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Abstract

In recent years several economic data have been analyzed by nonparametric
approaches. This paper is a review of a few of the most useful procedures in the
nonparametric econometric field. In particular, it describes the theory and the
applications of nonparametric curve estimation (density and regression) prob-
lems with emphasis in kernel, nearest neighbor, orthogonal series, smoothing

splines, logsplines and H-splines methods.

1 Introduction

It is always useful to begin the study of regression analysis by making use of
simple models. For this, assume that we have collected observations from a continuous

variable Y at n values of a predict variable ¢. Let (¢;,y;) such that:

yj:g(tj)+6j, ]:1, , N, (11)

where the random variables ¢; are uncorrelated with mean zero and variance o2

Moreover, g¢(t;) are the values obtained from some unknown function g computed
at the points ¢1,...,%,. In general, the function ¢ is called regression function or

T@gTQSSiOH curve.



A parametric regression model assumes that the form of ¢ is known up to a finite

number of parameters. That is, we can write a parametric regression model by,

yj:g(tjaﬁla---;ﬁp)—i_gj; j:]_,...,n (12)

where 8 = (f1,...,08,)" € RP. Thus, to determine from the data a curve g is equiv-
alent to determine the vector of parameters 8. One may notice that, if g has a linear
form, i.e., g(t,8) = >_7_, Bjz;(t), where {z;(t)}}_, are the explanatory variables,
e.g., as in polynomial regression z;(t) = #/ !, then we are dealing with a situation of
a linear parametric regression model.

Certainly, there are other methods of fitting curves to data. A collection of tech-
niques known as nonparametric regression, for example, allows great flexibility in the
possible form of the regression curve. In particular, assume no parametric form for g.
In fact, a nonparametric regression model makes the assumption that the regression
curve belongs to some infinite collection of curves. For example, g can be in the
class of functions that are differentiable with a square integrable second derivatives,
etc. Consequently, in order to propose a nonparametric model one may just need to
choose an appropriate space of functions where he/she believes that the regression
curve lies. This choice, usually, is motivated by the degree of the smoothness of g.
Then, one uses the data to determine an element of this function space that can rep-
resent the unknown regression curve. Consequently, nonparametric techniques rely
more heavily on the data for information about ¢ than their parametric counterparts.
Unfortunately, nonparametric estimators have some disadvantages. In general, they
are less efficient than the parametric estimators when the parametric model is appro-
priate. For most parametric estimators the risk will decay to zero at a rate of n !

[0}

while the nonparametric estimators have rate of n=*, where the parameter « € (0, 1)

depends on the smoothness of g. For example, when g is twice differentiable the rate

4/5 However, in the case where the parametric model is incorrect, ad

is usually, n~
hoc, the rate n~! cannot be achieved. In fact, the parametric estimator does not even

converge to the true regression curve.



2 Kernel estimation

Suppose we have n independent measurements {(t;,y;)}? ,, the regression equa-
tion is, in general, described as in (1.1). Note that the regression curve g is the
conditional expectation of the independent variable Y given the predict variable T,
that is, g(t) = E[Y|T = t]. When we try to approximate the mean response function
g, we concentrate on the average dependence of Y on 1" = ¢. This means that we try

to estimate the conditional mean curve

f

g9(t) =EY|T = (2.1)

where f(t,y) denotes the joint density of (7,Y") and f(t) the marginal density of 7.
In order to provide an estimate §(¢) of g we need to obtain estimates of f(¢,y) and

f(t). Consequently, a density estimation methodology will be described.

2.1 The Histogram

The histogram is one of the first, and one of the most common, methods of den-
sity estimation. It is important to bear in mind that the histogram is a smoothing
technique used to estimate the unknown density and hence it deserves some consid-
eration.

Let us try to combine the data by counting how many data points fall into a small
interval of length h. This kind of interval is called a bin. Observe that the well known
dot plot (Box, Hunter and Hunter1978, 25-26) is a particular type of histogram where
h =0.

Without loss of generality, we consider a bin centered at 0, namely the interval
[—h/2,h/2) and let Fx be the distribution function of X such that Fy is absolutely
continuous with respect to a Lesbegue measure on R. Consequently the probability
that an observation of X will fall into the interval [—h/2, h/2) is given by:

h/2

P(X € [-h/2,h/2)) = " [x(x)dx



where fx is the density of X.
A natural estimate of this probability is the relative frequency of the observations
in this interval, that is, we count the number of observations falling into the interval

and divide it by the total number of observations. In other words, given the data

Xiq,...,X,, we have:
P(X € [=h/2,h/2)) ~ %#{Xi € [=h/2,h/2)}.

Now applying the mean value theorem for continuous bounded function we obtain,

h)2
P(X € [-h/2,h/2)) = _h/Zf(:v)d:v = [(&)h,

with £ € [-h/2,h/2). Thus, we arrive at the following density estimate:

fulw) = - #{X0 € [-h/2,1/2)},

for all x € [-h/2,h/2).

Formally, suppose we observe random variables X, ..., X,, whose unknown com-
mon density is f. Let k£ be the number of bins, and define C; = [xo+(j —1)h, zo+jh),
j=1,...,k Now, taken; = > "  I(X; € C}), where the function I(z € A) is defined
to be :

1 ifreA
Iz e A) =
0 otherwise,

k
and, > 5, n; =n. Then,

. 1 &
fula) = — > nl(z € Cy),
7=1

for all . Here Note that the density estimate fh depends strongly upon the his-
togram bandwidth h. By varying h we can have different shapes of fh. For example,
if one increases h, one is averaging over more data and the histogram appears to

be smoother. When h — 0, the histogram becomes a very noisy representation of
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the data (needle-plot, Hardle(1990)). The opposite, situation when h — oo, the
histogram, now, becomes overly smooth (box-shaped, Hérdle(1990)). Thus, A is the
smoothing parameter of this type of density estimate, and the question of how to
choose the histogram bandwidth A turns out to be an important question in rep-

resenting the data via the histogram. For details on how to estimate h see Hardle

(1990).

2.2 Kernel Density Estimation

The motivation behind the histogram can be expanded quite naturally. For this

consider a weight function,

K(2) 5, if|z <1
xTr) =
0, otherwise

and define the estimator,

fl)= SRS,

i=1
We can see that f extends the idea of the histogram. Notice that this estimate just
places a “box” of side (width) 2 and height (2nh)~" on each observation and then
sums to obtain f. See Silverman (1986) for a discussion of this kind of estimator.
It is not difficult to verify that f is not a continuous function and has zero deriva-
tives everywhere except on the jump points X; £+ h. Besides having the undesirable
character of nonsmoothness (Silverman1986), it could give a misleading impression
to a untrained observer since its a somewhat ragged character might suggest several
different bumps.
Figure 2.1 shows the nonsmooth character of the naive estimate. The data seem
to have two major modes. However, the naive estimator suggests several different

small bumps.
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Figure 2.1: Naive estimate constructed from Old faithful geyser data with h = 0.1

To overcome some of these difficulties, conditions have been introduced on the
function K. That is, K must be nonnegative kernel function that satisfies the follow-

ing property:

/ K(2)de = 1.

—00

In other words K (z) is a symmetric probability density function, as for instance, the
normal density, it will follow from definition that f will itself be a probability density.
In addition, f will inherit all the continuity and differentiability properties of the
kernel K. For example, if K is a normal density then f will be a smooth curve with

derivatives of all orders.



Figure 2.2 exhibits the smooth properties of f when Gaussian kernel is used.
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Figure 2.2: Kernel density estimate constructed from Old faithful geyser data with
Gaussian kernel and A = 0.25

Note that an estimate based on the kernel function places “bumps” on the obser-
vations and the shape of those “bumps” is determined by the kernel function K. The
bandwidth h sets the width around each observation and this bandwidth controls the
degree of smoothness of a density estimate. It is possible to verify that as h — 0, the
estimate becomes a sum of Dirac delta functions at the observations while as h — oo,
it eliminates all the local roughness and possibly important details are missed.

The data for the figure 2.3 which is labelled “income” were provided to me by
Charles Kooperberg. This data set consists of 7125 random samples of yearly net

income in the United Kingdom (Family Expenditure Survey, 1968-1983). The income
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Histogram of income data
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Figure 2.3: Bandwidth effect on kernel density estimates. The data set income was

rescaled to have mean 1.

data is considerably large and so it is more of a challenge to computing resources and
there are severe outliers. The peak at 0.24 is due to the UK old age pension, which
caused many people to have nearly identical incomes. The width of the peak is about
0.02, compared to the range 11.5 of the data. The rise of the density to the left of
the peak is very steep.

There is a vast (Silverman1986) literature on kernel density estimation studying
its mathematical properties and proposing several algorithms to obtain an estimated
based on it. This method of density estimation became, apart from histogram, the
most commonly used estimator. However it has the drawbacks when the underlying
density has long tails (Silverman1986). What causes this problem is the fact that the
bandwidth is fixed for all observations, not considering any local characteristic of the

data.



In order to solve this problem several other Kernel Density Estimation Methods
were proposed such as the nearest neighbor and the variable kernel. A detailed

discussion and illustration of these methods can be found in Silverman (1986).

2.2.1 The Nearest Neighbor Method

The idea behind of the nearest neighbor method is to adapt the amount of smooth-
ing to local characteristics of the data. The degree of smoothing is then controlled by
an integer k. Essentially, the nearest neighbor density estimator uses distances from
x in f(z) to the data point. For example, let d(xq,z) be the distance of data point
xy from the point z, and for each x denote di(z) as the distance from its kth nearest
neighbor among the data points zy, ..., z,.

The kth nearest neighbor density estimate is defined as,

- k
fla) = Inde(z)’
where 7 is the sample size and, typically, k is chosen to be proportional to n'/2.
In order to understand this definition, suppose that the density at x is f(z). Then,
one would expect about 2rnf(z) observations to fall in the interval [x — r, x + r] for
each r > 0. Since, by definition, exactly k observations fall in the interval [z —

di(x), x + di(x)], an estimate of the density at = may be obtained by putting
k= 2dy(x)nf(z).

Note that while estimators like histogram are based on the number of observations
falling in a box of fixed width centered at the point of interest, the nearest neighbor
estimate is inversely proportional to the size of the box needed to contain a given
number of observations. In the tail of the distribution, the distance d(x) will be larger
than in the main part of the distribution, and so the problem of under-smoothing in
the tails should be reduced. Like the histogram the nearest neighbor estimate is not a

smooth curve. Moreover, the nearest neighbor estimate does not integrate to one and



! in other words extremely slowly. Hence, this

the tails of f(z) die away at rate 2~
estimate is not appropriate if one is required to estimate the entire density. However,
it is possible to generalize the nearest neighbor estimator in a manner related to the

kernel estimate. The generalized kth nearest neighbor estimate is defined by,

n

o 1 ZL'—XZ

=1

Observe that the overall amount of smoothing is governed by the choice of k, but the
bandwidth used at any particular point depends on the density of observations near
that point. Again, we face the problems of discontinuity of at all the points where
the function di(z) has discontinuous derivative. The precise integrability and tail
properties will depend on the exact form of the kernel.

Figure 2.4 shows the effect of the smoothing parameter k£ on the density estimate.
Observe that as k increases rougher the density estimate becomes. This effect is

equivalent when A is approaching to zero in the kernel density estimator.

100 obs. from N(0.5,0.1)

— True
--- K=40

density

T T T T T
0.3 0.4 0.5 0.6 0.7

data

Figure 2.4: Effect of the smoothing parameter K on the estimates
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2.2.2 Some Statistical Results of Kernel Density Estimation

As starting point one might want to compute the expected value of f For this,
suppose we have X;,..., X, i.i.d. random variables with common density f and
let K (-) be a probability density function defined on the real line that satisfies the

following conditions (Prakasa-Rao1983):
e Condition 1. sup, K(z) < M < oo; |z|K(z) — 0 as || — oo.
e Condition 2. K(z) = K(—x), € (—o0,00) with [* 2K (x)dz < co.

Then we have, for a nonstochastic h

BU@) = o e
= B ‘Xin
_ /K r — u w)du
/K(y)f(:r+yh)dy- (2.2)
Now, let h — 0. We see that E[f(z)] — f(z) [ K(y) f(x). Thus, f is an

asymptotic unbiased estimator of f.

To compute the bias of this estimator we have to make the assumption that the
underlying density is twice differentiable. Using a Taylor expansion of f(x + yh), the
bias of f in estimating f is

R h2
bilf ) = 580 [ PR+ ol1?).
We observe that since we have assumed the kernel K is symmetric around zero, we

have that [ yK (y)hf'(z)dy = 0, and the bias is quadratic in h. *
1See (Parzen1962)
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Using a similar approach we obtain :
o Vary[f(2)] = BIK[Bf(2) + o), where || K[} = [ || K (x)[*dz

o MSE[f(2)] = Jf @)K+ 5 (F"(x) [ y?K (y)dy)” + o(55) + o(h") .

where MSEy [f] stands for mean squared error of the estimator f of f.

Hence, when the conditions h — 0 and nh — oo are usually assumed, the
MSE;[f] — 0, which means that the kernel density estimate is a consistent esti-
mator of the underlying density f. Moreover, MSE balances variance and squared
bias of the estimator in such way that the variance term controls the under-smoothing
and the bias term controls over-smoothing. In other words, an attempt to reduce the
bias increases the variance, making the estimate too noisy (under-smooth). On the

contrary, minimizing the variance leads to a very smooth estimate (over-smooth) with

high bias.

2.2.3 Bandwidth Selection

It is natural to think of finding an optimal bandwidth, say, h, such that h, =

A,

arg min, M SE[f]. Hardle(1990) shows that

B @)K 1
b= (T R )

The problem with this approach is that h, depends on two unknown functions

o n o, (2.3)

f(-) and f"(-). An approach to overcome this problem uses a global measure that can

be defined as:
IMSE[f] = / MSE,[f(x))dz

— IR+ ([ PRI + ol +olhh. (24)

IMSE is the well known integrated mean squared error of a density estimate.
The optimal value of h considering the IMSE is define as

A,

hopt = argr’?;glIMSE[f].

12



it can be shown that,

B 1/5 ~1/5
o = ([ 2 @yde) " (15718) o, (25

where ¢, = [ y?K (y)dy. Unfortunately, (2.5) still depends on the second derivative

of f, which measures the speed of fluctuations in the density of f.

2.2.3.1 Reference to a Standard Distribution

A very natural way to get around the problem of not knowing f” is to use a
standard family of distributions to assign a value of the term || f”]|3 in the expression
(2.5). For example, assume that a density f belongs to a class normal family with

mean 4 and variance o2, then

/ (f"(x))?de = o7° / (¢"(x))%d

3
= g7r—12a—5 ~ 0.21207°, (2.6)

where o(z) is the standard normal density. If one uses a Gaussian kernel, then

3
hopt _ (47r)71/10(§W71/2)71/50_n71/5
4N\ 1/5
= <§> on~ Y% = 1.060n~1/° (2.7)

Hence, in practice a possible choice for h,y is 1.066n /°, where & is the sample
standard deviation.

If we want to make this estimate more insensitive to outliers, we have to use a
more robust estimate for the scale parameter of the distribution. Let R be the sample

interquartile, then one possible choice for h is

~

o L R
hopr = 1.06 min(a, (@©3/1) = (1/D)
R

)s (2.8)

)

= 1.06 min(5,

1.349

where ® is the standard normal distribution function.
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Figure 2.5 exhibits how a robust estimate of the scale can help in choosing the
bandwidth. Note that by using R we have strong evidence that the underlying density

has two modes.

Histogram of a mixture of two normal densities

0.30
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g — ’ : - --- sigmahat
: I interquartile

Relative Frequency
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1

0.05
|

[ T T T 1
-4 -2 0 2 4

0.00
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data

Figure 2.5: Comparison of two bandwidths, & (the sample standard deviation) and

~

R (the sample interquartile) for the mixture 0.7 x N(—2,1) + 0.3 x N(1,1).

2.2.3.2 Maximum likelihood Cross-Validation
Consider kernel density estimates f;, and suppose we want to test for a specific h

the hypothesis

fnl@) = f(z) ws. fulz) # f(z),

for a fixed = The likelihood ratio test would be based on the test statistic f(z)/ f(z).
For a good bandwidth this statistic should thus be close to 1. We would also say that
on the average E[log(f(X)/fn)(X)] should be close to 0. Thus, a good bandwidth,

14



which is minimizing this measure of accuracy, is in effect optimizing the Kullback-

Lesbler distance:

dicr(f, f) = /1og(£(é)))f(x)dx. (2.9)

Of course, we are not able to compute dg(f, f,) from the data, since we do not
know f. But from a theoretical point of view, we can investigate this distance for
the choice of an appropriate bandwidth h. When dg(f, fn) is close to 0 this would
give the best agreement with the hypothesis f;, = f. Hence, we are looking for a
bandwidth A, which minimizes dg(f, fr)-

Suppose we are given a set of additional observations X;, independent of the
others. The likelihood for these observations is [[, f(X;). Substituting fj, in the
likelihood equation we have [], f5(X;) and the value of this statistic for different h
would indicate which value of h is preferable, since the logarithm of this statistic is
close to dir(f, frn). Usually, we do not have additional observations. A way out of
this dilemma is to base the estimate fj, on the subset {X,};.;, and to calculate the

likelihood for X;. Denoting the leave-one-out estimate
X, —X;
(X)) =(mn—-1)"tht ZK(TJ)
JFi
Hence,

Hfhz (n—1)"h" HZKX X (2.10)

1=1 j#i
However it is convenient to consider the logarithm of this statistic normalized with

the factor n=! to get the following procedure:
1 n
wo(h) = - Z 08 fri (X:)]

_ = Zlog [ZK Xi = X ~ log[(n — 1)h] (2.11)

1=1 J#

15



Naturally, we choose hk, such that:
hKL = arg m}fbiX CVKL(h,) (212)

Since we assumed that X; are i.i.d., the scores log f;, ;(X;) are identically distributed

and so,
Disregarding the leave-one-out effect, we can write

E[CVi, ()] ~ E / log fi(x) f )

&Q

Eldicn (f, fu)] + / loglf ()] f (x)dz. (2.13)

The second term of the right-hand side does not depend on h. Then, we can expect
that we approximate the optimal bandwidth that minimizes dg(f, f5)-

The Maximum likelihood cross validation has two shortcomings:

e When we have identical observations in one point, we may obtain an infinite

value if C'Vi(h) and hence we cannot define an optimal bandwidth.

e Suppose we use a kernel function with finite support, e.g., the interval [—1,1]. If
an observation X; is more separated from the other observations than the band-
width h, the likelihood f}, ;(X;) becomes 0. Hence the score function reaches the
value —oo. Maximizing C'Vip(h) forces us to use a large bandwidth to prevent
this degenerated case. This might lead to slight over-smoothing for the other

observations.
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2.3 Kernel nonparametric Regression Method

Suppose we have i.i.d. observations {(X;, Y;)}? ,. Using equation (2.1) we know
how to estimate the denominator by using the kernel density estimation method. For

the numerator one can estimate the joint density using the multiplicative kernel

s (2, y) ZKhl r — Xi) K, (y — Y5).

where, K, (¢ — X;) = hy 'K (¢ — X0)/h), Kiy(z = Y2) = b3 K((@ — Yi) /ha). Tt is
not difficult to show that

/yfhl,hz x,y)d ZKM r—X

Based on the methodology of kernel density estimation Nadaraya (1964) and Watson
(1964) suggested the following estimator g, for g.

o Z?:l Ky(z — X;)Y;
) = S T X))

(2.14)

In general, the kernel function K, (x) = K((x —x;)/h) is taken as probability density
function symmetric around zero and parameter h is called smoothing parameter or
bandwidth. In addition, with conditions 2.2.2, g5 is a consistent estimator of the
regression curve g and its asymptotic distribution is normal with mean zero and
asymptotic variance ( ~lo? [(K(s))*ds as h — 0 and nh — co. (See details in
Hérdle (1990)). This approach can be extended to the multivariate regression problem
by considering the multidimensional kernel density estimation method. (see, details

in Scott (1992))

2.3.1 k-Nearest Neighbor (k-NIN)

One may notice that regression by kernels is based on local averaging of obser-
vations Y; in a fixed neighborhood of z. Instead of this fixed neighborhood k-NN
employs varying neighborhoods in the X variable support. That is,

17



N
1
= _E Wii(2)Yi, 2.15
k() n 4= ki () ( )
where,

n/k ifieJ,
Wii(z) = (2.16)
0 otherwise,
with J, = {i : X; is one of the k nearest observations to x}

It can be shown that the bias and variance of the k-NN estimator g, with weights

(2.16) are given by, for a fixed z

Elg (2)] — 9(z) ~ "(@)f (@) + 29" () f' ()] (k/n)? (2.17)

AT

and

(2.18)

Var(gr(z)] ~ %2.

We observe that the bias increasing and the variance is decreasing in the smoothing
parameter k. To balance this trade-off one should choose k& ~ n*®. For details, see

Hirdle (1990).
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Figure 2.6: Effect of the smoothing parameter k on the k-NN regression estimates.

2.4 Local Polynomial Regression: LOWESS

Cleveland (1979) proposed the algorithm LOWESS, locally weighted scatter plot
smoothing, as a resistant method based on local polynomial fits. The basic idea is
to start with a local polynomial (a k-NN type fitting) least squares fit and then to
use robust methods to obtain the final fit. Specifically, one can first fit a polynomial

regression in a neighborhood of z, that is, find 3 € RP*! which minimize

n p
nileki (yl — Zﬂjl‘j>2, (219)
=1 j=0

where Wy, denote k-NN weights. Compute the residuals ¢; and the scale parameter
6 = median(¢;). Define robustness weights ¢; = K (¢;/65), where K (u) = (15/16)(1—
u)?, if Ju| < 1 and K(u) = 0, if otherwise. Then, fit a polynomial regression as in
(2.19) but with weights (0;W;(z)). Cleveland suggests that p = 1 provides good
balance between computational ease and the need for flexibility to reproduce patterns

in the data. The smoothing parameter can be determined by cross-validation as
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similar to (2.12)

3 Spline Functions

Due to their simple structure and good approximation properties, polynomials are
widely used in practice for approximating functions. For this propose, one usually
divides the interval [a, b] in the function support into sufficiently small subintervals of
the form [xo, 2], ... , [Tk, Zr+1] and then uses a low degree polynomial p; for approxi-
mation over each interval [z;, x;,1], 4 = 0,..., k. This procedure produces a piecewise

polynomial approximating function s(-);
s(x) = pi(z) on [z, xi], 1 =0,... k.

In the general case, the polynomial pieces p;(x) are constructed independently of
each other and therefore do not constitute a continuous function s(x) on [a, b]. This
is not desirable if the interest is on approximating a smooth function. Naturally, it is
necessary to require the polynomial pieces p;(x) to join smoothly at knots xy, ... , xg,
and to have all derivatives up to a certain order, coincide at knots. As a result, we

get a smooth piecewise polynomial function, called a spline function.

Definition 3.1 The function s(z) is called a spline function (or simply “spline”) of
degree v with knots at {x;}%_, if —0o =t 1y < m; < ... < X} < Tpyy = 00, where

—00 =: x¢ and T4y 1= 00 are set by definition,

e for each i = 0,... k, s(x) coincides on [x;, x;41] with a polynomial of degree

not greater than r;
o s(x),s'(x),...,s" Yx) are continuous functions on (—oo, 00).

The set S, (x1, ... ,xg) of spline functions is called spline space. Moreover, the spline

space is a linear space with dimension r + & + 1 (Schumaker1981).
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Definition 3.2 For a given point x € (a,b) the function

(t— 2y = (t—x)" Z:ft>:L‘
0 ift<zx

is called the truncated power function of degree r with knot x.

Hence, we can express any spline function as a linear combination of r + k + 1 basis
functions. For this, consider a set of interior knots {1, ... , x;} and the basis functions

{1,¢,¢%,...,t", (t —21)",, ..., (x — ty)} }. Thus, a spline function is given by,

ZGtZwLZG —xj )

j=r+1

It would be interesting if we could have basis functions that make it easy to com-
pute the spline functions. It can be shown that B-splines form a basis of spline spaces
(Schumaker1981). Also, B-splines have an important property toward computation,
they are splines which have smallest possible support. In other words, B-splines
are zero on a large set. Furthermore, a stable evaluation of B-splines with aid of a

recurrence relation is possible.

Definition 3.3 Let Qo = {7;}{jez} be a nondecreasing sequence of knots. The i-th
B-spline of order k for the knot sequence €, is defined by

Bf( ) = —(Thyj — ) [Ty sahsg)(E— )T forall tER,
where, [xj, ...,z (t—x;)5* is (k—1)th divided difference of the function (x —z;)k
evaluated at points xj,. .., Tpy;.

From the definition (3.3) we notice that BJ(t) = 0 for all t & [z;,z;44]. It fol-
lows that only & B-splines have any particular interval [x;,x;41] in their support,

e., of all the B-splines of order k£ for the knot sequence {24, only the k£ B-splines
B 141, B 419, B} might be nonzero on the interval [z;,z;,1]. (See de Boor

(1978) for details). Moreover, B¥(t) > 0 for all © € (z;, z;4%) and > e Bi(t) = 1,
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that is, the B-spline sequence Bf consists of nonnegative functions which sum up to
1 and provides a partition of unity. Thus, a spline function can be written as linear
combination of B-splines,
k
s(t) = 3 8B4 1),
JEL
The value of the function s at point ¢ is simply the value of the function Y., 8; B (t)

which makes good sense since the latter sum has at most k nonzero terms.

1.0

B-splines
0.6
!

0.4

0.2

Figure 3.7: Basis Functions with 6 knots placed at “x”

Figure 3.7 shows an example of B-splines basis and their compact support prop-
erty. This property makes the computation of B-splines easier and numerically stable.
Of special interest is the set of natural splines of order 2m, m € N, with k knots
at x;. A spline function is a natural spline of order 2m with knots at zi,...,zy, if, in

addition to the properties implied by definition (3.1), it satisfies an extra condition:

e s is polynomial of order m outside of [z}, xy].
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Consider the interval [a,b] C R and the knot sequence a 1=z < z; < ... <z} <
Try1 = b. Then, NSy, = {s € S(Pam) : 59 = s

az) and s = 5|z € Pnl, is
the natural polynomial spline space of order 2m with knots at x1,... ,x;. The name
“natural spline” stems from the fact that, as a result of this extra condition, s satisfies
the so called natural boundary conditions s/(a) = s/(b) =0, j =m,...,2m — 1.

Now, since the dimension of S(Ps,,) is 2m + k and we have enforced 2m extra
conditions to define N'Ss,,, it is natural to expect the dimension of N'S,,, to be k.
Actually, it is well known that N 'S,,, is linear space of dimension k. See details in
Schumaker (1981).

In some applications it may be possible to deal with natural splines by using a basis
for S(Pay,) and enforcing the end conditions. For other applications it is desirable
to have a basis for N'Sy,, itself. To construct such a basis consisting of splines with
small supports we just need functions based on the usual B-splines. Particularly,
when m = 2, we will be constructing basis functions for the Natural Cubic Spline
Space, N'S,.

Schumaker (1972) showed that the basis obtained by Greville (1969) (except for
a normalization constant!) and recently used by Kooperberg and Stone (1991)is a

basis for N'S,.

Definition 3.4 Let M(x,y) = (y — )3 and let M{z;x1,... x5 be the (k — 1)st

divided difference of M as a function of x taken over the knot sequence v1 < xo... <

Tk U}ithhi+1:$i+1—$i,i:1,...,k—l Then
( . .
Mx; x1, 9, 23]/ (hg + 2h2) ifi=1
M[x;l'l,l'g,l':;,.le] ZfZZQ

Bi(z) = < (Tigo — o) M35 9,... ,Tiq0] ifi=3,... k-2
M x5 2_3, Tp—2, Tp—1, T fi=k—1

M[ZE;l‘k,g,l‘k,l,l‘k](hkfl +2hk) ’Lfl =k
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Basis for Natural Spline
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Figure 3.8: Basis Functions with 6 knots placed at “x”

3.1 Logspline Density Estimation

In 1991, Kooperberg and Stone introduced another type of algorithm to estimate
an univariate density. This algorithm was based on the work of Stone (1990) and Stone
and Koo (1985) where the theory of the logspline family of functions was developed.

Consider an increasing sequence of knots {tj}]l-(zl, K > 4, in R . Denote by Sy
the set of real functions such that s is a cubic polynomial in each interval of the

form (—oo0, t1], [t1,ts],. .., [tx,00). Elements in Sy are the well-known cubic splines
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with knots at {£;}/<,. Notice that Sy is a (K + 4)-dimensional linear space. Now, let
S C & such that the dimension of S is K with functions s € S linear on (—o0, t;] and
on [tg,00). Thus, S has a basis of the form 1, By ..., Bg 1, such that B; is linear
function with negative slope on (—oo,t;] and B, ..., Bx_; are constant functions on
the same interval. Similarly, Bx ; is linear function with positive slope on [tx, 00)
and By, ..., Bk 5 are constant on the interval [tx, co) (Kooperberg and Stonel991).

Let © be the parametric space of dimension p = K — 1, such that for 8 =
(64,...,6,) € R?, 0§, <0 and 6, > 0. Then, define

c(0) = log(/R exp(z 0,B;(x))dx
and
F:0) = exp{ Y 0,8;(x) — c(6).

The p-parametric exponential family f(-,0), 8 € © C RP of positive twice differ-
entiable density function on R is called logspline family and the corresponding log-

likelihood function is given by

L) =) log f(z;0) ;0€O.

The log-likelihood function L(@) is strictly concave and hence the maximum like-
lihood estimator @ of 0 is unique, if it exists. We refer to f = I, é) as the logspline
density estimate. Note that the estimation of 6 makes logspline procedure not essen-
tially nonparametric. Thus, estimation of @ by Newton-Raphson, together with small
numbers of basis function necessary to estimate a density, make the logspline algo-
rithm extremely fast when it is compared with Gu’s algorithm for smoothing spline
density estimation, (Gul993).

In the Logspline approach the number of knots is the smoothing parameter. That
is, too many knots leads to a noisy estimate while too few knots gives a very smooth

curve. Based on their experience of fitting logspline models, Kooperberg and Stone
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provide a table with the number of knots based on the number of observations. No
indication was found that the number of knots takes in consideration the structure
of the data (number of modes, bumps, asymmetry, etc.). However, an objective
criterion for the choice of the number of knots, Stepwise Knot Deletion and Stepwise
knot Addition, are included in the logspline procedure.

For 1 < j < p, let B; be a linear combination of a truncated power basis (z — t;)%

for the a knot sequence 4, ... ,t,, that is,
Bj(x) = B+ Bjow + ) Bir(x — 1)
k
Then
D 0;Bi(x) = 080+ Y > Bibilw — 1) .
J ik

Let >, éjﬁjk = BF 6. Then, for 1 < k < K Kooperberg and Stone (1991),

SE(BT0) = /BT (1(0))~84)

where I(0) is the Fisher information matrix obtained from the log-likelihood function.

The knots t; and tx are considered permanent knots, and t;, 2 < k < K, are
nonpermanent knots. Then at any step delete (similarly for addition step) that knot
which has the smallest value of |B£é|/5’E(Bf€A) In this matter, we have a sequence
of models which ranges from 2 to p — 1 knots. Now, denote by L, the log-likelihood
function of the mth model (2 < m+2 < p—1) evaluated at the maximum likelihood
estimate for that model. To specify a stop criteria, Kooperberg and Stone make use
of the Akaike Information Criterion (AIC), that is, AIC, ,, = —2L,. + a(p —m) and
choose 1 that minimizes AICs5,,. There is no theoretical justification for choosing
a = 3. The choice was made, according to them, because this value of o makes the
probability that f is bimodal when f is Gamma(b) to be about .1.

It would be interesting to have an algorithm which combines the low computational
cost of logsplines (due to B-splines and the estimation of their coefficients) and the

performance of the automatic smoothing parameter selection developed by Gu (1993).
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3.2 Splines Density Estimation: A Dimensionless Approach

Let X1,...,X, arandom sample from a probability density f on a finite domain
X. Assuming that f > 0 on X, one can make a logistic transformation f = e9/( [ e9).
We know that this transformation is not one-to-one and Gu and Qiu (1993) proposed
side conditions on ¢ such that g(xy) = 0,29 € X or fX g = 0. Given those conditions

we have to find the minimizer of the penalized log-likelihood

—% ;g(Xi) + log/X ef + %J(g) (35)

in a Hilbert space H, where J is a roughness penalty and A is the smoothing param-
eter. The space H is a Hilbert space where the evaluation is continuous so that the
first term in (3.5) is continuous. The penalty term .J is a seminorm in ‘H with a null
space J, of finite dimension M > 1. By taking a finite dimensional .J, one prevents
interpolation (i.e. the empirical distribution) and a quadratic J makes easier the nu-
merical solution of the variational problem (3.5). Since, H is an infinite dimensional
space, the minimizer of (3.5) is, in general, not computable. Thus, (Gu and Qiul993)
propose calculating the solution of the variational problem in finite dimensional space,
say, H,, where n is the sample size.

The performance of the smoothing spline estimator depends upon the choice of
the smoothing parameter A. Gu (1993), suggested a performance-oriented iteration
procedure ( GCV-like procedure) which updates g and A jointly according to a per-
formance estimate. The performance is measured by a loss function which was taken
as a symmetrized Kullback-Leibler distance between e9/ [ and e%/ [ e%. Specifi-
cally, if one solves the variational problem (3.5) in #,, by a standard Newton-Raphson
procedure, then by starting from a current iterate g, instead of calculating the next
iterate with a fixed A\, one may choose a A that minimizes the loss function.

Under this approach, one might ask the following questions:
e Is it possible to estimate a density using K < n basis functions instead of the
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original n such that it reduces the computational cost of getting the solution

(3.5) significantly ?
e How good would such an approximation be 7

Dias (1998) gave reasonable answers to those questions by using the basis functions
Bi(z) given in Definition (3.4) that can be easily extend to a multivariate case by a

tensor product.

4  Splines nonparametric Regression: The thin-
plate spline on R?

There are many applications where a unknown function g of one or more variables

and a set of measurements are given such that:

Y; = ﬁig + € (4'1)
where Ly, ..., L, are linear functionals defined on some linear space H containing g,
and €y, ... , €, are measurement errors usually assumed to be independently identically

normal distributed with mean zero and unknown variance o?. Typically, the £; will
be point evaluation of the function g.

Straight forward least square fitting is often appropriate but it produces a function
which is not sufficiently smooth for some data fitting problems. In such cases, it
may be better to look for a function which minimizes a criterion that involves a
combination of goodness of fit and an appropriate measure of smoothness. Let ¢ =
(x1, ... ,xq), t; = (x1(7),... ,24(i)) for i = 1,... ,n and the evaluation functionals

L;g = g(t;), then the regression model (4.1) becomes,

yi = g(x1(2), ..., zq(i)) + €. (4.2)
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The thin-plate smoothing spline is the solution to the following variational problem.

Find g € ‘H to minimize

Lale) = (0 — gl8))? + A (o) (43)
i=1
where A is the smoothing parameter which controls the trade off between fidelity to
the data and smoothness and the penalty term J% is given by

M@= 2 o ad/ / T axgd> de]

al+...+ag=m

The condition 2m — d > 0 is necessary and sufficient in order to have bounded eval-
uation functionals in H, i.e., H is a reproducing kernel in Hilbert space. Moreover,
the null space of the penalty term J¢ is the M-dimensional space spanned by poly-
nomials ¢1, ..., ¢y of degree less or equal to m — 1, e.g., ¢;(t) = /~1/(j — 1)!, for
j=1,...,m.

It can be shown that (see Wahba (1990)), if ¢1,... ,t, are such that least squares
regression on ¢y, ..., ¢y is unique, then (4.3) has a unique minimizer g,, with rep-
resentation

a(t) = Z o (t, 1) +Zb¢]

i=1

= Qc+Tb (4.4)
where, T is a n x M matrix with entries ¢;(¢;,) for j =1,... ,M, [ =1,...,n and
() is a n x n matrix with entries E,,(;,t;), for ¢ = 1,... ,n. The function E,, is
a Green’s function for the m-iterate Laplacian ((Wahbal990)). For example, when
d=1, E,(t,t;) = (t —t;)7""/(m — 1)|. The coefficients ¢ and b can be determined
by substituting (4.4) into (4.3). Thus, the optimization problem (4.3) subject to
T'c = 0, is reduced to a linear system of equations which is solved by standard
matrix decomposition such as QR decomposition. The constraint 7”7c¢ = 0 is necessary
to guarantee that when computing the penalty term at gx, J%/(gx) is conditionally

2

positive definite. Efforts have been done in order to reduce substantially the

2See, (Wahba1990 Silverman and Green1994)
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computational cost of solving smoothing splines fitting by introducing the concept
of H-splines ((Luo and Wahbal997) and (Dias1999)), where the number of basis
functions and A act as the smoothing parameters.

A major conceptual problem with spline smoothing is that it is defined implicitly
as the solution to a variational problem rather than as an explicit formula involving
the data values. This difficulty can be resolved, at least approximately, by considering
how the estimate behaves on large data sets. It can be shown from the quadratic
nature of (4.3) that g, is linear in the observations y;, in the sense that there exists

a weight function H,(s,t) such that

ga(s) = ZyiHA(Satz’)- (4.5)

It is possible to obtain the asymptotic form of the weight function, and hence an
approximate explicit form of the estimate. For the sake of simplicity consider d =1,
m = 2 and suppose that the design points have local density f(¢) with respect to a
Lesbegue measure on R. Under mild conditions (see, Silverman (1984)), we have as

n — 090,

H)\(S,t) =

where the kernel function K is given by
K(w) = 5 exp(—Jul/V2) sin(ful /v + 7/4),
and the bandwidth h(t) satisfies
h(t) = A=A f () 714,

Based on these formulas, we can see that the spline smoother is approximately a
convolution smoothing method but the data are not convolved with a kernel with

fixed bandwidth, in fact, h varies across the sample.
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4.1 Additive Models

The additive model is a generalization of the usual linear regression model and
what has made it so popular for statistical inference is that the linear model is linear in
the predictor variables (explanatory variables). Once we have fitted the linear model
we can examine the predictor variables separately, in the absence of interactions.

Additive models also are linear in their predictor variables. An additive model is

defined by
p
Yi = @+ Z gj(tj) +€; (46)
j=1

where ¢; are the predictor variables and as defined before in section 4, ¢; are uncor-

related error measurements with E[e;] = 0 and Var[e;] = o2

The functions g; are
unknown but assumed to be smooth functions lying in some metric space. Section
4 describes a general framework for defining and estimating general nonparametric
regression models which includes additive models as a special case. For this, suppose

that €2 is the space of the vector predictor ¢ and assume the H is reproducing kernel

in Hilbert space. Hence H has the decomposition

p
H="Ho+ Y My (4.7)

k=1
where H is spanned by ¢, ... , ¢y and Hy has the reproducing kernel Ey (-, -), defined
in section 4. The space H; is the space of functions that are not to be penalized in
the optimization. For example, recall equation (4.3) and let m = 2 then H, is the
space of linear functions in ¢.
The optimization problem becomes: For a given set of predictors ¢i,... ,t,, find

the minimizer of

n p k
D w =D ) D Aellgell, (4.8)
=1 k=0 k=1

with g € Hj. Then, the theory of reproducing kernel guarantees that a minimizer
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exists and has the form

=

where @y and T are given in equation (4.4) and the vectors ¢ and b are found by

minimizing the finite dimensional penalized least square criterion

p p
ly = Tb = > Quell + > Meck Que®. (4.10)

k=1 k=1
This general problem (4.9) can potentially be solved by a backfitting type algorithm
(Hastie and Tibshiranil990).

Algorithm 4.1 1. Initialize g; = gj(-o) forj=0,...,p.

2. Cycle j=0,...,p,...,7=0,...,p,...

9 =Sy = >_gi(t))
7k
3. Continue (i) until the individual functions do not change.
where y = (y1,... ,yn), S; = Qr(Qr + \eI) Y, for j=1,... ,p,and So = T(T7TT)".
One may observe that omitting the constant term « in (4.6) does not change the

resulting estimates.

4.2 Generalized Cross-Validation Method for Splines non-

parametric Regression

Without loss of generality, let’s take d = 1 and m = 2. The solution of (4.3)
depends strongly on the smoothing parameter. Craven and Wahba (1979) provide an

automatic data-driven procedure to estimate \. For this, let gg\k] be the minimizer of

> 0+ A [ (")

ik
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the optimization problem with the kth data point left out. Then following Wahba’s

notation, the ordinary cross-validation function V() is defined as

n

Vo(A) = % > (e — gy (1), (4.11)

k=1
and the leave-one-out estimate of A is the minimizer of V5(A). To proceed, we need
to describe the influence matrix. It is not difficult to show (see (Wahbal990)) that,
for fixed A we have by (4.5) that g, is linear in the observations y; , that is, in matrix

notation

g\ = Hyy.

At this stage, one may think that the computation of this problem is prohibitive but
Craven and Wahba (1979) give us a very useful mathematical identity, which will not

be proved here, but is

(e — 93 (k) = (e — 9a(tx))/ (1 = (), (4.12)

where hg()) is the kth entry of Hy. By substituting (4.12) into (4.11) we obtain a

simplified form of V{, that is,

o) = &3 — () /(1 = has () (4.13)

0 n 2 k— 9alk kk .

The right hand of (4.13) is easier to compute than (4.11), however the GCV is even
easier. The generalized cross-validation (GCV) is method for choosing the smoothing
parameter A\, which is based on leaving-one-out, but it has two advantages. It is
easy to compute and it posses some important theoretical properties the would be
impossible to prove for leaving-one-out, although, as pointed out by Wahba, in many

cases the GCV and leaving-one-out estimates will give similar answers. The GCV

function is defined by

V() =% (e = 92 (0))*/ (1 = P (V)* = ;[Qg(; - })KJ! ’

(4.14)
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where hyp(\) = (1/n)tr(H,), with tr(H)) standing for the trace of Hy. Note that
V(A) is a weighted version of V4 (). In addition, if hgk(A) does not depend on k, then
Vo(A) = V(A) for all A > 0.

It is important to observe that GCV is a predictive mean square error criteria.
Note that by defining the predictive mean square error 7'(\) as

n

1
T\ = - Z(ﬁig,\ — Lig)? (4.15)
i=1
where, £; is the evaluation functional defined in section 3.2, the GCV estimate of A

is the minimizer of (4.15). Consider the expected value of T'(A),
1 n
E[T(N)] = =) E[(Ligr — Lig)’]- 4.16
T = 3 3B Eian — £ (4.16)

The GCV theorem (Wahbal990) says that if ¢ is in a reproducing kernel Hiblert space

then there is a sequence of minimizers A(n) of EV (\) that comes close to achieving

the minimum possible value of the expected mean square error, E[T'(\)], using \(n),

as n — oo. That is, let the expectation inefficiency I} be defined as

E[T(A(n))]
E[T(X)]

where \* is the minimizer of E[T'(A)]. Then, under mild conditions as such the ones

described and discussed by Golub, Heath and Wahba (1979) and Craven and Wahba
(1979), we have I | 1 as n — oo.

I =

Figure 4.9 shows the scatter plot of the revenue passenger miles flown by commer-
cial airlines in the United States for each year from 1937 to 1960. (This data can be
found in the software). The smoothing parameter A\ was computed by GCV method

through the R function smooth.spline().
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Figure 4.9: Smoothing spline fitting with smoothing parameter obtained by GCV
method

5 Final Comments

Comparing with parametric techniques we have, for the nonparametric approach,
more flexibility since it allows one to choose from the infinite dimensional class of
functions where the underlying regression curve is assumed to belong. In general,
this type of choice depends on the unknown smoothness of the true curve. But for
most of the cases one can assume mild restrictions such that a regression curve has
an absolutely continuous first derivative and a square integrable second derivative.
Nevertheless, nonparametric estimators are less efficient than the parametric ones
when a parametric model is valid. For many parametric estimators the mean square
error goes to zero with rate of n !, while nonparametric estimators have rate of n=2,
a € [0,1], and « depends on the smoothness of the underlying curve. When the

postulate parametric model is not valid, many parametric estimators cannot have, ad

hoc, rate n~1. In fact, those estimators will not converge to the true curve. One of the

35



advantages of the adaptive basis functions procedures, e.g., H-splines methods is the
ability to vary the amount of smoothing in response to the inhomogeneous curvature
of the true functions at different locations. Those methods have been very success-
ful in capturing the structure of the unknown function. In general, nonparametric
estimators are good candidates when one does not know the form of the underlying

curve.
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