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Abstrat. In this paper we study absolutely summing mappings on

Banah spaes by exploring the otype of their domains and ranges.

It is proved that every n-linear mapping from L

1

-spaes into K is

(2; 2; :::; 2;1)-summing and also shown that every n-linear mapping

from L

1

-spaes into F is (q; 2; :::; 2)-summing whenever F has otype

q: We also give new examples of analyti summing mappings and poly-

nomial and multilinear versions of a linear Extrapolation Theorem.

1. Introdution

In the �fties, A. Grothendiek�s seminal paper [8℄ "Resum�e de la th�eorie

m�etrique des produits tensoriels topologiques" provided the fundamentals

of the absolutely summing operators theory. Subsequently, J. Lindenstrauss

and A. Pe lzy�nski [9℄ simpli�ed Grothendiek�s tensorial notations leading

to many interesting results. The multilinear theory of absolutely summing

mappings was outlined by Pietsh [18℄ and has been developed by several

authors (Alenar and Matos [1℄, Floret and Matos [7℄, Matos [12℄, Shnei-

der [19℄, Tonge and Melendez [15℄, Botelho [2℄,[3℄, among others). Matos

[12℄,[10℄, [11℄ also begun to study the onept of holomorphi absolutely

summing mappings and a more general de�nition in suh a way that the

origin was not a distinguished point. The ontribution of the notion of o-

type to this theory is relevant and an be seen in [2℄,[3℄ and [7℄. In this

paper, we will generalize several results of [3℄ and [2℄ and also give new Co-

inidene Theorems and examples of absolutely summing holomorphi and

analyti mappings.

2. Notation, general onepts and basi results

Throughout this paper E;E

1

; :::; E

n

; F;X; Y will always denote Banah

spaes and the salar �eld K an be either R or C . We will denote by

C(K) the Banah spae of ontinuous salar valued funtions on K(ompat

Hausdor� spae) endowed with the sup norm.

The Banah spae of all n-linear ontinuous mappings from E

1

� :::�E

n

into F endowed with the anonial norm will be denoted by L(E

1

; :::; E

n

;F )

and the Banah spae of all ontinuous n-homogeneous polynomials P from

E into F with the norm kPk = supfkPxk; kxk � 1g will be denoted by

P(

n

E;F ): A mapping f : E ! F will be said analyti at the point a 2 E; if

1
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there exist a ball B

Æ

(a) and a sequene of polynomials P

k

2 P(

k

E;F ) suh

that

f(x) =

1

X

k=0

P

k

(x� a) uniformly for x 2 B

Æ

(a):

Heneforth Æ

a

will be alled the radius of onvergene of f around a: To

emphasize the ase K = C ; we will sometimes use the term \holomorphi"

in the plae of \analyti". Every analyti mapping in the whole spae will

be alled entire mapping.

For the natural isometry

	 : L(E

1

; :::; E

n

;F ) ! L(E

1

; :::; E

t

;L(E

t+1

; :::; E

n

;F ))

we will use the following onvention: If T 2 L(E

1

; :::; E

n

;F ) then 	(T ) = T

1

and if T 2 L(E

1

; :::; E

t

;L(E

t+1

; :::; E

n

;F )); then 	

�1

(T ) = T

0

:

For p 2℄0;1[; the linear spae of all sequenes (x

j

)

1

j=1

in E suh that

k(x

j

)

1

j=1

k

p

= (

1

X

j=1

kx

j

k

p

)

1

p

<1

will be denoted by l

p

(E): We will also denote by l

w

p

(E) the linear subspae

of l

p

(E) formed by the sequenes (x

j

)

1

j=1

in E suh that

(< '; x

j

>)

1

j=1

2 l

p

(K );

for every ontinuous linear funtional ' : E ! K : We also de�ne k:k

w;p

in

l

w

p

(E) by

k(x

j

)

j2N

k

w;p

:= Sup

'2B

E

�

(

1

X

j=1

j< '; x

j

>j

p

)

1

p

:

The ase p = 1 is just the ase of bounded sequenes and in l

1

(E) we use

the sup norm. The linear subspae of l

w

p

(E) of all sequenes (x

j

)

1

j=1

2 l

w

p

(E);

suh that

lim

m!1

k(x

j

)

1

j=m

k

w;p

= 0;

is a losed linear subspae of l

w

p

(E) and will be denoted by l

u

p

(E). The ase

p = 1 motivates the name unonditionally p-summable sequenes for the

elements of l

u

p

(E) ([12℄). One an see that k:k

p

(k:k

w;p

) is a p-norm in l

p

(E)(

l

w

p

(E)) for p < 1 and a norm in l

p

(E)( l

w

p

(E)) for p � 1: In any ase, they

are omplete metrizable linear spaes.

De�nition 1. Let 2 � q � 1 and (r

j

)

1

j=1

be the Rademaher funtions.

The Banah spae E has otype q; if there exists C

q

(E) � 0; suh that, for

every k 2 N and x

1

; :::; x

k

2 E;

(

k

X

j=1

kx

j

k

q

)

1

q

� C

q

(E)(

1

Z

0

k

k

X

j=1

r

j

(t)x

j

k

2

dt)

1

2

:
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To over the ase q = 1, we replae (

P

k

j=1

kx

j

k

q

)

1

q

by

maxfkx

j

k; 1 � j � kg:

We will de�ne the otype of E by otE = inff2 � q � 1;E has otype qg:

De�nition 2. (Matos) A ontinuous n-linear mapping T : E

1

�:::�E

n

! F

is absolutely (p; q

1

; :::; q

n

)-summing (or (p; q

1

; :::; q

n

)-summing) at (a

1

; :::; a

n

) 2

E

1

� :::�E

n

if

(T (a

1

+ x

(1)

j

; :::; a

n

+ x

(n)

j

)� T (a

1

; :::; a

n

))

1

j=1

2 l

p

(F )

for every (x

(s)

j

)

1

j=1

2 l

w

q

s

(E), s = 1; :::; n: A ontinuous n-homogeneous poly-

nomial P : E ! F is absolutely (p; q)-summing (or (p; q)-summing) at a 2 E

if

(P (a + x

j

)� P (a))

1

j=1

2 l

p

(F )

for every (x

j

)

1

j=1

2 l

w

q

(E):

The spae of all n-homogeneous polynomials P : E ! F whih are (p; q)-

summing (at every point) will be denoted by P

as(p;q)(E)

(

n

E;F ): The spae

of all n-homogeneous polynomials P : E ! F whih are (p; q)-summing

(at the origin) will be denoted by P

as(p;q)

(

n

E;F ): Analogously for n-linear

mappings.

It must be notied that the aforementioned de�nition, where the origin is

not a privileged point, is atually a more restritive de�nition. For example,

if n > 1 every n-linear mapping T from l

1

� ::: � l

1

into l

1

is absolutely

(1; 1)-summing at the origin, but we an always �nd a 6= 0 suh that T is

not absolutely (1; 1)-summing at a [11℄: Besides, the above de�nition turns

possible to onsider an absolutely summing holomorphy type in the sense of

Nahbin (see [10℄).

One an prove that if r < s then the unique polynomial whih is absolutely

(r; s)-summing at every point is the trivial.

For n-homogeneous polynomials and n-linear mappings, the polynomials

(n-linear mappings) (

p

n

; p)-summing will be alled p-dominated polynomials

(n-linear mappings) (see [12℄,[15℄). For the p-dominated polynomials (n-

linear mappings) several natural versions of linear results still hold, as well

as Fatorization Theorems, Domination Theorem, et. [12℄,[15℄,[19℄.

The following haraterization will be useful:

Theorem 1. (Matos [12℄) Let P be an m-homogeneous polynomial from E

into F .Then, the following statements are equivalent:

(1) P is absolutely (p; q)-summing at 0.

(2)There exists L > 0 suh that

(

1

X

j=1

kP (x

j

)k

p

)

1

p

� Lk(x

j

)

1

j=1

k

m

w;q

8(x

j

)

1

j=1

2 l

u

q

(E):
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(3)There exists L > 0 suh that

(

k

X

j=1

kP (x

j

)k

p

)

1

p

� Lk(x

j

)

k

j=1

k

m

w;q

8k 2 N;8x

1

; :::; x

k

:

(4) (P (x

j

))

1

j=1

2 l

p

(F ) for every (x

j

)

1

j=1

2 l

w

q

(E):

The in�mum of the possible onstants L > 0 is a norm for the ase

p � 1 or a p-norm for the ase p < 1([12℄ or [17℄ page 91) on the spae of

the absolutely (p; q)-summing polynomials. In any ase, we have omplete

topologial metrizable spaes. We will use the notation k:k

as(p;q)

for this

norm (p�norm).

The haraterization for the multilinear ase and the de�nition of the

norm (p-norm) follows the same reasoning.

The following Theorem plays an important role in our future results:

Theorem 2. (Maurey-Talagrand [20℄)If E has otype p; then id : E ! E is

(p; 1)-summing. The onverse is true, exept for p = 2.

The next de�nition, due to Lindenstrauss and Pe lzy�nski is of fundamen-

tal importane in the loal study of Banah spaes and their properties:

De�nition 3. Let 1 � p � 1 and let � > 1: The Banah spae X is said to

be an L

p;�

spae if every �nite dimensional subspae E of X is ontained in

a �nite dimensional subspae F of X for whih there exists an isomorphism

v

E

: F ! l

dimF

p

with kv

E

kkv

�1

E

k < �: We say that X is an L

p

spae if it is

an L

p;�

spae for some � > 1:

3. Absolutely summing polynomials and multilinear mappings

explored by the otype of their ranges

The relation between otype and absolutely summing linear mappings

is lear by Theorem 2. For points di�erent from the origin we have the

straightforward following results:

Lemma 1. Every ontinuous n-linear mapping T : E

1

� ::: � E

n

! F is

suh that

(T (a

1

+ x

(1)

j

; :::; a

n

+ x

(n)

j

)� T (a

1

; :::; a

n

))

1

j=1

2 l

w

1

(F )

whenever (x

(1)

j

)

1

j=1

2 l

w

1

(E

1

); :::; (x

(n)

j

)

1

j=1

2 l

w

1

(E

n

): The polynomial version

is immediate.

Proof. We just need to invoke a well known, albeit unpublished, result of

Defant and Voigt whih states that every salar valued n-linear mapping is

absolutely (1; 1)-summing at the origin (see [10℄, Theorem 1.6 or [12℄), and

explore multilinearity.

Theorem 3. If F has otype q, then every ontinuous n-linear mapping

from E

1

� :::�E

n

into F is (q; 1)-summing on E

1

� :::�E

n

. The polynomial

ase is also valid.
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Proof. Sine F has otype q, Theorem 2 and Lemma 1 provide

(

1

X

j=1

kT (a

1

+ x

1

j

; :::; a

n

+ x

n

j

)� T (a

1

; :::; a

n

)k

q

)

1

q

�

� k(T (a

1

+ x

1

j

; :::; a

n

+ x

n

j

)� T (a

1

; :::; a

n

))

1

j=1

k

w;1

<1

whenever (x

1

j

)

1

j=1

2 l

w

1

(E

1

); :::; (x

n

j

)

1

j=1

2 l

w

1

(E

n

):�

Theorem 3 generalizes to points di�erent from the origin the following

result:

Theorem 4. (Botelho [2℄) If F has otype q then every ontinuous n-

homogeneous polynomial from E into F is (q; 1)-summing at the origin.

In order to prove a new haraterization of otype in terms of absolutely

summing polynomials we need the following Lemma:

Lemma 2. If P

as(r;s)(E)

(

n

E;F ) = P(

n

E;F ) then L(E;F ) = L

as(r;s)

(E;F ):

Proof. (Inspired on the proof of Dvoretzky Rogers Theorem for polyno-

mials [11℄)

It is lear that r � s: Let us onsider a ontinuous linear mapping T :

E ! F: De�ne an n-homogeneous polynomial

P (x) = '(x)

n�1

T (x)

where ' is a non null ontinuous linear funtional. Then, hoosing a =2

Ker('); we have

dP (a)(x) = (n� 1)'(a)

n�2

'(x)T (a) + '(a)

n�1

T (x):

It is not hard to see that dP (a) is absolutely (r; s)-summing (see Matos

[11℄) and sine ' is absolutely (r; s)-summing, it follows that T is absolutely

(r; s)-summing.�

It is worth remarking that the onverse of Lemma 2 does not hold. In

fat,

L(l

2

;K ) =L

as(2;2)

(l

2

;K ) and P(

2

l

2

;K ) 6=P

as(2;2)

(l

2

;K ):

Now we have another haraterization of otype:

Theorem 5. Let n � 1: E has otype q > 2 if, and only if,

P(

n

E;E) = P

as(q;1)(E)

(

n

E;E):

Proof. If P(

n

E;E) = P

as(q;1)(E)

(

n

E;E) then, by Lemma 2, id : E ! E

is (q; 1)-summing and onsequently E has otype q. Theorem 3 yields the

onverse.�

The following reent Theorem of D.Perez [16℄, that generalizes a 2- linear

result of Floret-Botelho [2℄ and Tonge-Melendez[15℄, is an important instru-

ment for other multilinear and holomorphi results, as we will see later.
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Theorem 6. (D.Perez [16℄) If eah X

j

is an L

1;�

j

spae, then every on-

tinuous n-linear mapping (n � 2) from X

1

� ::: �X

n

into K is (1; 2; :::; 2)-

summing at the origin and

kTk

as(1;2;:::;2)

� K

G

3

n�2

2

kTk

n

Y

j=1

�

j

:

The polynomial version of this Theorem is immediate and will be useful

for us in the last setion of this paper.

Corollary 1. If X is an L

1;�

spae then every ontinuous salar valued

n-homogeneous polynomial (n � 2) P : X ! K is (1; 2)-summing at the

origin and

kPk

as(1;2)

� K

G

3

n�2

2

kPk�

n

:

We an explore last Theorem and the otype of the range as follows:

Theorem 7. If eah X

j

is an L

1;�

j

spae and F has otype q 6= 1; then

every ontinuous n-linear mapping from X

1

� :::�X

n

into F is (q; 2; :::; 2)-

summing at the origin and

kTk

as(q;2;:::;2)

� C

q

(F )K

G

3

n�2

2

kTk

n

Y

j=1

�

j

:

In partiular, if X is an L

1;�

spae and F has otype q 6= 1, then

P(

n

X;F ) = P

as(q;2)

(

n

X;F )

and

(3.1) kPk

as(q;2)

� C

q

(F )K

G

3

n�2

2

kPk�

n

:

Proof. Let (f

(1)

j

)

1

j=1

2 l

w

2

(X

1

); :::; (f

(n)

j

)

1

j=1

2 l

w

2

(X

n

): Sine

L(X

1

; :::;X

n

;K ) = L

as(1;2;:::;2)

(X

1

; :::;X

n

;K )

and for every R 2 L(X

1

; :::;X

n

;K ) we have

kRk

as(1;2;:::;2)

� K

G

3

n�2

2

kRk

n

Y

j=1

�

j

then

(

1

X

j=1

kT (f

(1)

j

; :::; f

(n)

j

)k

q

)

1

q

� C

q

(F )k(T (f

(1)

j

; :::; f

(n)

j

))

1

j=1

k

w;1

=

= C

q

(F ) sup

y

;

2B

F

;

1

X

j=1

j (y

0

Æ T )(f

(1)

j

; :::; f

(n)

j

) j=

� C

q

(F ) sup

y

;

2B

F

;

ky

0

Æ Tk

as(1;2;:::;2)

k(f

(1)

j

)

1

j=1

k

w;2

:::k(f

(n)

j

)

1

j=1

k

w;2

�

� C

q

(F ) sup

y

;

2B

F

;

Cky

0

Æ Tkk(f

(1)

j

)

1

j=1

k

w;2

:::k(f

(n)

j

)

1

j=1

k

w;2

�
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� C

q

(F ) sup

y

;

2B

F

;

Cky

0

kkTkk(f

(1)

j

)

1

j=1

k

w;2

:::k(f

(n)

j

)

1

j=1

k

w;2

�

� C

q

(F )CkTkk(f

(1)

j

)

1

j=1

k

w;2

:::k(f

(n)

j

)

1

j=1

k

w;2

where C = K

G

3

n�2

2

n

Q

j=1

�

j

:�

As a onsequene of the last Theorem, we obtain a generalization of a

bilinear result of Botelho ([2℄), answering a question posed in [3℄:

Theorem 8. If n � 2 and eah X

j

is an L

1;�

j

spae then every ontinuous

n-linear mapping T : X

1

� ::: � X

n

! K is (2; 2; :::; 2;1)-summing at the

origin and

kTk

as(2;2;:::;1)

� C

2

(X

n

�)K

G

3

n�2

2

kTk

n

Y

j=1

�

j

:

Proof. Let T : X

1

� ::: � X

n

! K be a ontinuous n-linear mapping.

Then

T

1

: X

1

� ::: �X

n�1

! X

n

0

is (2; 2; :::; 2)-summing sine X

n

0

has otype

2: So,

(

1

X

j=1

kT

1

(x

(1)

j

; :::; x

(n�1)

j

)k

2

)

1=2

� C k (x

(1)

j

)

1

j=1

k

w;2

::: k (x

(n�1)

j

)

1

j=1

k

w;2

and

(

1

X

j=1

Sup

x

(n)

j

2B

X

n

kT

1

(x

(1)

j

; :::; x

(n�1)

j

)(x

(n)

j

)k

2

)

1=2

�

� C k (x

(1)

j

)

1

j=1

k

w;2

::: k (x

(n�1)

j

)

1

j=1

k

w;2

:

If (x

(n)

j

)

1

j=1

2 l

1

(X

n

) does not vanish, we have

(

1

X

j=1

kT

1

(x

(1)

j

; :::; x

(n�1)

j

)(

x

(n)

j

k (x

(n)

j

)

1

j=1

k

1

)k

2

)

1=2

�

� C k (x

(1)

j

)

1

j=1

k

w;2

::: k (x

(n�1)

j

)

1

j=1

k

w;2

:

Hene

(

1

X

j=1

kT

1

(x

(1)

j

; :::; x

(n�1)

j

)(x

(n)

j

)k

2

)

1=2

�

� C k (x

(1)

j

)

1

j=1

k

w;2

::: k (x

(n�1)

j

)

1

j=1

k

w;2

k (x

(n)

j

)

1

j=1

k

1

and

(

1

X

j=1

kT (x

(1)

j

; :::; x

(n)

j

)k

2

)

1=2

� C k (x

(1)

j

)

1

j=1

k

w;2

::: k (x

(n�1)

j

)

1

j=1

k

w;2

k (x

(n)

j

)

1

j=1

k

1

where C = C

2

(X

n

�)K

G

3

n�2

2

kTk

n

Q

j=1

�

j

:
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The ase (x

(n)

j

)

1

j=1

= 0 does not o�er any trouble.�

For n = 2, Theorem 8 has the following version:

Proposition 1. If X is an L

1

spae, then every ontinuous 2 linear map-

ping T : X�E ! K with ot E

0

= q = 2 is (r; r;1)-summing at the origin

for every r � 2. If ot E

0

= q > 2; then T is (r; r;1) and (q; p;1)-summing

at the origin for every r > q and p < q:

Proof. (Case q = 2) Let T : X�E ! K be a ontinuous bilinear mapping.

Then T

1

: X ! E

0

is (r; r)-summing sine E

0

has otype 2 [6℄. Hene

(

1

X

j=1

kT

1

(x

j

)k

r

)

1=r

� C k (x

j

)

1

j=1

k

w;r

and thus

(

1

X

j=1

Sup

y

j

2B

E

kT

1

(x

j

)(y

j

)k

r

)

1=r

� C k (x

j

)

1

j=1

k

w;r

:

If (y

j

)

1

j=1

2 l

1

(E) does not vanish, we have

(

1

X

j=1

kT

1

(x

j

)(

y

j

k (y

j

)

1

j=1

k

1

)k

r

)

1=r

� C k (x

j

)

1

j=1

k

w;r

:

Hene

(

1

X

j=1

kT

1

(x

j

)(y

j

)k

r

)

1=r

� C k (x

j

)

1

j=1

k

w;r

k (y

j

)

1

j=1

k

1

and

(

1

X

j=1

kT (x

j

; y

j

)k

r

)

1=r

� C k (x

j

)

1

j=1

k

w;r

k (y

j

)

1

j=1

k

1

:

The ase (y

j

)

1

j=1

= 0 does not o�er any problem.

A linear result of Maurey (see [4℄, page 223, Th. 11.14 a) provides,

through the same reasoning, the proof of the ase q > 2.�

Applying the same ideas we have the statement below:

Proposition 2. If eah X

j

is an L

1

spae; then every ontinuous n-linear

mapping T : X

1

� ::: � X

n

� E ! K with ot E

0

= q � 2; q 6= 1 is

(q; 2; :::; 2;1)-summing at the origin.

Theorem 8 an also be used to obtain other results. For example:

Theorem 9. If eah X

j

is an L

1

spae and T : X

1

� ::: �X

n

! K is a

ontinuous n-linear mapping, then

n = 2 ) T is (r; r; r)-summing on X

1

�X

2

; for every r � 2.

n � 3 ) T �e (r; 2; :::; 2; r)-summing on X

1

� :::�X

n

for every r � 2:
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Proof. The ase n = 2 is the easiest and we will omit the proof. For the

ase n = 3; let (x

j

)

1

j=1

2 l

w

2

(X

1

); (y

j

)

1

j=1

2 l

w

2

(X

2

) and (z

j

)

1

j=1

2 l

w

2

(X

3

):

Then

(

1

X

j=1

kT (a + x

j

; b + y

j

;  + z

j

)� T (a; b; )k

r

)

1

r

=

= (

1

X

j=1

(kT (a; y

j

; z

j

)k

r

)

1

r

+ (

1

X

j=1

(kT (x

j

; b; )k

r

)

1

r

+

+(

1

X

j=1

(kT (x

j

; y

j

; )k

r

)

1

r

+ (

1

X

j=1

(kT (x

j

; b; z

j

)k

r

)

1

r

+ (

1

X

j=1

(kT (a; b; z

j

)k

r

)

1

r

+(

1

X

j=1

(kT (a; y

j

; )k

r

)

1

r

+ (

1

X

j=1

(kT (x

j

; y

j

; z

j

)k

r

)

1

r

<1

sine every linear mapping is (r; r) and (r; 2)-summing, every suh bilinear

mapping is (r; r; r), (r; 2; r) and (r; 2; 2)-summing and every suh 3-linear

mapping above is (r; 2; 2; r)-summing at the origin.

For n > 3 we use an indutive priniple.

Theorem 7 an be extended as follows:

Theorem 10. If eah X

j

is an L

1

spae and otF = q; then every ontin-

uous n-linear mapping from X

1

� :::�X

n

into F is (q; 2; :::; 2)-summing on

X

1

� :::�X

n

:

Proof. If q = 2; it is enough to use the last reasoning with Theorem 7

and the Dubinsky-Pe lzy�nski-Rosenthal ([4℄ page 223, Th. 11.14 (a) or [6℄)

result whih asserts that every linear mapping from an L

1

spae into F (

with otF = 2 ) is (2; 2)-summing.

If q > 2; we shall use the same reasoning with the Maurey ([4℄ page 223,

Th. 11.14(b)) result whih asserts that every linear mapping from an L

1

spae into F ( with ot F = q > 2 ) is (q; p)-summing for eah p < q:�

4. r-fully absolutely summing multilinear mappings

The following de�nition is inspired in the work of Matos [13℄ whih is

being developed by M.L.V. Souza in his dotoral dissertation.

De�nition 4. A ontinuous n-linear mapping T : E

1

� ::: � E

n

! F will

be said r-fully (p; q

1

; :::; q

n

)-summing if

1

X

j

1

;:::;j

r

=1







T (x

(1)

j

1

; :::; x

(r)

j

r

; x

(r+1)

j

r

; :::; x

(n)

j

r







p

<1

whenever (x

(l)

k

)

1

k=1

2 l

w

q

l

(E

l

); l = 1; :::; n. In this ase we will write

T 2 L

f(r)as(p;q

1

;:::;q

n

)

(E

1

; :::; E

n

;F ):
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When r = 1, we have the (p; q

1

; :::; q

n

)-summing mappings and when r = n

we all T just by fully (p; q

1

; :::; q

n

)-summing, whih is a onept introdued

by Matos [13℄.

A natural question is: Does every n-linear mappings from L

1

spaes into

K is fully (2; 2; :::; 2)-summing?

We will show in Corollary 2 that Theorem 8 give us partial answers.

Theorem 11. If L(E

n

;F ) = L

as(q;r)

(E

n

;F ); then

L

as(q;p

1

;:::;p

n�1

;1)

(E

1

; :::; E

n

;F ) � L

f(2)as(q;p

1

;:::;p

n�1

;r)

(E

1

; :::; E

n

;F ):

Proof. Let us onsider T 2 L

as(q;p

1

;:::;p

n�1

;1)

(E

1

; :::; E

n

;F ): If

(x

(1)

k

)

1

k=1

2 l

w

p

1

(E

1

); :::; (x

(n�1)

k

)

1

k=1

2 l

w

p

n�1

(E

n�1

); (y

k

)

1

k=1

2 l

w

r

(E);

then, for eah k �xed,

1

X

j=1







T (x

(1)

k

; :::; x

(n�1)

k

; y

j

)







q

�





(y

j

)

1

j=1





q

w;r







T (x

(1)

k

; :::; x

(n�1)

k

; :)







q

as(q;r)

�

�





(y

j

)

1

j=1





q

w;r

C







T (x

(1)

k

; :::; x

(n�1)

k

; :)







q

�

�





(y

j

)

1

j=1





q

w;r

C(







T (x

(1)

k

; :::; x

(n�1)

k

; z

k

)







q

+

1

2

k

):

where eah z

k

belongs to the unit ball B

E

n

:

Therefore

1

X

k=1

1

X

j=1







T (x

(1)

k

; :::; x

(n�1)

k

; y

j

)







q

�

� k(y

j

)k

q

w;r

C

1

X

k=1

(







T (x

(1)

k

; :::; x

(n�1)

k

; z

k

)







p

+

1

2

k

) <1:�

Corollary 2. If eah E

k

is an L

1

spae, we have

L(E

1

; :::; E

n

;K ) = L

f(2)as(2;2;:::;2;2)

(E

1

; :::; E

n

;K ):

Proof. It suÆes to realize that L(E

n

;K ) = L

as(2;2)

(E

n

;K ) and apply

last Theorem and Theorem 8.�

5. Other results

An important and broadly used result is the Generalized H�older�s In-

equality, whih is a natural instrument to deal with absolutely summing

multilinear mappings.

Theorem 12 (Generalized H�older�s Inequality). If

1

p

�

1

p

1

+ ::: +

1

p

n

; then

(

1

X

j=1

j a

(1)

j

:::a

(n)

j

j

p

)

1

p

� (

1

X

j=1

j a

(1)

j

j

p

1

)

1

p

1

:::(

1

X

j=1

j a

(n)

j

j

p

n

)

1

p

n

:
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If T : E

1

� ::: � E

n

! F is a ontinuous multilinear mapping where at

least one of the spaes whih ompose the Banah spaes of the domain has

�nite otype, we an state the following result.

Theorem 13. If T : E

1

� :::�E

n

! F is a ontinuous multilinear mapping,

q

j

= otE

j

; j = 1; :::; n; and at least one of the q

j

�nite, then, for any hoie

of a

j

2 [q

j

;1℄; with at least one of the a

j

�nite, T is (s; b

1

; :::; b

n

)-summing

at the origin, for any s > 0; suh that

1

s

�

1

a

1

+ ::: +

1

a

n

; with b

j

= 1; if

a

j

<1; and b

j

= 1 if a

j

= 1:

Proof. Obvious, using Theorem 2, after some reasoning on how to opti-

mize the use of the Generalized H�older�s Inequality.

As a orollary, we have the a result due to Botelho [2℄.

Corollary 3. If T : E

1

� :::�E

n

! F is a ontinuous multilinear mapping

and q

j

= otE

j

< 1 for every j = 1; :::; n, then T is (s; 1; :::; 1)-summing

at the origin for any s > 0 suh that

1

s

�

1

q

1

+ ::: +

1

q

n

:

Theorem 13 shows that even if just one of the spaes of the domain has

�nite otype, the multilinear mapping is still well behaved. As an illustration

we an see the example below.

Example 1. If E has otype p, then every T : C(K)� :::�C(K)�E ! F

is (p;1; :::;1; 1)-summing at the origin.

The following results show more about the mehanism of absolutely sum-

ming mappings.

Proposition 3. If L(E

1

; :::; E

n

;F ) = L

as(r;s

1

;:::;s

t

;1;:::;1)

(E

1

; :::; E

n

;F ) then

L(E

1

; :::; E

t

;F ) = L

as(r;s

1

;:::;s

t

)

(E

1

; :::; E

t

;F ):

Proof. Given T 2 L(E

1

; :::; E

t

;F ) let us de�ne

S(a

1

; :::; a

n

) = T (a

1

; :::; a

t

)'

t+1

(a

t+1

):::'

n

(a

n

)

where '

t+1

; :::; '

n

are non trivial bounded linear funtionals. Let b

t+1

; :::; b

n

be suh that

'

t+1

(b

t+1

) = ::: = '

n

(b

n

) = 1:

It follows that T 2 L

as(r;s

1

;:::;s

t

)

(E

1

; :::; E

t

;F ): In fat, if (x

l

j

)

1

j=1

2 l

w

s

l

(E

l

) we

have

1

X

j=1

kT (x

(1)

j

; :::; x

(t)

j

)k

r

=

1

X

j=1

kS(x

(1)

j

; :::; x

(t)

j

; b

t+1

; :::; b

n

)k

r

<1:�

The next statement suggested by Matos extend the Lemma 3.2 of [2℄:

Proposition 4. If L(E

1

; :::; E

n

;F ) = L

as(r;s

1

;:::;s

t

;1;:::;1)

(E

1

; :::; E

n

;F ); then

L(E

1

; :::; E

t

;L(E

t+1

; :::; E

n

;F )) = L

as(r;s

1

;:::;s

t

)

(E

1

; :::; E

t

;L(E

t+1

; :::; E

n

;F ))

and onversely.
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Proof: Suppose

L(E

1

; :::; E

n

;F ) = L

as(r;s

1

;:::;s

t

;1;:::;1)

(E

1

; :::; E

n

;F ):

Let T : E

1

� ::: � E

t

�! L(E

t+1

; :::; E

n

;F ) be a ontinuous multilinear

mapping. We have

(

1

X

j=1

kT (x

(j)

1

; :::; x

(j)

t

)k

r

)

1

r

= (

1

X

j=1

Sup

ky

k

k�1

k=t+1;:::;n

kT (x

(j)

1

; :::; x

(j)

t

)(y

t+1

; :::; y

n

)k

r

)

1

r

�

� (

1

X

j=1

kT (x

(j)

1

; :::; x

(j)

t

)(y

(j)

t+1

; :::; y

(j)

n

)k

r

+

1

2

j

)

1

r

=

= (

1

X

j=1

kT

0

(x

(j)

1

; :::; x

(j)

t

; y

(j)

t+1

; :::; y

(j)

n

)k

r

+

1

2

j

)

1

r

<1

if (x

(j)

1

) 2 l

w

s

1

(E

1

); :::; (x

(j)

t

) 2 l

w

s

t

(E

t

):

On the other hand, suppose

L(E

1

; :::; E

t

;L(E

t+1

; :::; E

n

;F ) = L

as(r;s

1

;:::;s

t

)

(E

1

; :::; E

t

;L(E

t+1

; :::; E

n

;F ):

If T : E

1

� :::�E

n

�! F; and

(x

(j)

1

)

1

j=1

2 l

w

s

1

(E

1

); :::; (x

(j)

t

)

1

j=1

2 l

w

s

t

(E

t

); (y

(j)

t+1

)

1

j=1

2 l

1

(E

t

); :::; (y

(j)

n

)

1

j=1

2 l

1

(E

n

);

we have

1

X

j=1

kT (x

(j)

1

; :::; x

(j)

t

; y

(j)

t+1

; :::; y

(j)

n

)k

r

)

1

r

= (

1

X

j=1

kT

1

(x

(j)

1

; :::; x

(j)

t

)(y

(j)

t+1

; :::; y

(j)

n

)k

r

)

1

r

�

(5.1) � k(y

(j)

t+1

)k

1

:::k(y

(j)

n

)k

1

1

X

j=1

kT

1

(x

(j)

1

; :::; x

(j)

t

)k

r

)

1

r

<1:

We an see that it is also true that

T 2 L

as(r;s

1

;:::;s

t

;1;:::;1)

(E

1

; :::; E

n

;F ) )

) T

1

2 L

as(r;s

1

;:::;s

t

;)

(E

1

; :::; E

t

;L(E

t+1

; :::; E

n

;F ))

and

T 2 L

as(r;s

1

;:::;s

t

;)

(E

1

; :::; E

t

;L(E

t+1

; :::; E

n

;F )) )

) T

0

2 L

as(r;s

1

;:::;s

t

;1;:::;1)

(E

1

; :::; E

n

;F ):�

Remark 1. The reader shall note that the onverse of Proposition 3 annot

hold. In fat, we know that L(E;K ) = L

as(1;1)

(E;K ): If the onverse of

Proposition 3 held, we would have L(E;E;K ) = L

as(1;1;1)

(E;E;K ) and by

Proposition 4

L(E;E�) = L

as(1;1)

(E;E�)

whih is impossible, in general (see [9℄).

Proposition 4 also furnishes an Inlusion Theorem for bilinear mappings.
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Proposition 5. ( Inlusion for bilinear mappings)

If r > s then L

as(s;s;1)

(E

1

; E

2

;F ) � L

as(r;r;1)

(E

1

; E

2

;F ):

Proof. If r > s and T 2 L

as(s;s;1)

(E

1

; E

2

;F ); then by Proposition 4,

T

1

: E

1

! L(E

2

;F ) is (s; s)-summing. By the Inlusion Theorem for linear

mappings, T

1

will be (r; r)-summing and again by the Proposition 4, T will

be (r; r;1)-summing at the origin.�

Example 2. The famous Grothendiek�s Theorem, whih asserts that every

linear operator from an L

1

spae into an L

2

spae is (1; 1)-summing, and

Proposition 4 lead us to onlude that if E

1

and E

2

are L

1

and L

2

spaes

respetively, then

L(E

1

; E

2

;K ) = L

as(1;1;1)

(E

1

; E

2

;K ):

Thus, Proposition 5 yields

L(E

1

; E

2

;K ) = L

as(r;r;1)

(E

1

; E

2

;K )

for every r � 1. However, despite Grothendiek�s Theorem we know that

L(l

1

; l

1

; l

2

) 6= L

as(1;1;1)

(l

1

; l

1

; l

2

)

and furthermore

L(l

1

; l

1

;K ) 6= L

as(1;1;1)

(l

1

; l

1

;K ):

The result below has the same spirit of the last Proposition.

Proposition 6. If T : E

1

� ::: � E

n

! F is p-dominated, then T is

(

r

n�1

; r; :::; r;1)-summing for every r � p:

Proof. If T : E

1

� ::: � E

n

! F is p-dominated, then, by Grothendiek-

Pietsh domination Theorem, if T

1

: E

1

� :::�E

n�1

! L(E

n

;F ) is suh that

T

1

= 	(T ); we obtain, for r � p;

kT

1

(x

1

; :::; x

n�1

)k = Sup

kyk�1

kT

1

(x

1

; :::; x

n�1

)(y)k =

= Sup

kyk�1

kT (x

1

; :::; x

n�1

; y)k �

� Sup

kyk�1

C(

Z

B

E

0

1

j '(x

1

) j

r

d�

1

)

1

r

:::(

Z

B

E

0

n

j '(y) j

r

d�

n

)

1

r

�

� C(

Z

B

E

0

1

j '(x

1

) j

r

d�

1

)

1

r

:::(

Z

B

E

0

n�1

j '(x

n�1

) j

r

d�

n�1

)

1

r

:

Thus, T

1

is r-dominated and, by Proposition 4, T = (T

1

)

0

is (

r

n�1

r; r; :::; r;1)-summing.

Corollary 4. If every T : E

1

� ::: � E

n

! F is p-dominated, then every

T : E

j

1

� ::: � E

j

r

! F; with 1 � r � n and j

1

; :::; j

r

2 f1; :::; ng mutually

disjoint, is p�dominated.
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Proof. By Proposition 6, we have

L(E

1

; :::; E

n

;F ) = L

as(

p

n�1

;p;:::;p;1)

(E

1

; :::; E

n

;F )

and by Proposition 3 we obtain

L(E

1

; :::; E

n�1

;F ) = L

as(

p

n�1

;p;:::;p)

(E

1

; :::; E

n�1

;F ):

The other ases use the same arguments.�

Similar reasoning furnishes the next Corollary.

Corollary 5. If every T : E

1

� :::�E

n

! F is p-dominated, then for every

permutation � : f1; :::; ng ! f1; :::; ng we have

L(E

�(1)

; :::; E

�(t)

;L(E

�(t+1)

; :::; E

�(n)

;F )) =

= L

as(

p

t

;p;:::;p)

(E

�(1)

; :::; E

�(t)

;L(E

�(t+1)

; :::; E

�(n)

;F )):

The next result is essentially due to Botelho [2℄.

Corollary 6. If some E

j

is an L

1

spae, at least one other E

k

is in�nite

dimensional and dimF = 1, then, regardless of the p � 1; we have

L(E

1

; :::; E

n

;F ) 6= L

as(

p

n

;p)

(E

1

; :::; E

n

;F ):

Proof. There is no loss of generality in assuming j = 1: If the equality

held we would have

L(E

1

;L(E

2

; :::; E

n

;F )) = L

as(p;p)

(E

1

;L(E

2

; :::; E

n

;F ))

whih is a ontradition sine L(E

2

; :::; E

n

;F ) has only in�nite otype (see

[2℄,[5℄).

6. Extrapolation Theorems

The linear theory of absolutely summing operators has some strong o-

inidene Theorems (see [4℄). Many of them have their polynomial versions

(see [10℄,[15℄). We will give a polynomial and a multilinear version for the

Maurey Extrapolation Theorem:

Theorem 14 (Polynomial Extrapolation Theorem). If 1 < r < p <1 and

X is a Banah spae suh that

(6.1) P

as(

p

n

;p)

(

n

X; l

p

) = P

as(

r

n

;r)

(

n

X; l

p

) and L

as;p

(X; l

p

) = L

as;r

(X; l

p

)

then, for every Banah spae Y we have

(6.2) P

as(

p

n

;p)

(

n

X;Y ) = P

as(

1

n

;1)

(

n

X;Y ) and L

as;p

(X;Y ) = L

as;1

(X;Y ):

Proof. As in the linear ase, using a loalization argument, we an prove

that

P

as(

p

n

;p)

(

n

X; l

p

) = P

as(

r

n

;r)

(

n

X; l

p

)

is equivalent to

9D > 0; kPk

as(

r

2

;r)

� D kPk

as(

p

2

;p)

8P 2 P

(

p

2

;p)

(

n

X;L

p

):
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We want to prove that for eah Banah spae Y there exists C > 0 suh that

whenever Q 2 P

as(

p

n

;p)

(

n

X;Y ); we have kQk

as(

1

n

;1)

� C kQk

as(

p

n

;p)

sine it

will lead us to

P

as(

p

n

;p)

(

n

X;Y ) = P

as(

1

n

;1)

(

n

X;Y ):

Consider

' : X ! C(B

X

�

) : x 7! f

x

where f

x

(x

�

) =< x

�

; x > : We will denote K = B

X

�

: Let us denote by P (K)

the set of all probability measures on K with the weak star topology. For

eah � 2 P (K) de�ne

j

�

: X � C(K) ! L

p

(�)

as the restrition of the anonial inlusion from C(K) into L

p

(�):

Let R : X ! Y be an n-homogeneous (

p

n

; p)-summing polynomial. The

polynomial version of Grothendiek-Pietsh Domination Theorem tells us

that there exists �

0

2 P (K) suh that

kRxk � C[

Z

K

j< '; x >j

p

d�

0

(')℄

n

p

= C[

Z

K

j j

�

0

(x)(') j

p

d�

0

(')℄

n

p

=

= Ckj

�

0

(x)k

n

L

p

(�

0

)

for every x in X:

We must �nd � 2 P (K) and a onstant D (depending on X ) suh that

(6.3) kj

�

0

(x)k

L

p

(�

0

)

� Dkj

�

(x)k

L

1

(�)

8x 2 X;

and then the Theorem will be proved. Indeed, we will have

kRxk � Ckj

�

0

(x)k

n

L

p

(�

0

)

� CDkj

�

(x)k

n

L

1

(�)

=

= C

1

[

Z

K

j j

�

(x)(x

�

) j d�(')℄

n

= C

1

[

Z

K

j x

�

(x) j d�(')℄

n

and the Grothendiek-Pietsh Polynomial Domination Theorem yields that

R is (

1

n

; 1)-summing.

In order to prove (6.3) it is enough to note that the hypothesis L

as;p

(X; l

p

) =

L

as;r

(X; l

p

) is suÆient to prove it (this is done in the proof of the linear

Extrapolation Theorem. See Th. 3.17 of [4℄).�

For the multilinear version, it is not diÆult to prove that

L

as(

p

n

;p)

(

n

X; l

p

) = L

as(

r

n

;r)

(

n

X; l

p

)

implies L

as(

p

n

;p)

(X; l

p

) = L

as(

r

n

;r)

(X; l

p

): The same reasoning give us the

following statement:

Theorem 15. If 1 < r < p <1 and X is a Banah spae suh that

L

as(

p

n

;p)

(

n

X; l

p

) = L

as(

r

n

;r)

(

n

X; l

p

)

then, for every Banah spae Y , we have

L

as(

p

n

;p)

(

n

X;Y ) = L

as(

1

n

;1)

(

n

X;Y ):
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7. Absolutely summing mappings

The onept of absolutely summing mapping (non neessarily multilinear

or polynomial) and the �rst results and examples are due to M.Matos [12℄.

De�nition 5. (Matos) A mapping f : E ! F is absolutely (s; r)-summing

at a 2 E if (f(a+x

j

)� f(a))

1

j=1

2 l

s

(F ) whenever (x

j

)

1

j=1

2 l

u

r

(E): We say

that f : E ! F is weakly absolutely (s; r)-summing at a 2 E if (f(a+ x

j

)�

f(a))

1

j=1

2 l

w

s

(F ) whenever (x

j

)

1

j=1

2 l

u

r

(E):

Sine for every (x

j

)

1

j=1

2 l

u

r

(E) we have lim

m!1







(x

j

)

1

j=m







w;r

= 0; it is

lear that lim

m!1

kx

m

k = 0: Therefore, there is no loss of generality if, in

the de�nition above, we restrit ourselves to (x

j

)

1

j=1

2 l

u

r

(E) with kx

j

k < Æ

for all j and some Æ:

It is possible to prove that if f : E ! F is absolutely (s; r)-summing at

a 2 E then f is ontinuous at a [10℄. The behavior of f outside an open

neighborhood of a is ompletely irrelevant.

In [3℄, Botelho proves for the omplex ase, using Cauhy integral formu-

las, that, if otE = q; every holomorphi entire mapping f : E ! F suh

that f(0) = 0 is (q; 1)-summing at the origin. We will prove that Cauhy

integral formulas are not essential and this result still holds for the real ase

and for non zero points.

Lemma 3. If g : E ! F is analyti at a 2 E, then there exists Æ > 0 suh

that

k(g(a + x

j

)� g(a))

1

j=1

k

w;1

� Dk(x

j

)

1

j=1

k

w;1

whenever k(x

j

)

1

j=1

k

w;p

< Æ:

Proof. If g : E ! F is analyti at a and C;  > 0 are suh that

k

1

k!

^

d

k

g(a)k � C

k

for every k

then, for eah ' 2 F `, we have

k

1

k!

^

d

k

'g(a)k = k'

1

k!

^

d

k

g(a)k � C

k

k'k for all k

and hene, by a result of Defant and Voigt (see [10℄, Theorem 1.6 or [12℄),

k

1

k!

^

d

k

'g(a)k

as(1;1)

� e

k

C

k

k'k:

Let us denote by �

a

> 0 the radius of onvergene of g around a:Thus, if

k(x

j

)

1

j=1

k

w;1

� Æ = minf

1

2e

; �

a

g we an write

1

X

j=1

j 'g(a + x

j

)� 'g(a) j�

1

X

k=1

k

1

k!

^

d

k

'g(a)k

as(1;1)

k(x

j

)

1

j=1

k

k

w;1

=

= k(x

j

)

1

j=1

k

w;1

1

X

k=1

k

1

k!

^

d

k

'g(a)k

as(1;1)

k(x

j

)

1

j=1

k

k�1

w;1

�



ABSOLUTELY SUMMING MAPPINGS 17

� k(x

j

)

1

j=1

k

w;1

1

X

k=1

e

k

C

k

k'k

(2e)

k�1

� Dk(x

j

)

1

j=1

k

w;1

for every ' 2 B

F

�: Hene

k(g(a + x

j

)� g(a))

1

j=1

k

w;1

� Dk(x

j

)

1

j=1

k

w;1

whenever k(x

j

)

1

j=1

k

w;p

< Æ:�

Proposition 7. If F has otype q and g : E ! F is analyti at a 2 E, then

g is (q; 1)-summing at a:

Proof. Let a 2 E: Sine g is analyti at a, there exists Æ suh that

k(g(a + x

j

)� g(a))

1

j=1

k

w;1

� Dk(x

j

)

1

j=1

k

w;1

:

Let (x

j

)

1

j=1

2 l

u

1

(E) and let j

0

2 N be suh that k(x

j

)

1

j=j

0

k

w;1

< Æ: Then

(

1

X

j=j

0

k g(a + x

j

)� g(a) k

q

)

1=q

� C

q

(F ) k (g(a + x

j

)� g(a))

1

j=j

0

k

w;1

� Dk(x

j

)

1

j=j

0

k

w;1

:

Obviously,

(

j

0

�1

X

j=1

k g(a + x

j

)� g(a) k

q

)

1=q

<1:

Hene

(

1

X

j=1

k g(a + x

j

)� g(a) k

q

)

1=q

<1

whenever (x

j

)

1

j=1

2 l

u

1

(E):�

In the real ase, a slight variation of the Proposition 7 an be made as we

see below:

Proposition 8. Let f : E ! F be an appliation of lass C

k

at a 2 E: If

otF � q and ot E � kq, then f is (q; 1)-summing at a:

Proof. Reall that if f is an appliation of lass C

k

at a, by Taylor's

formula there exists B

Æ

(a) suh that

kf(a+x)�f(a)k � kdf(a)(x)+

^

d

2

f(a)

2!

(x)+:::+

^

d

k

f(a)

k!

(x)k+kxk

k

8x 2 B

Æ

(a):

It is lear that we an onsider (x

j

)

1

j=1

2 l

u

1

(E) so that x

j

2 B

Æ

(a) for every

j. Then,

(

m

X

j=1

kf(a + x

j

)� f(a)k

q

)

1=q

�

� [

m

X

j=1

(kdf(a)(x

j

) +

^

d

2

f(a)

2!

(x

j

) + ::: +

^

d

k

f(a)

k!

(x

j

)k+ kx

j

k

k

)

q

℄

1=q

:
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Thus

(

m

X

j=1

kf(a + x

j

)� f(a)k

q

)

1=q

�

� [

m

X

j=1

kdf(a)(x

j

) +

^

d

2

f(a)

2!

(x

j

) + ::: +

^

d

k

f(a)

k!

(x

j

)k

q

℄

1=q

+ [

m

X

j=1

(kx

j

k

k

)

q

℄

1=q

:

Sine otE � kq and sine df(a); :::;

^

d

k

f(a) are (q; 1)-summing, the proof is

done.�

It is not diÆult to ahieve the following result:

Theorem 16. If F has otype q, X is an L

1;�

spae and f : X ! F is

analyti at a, then f is absolutely (q; 2)-summing at a.

Proof.

There are C � 0 and  > 0 suh that

k

1

k!

^

d

k

f(a)k � C

k

for every k:

Thus, by (3.1) in Theorem 7 we have

(7.1)

k

1

k!

^

d

k

f(a)k

as(q;2)

� C

q

(F )K

G

3

k�2

2

k

1

k!

^

d

k

f(a)k�

k

� C

q

(F )K

G

3

k�2

2

C

k

�

k

:

for every k � 2.

For k = 1 we know that every linear mapping from X into F is (q; 2)-

summing and it is enough, in addition with (7.1), to obtain positive C

1

and 

1

so that

k

1

k!

^

d

k

f(a)k

as(q;2)

� C

1



k

1

for every k � 1:

If Æ

a

is the radius of onvergene of f around a, then, whenever (x

j

)

1

j=1

is

suh that k(x

j

)

1

j=1

k

w;1

� minf

1

2

1

; Æ

a

g; we have

(

1

X

j=1

kf(a + x

j

)� f(a)k

q

)

1

q

=

1

X

j=1

(k

1

X

k=1

1

k!

^

d

k

f(a)(x

j

)k

q

)

1

q

�

�

1

X

k=1

[

1

X

j=1

k

1

k!

^

d

k

f(a)(x

j

)k

q

℄

1

q

�

�

1

X

k=1

k

1

k!

^

d

k

f(a)k

as(q;2)

k(x

j

)

1

j=1

k

k

w;2

=

= k(x

j

)

1

j=1

k

w;2

1

X

k=1

k

1

k!

^

d

k

f(a)k

as(q;2)

k(x

j

)

1

j=1

k

k�1

w;2

�
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� C

1

k(x

j

)

1

j=1

k

w;2

1

X

k=1



k

1

2

k�1



k�1

1

= C

2

k(x

j

)

1

j=1

k

w;2

:

Remark 2. Theorem 6 ould indue us to postulate that every mapping,

analyti at a; from an L

1

spae into K would be (1; 2)-summing. However,

it is not true sine the only absolutely (1; 2)-summing linear mapping is the

trivial mapping.

The next example follows the same line of thought of Lemma 3 and The-

orem 16:

Example 3. If X is an L

1

spae and f : X ! K is a mapping, analyti at

a; so that df(a) = 0; then f is (1; 2)-summing at a.

The reader must note that the same reasoning of Theorem 16 lead us to

the following useful Theorem:

Theorem 17. If the mapping f : E ! F is analyti at a 2 E and there are

C > 0 and  > 0 suh that for eah natural n;

(7.2)

^

d

n

f(a) 2 P

as(s;r)

(

n

E;F )

and

(7.3) k

1

n!

^

d

n

f(a)k

as(s;r)

� C

n

;

then f is (s; r)-summing at a:

Remark 3. For entire holomorphi mappings we have a ompleter result,

due to Matos [12℄.
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