COTYPE AND ABSOLUTELY SUMMING HOMOGENEOUS
POLYNOMIALS IN £, SPACES

DANIEL PELLEGRINO

ABSTRACT. In this paper we lift to homogeneous polynomials and multilinear
mappings a linear result due to Lindenstrauss and Pelczynski for absolutely
summing mappings. We explore the notion of cotype to obtain stronger re-
sults and provide various examples of situations in which we have the space
of absolutely summing polynomials different from the whole space. Among
other consequences, these results enable us to obtain answers to some open
questions about absolutely summing polynomials and multilinear mappings
on L~ spaces.

1. INTRODUCTION

The theory of absolutely summing multilinear mappings was first sketched by
A. Pietsch in 1983 [15] and it was rapidly developed thereafter ([2],[6],[11],[9]).
In this paper, the definitions of absolutely summing polynomials and multilinear
mappings we will work with were outlined by Pietsch and first explored by Alencar
and Matos [1] and have been broadly used (see [2],[4],[6],[14]).

In the seminal paper [7] “Absolutely summing operators in £, spaces and
their applications”, Lindenstrauss and Pelczynski provide a beautiful Theorem
which states that if £ is an infinite dimensional Banach space with unconditional
Schauder basis, dim F' = oo and every linear mapping from E into F' is absolutely
(1;1)-summing, then F is isomorphic to [;(I") and F' is isomorphic to a Hilbert
space. We will refine this statement by exploring the cotype of F, not only for
the linear cases, but also and mainly for polynomial and multilinear mappings.
As corollaries we obtain several negative results, showing, in particular, that
various of the known Coincidence Theorems (see e.g. [2],[11]) for polynomials
and multilinear mappings cannot be improved in many natural ways.

2. BACKGROUND AND NOTATION

Throughout this paper E, E1, ..., B, F, X, Y will stand for Banach spaces. The
scalar field K can be either R or C.

The Banach space of all continuous n-linear mappings from F; X ... X E, into F
endowed with the canonical norm will be denoted by L(Fy, ..., E,;F). The Banach
space of all continuous n-homogeneous polynomials P from E into F with the
norm || P|| = sup{||Pz||; ||z|| < 1} will be denoted by P("E, F).
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For the natural isometry
U: L(Ey,y... Eny F) = L(E, ..., By L(Eypa, -, En; F))

we will use the following convention: If T' € L(Ex, ..., Ey; F) then U(T') = T} and
if T € L(Ey,...,E; L(Eyy1, ..., En; F)), then U~1(T) = Tp.
The linear space of all sequences (z;)72 in E such that

() j= el = ZH%HP p <000

will be denoted by [,(E). We will also denote by I;/(E) the linear subspace of
Ip(E) composed by the sequences (z;)72; in E such that (< ¢,z; >)72; € [,(K)
for every continuous linear functional ¢ : E — K. We define ||.||,,p in [;(F) by

oo
1
(25721l p = Suppen D |< @, >I7)7.

7=1
The case p = oo is the case of bounded sequences and in [, (F) we use the sup
norm. One can see that |||, (||||lw,p) is a p-norm in I,(E)( [y (E)) for p < 1 and a
norm in [, (E)( I/ (E)) for p > 1. In any case, they are complete metrizable linear
spaces.

Recall that if 2 < ¢ < 0o and (Tj);')i1 are the Rademacher functions, £ has

cotype ¢ if there exists Cy(E) > 0 such that, no matter how we choose k£ € N and
T1y.Tp €

1 | k
Z i1 < CuBY( [ 13 rs(0yz; Pan?.
0 =1

j
1
To cover the case ¢ = oo we replace (Ele lz;||7)e by mazj<n|lz;l|. We will
define the cotype of E by
cot E = inf{2 < ¢ < oo; E has cotype ¢}.

The concept of absolutely summing polynomials and multilinear mappings we
will work with is the following natural generalization of the linear case.

Definition 1. (Alencar-Matos) A continuous multilinear mapping
T:Fi X..xE,—F
is absolutely (p; qi, ..., qn)-summing (or (p;qi, ..., ¢n)-summing) if

(T(a, ..., 2))%2, € 1,(F)

for all (avg-s));-";l €ly(E), s=1,..,n. A continuous n-homogeneous polynomial
P : E — F is absolutely (p; q)-summing (or (p;q)-summing) if

(P ()52, € Lp(F)
for all ()32, € 17 (E).
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In order to avoid trivialities we assume that p > % in the polynomial case
and 1—1) < q% 4+ ...+ an in the n-linear case. We will denote the space of ab-
solutely (p;qi, ..., gn)-summing n-linear mappings from E; X ... X E, into F' by
Laspiqr,engn) By -y B F). When g1 = ... = g5, = q, we write Lgp:q)(F1, ., Enj F).
Analogously, the space of all absolutely (p; ¢)-summing polynomials from E into
F is denoted by Py i) ("E; F).

For n-homogeneous polynomials and n-linear mappings, the polynomials (n-
linear mappings) (£;p)-summing will be called p-dominated polynomials (n-linear
mappings), as it can be seen in Matos and Tonge-Meléndez [9][11]. For the
p-dominated polynomials (n-linear mappings) several natural versions of linear
results are applicable, such as Factorization Theorems, Domination Theorem,
Extrapolation Theorems, etc. (see [9],[11],[13]).

As in the linear case, we have a characterization Theorem which plays a promi-
nent role in the theory.

Theorem 1. (Matos [9]) Let P be an m-homogeneous polynomial from E into
F. Then the following statements are equivalent:

(1) P is absolutely (p;q)-summing.

(2) There exists L > 0 such that

: p 1 k m
(D I1PE)I)? < Lil(z;)5-1 Il Yk € N and z; € E.
j=1
(3) There exists L > 0 such that
e 1
(2.1) QD IIP@p)IP)7 < Lil(a;)32 [l ()52 € I (B).
=1

The infimum of the L > 0 for which inequality (2.1) always holds is a norm
for the case p > 1 or a p-norm for the case p < 1([9]) on the space of absolutely
(p; @)-summing polynomials. In any case, we have complete topological metrizable
spaces. This norm (p-norm) will be denoted by ||.||qs(psq)-

The characterization for the multilinear case and the definition of the norm
(p-norm) follow the same reasoning. The forthcoming Theorem constitutes the
definitive crucial joining of absolutely summing linear mappings and cotype.

Theorem 2. (Maurey-Talagrand) E has cotype q > 2 if, an only if,
id: E — E is (q;1)-summing.
If E has cotype 2, then id : E — E is (2;1)-summing. The converse is not true.

As a consequence of Theorem 2 and the Generalized Holder Inequality one can
prove the following result:

Theorem 3. (Botelho [2]) If Y has cotype q, then

LO"X5Y) = Loggy("X;Y) for all Banach space X.
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If X has cotype q, then
L"X;Y) = Loga)("X;Y) for all Banach space Y.

In the next sections, among other results, we will prove that, in general, we
cannot expect a result stronger than Theorem 3.

3. ABSOLUTELY SUMMING POLYNOMIALS FROM BANACH SPACES WITH
UNCONDITIONAL SCHAUDER BASIS

The remarkable works of Maurey-Pisier [10] and Lindenstrauss-Pelczyriski [7]
will play a fundamental role in this paper. We start with the following Theorem,
which proof has inspired our results.

Theorem 4. (Lindenstrauss-Pelczyniski [7), Th. 4.2) If X has an unconditional
Schauder basis, dim X = dimY = oo and every bounded linear operator from X
into Y is absolutely (1;1)-summing, then X is isomorphic to I1(T') and Y is a
Hilbert space.

This result and the Multilinear Grothendieck-Pietsch domination Theorem
lead us to interesting, although restrict, initial results as we will see below.

Example 1. Adapting an idea of [8] one can proof, for instance, that if X has
an unconditional Schauder basis, then

and thus,

L"X;Y) # Eas(;;l)("X; Y') for every Banach space Y.

Indeed, if we had L(2X;K) = Eas(;.l)(QX;K), then given S : X — X', we
27
could define Ts : X x X — K such that (T's); = S. By hypothesis, Ts would be
(%; 1,1)-summing. Hence, by the Grothendieck-Pietsch domination Theorem,

sl <CC[ T ldu([ 1500 ] due)
and
[(Ts)1(z) | = Supyy <1 1Ts (2, y)|| <

< Suppp O pta) [du)([ | 9lo) | duo) <

X

<o / | () | dan).

By

Then (@)l < C(Jy._ | ¢(s) | dps) and then
L(X; X,) = ‘cas(l;l) (X5 X,)

(contradiction by Theorem 4). The general case follows by a standard inductive
process. Observe that the natural isometry between homogeneous polynomial
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and symmetric multilinear mappings is not enough to yield, mutatis mutandis, a
polynomial version to the example above.
It is also easy to prove the following result:

Proposition 1. If E is an infinite dimensional Hilbert space, then
L("E;F) # Logryy("E; F) for all m > 1 and every F.

Proof. It suffices to consider the case F' = K. Since Fis Hilbert, E is also
Hilbert and

‘C(E; EV) # ‘Cas(l;l)(E; E) = ['as(r;r)(E; E)(See [5]7 page 224)

and the proof of the last example yields the case n = 2. The general case is
obtained by a standard inductive process. Q.E.D.

The same simple construction give us many other results. However, the pre-
vious negative results, albeit interesting, are confined to the dominated cases
(which have Grothendieck-Pietsch domination Theorem as a fundamental gun)
and they do not give us the full story. In general, the spaces of p-dominated
homogeneous polynomials and multilinear mappings are small and negative re-
sults are not surprising. We will present new negative results which significantly
improve the last ones. Our approach consists in lifting Theorem 4 to polynomial
and multilinear versions and refining them by exploring the properties of cotype.

Our definition of Schauder basis is the same as in [7] and does not ask for
a separate space, but it is clear that in the following proofs there is no loss of
generality if we restrict ourselves to the separate cases.

Theorem 5. Let X and Y be infinite dimensional Banach spaces. Suppose that
X has an unconditional Schauder basis. If q is such that % <qg<2and

(3.1) Pas(q;l)(mX;Y) =P("X;Y)

then regardless of the unconditional normalized Schauder basis {z,} of X, the
natural mapping

(3.2) X ol =Y ami = (a:)3

is such that o(X) C l2mq . If, in particular, % < q <1 and (3.1) holds, then, for
2—q

any unconditional normalized Schauder basis {xn} of X , we obtain ¢(X) C Iy,
which is a better estimate than (3.2).

Proof. Consider ¢ such that % < ¢ < 2. By hypothesis, there exists K > 0
such that || P|| < K||P]| for all continuous m-homogeneous polynomial P :
X =Y.

By the main Lemma of Dvoretzky-Rogers Theorem, for every n, there are
normalized yq, ..., y, in E such that

n n
1Y sl <20 1A )Y
j=1 j=1

as(g;1)
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Let {u;}~,be such that Z | j |°=1 with s = 2. Define P: X — Y by
j=1

o0
Pz = Z,u]/qamy], ifz= Zajavj.

Since {:zrn} is an uncondltlonal basis, there exists p > 0 such that

I3 szl < pll 3 ajayl = plel for all ;= L or 1.
Jj=1 Jj=1

Hence || E gja;zj|| < pllz| for all n and any e; = 1 or —1. We have
.:1

n
1 1
1Pz = || Zu Pamyll <2037 | wf/falp 212
j=1

< 2(2 | g [P0 0P )P <
=1

(3.3) < 20™=|™( Z | i P12 = 2p™ || ™ Z | 1)V < 20™ |2
Jj=1 j=1

Then [|P[| < 2p™ and || Pl| 54,1y < 2Kp™. Therefore

D (a7 = (Z 1Paja | < 1Pl gy Iajzs) izl =

j=1 j=1
(3.4)
n
= P llasgy  max Al Y ejazill}™ <Pl gy (olll)™ < 2K p™™ |||
J ’ ]:1

n
Recall that (3.4) holds whenever ) | u; |*= 1. Hence
j=1

n n

Dol [ = 3 @ |

n n
= Sup{| > pial? ;> | pj I'=1} <

YT = |(al )

< Sup(d (i |- a1 D | py [°=1}
=1 i=1
and by (3.4) we get
n
D (a; |=1m D < 2K pPm |z ™)

=1
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and then
n
D (g [ < @K ™)
j=1
Since ;Zymgq = 3—’3‘1’, and n is arbitrary, the first part of our Theorem is proved.

If, in particular, % <qg<1,let usdefine S: X - Y by

n o0
_ M, e s
Sz = E a;'y;,if v = g a;T;.

We have

n

ISzl =1 af'ysll <203 1o )12 =2[Q | a; P")1Pm™ <
: s

Jj=1 Jj=1

n
<2[(Y oy [FTOVETGM < 22K ™)
j=1
since m > %S%lmq = % Then ||S]| < 2(2K,02m) and
||S||a,s(r;1 S 2K(2Kp2m) Hence

n n n
Y lag 1= 1Saz| < ISI ) max {1 ejazayll}™ <
j=1 j=1

eje{l,—1} =

< [2K(2Kp"™))"(pll])) ™™
(0.@)
and consequently, since n is arbitrary, we obtain ) | a; |9"< oo whenever

=1
. J
z =) ajz; € X. QED.

=1

It is worthwhile observing that dim Y = oo is unavoidable in our approach since
we ought to have ”"enough dimension ” to apply the Dvoretzky-Rogers Lemma
for sufficiently large n.

In this paper ¢ will always denote the natural mapping (3.2) from a Banach
space with a normalized unconditional Schauder basis {z,} into .

Corollary 1. If g <2, r > 1 and m € N, we have
P(mCO; Y) 7é Pas(q;r) (mCO; Y)

regardless of the infinite dimensional Banach space Y. When Y is finite di-
mensional the statement is not valid since it is well known that P(*co; K) =
Pas(l;l)(2CO;K)'

A standard localization argument can be used to obtain the Corollary above for
Lo spaces in the place of cyp.

Theorems 3 and 5 furnish interesting special corollaries.
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Corollary 2. If Y is an infinite dimensional Banach space, % <qg<1and
p > 2, then

P(mlp; Y) = Pas(q;l) (mlp; Y) & gm > p.
Corollary 3. If Y is an infinite dimensional Banach space, 1 < p < 2 and
% <q <1, then
P(MY) = Pas(q;l)(mlp;Y) = gm > pand qgm > 2 = P(™MY) =
Pas(q;l) (mlp; Y)

4. ABSOLUTELY SUMMING POLYNOMIALS FROM BANACH SPACES WITH
UNCONDITIONAL SCHAUDER BASIS INTO BANACH SPACES WITH FINITE
COTYPE

In this section we will explore cotype properties to obtain significant improve-
ments for the Theorem 5.
The following definition and Lemma can be found in [10].

Definition 2. We say that Y finitely factors (f f) the formal inclusion l; — l
for 0 < 6 < 1 if for every n there are yi,...,yn such that

(1=)laloe <11 aryell < llall,
k<n

for all a = (ag)i_, €1
Note that (1 — ) | ax |< |laryr|| <| ar | and then (1 — &) < |lyx|| < 1 for all £.

Lemma 1. (Maurey-Pisier) For any infinite dimensional Banach space Y we
have

inf{2 < q < o00;Y has cotype q} =
= sup{2 < ¢ < o00;36 such that Y ff l, = I}

The next Theorem shows that we can push a little further if we properly take
advantage of the cotype of the range.

Theorem 6. Let X denote an infinite dimensional Banach space with uncon-
ditional Schauder basis and Y an infinite dimensional Banach space with finite
cotype p. If P(MX;Y) = Puyqy("X;Y) and % < q < p, we conclude that for
any unconditional normalized Schauder basis {z,} for X, ¢(X) C l%. When,

in particular, % <qg< g, we have (X)) C lyg, which is a better estimate.

Proof. By hypothesis, there exists a positive K such that ||P]|
for all P € P("X;Y).
n

Let {u;}j=; be such that 37 | p; |*= 1, with s = L. Define P: X — Y by
=1

as(q;1) < KHPH

n / o0
— ta m, — e
Px = g ' agy;, se T = g a;T;
j=1 j=1
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where the y; are given by the foregoing Lemma 1 and Definition 2. Since {z,} is
an unconditional basis, there exists a positive p such that

o0 o
I Zejajxjﬂ < pl ZajxjH = p||z|| for any e; =1 or ; = —1.
j=1 j=1

n
Hence || Y eja;jz;|| < p|lz|| for all n and any €; =1 or —1 and then we have

J=1
/ oy
1 1
|Pz|| = | ZM Yaly;| < (Z |y fall P)!/r <
i=1
n n
< pm||$||m(z | i [PlO)P < pm||x||m(z |y [P/ /P =
=1 =1
n
(4.1) = Pm||x||m(z | [P < o™z

J=1

We arrive at [|[P[| < p™ and [[P|[,5(41) < Kp™. We can now achieve the estimate
below:

n n

(a1 —6) N < (3 a7y 1))/ =

J=1 J=1

n
(D I1Pajz )9 < 1Pl gggiry Il @gz5) i iy =

=1
n
= |Pllys(gery  max {1 ejajui|}™ <
gje{1,-1} =
(4.2) < Pllasigen) (ollzl)™ < Kp?™ |||
n
However, it is crucial that (4.2) holds whenever ) | p4; |*= 1. Hence, since
j=1
1 1
=1
§ 51
we have
n n
s 1/(—s s 11/(—5—
D a1 = 13 (e 7)) ) = (0 )

3

n
= Sup{] Y pial ;Y [ pi I'=1} <
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n n

< Sup{y (1w |l a1 1wy [P=1}.
j=1 j=1

Again, by (4.2), it follows that

n

(43) > (la
j=1
[Z [ag ]

Since —-mgq = % and n is arbitrary, the first part of the Theorem is proved.

s—1
Now, if L < ¢ <Z, define S: X =Y by

n oo
— M, e e
Sz = E aj'y; if z = E a;x;.
J=1 J=1

NYED < (1 - 6) T K pPM | ™,

and then

<[(1=8) 7 Kp*™ ],

We obtain . .
ISzl =1 af'ysll < Q_ laf* )P =
i=1 i=1
n
=10 [ay ")ty < Z | aj [T =T
i=1
=[(1-0)" 1K/OQ’”IIIII’"]
since
<pmp-q>q=1> "=
pP—q

q S
=>mp>mp—— =

p—q S§— 1m
Thus ||S]| < (1 —86) 7" Kp*™ and [|S|las(g1) < (1 —0) 7' K?p*™ and hence

n n n
Do La (1 =0) /<> afyilld =Y [|Sajz;l|? <
j=1 7=1 7j=1

n
172 2
< IS Nesqquy ,, o Al ;ejajxju}mq < (1= &) K™ ol

(0]
Consequently, since n is arbitrary, we have ) | a; |"< oo whenever z =
j=1

(e.@)

Y ajzje X . QED.

j=1

Corollary 4. If Y has finite cotype and P("11;Y) = Pys(g)("t;Y) for some q
such that % <g< %, then t < mgq.

By Theorems 3 and 6 we obtain the next Corollary.
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Corollary 5. If Y is infinite dimensional and has finite cotype then
P("co;Y) = Puggy("co;Y) < g > cot Y.
It is clear that one can replace cy by any Lo Space.

Corollary 6. If P(™ly;1p) = Pas(g;) ("3 1) for some q such that L <g<cotl,
then
mq max{p, 2}

~ max{p,2} — ¢
5. ABSOLUTELY SUMMING POLYNOMIALS FROM BANACH SPACES WITH

UNCONDITIONAL SCHAUDER BASIS INTO BANACH SPACES WITHOUT FINITE
COTYPE

If Y does not have finite cotype, a slight modification of the proof of Theorem
6 gives us the strongest negative result we could ever wish.

Theorem 7. If Y does not have finite cotype and X is an Ly space, then
P(mX; Y) # Pas(r;s) (mX; Y)
regardless of the r > 0 and s > 1.

Proof. Tt suffices to prove that P(™co;Y) # Pas(g;1)("co; Y) for every ¢ >
Suppose that there exists g > % such that

P(mco; Y) = Pas(q;l) (mCO; Y)

1
o

As before, we can find a positive K such that ||P]| < K||P|| regardless of
the P € P(Mcp;Y).
Since Y does not have finite cotype, Y contains {2, A—uniformly for all n and

some A > 1. Hence there are y,...,y, in Y such that

A allso <177 aryill < Nalloo-
k<n

as(g;1)

Notice that A\~ < [|yx|| < 1 for all k.
n
Choose an arbitrary s > 1. Let {u;}? ;be such that ) | p; |*= 1. Define
j=1

P:X —Y by

o0

n
Px = Z,u]l-/qa;”yj ifx = Zajavj.

As usual, since {z,} is an unconditional basis, there exists a positive p such that

o0 o0
1Y " ejajzill < pll Y ajzjll = pll| for any ;=1 or — 1.
j=1 i=1
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Hence || Z eja;x;|| < pllz| for all n and any e; = 1 or —1. We get
=

n
1 1 1
1Pz = | E :'“ /qamyJH < /a ai")j-1lloc < (E | Mj/qa;'n |70)1/50 <

j=1
(5.1) < p" =™ ( Z | g )50 < p™ ™ ( Z | g )5 < p™ ™
j=1
So, inequality (5.1) gives us [|P|| < p™ and ||P||,5(.1) < Kp™ . Then
n / n
1/qy— 1
D a2 e < (3 ey Ty 1)) = ZHP%H«“ 19" <
7j=1 7=1 7=1

< WP lasgy 1(a525)5=1lwn = 1Plas(q;ry , max {Ilzegamll} <
]

(5.2) P gy Plll)™ < Ko™ |||
n
Recalling that (5.2) holds whenever ) | u; |*=1 we obtain
i=1
n n
Do Clag =Y = (e 0]t = e ")l 2 =
j=1 j=1

n n
= Sup{| > pia] " ;> | pi P=1} <

n n
< Sup{D (| i 1 a1 ) |y =1}
j=1

j=1
By (5.2) it follows that E(| ; | )]l/s 1 < (AKp*™||z||™)9 and then
n
D (L aj [ O] < (K P

j=1
Since n is arbitrary, we have thus shown that

o0

> 1y [FTM< 00

j=1

o0
whenever z = )" a;x; € ¢y and it is far from the truth. Q.E.D.
i=1
As a simple outcome of the last Theorem we obtain the following Corollary.
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Corollary 7. If Y does not have finite cotype then

(5'3) P(mlt; Y) = Pas(q;l)(mlt; Y) =t < mg.
and
(5.4) maz{t,2} <mq = P("5Y) = Paggny (M Y)

Proof. The proof of (5.3) is the same as the last proof. It suffices to realize
that since s > 1 is arbitrary, we have

o0
r = ZajIj el = (aj);-";l S lsilm
=1
and thus

t < lim

S
mq = mgq.
s—oo § — 1

The proof of (5.4) is straightforward by Theorem 3. Q.E.D.
With another immediate consequence of a slight variation of the proof of Theorem
7 we get the next result.

Theorem 8. If E is an infinite dimensional Banach space with normalized un-
conditional Schauder basis {z,} and P(mE; F) = Posgn)("E; F) for some F

with cot F' = oo, then for any x € E, x = E anxy we have (an)s2y € lmg-
n=1
6. MULTILINEAR MAPPINGS FROM BANACH SPACES WITH UNCONDITIONAL
SCHAUDER BASIS

It is clear that every negative polynomial result P("E; F) # Pys(ris)("E; F)
furnishes a multilinear negative result L("E; F) # Lyy(55)(" E; F). However, the
reader shall realize that the same reasoning we have used for polynomials can
be adjusted to other multilinear cases, as we sketch in the Theorem below.

Theorem 9. Let Y be an infinite dimensional Banach space and En, ..., E,, de-
note infinite dimensional Banach spaces with unconditional Schauder basis. If
q is such that % < q < 2 and Loy (B, s En;Y) = L(Ey, ., By Y) we
conclude that for any normalized unconditional Schauder basis {x;}, o {2z} for
Eq, ..., E,,, respectively, the natural mapping

$ By X X By = oot (Y alVal, S al ™) - (@Y i),
is such that Y(Ey X ... X Ep) Cl 2 . If, in particular, % <q<1and
2—q

Losg)(B1 X ... X Ep;Y) = LBy X ... X B3 Y)
we conclude that (X) C .
Proof. For each k = 1, ..., m, consider aj = iaz(k)xf. For each natural n it
suffices to define T': F4 X ... X E,;, = Y by

1
T(a1,...,a Zu /16, ...aj )yj,
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where the y; are given by the main Lemma of Dvoretzky Rogers Theorem, and
proceed as before.

Corollary 8. If Ey is an Lo space and Es is an infinite dimensional Banach
space, then L(Ey,E9; F) # Eas(g;r)(El,Eg;F) for every 1 < r < 2 and every
Banach space F.

Proof. If we had
L(Ey, Eo; F) = Los(z) (Er, By F)
we would have( Lemma 3.4 of [2])
L(Ey; L(E2; F)) = Los(ryy (Er; L(E; F))
for r < 2. However, by Theorem 9, we know that
L(Ey; L(E2; F)) # Las(rny (Er; L(Ea; F))

for all r < 2. Q.E.D.

For an infinite dimensional F), the last Corollary is a particular case of a result
of Botelho (Theorem 3.5 of [2]). However, for an arbitrary Banach space F' it is a
new result which states the impossibility of improving ( for » < 2 ) a Theorem of
Tonge-Melendez [11] and Botelho-Floret [2], which asserts that every continuous
bilinear mapping from an L., space into K is 2-dominated.

The multilinear versions of Theorems 6 and 7 are also straightforward.

Remark 1. The argument of localization works in L, spaces not only if p = oo.
Using a Theorem of Pelczyriski and Rosenthal (Corollary 2.1 of [12]) it is not
hard to prove that if 1 <p < oo X and Z are L, spaces and

['(nX; Y) = Eas(r;sl,...,sn) (nX; Y)

then
‘C(nz; Y) = Eas(r;sl,...,sn)(nz; Y)

Therefore it is clear that every negative result that we have stated for I, (e.g.
Corollaries 4, 6, 7) can be extended to L, spaces, no matter they do not have an
unconditional Schauder basis.

7. FINAL APPLICATIONS

The following simple result, which proof we will omit, added to our negative
results will provide some simple answers to interesting questions about absolutely
summing polynomials.

Proposition 2. If L(E1, ..., En; F) = Lyg(risy... 51,00,..000) (B ooy Bni F) then
L(E1, .oy By L(Eyy1y oy Eny F) = Log(risy,ys) (Bt ooy By LBty ooy By F).
and reciprocally.

The multilinear version of Theorem 7 and Proposition 2 yield the results below.
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Proposition 3. Let n > 3, rq,...,r, € [1,00] and X1, ..., X}, be infinite dimen-
sional Lo, spaces such that

‘C(Xla ey X K) = ‘Cas(s;rl,...,rn)(Xla ey X K)
Then, no more than one of the r; can be oo.

Proof. There is no loss of generality if we admit r,_; = r, = oco. Hence, by
Proposition 2 we would have

E(Xla 3] Xn72; L(anla Xn; K)) = ‘Cas(s;rl,...,rt,) (Xla 3] Xn72; L(anla Xn; K))

which is impossible by Theorem 7 since £(X ™1, X(").K) has only infinite co-
type.

Proposition 4. Let n > 2 and r1,....,r, > 1. If X is an infinite dimensional
Lo space and L("X; F) = Log(siry,...m) (" X5 F), with dim F = oo, then rj # o0
for all j.

Proof. It suffices to observe that cot L(X;F) = oo and use the multilinear
version of Theorem 7. We will make the case n = 2 to be more precise. If
LECX;F) = Log(s;r,00)(*X; F) then Proposition 2 give us

E(Xa E(Xa F)) = Las(s;r)(X; E(Xa F))
and that is impossible. Q.E.D.

The same reasoning applies for £( X7, ..., Xj,; F) with X7, ..., X, infinite dimen-
sional L, spaces.

As a final application, we will list some two recent positive results and our

negative results will be able to show that they cannot be generalized in some
natural ways.

Theorem 10. (D.Perez [14]) If each X is an Lo y; space, then every continuous
multilinear mapping from X1 x ... x X, into K is (1;2,...,2) -summing and

HT“as 2) < KG3 ? ||TH HA
j=1

Proof. It is an interesting application of an Inequality of Grothendieck. [14]

It is clear that, in particular, Theorem 9 applied to Ei,...,E, = ¢y and a
standard localization argument imply that Theorem 10 cannot be improved to
an infinite dimensional F' in the place of the scalar field K.

Theorem 11. If each X is an L »; space and F' has cotype q # oo, then every
continuous n-linear mapping from X1 x ... x X, into F is (q;2,...,2)- summing
and

||T||as(q;2,...,2) < Cq( KG3 |T|| H >‘

In particular, if X is an Lo ) space and F' has cotype q ;é oo, then
P(HX’ F) = Pas(q;2) (nX’ F)
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Proof. Let (f")%2; € (X)), ... (/)22 € I¥(X,). Since for every R €
L(X1,..., X;; K) we have

s n
||R||as(1;2,...,2) < KG3 2 ||R|| H >‘j

i=1
then,

SNTGD, s S < Co(BITD, ooy SN s =
j=1

:Cq(F) sup Z|<y T(f ) 7f ) |
y’GBst 1
= Cy(F) sup Z | (y' OT)(f ; ,f ) I<

y €EBp,

j=1
<0< YCITINEE w2 N o2
where C' = Kg3"2 H)\ Q.E.D.

As a consequence of the last Theorem, we have the following result, answering
a question posed by Botelho in [3].

Corollary 9. Ifn > 2 and each Xj is a L y; space then
(71) [’(Xla vy Xy K) = ‘Cas(2;2,...,2,oo)(X17 ey X K)

and

1T las(2:2.... 2:00) < Co(Xn) K63™7 ||T||H>\

Proof. Let T : X; X ... X X;;, = K be a continuous n-linear mapping. Then
T X1 X ... x X, 1 = X)) is (2;2,...,2)-summing since X, has cotype 2.
Hence

QoITa (™ I < O N 552 Tz - N ()5

and
Z Sup |Tuw W) @) )2 <
j= 1CE GB}(‘]
<O N @) Nz o | @) w2

If (z g”))] 1 € lo(X},) is non zero, we have

00 (n)
Z |T1 1 gy _n—l))( i

— )2 <
(")) s
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<C | @M% e o Il @)

0o
j j=1 ||’LU:2 '

Hence

ST, Y2 < 0 @) oz I @)% Twell @)% I
j=1

_ n
where C' = Co(X,) K35 | T -H1 Aj.
]:

The case (:zrgn));'il = 0 does not offer any trouble. Q.E.D.
The above result generalizes the case n = 2 due to Botelho ([2] and [3]). In [3]

is asked whether
£(2C(K)a K) = £a5(2;2,oo) (2C(K)a K)

could be improved to some infinite dimensional Banach space F' in the place of
K or not.

In particular, Proposition 4 answers negatively this question and not only for
the bilinear case, but for any n-linear case of (7.1). As we can see, the answer
extends to several other cases. In fact, we do not need that every space on the
domain is a L space. For instance, in the bilinear case, we have the following
straightforward result.

Proposition 5. If E and F are infinite dimensional then
L(C(K)a E; F) # Eas(s;r,oo)(C(K)a E; F)
for allT>1 and s > 0.

We can also point some other interesting remarks about the coincidence re-
sult (7.1). We shall observe that it is also impossible to improve (7.1) with
(s;t1,t9y .y ty—1,00) and s < 2 and #y,...,t,—1 > 1 . In fact, if it was possible, we
would obtain that every T : C(K)x...xC(K) — C(K) would be (s;t1,t2, ..., tn—1)
-summing (contradiction by Theorem 9 and a simple localization argument, since
cop and C(K) are L spaces).

Other questions raised in [3] were:

e P2C(K);F) # Pas(%;r)(QC(K); F) for every infinite dimensional Banach
space F' and every r < oo 7

o P("C(K); F) # Pus(zr)("C(K); F) for every n > 2, r < oo and every
Banach space F' 7

It is worth remarking that the questions are for the dominated cases, and our
answers, albeit partial in some situations, go beyond the dominated cases and
sometimes furnish much completer results, such as when cot F' = cc.

For n > 2, Corollary 1 gives a partial answer when = < 2. But Corollary 5
achieves a more general result when cot F' < oo since it asserts that whenever
r < ncot F' we have

P(nC(K)vF) 7& Pas(%,r)(nC(K)’F)
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Finally, Theorem 7 shows that when F' does not have finite cotype, we have for
any s >0and r > 1

P(nC(K)vF) 7é Pas(r;s)(nC(K);F)

which is a complete answer and goes beyond the dominated case.

Remark 2. This paper forms a portion of the author’s doctoral thesis which is
being written at UNICAMP under supervision of M.Matos. The author thanks
Professor M.Matos and Professor J. Mujica for the suggestions.
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