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Abstra
t. In this paper we study absolutely summing mappings on

Bana
h spa
es by exploring the 
otype of their domains and ranges.

It is proved that every n-linear mapping from L

1

-spa
es into K is

(2; 2; :::; 2;1)-summing and also shown that every n-linear mapping

from L

1

-spa
es into F is (q; 2; :::; 2)-summing whenever F has 
otype

q: We also give new examples of analyti
 summing mappings and poly-

nomial and multilinear versions of a linear Extrapolation Theorem.

1. Introdu
tion

In the �fties, A. Grothendie
k�s seminal paper [8℄ "Resum�e de la th�eorie

m�etrique des produits tensoriels topologiques" provided the fundamentals

of the absolutely summing operators theory. Subsequently, J. Lindenstrauss

and A. Pe l
zy�nski [9℄ simpli�ed Grothendie
k�s tensorial notations leading

to many interesting results. The multilinear theory of absolutely summing

mappings was outlined by Piets
h [18℄ and has been developed by several

authors (Alen
ar and Matos [1℄, Floret and Matos [7℄, Matos [12℄, S
hnei-

der [19℄, Tonge and Melendez [15℄, Botelho [2℄,[3℄, among others). Matos

[12℄,[10℄, [11℄ also begun to study the 
on
ept of holomorphi
 absolutely

summing mappings and a more general de�nition in su
h a way that the

origin was not a distinguished point. The 
ontribution of the notion of 
o-

type to this theory is relevant and 
an be seen in [2℄,[3℄ and [7℄. In this

paper, we will generalize several results of [3℄ and [2℄ and also give new Co-

in
iden
e Theorems and examples of absolutely summing holomorphi
 and

analyti
 mappings.

2. Notation, general 
on
epts and basi
 results

Throughout this paper E;E

1

; :::; E

n

; F;X; Y will always denote Bana
h

spa
es and the s
alar �eld K 
an be either R or C . We will denote by

C(K) the Bana
h spa
e of 
ontinuous s
alar valued fun
tions on K(
ompa
t

Hausdor� spa
e) endowed with the sup norm.

The Bana
h spa
e of all n-linear 
ontinuous mappings from E

1

� :::�E

n

into F endowed with the 
anoni
al norm will be denoted by L(E

1

; :::; E

n

;F )

and the Bana
h spa
e of all 
ontinuous n-homogeneous polynomials P from

E into F with the norm kPk = supfkPxk; kxk � 1g will be denoted by

P(

n

E;F ): A mapping f : E ! F will be said analyti
 at the point a 2 E; if

1
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there exist a ball B

Æ

(a) and a sequen
e of polynomials P

k

2 P(

k

E;F ) su
h

that

f(x) =

1

X

k=0

P

k

(x� a) uniformly for x 2 B

Æ

(a):

Hen
eforth Æ

a

will be 
alled the radius of 
onvergen
e of f around a: To

emphasize the 
ase K = C ; we will sometimes use the term \holomorphi
"

in the pla
e of \analyti
". Every analyti
 mapping in the whole spa
e will

be 
alled entire mapping.

For the natural isometry

	 : L(E

1

; :::; E

n

;F ) ! L(E

1

; :::; E

t

;L(E

t+1

; :::; E

n

;F ))

we will use the following 
onvention: If T 2 L(E

1

; :::; E

n

;F ) then 	(T ) = T

1

and if T 2 L(E

1

; :::; E

t

;L(E

t+1

; :::; E

n

;F )); then 	

�1

(T ) = T

0

:

For p 2℄0;1[; the linear spa
e of all sequen
es (x

j

)

1

j=1

in E su
h that

k(x

j

)

1

j=1

k

p

= (

1

X

j=1

kx

j

k

p

)

1

p

<1

will be denoted by l

p

(E): We will also denote by l

w

p

(E) the linear subspa
e

of l

p

(E) formed by the sequen
es (x

j

)

1

j=1

in E su
h that

(< '; x

j

>)

1

j=1

2 l

p

(K );

for every 
ontinuous linear fun
tional ' : E ! K : We also de�ne k:k

w;p

in

l

w

p

(E) by

k(x

j

)

j2N

k

w;p

:= Sup

'2B

E

�

(

1

X

j=1

j< '; x

j

>j

p

)

1

p

:

The 
ase p = 1 is just the 
ase of bounded sequen
es and in l

1

(E) we use

the sup norm. The linear subspa
e of l

w

p

(E) of all sequen
es (x

j

)

1

j=1

2 l

w

p

(E);

su
h that

lim

m!1

k(x

j

)

1

j=m

k

w;p

= 0;

is a 
losed linear subspa
e of l

w

p

(E) and will be denoted by l

u

p

(E). The 
ase

p = 1 motivates the name un
onditionally p-summable sequen
es for the

elements of l

u

p

(E) ([12℄). One 
an see that k:k

p

(k:k

w;p

) is a p-norm in l

p

(E)(

l

w

p

(E)) for p < 1 and a norm in l

p

(E)( l

w

p

(E)) for p � 1: In any 
ase, they

are 
omplete metrizable linear spa
es.

De�nition 1. Let 2 � q � 1 and (r

j

)

1

j=1

be the Radema
her fun
tions.

The Bana
h spa
e E has 
otype q; if there exists C

q

(E) � 0; su
h that, for

every k 2 N and x

1

; :::; x

k

2 E;

(

k

X

j=1

kx

j

k

q

)

1

q

� C

q

(E)(

1

Z

0

k

k

X

j=1

r

j

(t)x

j

k

2

dt)

1

2

:
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To 
over the 
ase q = 1, we repla
e (

P

k

j=1

kx

j

k

q

)

1

q

by

maxfkx

j

k; 1 � j � kg:

We will de�ne the 
otype of E by 
otE = inff2 � q � 1;E has 
otype qg:

De�nition 2. (Matos) A 
ontinuous n-linear mapping T : E

1

�:::�E

n

! F

is absolutely (p; q

1

; :::; q

n

)-summing (or (p; q

1

; :::; q

n

)-summing) at (a

1

; :::; a

n

) 2

E

1

� :::�E

n

if

(T (a

1

+ x

(1)

j

; :::; a

n

+ x

(n)

j

)� T (a

1

; :::; a

n

))

1

j=1

2 l

p

(F )

for every (x

(s)

j

)

1

j=1

2 l

w

q

s

(E), s = 1; :::; n: A 
ontinuous n-homogeneous poly-

nomial P : E ! F is absolutely (p; q)-summing (or (p; q)-summing) at a 2 E

if

(P (a + x

j

)� P (a))

1

j=1

2 l

p

(F )

for every (x

j

)

1

j=1

2 l

w

q

(E):

The spa
e of all n-homogeneous polynomials P : E ! F whi
h are (p; q)-

summing (at every point) will be denoted by P

as(p;q)(E)

(

n

E;F ): The spa
e

of all n-homogeneous polynomials P : E ! F whi
h are (p; q)-summing

(at the origin) will be denoted by P

as(p;q)

(

n

E;F ): Analogously for n-linear

mappings.

It must be noti
ed that the aforementioned de�nition, where the origin is

not a privileged point, is a
tually a more restri
tive de�nition. For example,

if n > 1 every n-linear mapping T from l

1

� ::: � l

1

into l

1

is absolutely

(1; 1)-summing at the origin, but we 
an always �nd a 6= 0 su
h that T is

not absolutely (1; 1)-summing at a [11℄: Besides, the above de�nition turns

possible to 
onsider an absolutely summing holomorphy type in the sense of

Na
hbin (see [10℄).

One 
an prove that if r < s then the unique polynomial whi
h is absolutely

(r; s)-summing at every point is the trivial.

For n-homogeneous polynomials and n-linear mappings, the polynomials

(n-linear mappings) (

p

n

; p)-summing will be 
alled p-dominated polynomials

(n-linear mappings) (see [12℄,[15℄). For the p-dominated polynomials (n-

linear mappings) several natural versions of linear results still hold, as well

as Fa
torization Theorems, Domination Theorem, et
. [12℄,[15℄,[19℄.

The following 
hara
terization will be useful:

Theorem 1. (Matos [12℄) Let P be an m-homogeneous polynomial from E

into F .Then, the following statements are equivalent:

(1) P is absolutely (p; q)-summing at 0.

(2)There exists L > 0 su
h that

(

1

X

j=1

kP (x

j

)k

p

)

1

p

� Lk(x

j

)

1

j=1

k

m

w;q

8(x

j

)

1

j=1

2 l

u

q

(E):
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(3)There exists L > 0 su
h that

(

k

X

j=1

kP (x

j

)k

p

)

1

p

� Lk(x

j

)

k

j=1

k

m

w;q

8k 2 N;8x

1

; :::; x

k

:

(4) (P (x

j

))

1

j=1

2 l

p

(F ) for every (x

j

)

1

j=1

2 l

w

q

(E):

The in�mum of the possible 
onstants L > 0 is a norm for the 
ase

p � 1 or a p-norm for the 
ase p < 1([12℄ or [17℄ page 91) on the spa
e of

the absolutely (p; q)-summing polynomials. In any 
ase, we have 
omplete

topologi
al metrizable spa
es. We will use the notation k:k

as(p;q)

for this

norm (p�norm).

The 
hara
terization for the multilinear 
ase and the de�nition of the

norm (p-norm) follows the same reasoning.

The following Theorem plays an important role in our future results:

Theorem 2. (Maurey-Talagrand [20℄)If E has 
otype p; then id : E ! E is

(p; 1)-summing. The 
onverse is true, ex
ept for p = 2.

The next de�nition, due to Lindenstrauss and Pe l
zy�nski is of fundamen-

tal importan
e in the lo
al study of Bana
h spa
es and their properties:

De�nition 3. Let 1 � p � 1 and let � > 1: The Bana
h spa
e X is said to

be an L

p;�

spa
e if every �nite dimensional subspa
e E of X is 
ontained in

a �nite dimensional subspa
e F of X for whi
h there exists an isomorphism

v

E

: F ! l

dimF

p

with kv

E

kkv

�1

E

k < �: We say that X is an L

p

spa
e if it is

an L

p;�

spa
e for some � > 1:

3. Absolutely summing polynomials and multilinear mappings

explored by the 
otype of their ranges

The relation between 
otype and absolutely summing linear mappings

is 
lear by Theorem 2. For points di�erent from the origin we have the

straightforward following results:

Lemma 1. Every 
ontinuous n-linear mapping T : E

1

� ::: � E

n

! F is

su
h that

(T (a

1

+ x

(1)

j

; :::; a

n

+ x

(n)

j

)� T (a

1

; :::; a

n

))

1

j=1

2 l

w

1

(F )

whenever (x

(1)

j

)

1

j=1

2 l

w

1

(E

1

); :::; (x

(n)

j

)

1

j=1

2 l

w

1

(E

n

): The polynomial version

is immediate.

Proof. We just need to invoke a well known, albeit unpublished, result of

Defant and Voigt whi
h states that every s
alar valued n-linear mapping is

absolutely (1; 1)-summing at the origin (see [10℄, Theorem 1.6 or [12℄), and

explore multilinearity.

Theorem 3. If F has 
otype q, then every 
ontinuous n-linear mapping

from E

1

� :::�E

n

into F is (q; 1)-summing on E

1

� :::�E

n

. The polynomial


ase is also valid.
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Proof. Sin
e F has 
otype q, Theorem 2 and Lemma 1 provide

(

1

X

j=1

kT (a

1

+ x

1

j

; :::; a

n

+ x

n

j

)� T (a

1

; :::; a

n

)k

q

)

1

q

�

� k(T (a

1

+ x

1

j

; :::; a

n

+ x

n

j

)� T (a

1

; :::; a

n

))

1

j=1

k

w;1

<1

whenever (x

1

j

)

1

j=1

2 l

w

1

(E

1

); :::; (x

n

j

)

1

j=1

2 l

w

1

(E

n

):�

Theorem 3 generalizes to points di�erent from the origin the following

result:

Theorem 4. (Botelho [2℄) If F has 
otype q then every 
ontinuous n-

homogeneous polynomial from E into F is (q; 1)-summing at the origin.

In order to prove a new 
hara
terization of 
otype in terms of absolutely

summing polynomials we need the following Lemma:

Lemma 2. If P

as(r;s)(E)

(

n

E;F ) = P(

n

E;F ) then L(E;F ) = L

as(r;s)

(E;F ):

Proof. (Inspired on the proof of Dvoretzky Rogers Theorem for polyno-

mials [11℄)

It is 
lear that r � s: Let us 
onsider a 
ontinuous linear mapping T :

E ! F: De�ne an n-homogeneous polynomial

P (x) = '(x)

n�1

T (x)

where ' is a non null 
ontinuous linear fun
tional. Then, 
hoosing a =2

Ker('); we have

dP (a)(x) = (n� 1)'(a)

n�2

'(x)T (a) + '(a)

n�1

T (x):

It is not hard to see that dP (a) is absolutely (r; s)-summing (see Matos

[11℄) and sin
e ' is absolutely (r; s)-summing, it follows that T is absolutely

(r; s)-summing.�

It is worth remarking that the 
onverse of Lemma 2 does not hold. In

fa
t,

L(l

2

;K ) =L

as(2;2)

(l

2

;K ) and P(

2

l

2

;K ) 6=P

as(2;2)

(l

2

;K ):

Now we have another 
hara
terization of 
otype:

Theorem 5. Let n � 1: E has 
otype q > 2 if, and only if,

P(

n

E;E) = P

as(q;1)(E)

(

n

E;E):

Proof. If P(

n

E;E) = P

as(q;1)(E)

(

n

E;E) then, by Lemma 2, id : E ! E

is (q; 1)-summing and 
onsequently E has 
otype q. Theorem 3 yields the


onverse.�

The following re
ent Theorem of D.Perez [16℄, that generalizes a 2- linear

result of Floret-Botelho [2℄ and Tonge-Melendez[15℄, is an important instru-

ment for other multilinear and holomorphi
 results, as we will see later.
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Theorem 6. (D.Perez [16℄) If ea
h X

j

is an L

1;�

j

spa
e, then every 
on-

tinuous n-linear mapping (n � 2) from X

1

� ::: �X

n

into K is (1; 2; :::; 2)-

summing at the origin and

kTk

as(1;2;:::;2)

� K

G

3

n�2

2

kTk

n

Y

j=1

�

j

:

The polynomial version of this Theorem is immediate and will be useful

for us in the last se
tion of this paper.

Corollary 1. If X is an L

1;�

spa
e then every 
ontinuous s
alar valued

n-homogeneous polynomial (n � 2) P : X ! K is (1; 2)-summing at the

origin and

kPk

as(1;2)

� K

G

3

n�2

2

kPk�

n

:

We 
an explore last Theorem and the 
otype of the range as follows:

Theorem 7. If ea
h X

j

is an L

1;�

j

spa
e and F has 
otype q 6= 1; then

every 
ontinuous n-linear mapping from X

1

� :::�X

n

into F is (q; 2; :::; 2)-

summing at the origin and

kTk

as(q;2;:::;2)

� C

q

(F )K

G

3

n�2

2

kTk

n

Y

j=1

�

j

:

In parti
ular, if X is an L

1;�

spa
e and F has 
otype q 6= 1, then

P(

n

X;F ) = P

as(q;2)

(

n

X;F )

and

(3.1) kPk

as(q;2)

� C

q

(F )K

G

3

n�2

2

kPk�

n

:

Proof. Let (f

(1)

j

)

1

j=1

2 l

w

2

(X

1

); :::; (f

(n)

j

)

1

j=1

2 l

w

2

(X

n

): Sin
e

L(X

1

; :::;X

n

;K ) = L

as(1;2;:::;2)

(X

1

; :::;X

n

;K )

and for every R 2 L(X

1

; :::;X

n

;K ) we have

kRk

as(1;2;:::;2)

� K

G

3

n�2

2

kRk

n

Y

j=1

�

j

then

(

1

X

j=1

kT (f

(1)

j

; :::; f

(n)

j

)k

q

)

1

q

� C

q

(F )k(T (f

(1)

j

; :::; f

(n)

j

))

1

j=1

k

w;1

=

= C

q

(F ) sup

y

;

2B

F

;

1

X

j=1

j (y

0

Æ T )(f

(1)

j

; :::; f

(n)

j

) j=

� C

q

(F ) sup

y

;

2B

F

;

ky

0

Æ Tk

as(1;2;:::;2)

k(f

(1)

j

)

1

j=1

k

w;2

:::k(f

(n)

j

)

1

j=1

k

w;2

�

� C

q

(F ) sup

y

;

2B

F

;

Cky

0

Æ Tkk(f

(1)

j

)

1

j=1

k

w;2

:::k(f

(n)

j

)

1

j=1

k

w;2

�
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� C

q

(F ) sup

y

;

2B

F

;

Cky

0

kkTkk(f

(1)

j

)

1

j=1

k

w;2

:::k(f

(n)

j

)

1

j=1

k

w;2

�

� C

q

(F )CkTkk(f

(1)

j

)

1

j=1

k

w;2

:::k(f

(n)

j

)

1

j=1

k

w;2

where C = K

G

3

n�2

2

n

Q

j=1

�

j

:�

As a 
onsequen
e of the last Theorem, we obtain a generalization of a

bilinear result of Botelho ([2℄), answering a question posed in [3℄:

Theorem 8. If n � 2 and ea
h X

j

is an L

1;�

j

spa
e then every 
ontinuous

n-linear mapping T : X

1

� ::: � X

n

! K is (2; 2; :::; 2;1)-summing at the

origin and

kTk

as(2;2;:::;1)

� C

2

(X

n

�)K

G

3

n�2

2

kTk

n

Y

j=1

�

j

:

Proof. Let T : X

1

� ::: � X

n

! K be a 
ontinuous n-linear mapping.

Then

T

1

: X

1

� ::: �X

n�1

! X

n

0

is (2; 2; :::; 2)-summing sin
e X

n

0

has 
otype

2: So,

(

1

X

j=1

kT

1

(x

(1)

j

; :::; x

(n�1)

j

)k

2

)

1=2

� C k (x

(1)

j

)

1

j=1

k

w;2

::: k (x

(n�1)

j

)

1

j=1

k

w;2

and

(

1

X

j=1

Sup

x

(n)

j

2B

X

n

kT

1

(x

(1)

j

; :::; x

(n�1)

j

)(x

(n)

j

)k

2

)

1=2

�

� C k (x

(1)

j

)

1

j=1

k

w;2

::: k (x

(n�1)

j

)

1

j=1

k

w;2

:

If (x

(n)

j

)

1

j=1

2 l

1

(X

n

) does not vanish, we have

(

1

X

j=1

kT

1

(x

(1)

j

; :::; x

(n�1)

j

)(

x

(n)

j

k (x

(n)

j

)

1

j=1

k

1

)k

2

)

1=2

�

� C k (x

(1)

j

)

1

j=1

k

w;2

::: k (x

(n�1)

j

)

1

j=1

k

w;2

:

Hen
e

(

1

X

j=1

kT

1

(x

(1)

j

; :::; x

(n�1)

j

)(x

(n)

j

)k

2

)

1=2

�

� C k (x

(1)

j

)

1

j=1

k

w;2

::: k (x

(n�1)

j

)

1

j=1

k

w;2

k (x

(n)

j

)

1

j=1

k

1

and

(

1

X

j=1

kT (x

(1)

j

; :::; x

(n)

j

)k

2

)

1=2

� C k (x

(1)

j

)

1

j=1

k

w;2

::: k (x

(n�1)

j

)

1

j=1

k

w;2

k (x

(n)

j

)

1

j=1

k

1

where C = C

2

(X

n

�)K

G

3

n�2

2

kTk

n

Q

j=1

�

j

:
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The 
ase (x

(n)

j

)

1

j=1

= 0 does not o�er any trouble.�

For n = 2, Theorem 8 has the following version:

Proposition 1. If X is an L

1

spa
e, then every 
ontinuous 2 linear map-

ping T : X�E ! K with 
ot E

0

= q = 2 is (r; r;1)-summing at the origin

for every r � 2. If 
ot E

0

= q > 2; then T is (r; r;1) and (q; p;1)-summing

at the origin for every r > q and p < q:

Proof. (Case q = 2) Let T : X�E ! K be a 
ontinuous bilinear mapping.

Then T

1

: X ! E

0

is (r; r)-summing sin
e E

0

has 
otype 2 [6℄. Hen
e

(

1

X

j=1

kT

1

(x

j

)k

r

)

1=r

� C k (x

j

)

1

j=1

k

w;r

and thus

(

1

X

j=1

Sup

y

j

2B

E

kT

1

(x

j

)(y

j

)k

r

)

1=r

� C k (x

j

)

1

j=1

k

w;r

:

If (y

j

)

1

j=1

2 l

1

(E) does not vanish, we have

(

1

X

j=1

kT

1

(x

j

)(

y

j

k (y

j

)

1

j=1

k

1

)k

r

)

1=r

� C k (x

j

)

1

j=1

k

w;r

:

Hen
e

(

1

X

j=1

kT

1

(x

j

)(y

j

)k

r

)

1=r

� C k (x

j

)

1

j=1

k

w;r

k (y

j

)

1

j=1

k

1

and

(

1

X

j=1

kT (x

j

; y

j

)k

r

)

1=r

� C k (x

j

)

1

j=1

k

w;r

k (y

j

)

1

j=1

k

1

:

The 
ase (y

j

)

1

j=1

= 0 does not o�er any problem.

A linear result of Maurey (see [4℄, page 223, Th. 11.14 a) provides,

through the same reasoning, the proof of the 
ase q > 2.�

Applying the same ideas we have the statement below:

Proposition 2. If ea
h X

j

is an L

1

spa
e; then every 
ontinuous n-linear

mapping T : X

1

� ::: � X

n

� E ! K with 
ot E

0

= q � 2; q 6= 1 is

(q; 2; :::; 2;1)-summing at the origin.

Theorem 8 
an also be used to obtain other results. For example:

Theorem 9. If ea
h X

j

is an L

1

spa
e and T : X

1

� ::: �X

n

! K is a


ontinuous n-linear mapping, then

n = 2 ) T is (r; r; r)-summing on X

1

�X

2

; for every r � 2.

n � 3 ) T �e (r; 2; :::; 2; r)-summing on X

1

� :::�X

n

for every r � 2:
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Proof. The 
ase n = 2 is the easiest and we will omit the proof. For the


ase n = 3; let (x

j

)

1

j=1

2 l

w

2

(X

1

); (y

j

)

1

j=1

2 l

w

2

(X

2

) and (z

j

)

1

j=1

2 l

w

2

(X

3

):

Then

(

1

X

j=1

kT (a + x

j

; b + y

j

; 
 + z

j

)� T (a; b; 
)k

r

)

1

r

=

= (

1

X

j=1

(kT (a; y

j

; z

j

)k

r

)

1

r

+ (

1

X

j=1

(kT (x

j

; b; 
)k

r

)

1

r

+

+(

1

X

j=1

(kT (x

j

; y

j

; 
)k

r

)

1

r

+ (

1

X

j=1

(kT (x

j

; b; z

j

)k

r

)

1

r

+ (

1

X

j=1

(kT (a; b; z

j

)k

r

)

1

r

+(

1

X

j=1

(kT (a; y

j

; 
)k

r

)

1

r

+ (

1

X

j=1

(kT (x

j

; y

j

; z

j

)k

r

)

1

r

<1

sin
e every linear mapping is (r; r) and (r; 2)-summing, every su
h bilinear

mapping is (r; r; r), (r; 2; r) and (r; 2; 2)-summing and every su
h 3-linear

mapping above is (r; 2; 2; r)-summing at the origin.

For n > 3 we use an indu
tive prin
iple.

Theorem 7 
an be extended as follows:

Theorem 10. If ea
h X

j

is an L

1

spa
e and 
otF = q; then every 
ontin-

uous n-linear mapping from X

1

� :::�X

n

into F is (q; 2; :::; 2)-summing on

X

1

� :::�X

n

:

Proof. If q = 2; it is enough to use the last reasoning with Theorem 7

and the Dubinsky-Pe l
zy�nski-Rosenthal ([4℄ page 223, Th. 11.14 (a) or [6℄)

result whi
h asserts that every linear mapping from an L

1

spa
e into F (

with 
otF = 2 ) is (2; 2)-summing.

If q > 2; we shall use the same reasoning with the Maurey ([4℄ page 223,

Th. 11.14(b)) result whi
h asserts that every linear mapping from an L

1

spa
e into F ( with 
ot F = q > 2 ) is (q; p)-summing for ea
h p < q:�

4. r-fully absolutely summing multilinear mappings

The following de�nition is inspired in the work of Matos [13℄ whi
h is

being developed by M.L.V. Souza in his do
toral dissertation.

De�nition 4. A 
ontinuous n-linear mapping T : E

1

� ::: � E

n

! F will

be said r-fully (p; q

1

; :::; q

n

)-summing if

1

X

j

1

;:::;j

r

=1










T (x

(1)

j

1

; :::; x

(r)

j

r

; x

(r+1)

j

r

; :::; x

(n)

j

r










p

<1

whenever (x

(l)

k

)

1

k=1

2 l

w

q

l

(E

l

); l = 1; :::; n. In this 
ase we will write

T 2 L

f(r)as(p;q

1

;:::;q

n

)

(E

1

; :::; E

n

;F ):
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When r = 1, we have the (p; q

1

; :::; q

n

)-summing mappings and when r = n

we 
all T just by fully (p; q

1

; :::; q

n

)-summing, whi
h is a 
on
ept introdu
ed

by Matos [13℄.

A natural question is: Does every n-linear mappings from L

1

spa
es into

K is fully (2; 2; :::; 2)-summing?

We will show in Corollary 2 that Theorem 8 give us partial answers.

Theorem 11. If L(E

n

;F ) = L

as(q;r)

(E

n

;F ); then

L

as(q;p

1

;:::;p

n�1

;1)

(E

1

; :::; E

n

;F ) � L

f(2)as(q;p

1

;:::;p

n�1

;r)

(E

1

; :::; E

n

;F ):

Proof. Let us 
onsider T 2 L

as(q;p

1

;:::;p

n�1

;1)

(E

1

; :::; E

n

;F ): If

(x

(1)

k

)

1

k=1

2 l

w

p

1

(E

1

); :::; (x

(n�1)

k

)

1

k=1

2 l

w

p

n�1

(E

n�1

); (y

k

)

1

k=1

2 l

w

r

(E);

then, for ea
h k �xed,

1

X

j=1










T (x

(1)

k

; :::; x

(n�1)

k

; y

j

)










q

�







(y

j

)

1

j=1







q

w;r










T (x

(1)

k

; :::; x

(n�1)

k

; :)










q

as(q;r)

�

�







(y

j

)

1

j=1







q

w;r

C










T (x

(1)

k

; :::; x

(n�1)

k

; :)










q

�

�







(y

j

)

1

j=1







q

w;r

C(










T (x

(1)

k

; :::; x

(n�1)

k

; z

k

)










q

+

1

2

k

):

where ea
h z

k

belongs to the unit ball B

E

n

:

Therefore

1

X

k=1

1

X

j=1










T (x

(1)

k

; :::; x

(n�1)

k

; y

j

)










q

�

� k(y

j

)k

q

w;r

C

1

X

k=1

(










T (x

(1)

k

; :::; x

(n�1)

k

; z

k

)










p

+

1

2

k

) <1:�

Corollary 2. If ea
h E

k

is an L

1

spa
e, we have

L(E

1

; :::; E

n

;K ) = L

f(2)as(2;2;:::;2;2)

(E

1

; :::; E

n

;K ):

Proof. It suÆ
es to realize that L(E

n

;K ) = L

as(2;2)

(E

n

;K ) and apply

last Theorem and Theorem 8.�

5. Other results

An important and broadly used result is the Generalized H�older�s In-

equality, whi
h is a natural instrument to deal with absolutely summing

multilinear mappings.

Theorem 12 (Generalized H�older�s Inequality). If

1

p

�

1

p

1

+ ::: +

1

p

n

; then

(

1

X

j=1

j a

(1)

j

:::a

(n)

j

j

p

)

1

p

� (

1

X

j=1

j a

(1)

j

j

p

1

)

1

p

1

:::(

1

X

j=1

j a

(n)

j

j

p

n

)

1

p

n

:
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If T : E

1

� ::: � E

n

! F is a 
ontinuous multilinear mapping where at

least one of the spa
es whi
h 
ompose the Bana
h spa
es of the domain has

�nite 
otype, we 
an state the following result.

Theorem 13. If T : E

1

� :::�E

n

! F is a 
ontinuous multilinear mapping,

q

j

= 
otE

j

; j = 1; :::; n; and at least one of the q

j

�nite, then, for any 
hoi
e

of a

j

2 [q

j

;1℄; with at least one of the a

j

�nite, T is (s; b

1

; :::; b

n

)-summing

at the origin, for any s > 0; su
h that

1

s

�

1

a

1

+ ::: +

1

a

n

; with b

j

= 1; if

a

j

<1; and b

j

= 1 if a

j

= 1:

Proof. Obvious, using Theorem 2, after some reasoning on how to opti-

mize the use of the Generalized H�older�s Inequality.

As a 
orollary, we have the a result due to Botelho [2℄.

Corollary 3. If T : E

1

� :::�E

n

! F is a 
ontinuous multilinear mapping

and q

j

= 
otE

j

< 1 for every j = 1; :::; n, then T is (s; 1; :::; 1)-summing

at the origin for any s > 0 su
h that

1

s

�

1

q

1

+ ::: +

1

q

n

:

Theorem 13 shows that even if just one of the spa
es of the domain has

�nite 
otype, the multilinear mapping is still well behaved. As an illustration

we 
an see the example below.

Example 1. If E has 
otype p, then every T : C(K)� :::�C(K)�E ! F

is (p;1; :::;1; 1)-summing at the origin.

The following results show more about the me
hanism of absolutely sum-

ming mappings.

Proposition 3. If L(E

1

; :::; E

n

;F ) = L

as(r;s

1

;:::;s

t

;1;:::;1)

(E

1

; :::; E

n

;F ) then

L(E

1

; :::; E

t

;F ) = L

as(r;s

1

;:::;s

t

)

(E

1

; :::; E

t

;F ):

Proof. Given T 2 L(E

1

; :::; E

t

;F ) let us de�ne

S(a

1

; :::; a

n

) = T (a

1

; :::; a

t

)'

t+1

(a

t+1

):::'

n

(a

n

)

where '

t+1

; :::; '

n

are non trivial bounded linear fun
tionals. Let b

t+1

; :::; b

n

be su
h that

'

t+1

(b

t+1

) = ::: = '

n

(b

n

) = 1:

It follows that T 2 L

as(r;s

1

;:::;s

t

)

(E

1

; :::; E

t

;F ): In fa
t, if (x

l

j

)

1

j=1

2 l

w

s

l

(E

l

) we

have

1

X

j=1

kT (x

(1)

j

; :::; x

(t)

j

)k

r

=

1

X

j=1

kS(x

(1)

j

; :::; x

(t)

j

; b

t+1

; :::; b

n

)k

r

<1:�

The next statement suggested by Matos extend the Lemma 3.2 of [2℄:

Proposition 4. If L(E

1

; :::; E

n

;F ) = L

as(r;s

1

;:::;s

t

;1;:::;1)

(E

1

; :::; E

n

;F ); then

L(E

1

; :::; E

t

;L(E

t+1

; :::; E

n

;F )) = L

as(r;s

1

;:::;s

t

)

(E

1

; :::; E

t

;L(E

t+1

; :::; E

n

;F ))

and 
onversely.
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Proof: Suppose

L(E

1

; :::; E

n

;F ) = L

as(r;s

1

;:::;s

t

;1;:::;1)

(E

1

; :::; E

n

;F ):

Let T : E

1

� ::: � E

t

�! L(E

t+1

; :::; E

n

;F ) be a 
ontinuous multilinear

mapping. We have

(

1

X

j=1

kT (x

(j)

1

; :::; x

(j)

t

)k

r

)

1

r

= (

1

X

j=1

Sup

ky

k

k�1

k=t+1;:::;n

kT (x

(j)

1

; :::; x

(j)

t

)(y

t+1

; :::; y

n

)k

r

)

1

r

�

� (

1

X

j=1

kT (x

(j)

1

; :::; x

(j)

t

)(y

(j)

t+1

; :::; y

(j)

n

)k

r

+

1

2

j

)

1

r

=

= (

1

X

j=1

kT

0

(x

(j)

1

; :::; x

(j)

t

; y

(j)

t+1

; :::; y

(j)

n

)k

r

+

1

2

j

)

1

r

<1

if (x

(j)

1

) 2 l

w

s

1

(E

1

); :::; (x

(j)

t

) 2 l

w

s

t

(E

t

):

On the other hand, suppose

L(E

1

; :::; E

t

;L(E

t+1

; :::; E

n

;F ) = L

as(r;s

1

;:::;s

t

)

(E

1

; :::; E

t

;L(E

t+1

; :::; E

n

;F ):

If T : E

1

� :::�E

n

�! F; and

(x

(j)

1

)

1

j=1

2 l

w

s

1

(E

1

); :::; (x

(j)

t

)

1

j=1

2 l

w

s

t

(E

t

); (y

(j)

t+1

)

1

j=1

2 l

1

(E

t

); :::; (y

(j)

n

)

1

j=1

2 l

1

(E

n

);

we have

1

X

j=1

kT (x

(j)

1

; :::; x

(j)

t

; y

(j)

t+1

; :::; y

(j)

n

)k

r

)

1

r

= (

1

X

j=1

kT

1

(x

(j)

1

; :::; x

(j)

t

)(y

(j)

t+1

; :::; y

(j)

n

)k

r

)

1

r

�

(5.1) � k(y

(j)

t+1

)k

1

:::k(y

(j)

n

)k

1

1

X

j=1

kT

1

(x

(j)

1

; :::; x

(j)

t

)k

r

)

1

r

<1:

We 
an see that it is also true that

T 2 L

as(r;s

1

;:::;s

t

;1;:::;1)

(E

1

; :::; E

n

;F ) )

) T

1

2 L

as(r;s

1

;:::;s

t

;)

(E

1

; :::; E

t

;L(E

t+1

; :::; E

n

;F ))

and

T 2 L

as(r;s

1

;:::;s

t

;)

(E

1

; :::; E

t

;L(E

t+1

; :::; E

n

;F )) )

) T

0

2 L

as(r;s

1

;:::;s

t

;1;:::;1)

(E

1

; :::; E

n

;F ):�

Remark 1. The reader shall note that the 
onverse of Proposition 3 
annot

hold. In fa
t, we know that L(E;K ) = L

as(1;1)

(E;K ): If the 
onverse of

Proposition 3 held, we would have L(E;E;K ) = L

as(1;1;1)

(E;E;K ) and by

Proposition 4

L(E;E�) = L

as(1;1)

(E;E�)

whi
h is impossible, in general (see [9℄).

Proposition 4 also furnishes an In
lusion Theorem for bilinear mappings.
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Proposition 5. ( In
lusion for bilinear mappings)

If r > s then L

as(s;s;1)

(E

1

; E

2

;F ) � L

as(r;r;1)

(E

1

; E

2

;F ):

Proof. If r > s and T 2 L

as(s;s;1)

(E

1

; E

2

;F ); then by Proposition 4,

T

1

: E

1

! L(E

2

;F ) is (s; s)-summing. By the In
lusion Theorem for linear

mappings, T

1

will be (r; r)-summing and again by the Proposition 4, T will

be (r; r;1)-summing at the origin.�

Example 2. The famous Grothendie
k�s Theorem, whi
h asserts that every

linear operator from an L

1

spa
e into an L

2

spa
e is (1; 1)-summing, and

Proposition 4 lead us to 
on
lude that if E

1

and E

2

are L

1

and L

2

spa
es

respe
tively, then

L(E

1

; E

2

;K ) = L

as(1;1;1)

(E

1

; E

2

;K ):

Thus, Proposition 5 yields

L(E

1

; E

2

;K ) = L

as(r;r;1)

(E

1

; E

2

;K )

for every r � 1. However, despite Grothendie
k�s Theorem we know that

L(l

1

; l

1

; l

2

) 6= L

as(1;1;1)

(l

1

; l

1

; l

2

)

and furthermore

L(l

1

; l

1

;K ) 6= L

as(1;1;1)

(l

1

; l

1

;K ):

The result below has the same spirit of the last Proposition.

Proposition 6. If T : E

1

� ::: � E

n

! F is p-dominated, then T is

(

r

n�1

; r; :::; r;1)-summing for every r � p:

Proof. If T : E

1

� ::: � E

n

! F is p-dominated, then, by Grothendie
k-

Piets
h domination Theorem, if T

1

: E

1

� :::�E

n�1

! L(E

n

;F ) is su
h that

T

1

= 	(T ); we obtain, for r � p;

kT

1

(x

1

; :::; x

n�1

)k = Sup

kyk�1

kT

1

(x

1

; :::; x

n�1

)(y)k =

= Sup

kyk�1

kT (x

1

; :::; x

n�1

; y)k �

� Sup

kyk�1

C(

Z

B

E

0

1

j '(x

1

) j

r

d�

1

)

1

r

:::(

Z

B

E

0

n

j '(y) j

r

d�

n

)

1

r

�

� C(

Z

B

E

0

1

j '(x

1

) j

r

d�

1

)

1

r

:::(

Z

B

E

0

n�1

j '(x

n�1

) j

r

d�

n�1

)

1

r

:

Thus, T

1

is r-dominated and, by Proposition 4, T = (T

1

)

0

is (

r

n�1

r; r; :::; r;1)-summing.

Corollary 4. If every T : E

1

� ::: � E

n

! F is p-dominated, then every

T : E

j

1

� ::: � E

j

r

! F; with 1 � r � n and j

1

; :::; j

r

2 f1; :::; ng mutually

disjoint, is p�dominated.
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Proof. By Proposition 6, we have

L(E

1

; :::; E

n

;F ) = L

as(

p

n�1

;p;:::;p;1)

(E

1

; :::; E

n

;F )

and by Proposition 3 we obtain

L(E

1

; :::; E

n�1

;F ) = L

as(

p

n�1

;p;:::;p)

(E

1

; :::; E

n�1

;F ):

The other 
ases use the same arguments.�

Similar reasoning furnishes the next Corollary.

Corollary 5. If every T : E

1

� :::�E

n

! F is p-dominated, then for every

permutation � : f1; :::; ng ! f1; :::; ng we have

L(E

�(1)

; :::; E

�(t)

;L(E

�(t+1)

; :::; E

�(n)

;F )) =

= L

as(

p

t

;p;:::;p)

(E

�(1)

; :::; E

�(t)

;L(E

�(t+1)

; :::; E

�(n)

;F )):

The next result is essentially due to Botelho [2℄.

Corollary 6. If some E

j

is an L

1

spa
e, at least one other E

k

is in�nite

dimensional and dimF = 1, then, regardless of the p � 1; we have

L(E

1

; :::; E

n

;F ) 6= L

as(

p

n

;p)

(E

1

; :::; E

n

;F ):

Proof. There is no loss of generality in assuming j = 1: If the equality

held we would have

L(E

1

;L(E

2

; :::; E

n

;F )) = L

as(p;p)

(E

1

;L(E

2

; :::; E

n

;F ))

whi
h is a 
ontradi
tion sin
e L(E

2

; :::; E

n

;F ) has only in�nite 
otype (see

[2℄,[5℄).

6. Extrapolation Theorems

The linear theory of absolutely summing operators has some strong 
o-

in
iden
e Theorems (see [4℄). Many of them have their polynomial versions

(see [10℄,[15℄). We will give a polynomial and a multilinear version for the

Maurey Extrapolation Theorem:

Theorem 14 (Polynomial Extrapolation Theorem). If 1 < r < p <1 and

X is a Bana
h spa
e su
h that

(6.1) P

as(

p

n

;p)

(

n

X; l

p

) = P

as(

r

n

;r)

(

n

X; l

p

) and L

as;p

(X; l

p

) = L

as;r

(X; l

p

)

then, for every Bana
h spa
e Y we have

(6.2) P

as(

p

n

;p)

(

n

X;Y ) = P

as(

1

n

;1)

(

n

X;Y ) and L

as;p

(X;Y ) = L

as;1

(X;Y ):

Proof. As in the linear 
ase, using a lo
alization argument, we 
an prove

that

P

as(

p

n

;p)

(

n

X; l

p

) = P

as(

r

n

;r)

(

n

X; l

p

)

is equivalent to

9D > 0; kPk

as(

r

2

;r)

� D kPk

as(

p

2

;p)

8P 2 P

(

p

2

;p)

(

n

X;L

p

):
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We want to prove that for ea
h Bana
h spa
e Y there exists C > 0 su
h that

whenever Q 2 P

as(

p

n

;p)

(

n

X;Y ); we have kQk

as(

1

n

;1)

� C kQk

as(

p

n

;p)

sin
e it

will lead us to

P

as(

p

n

;p)

(

n

X;Y ) = P

as(

1

n

;1)

(

n

X;Y ):

Consider

' : X ! C(B

X

�

) : x 7! f

x

where f

x

(x

�

) =< x

�

; x > : We will denote K = B

X

�

: Let us denote by P (K)

the set of all probability measures on K with the weak star topology. For

ea
h � 2 P (K) de�ne

j

�

: X � C(K) ! L

p

(�)

as the restri
tion of the 
anoni
al in
lusion from C(K) into L

p

(�):

Let R : X ! Y be an n-homogeneous (

p

n

; p)-summing polynomial. The

polynomial version of Grothendie
k-Piets
h Domination Theorem tells us

that there exists �

0

2 P (K) su
h that

kRxk � C[

Z

K

j< '; x >j

p

d�

0

(')℄

n

p

= C[

Z

K

j j

�

0

(x)(') j

p

d�

0

(')℄

n

p

=

= Ckj

�

0

(x)k

n

L

p

(�

0

)

for every x in X:

We must �nd � 2 P (K) and a 
onstant D (depending on X ) su
h that

(6.3) kj

�

0

(x)k

L

p

(�

0

)

� Dkj

�

(x)k

L

1

(�)

8x 2 X;

and then the Theorem will be proved. Indeed, we will have

kRxk � Ckj

�

0

(x)k

n

L

p

(�

0

)

� CDkj

�

(x)k

n

L

1

(�)

=

= C

1

[

Z

K

j j

�

(x)(x

�

) j d�(')℄

n

= C

1

[

Z

K

j x

�

(x) j d�(')℄

n

and the Grothendie
k-Piets
h Polynomial Domination Theorem yields that

R is (

1

n

; 1)-summing.

In order to prove (6.3) it is enough to note that the hypothesis L

as;p

(X; l

p

) =

L

as;r

(X; l

p

) is suÆ
ient to prove it (this is done in the proof of the linear

Extrapolation Theorem. See Th. 3.17 of [4℄).�

For the multilinear version, it is not diÆ
ult to prove that

L

as(

p

n

;p)

(

n

X; l

p

) = L

as(

r

n

;r)

(

n

X; l

p

)

implies L

as(

p

n

;p)

(X; l

p

) = L

as(

r

n

;r)

(X; l

p

): The same reasoning give us the

following statement:

Theorem 15. If 1 < r < p <1 and X is a Bana
h spa
e su
h that

L

as(

p

n

;p)

(

n

X; l

p

) = L

as(

r

n

;r)

(

n

X; l

p

)

then, for every Bana
h spa
e Y , we have

L

as(

p

n

;p)

(

n

X;Y ) = L

as(

1

n

;1)

(

n

X;Y ):
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7. Absolutely summing mappings

The 
on
ept of absolutely summing mapping (non ne
essarily multilinear

or polynomial) and the �rst results and examples are due to M.Matos [12℄.

De�nition 5. (Matos) A mapping f : E ! F is absolutely (s; r)-summing

at a 2 E if (f(a+x

j

)� f(a))

1

j=1

2 l

s

(F ) whenever (x

j

)

1

j=1

2 l

u

r

(E): We say

that f : E ! F is weakly absolutely (s; r)-summing at a 2 E if (f(a+ x

j

)�

f(a))

1

j=1

2 l

w

s

(F ) whenever (x

j

)

1

j=1

2 l

u

r

(E):

Sin
e for every (x

j

)

1

j=1

2 l

u

r

(E) we have lim

m!1










(x

j

)

1

j=m










w;r

= 0; it is


lear that lim

m!1

kx

m

k = 0: Therefore, there is no loss of generality if, in

the de�nition above, we restri
t ourselves to (x

j

)

1

j=1

2 l

u

r

(E) with kx

j

k < Æ

for all j and some Æ:

It is possible to prove that if f : E ! F is absolutely (s; r)-summing at

a 2 E then f is 
ontinuous at a [10℄. The behavior of f outside an open

neighborhood of a is 
ompletely irrelevant.

In [3℄, Botelho proves for the 
omplex 
ase, using Cau
hy integral formu-

las, that, if 
otE = q; every holomorphi
 entire mapping f : E ! F su
h

that f(0) = 0 is (q; 1)-summing at the origin. We will prove that Cau
hy

integral formulas are not essential and this result still holds for the real 
ase

and for non zero points.

Lemma 3. If g : E ! F is analyti
 at a 2 E, then there exists Æ > 0 su
h

that

k(g(a + x

j

)� g(a))

1

j=1

k

w;1

� Dk(x

j

)

1

j=1

k

w;1

whenever k(x

j

)

1

j=1

k

w;p

< Æ:

Proof. If g : E ! F is analyti
 at a and C; 
 > 0 are su
h that

k

1

k!

^

d

k

g(a)k � C


k

for every k

then, for ea
h ' 2 F `, we have

k

1

k!

^

d

k

'g(a)k = k'

1

k!

^

d

k

g(a)k � C


k

k'k for all k

and hen
e, by a result of Defant and Voigt (see [10℄, Theorem 1.6 or [12℄),

k

1

k!

^

d

k

'g(a)k

as(1;1)

� e

k

C


k

k'k:

Let us denote by �

a

> 0 the radius of 
onvergen
e of g around a:Thus, if

k(x

j

)

1

j=1

k

w;1

� Æ = minf

1

2e


; �

a

g we 
an write

1

X

j=1

j 'g(a + x

j

)� 'g(a) j�

1

X

k=1

k

1

k!

^

d

k

'g(a)k

as(1;1)

k(x

j

)

1

j=1

k

k

w;1

=

= k(x

j

)

1

j=1

k

w;1

1

X

k=1

k

1

k!

^

d

k

'g(a)k

as(1;1)

k(x

j

)

1

j=1

k

k�1

w;1

�
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� k(x

j

)

1

j=1

k

w;1

1

X

k=1

e

k

C


k

k'k

(2e
)

k�1

� Dk(x

j

)

1

j=1

k

w;1

for every ' 2 B

F

�: Hen
e

k(g(a + x

j

)� g(a))

1

j=1

k

w;1

� Dk(x

j

)

1

j=1

k

w;1

whenever k(x

j

)

1

j=1

k

w;p

< Æ:�

Proposition 7. If F has 
otype q and g : E ! F is analyti
 at a 2 E, then

g is (q; 1)-summing at a:

Proof. Let a 2 E: Sin
e g is analyti
 at a, there exists Æ su
h that

k(g(a + x

j

)� g(a))

1

j=1

k

w;1

� Dk(x

j

)

1

j=1

k

w;1

:

Let (x

j

)

1

j=1

2 l

u

1

(E) and let j

0

2 N be su
h that k(x

j

)

1

j=j

0

k

w;1

< Æ: Then

(

1

X

j=j

0

k g(a + x

j

)� g(a) k

q

)

1=q

� C

q

(F ) k (g(a + x

j

)� g(a))

1

j=j

0

k

w;1

� Dk(x

j

)

1

j=j

0

k

w;1

:

Obviously,

(

j

0

�1

X

j=1

k g(a + x

j

)� g(a) k

q

)

1=q

<1:

Hen
e

(

1

X

j=1

k g(a + x

j

)� g(a) k

q

)

1=q

<1

whenever (x

j

)

1

j=1

2 l

u

1

(E):�

In the real 
ase, a slight variation of the Proposition 7 
an be made as we

see below:

Proposition 8. Let f : E ! F be an appli
ation of 
lass C

k

at a 2 E: If


otF � q and 
ot E � kq, then f is (q; 1)-summing at a:

Proof. Re
all that if f is an appli
ation of 
lass C

k

at a, by Taylor's

formula there exists B

Æ

(a) su
h that

kf(a+x)�f(a)k � kdf(a)(x)+

^

d

2

f(a)

2!

(x)+:::+

^

d

k

f(a)

k!

(x)k+kxk

k

8x 2 B

Æ

(a):

It is 
lear that we 
an 
onsider (x

j

)

1

j=1

2 l

u

1

(E) so that x

j

2 B

Æ

(a) for every

j. Then,

(

m

X

j=1

kf(a + x

j

)� f(a)k

q

)

1=q

�

� [

m

X

j=1

(kdf(a)(x

j

) +

^

d

2

f(a)

2!

(x

j

) + ::: +

^

d

k

f(a)

k!

(x

j

)k+ kx

j

k

k

)

q

℄

1=q

:
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Thus

(

m

X

j=1

kf(a + x

j

)� f(a)k

q

)

1=q

�

� [

m

X

j=1

kdf(a)(x

j

) +

^

d

2

f(a)

2!

(x

j

) + ::: +

^

d

k

f(a)

k!

(x

j

)k

q

℄

1=q

+ [

m

X

j=1

(kx

j

k

k

)

q

℄

1=q

:

Sin
e 
otE � kq and sin
e df(a); :::;

^

d

k

f(a) are (q; 1)-summing, the proof is

done.�

It is not diÆ
ult to a
hieve the following result:

Theorem 16. If F has 
otype q, X is an L

1;�

spa
e and f : X ! F is

analyti
 at a, then f is absolutely (q; 2)-summing at a.

Proof.

There are C � 0 and 
 > 0 su
h that

k

1

k!

^

d

k

f(a)k � C


k

for every k:

Thus, by (3.1) in Theorem 7 we have

(7.1)

k

1

k!

^

d

k

f(a)k

as(q;2)

� C

q

(F )K

G

3

k�2

2

k

1

k!

^

d

k

f(a)k�

k

� C

q

(F )K

G

3

k�2

2

C


k

�

k

:

for every k � 2.

For k = 1 we know that every linear mapping from X into F is (q; 2)-

summing and it is enough, in addi
tion with (7.1), to obtain positive C

1

and 


1

so that

k

1

k!

^

d

k

f(a)k

as(q;2)

� C

1




k

1

for every k � 1:

If Æ

a

is the radius of 
onvergen
e of f around a, then, whenever (x

j

)

1

j=1

is

su
h that k(x

j

)

1

j=1

k

w;1

� minf

1

2


1

; Æ

a

g; we have

(

1

X

j=1

kf(a + x

j

)� f(a)k

q

)

1

q

=

1

X

j=1

(k

1

X

k=1

1

k!

^

d

k

f(a)(x

j

)k

q

)

1

q

�

�

1

X

k=1

[

1

X

j=1

k

1

k!

^

d

k

f(a)(x

j

)k

q

℄

1

q

�

�

1

X

k=1

k

1

k!

^

d

k

f(a)k

as(q;2)

k(x

j

)

1

j=1

k

k

w;2

=

= k(x

j

)

1

j=1

k

w;2

1

X

k=1

k

1

k!

^

d

k

f(a)k

as(q;2)

k(x

j

)

1

j=1

k

k�1

w;2

�
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� C

1

k(x

j

)

1

j=1

k

w;2

1

X

k=1




k

1

2

k�1




k�1

1

= C

2

k(x

j

)

1

j=1

k

w;2

:

Remark 2. Theorem 6 
ould indu
e us to postulate that every mapping,

analyti
 at a; from an L

1

spa
e into K would be (1; 2)-summing. However,

it is not true sin
e the only absolutely (1; 2)-summing linear mapping is the

trivial mapping.

The next example follows the same line of thought of Lemma 3 and The-

orem 16:

Example 3. If X is an L

1

spa
e and f : X ! K is a mapping, analyti
 at

a; so that df(a) = 0; then f is (1; 2)-summing at a.

The reader must note that the same reasoning of Theorem 16 lead us to

the following useful Theorem:

Theorem 17. If the mapping f : E ! F is analyti
 at a 2 E and there are

C > 0 and 
 > 0 su
h that for ea
h natural n;

(7.2)

^

d

n

f(a) 2 P

as(s;r)

(

n

E;F )

and

(7.3) k

1

n!

^

d

n

f(a)k

as(s;r)

� C


n

;

then f is (s; r)-summing at a:

Remark 3. For entire holomorphi
 mappings we have a 
ompleter result,

due to Matos [12℄.
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