the last Theorem, we have the following result, answering

a question posed by Botelho in [3℄.

Corollary 9. If n � 2 and eah X

j

is a L

1;�

j

spae then

(7.1) L(X

1

; :::;X

n

;K ) = L

as(2;2;:::;2;1)

(X

1

; :::;X

n

;K )

and

kTk

as(2;2;:::;2;1)

� C

2

(X

n

�)K

G

3

n�2

2

kTk

n

Y

j=1

�

j

:

Proof. Let T : X

1

� :::�X

n

! K be a ontinuous n-linear mapping. Then

T

1

: X

1

� ::: � X

n�1

! X

n

0

is (2; 2; :::; 2)-summing sine X

n

0

has otype 2.

Hene

(

1

X

j=1

kT

1

(x

(1)

j

; :::; x

(n�1)

j

)k

2

)

1=2

� C k (x

(1)

j

)

1

j=1

k

w;2

::: k (x

(n�1)

j

)

1

j=1

k

w;2

and

(

1

X

j=1

Sup

x

(n)

j

2B

X

j

kT

1

(x

(1)

j

; :::; x

(n�1)

j

)(x

(n)

j

)k

2

)

1=2

�

� C k (x

(1)

j

)

1

j=1

k

w;2

::: k (x

(n�1)

j

)

1

j=1

k

w;2

If (x

(n)

j

)

1

j=1

2 l

1

(X

n

) is non zero, we have

(

1

X

j=1

kT

1

(x

(1)

j

; :::; x

(n�1)

j

)(

x

(n)

j

k (x

(n)

j

)

1

j=1

k

1

)k

2

)

1=2

�
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� C k (x

(1)

j

)

1

j=1

k

w;2

::: k (x

(n�1)

j

)

1

j=1

k

w;2

:

Hene

(

1

X

j=1

kT (x

(1)

j

; :::; x

(n)

j

)k

2

)

1=2

� C k (x

(1)

j

)

1

j=1

k

w;2

::: k (x

(n�1)

j

)

1

j=1

k

w;2

k (x

(n)

j

)

1

j=1

k

1

where C = C

2

(X

n

�)K

G

3

n�2

2

kTk

n

Q

j=1

�

j

:

The ase (x

(n)

j

)

1

j=1

= 0 does not o�er any trouble. Q.E.D.

The above result generalizes the ase n = 2 due to Botelho ([2℄ and [3℄). In [3℄

is asked whether

L(

2

C(K);K ) = L

as(2;2;1)

(

2

C(K);K )

ould be improved to some in�nite dimensional Banah spae F in the plae of

K or not.

In partiular, Proposition 4 answers negatively this question and not only for

the bilinear ase, but for any n-linear ase of (7.1). As we an see, the answer

extends to several other ases. In fat, we do not need that every spae on the

domain is a L

1

spae. For instane, in the bilinear ase, we have the following

straightforward result.

Proposition 5. If E and F are in�nite dimensional then

L(C(K); E;F ) 6= L

as(s;r;1)

(C(K); E;F )

for all r � 1 and s > 0:

We an also point some other interesting remarks about the oinidene re-

sult (7.1). We shall observe that it is also impossible to improve (7.1) with

(s; t

1

; t

2

; :::; t

n�1

;1) and s < 2 and t

1

; :::; t

n�1

� 1 . In fat, if it was possible, we

would obtain that every T : C(K)�:::�C(K) ! C(K)�would be (s; t

1

; t

2

; :::; t

n�1

)

-summing (ontradition by Theorem 9 and a simple loalization argument, sine



0

and C(K) are L

1

spaes).

Other questions raised in [3℄ were:

� P(

2

C(K);F ) 6= P

as(

r

2

;r)

(

2

C(K);F ) for every in�nite dimensional Banah

spae F and every r <1 ?

� P(

n

C(K);F ) 6= P

as(

r

n

;r)

(

n

C(K);F ) for every n > 2; r < 1 and every

Banah spae F ?

It is worth remarking that the questions are for the dominated ases, and our

answers, albeit partial in some situations, go beyond the dominated ases and

sometimes furnish muh ompleter results, suh as when otF = 1.

For n > 2; Corollary 1 gives a partial answer when

r

n

< 2: But Corollary 5

ahieves a more general result when otF < 1 sine it asserts that whenever

r < n otF we have

P(

n

C(K);F ) 6= P

as(

r

n

;r)

(

n

C(K);F ):
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Finally, Theorem 7 shows that when F does not have �nite otype, we have for

any s > 0 and r � 1

P(

n

C(K);F ) 6= P

as(r;s)

(

n

C(K);F )

whih is a omplete answer and goes beyond the dominated ase.

Remark 2. This paper forms a portion of the author�s dotoral thesis whih is

being written at UNICAMP under supervision of M.Matos. The author thanks

Professor M.Matos and Professor J. Mujia for the suggestions.
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