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Abstrat

In reent years several eonomi data have been analyzed by nonparametri

approahes. This paper is a review of a few of the most useful proedures in the

nonparametri eonometri �eld. In partiular, it desribes the theory and the

appliations of nonparametri urve estimation (density and regression) prob-

lems with emphasis in kernel, nearest neighbor, orthogonal series, smoothing

splines, logsplines and H-splines methods.

1 Introdution

It is always useful to begin the study of regression analysis by making use of

simple models. For this, assume that we have olleted observations from a ontinuous

variable Y at n values of a predit variable t. Let (t

j

; y

j

) suh that:

y

j

= g(t

j

) + "

j

; j = 1; : : : ; n; (1.1)

where the random variables "

j

are unorrelated with mean zero and variane �

2

.

Moreover, g(t

j

) are the values obtained from some unknown funtion g omputed

at the points t

1

; : : : ; t

n

. In general, the funtion g is alled regression funtion or

regression urve.
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A parametri regression model assumes that the form of g is known up to a �nite

number of parameters. That is, we an write a parametri regression model by,

y

j

= g(t

j

; �

1

; : : : ; �

p

) + "

j

; j = 1; : : : ; n (1.2)

where � = (�

1

; : : : ; �

p

)

T

2 R

p

. Thus, to determine from the data a urve g is equiv-

alent to determine the vetor of parameters �. One may notie that, if g has a linear

form, i.e., g(t;�) =

P

p

j=1

�

j

x

j

(t), where fx

j

(t)g

p

j=1

are the explanatory variables,

e.g., as in polynomial regression x

j

(t) = t

j�1

, then we are dealing with a situation of

a linear parametri regression model.

Certainly, there are other methods of �tting urves to data. A olletion of teh-

niques known as nonparametri regression, for example, allows great exibility in the

possible form of the regression urve. In partiular, assume no parametri form for g.

In fat, a nonparametri regression model makes the assumption that the regression

urve belongs to some in�nite olletion of urves. For example, g an be in the

lass of funtions that are di�erentiable with a square integrable seond derivatives,

et. Consequently, in order to propose a nonparametri model one may just need to

hoose an appropriate spae of funtions where he/she believes that the regression

urve lies. This hoie, usually, is motivated by the degree of the smoothness of g.

Then, one uses the data to determine an element of this funtion spae that an rep-

resent the unknown regression urve. Consequently, nonparametri tehniques rely

more heavily on the data for information about g than their parametri ounterparts.

Unfortunately, nonparametri estimators have some disadvantages. In general, they

are less eÆient than the parametri estimators when the parametri model is appro-

priate. For most parametri estimators the risk will deay to zero at a rate of n

�1

while the nonparametri estimators have rate of n

��

, where the parameter � 2 (0; 1)

depends on the smoothness of g. For example, when g is twie di�erentiable the rate

is usually, n

�4=5

. However, in the ase where the parametri model is inorret, ad

ho, the rate n

�1

annot be ahieved. In fat, the parametri estimator does not even

onverge to the true regression urve.

2



2 Kernel estimation

Suppose we have n independent measurements f(t

i

; y

i

)g

n

i=1

, the regression equa-

tion is, in general, desribed as in (1.1). Note that the regression urve g is the

onditional expetation of the independent variable Y given the predit variable T ,

that is, g(t) = E [Y jT = t℄. When we try to approximate the mean response funtion

g, we onentrate on the average dependene of Y on T = t. This means that we try

to estimate the onditional mean urve

g(t) = E [Y jT = t℄ =

Z

y

f(t; y)

f(t)

dy; (2.1)

where f(t; y) denotes the joint density of (T; Y ) and f(t) the marginal density of T .

In order to provide an estimate ĝ(t) of g we need to obtain estimates of f(t; y) and

f(t). Consequently, a density estimation methodology will be desribed.

2.1 The Histogram

The histogram is one of the �rst, and one of the most ommon, methods of den-

sity estimation. It is important to bear in mind that the histogram is a smoothing

tehnique used to estimate the unknown density and hene it deserves some onsid-

eration.

Let us try to ombine the data by ounting how many data points fall into a small

interval of length h. This kind of interval is alled a bin. Observe that the well known

dot plot (Box, Hunter and Hunter1978, 25{26) is a partiular type of histogram where

h = 0.

Without loss of generality, we onsider a bin entered at 0, namely the interval

[�h=2; h=2) and let F

X

be the distribution funtion of X suh that F

X

is absolutely

ontinuous with respet to a Lesbegue measure on R. Consequently the probability

that an observation of X will fall into the interval [�h=2; h=2) is given by:

P (X 2 [�h=2; h=2)) =

Z

h=2

�h=2

f

X

(x)dx;
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where f

X

is the density of X.

A natural estimate of this probability is the relative frequeny of the observations

in this interval, that is, we ount the number of observations falling into the interval

and divide it by the total number of observations. In other words, given the data

X

1

; : : : ; X

n

, we have:

P (X 2 [�h=2; h=2)) �

1

n

#fX

i

2 [�h=2; h=2)g:

Now applying the mean value theorem for ontinuous bounded funtion we obtain,

P (X 2 [�h=2; h=2)) =

Z

h=2

�h=2

f(x)dx = f(�)h;

with � 2 [�h=2; h=2). Thus, we arrive at the following density estimate:

^

f

h

(x) =

1

nh

#fX

i

2 [�h=2; h=2)g;

for all x 2 [�h=2; h=2).

Formally, suppose we observe random variables X

1

; : : : ; X

n

whose unknown om-

mon density is f . Let k be the number of bins, and de�ne C

j

= [x

0

+(j�1)h; x

0

+jh),

j = 1; : : : ; k. Now, take n

j

=

P

n

i=1

I(X

i

2 C

j

), where the funtion I(x 2 A) is de�ned

to be :

I(x 2 A) =

8

<

:

1 if x 2 A

0 otherwise,

and,

P

k

j=1

n

j

= n. Then,

^

f

h

(x) =

1

nh

k

X

j=1

n

j

I(x 2 C

j

);

for all x. Here Note that the density estimate

^

f

h

depends strongly upon the his-

togram bandwidth h. By varying h we an have di�erent shapes of

^

f

h

. For example,

if one inreases h, one is averaging over more data and the histogram appears to

be smoother. When h ! 0, the histogram beomes a very noisy representation of
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the data (needle-plot, H�ardle(1990)). The opposite, situation when h ! 1, the

histogram, now, beomes overly smooth (box-shaped, H�ardle(1990)). Thus, h is the

smoothing parameter of this type of density estimate, and the question of how to

hoose the histogram bandwidth h turns out to be an important question in rep-

resenting the data via the histogram. For details on how to estimate h see H�ardle

(1990).

2.2 Kernel Density Estimation

The motivation behind the histogram an be expanded quite naturally. For this

onsider a weight funtion,

K(x) =

8

<

:

1

2

; if j x j< 1

0; otherwise

and de�ne the estimator,

^

f(x) =

1

nh

n

X

i=1

K(

x�X

i

h

):

We an see that

^

f extends the idea of the histogram. Notie that this estimate just

plaes a \box" of side (width) 2h and height (2nh)

�1

on eah observation and then

sums to obtain

^

f . See Silverman (1986) for a disussion of this kind of estimator.

It is not diÆult to verify that

^

f is not a ontinuous funtion and has zero deriva-

tives everywhere exept on the jump points X

i

� h. Besides having the undesirable

harater of nonsmoothness (Silverman1986), it ould give a misleading impression

to a untrained observer sine its a somewhat ragged harater might suggest several

di�erent bumps.

Figure 2.1 shows the nonsmooth harater of the naive estimate. The data seem

to have two major modes. However, the naive estimator suggests several di�erent

small bumps.
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Figure 2.1: Naive estimate onstruted from Old faithful geyser data with h = 0:1

To overome some of these diÆulties, onditions have been introdued on the

funtion K. That is, K must be nonnegative kernel funtion that satis�es the follow-

ing property:

Z

1

�1

K(x)dx = 1:

In other words K(x) is a symmetri probability density funtion, as for instane, the

normal density, it will follow from de�nition that

^

f will itself be a probability density.

In addition,

^

f will inherit all the ontinuity and di�erentiability properties of the

kernel K. For example, if K is a normal density then

^

f will be a smooth urve with

derivatives of all orders.
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Figure 2.2 exhibits the smooth properties of

^

f when Gaussian kernel is used.
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Figure 2.2: Kernel density estimate onstruted from Old faithful geyser data with

Gaussian kernel and h = 0:25

Note that an estimate based on the kernel funtion plaes \bumps" on the obser-

vations and the shape of those \bumps" is determined by the kernel funtion K. The

bandwidth h sets the width around eah observation and this bandwidth ontrols the

degree of smoothness of a density estimate. It is possible to verify that as h! 0, the

estimate beomes a sum of Dira delta funtions at the observations while as h!1,

it eliminates all the loal roughness and possibly important details are missed.

The data for the �gure 2.3 whih is labelled \inome" were provided to me by

Charles Kooperberg. This data set onsists of 7125 random samples of yearly net

inome in the United Kingdom (Family Expenditure Survey, 1968-1983). The inome
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Figure 2.3: Bandwidth e�et on kernel density estimates. The data set inome was

resaled to have mean 1.

data is onsiderably large and so it is more of a hallenge to omputing resoures and

there are severe outliers. The peak at 0.24 is due to the UK old age pension, whih

aused many people to have nearly idential inomes. The width of the peak is about

0.02, ompared to the range 11.5 of the data. The rise of the density to the left of

the peak is very steep.

There is a vast (Silverman1986) literature on kernel density estimation studying

its mathematial properties and proposing several algorithms to obtain an estimated

based on it. This method of density estimation beame, apart from histogram, the

most ommonly used estimator. However it has the drawbaks when the underlying

density has long tails (Silverman1986). What auses this problem is the fat that the

bandwidth is �xed for all observations, not onsidering any loal harateristi of the

data.
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In order to solve this problem several other Kernel Density Estimation Methods

were proposed suh as the nearest neighbor and the variable kernel. A detailed

disussion and illustration of these methods an be found in Silverman (1986).

2.2.1 The Nearest Neighbor Method

The idea behind of the nearest neighbor method is to adapt the amount of smooth-

ing to loal harateristis of the data. The degree of smoothing is then ontrolled by

an integer k. Essentially, the nearest neighbor density estimator uses distanes from

x in f(x) to the data point. For example, let d(x

1

; x) be the distane of data point

x

1

from the point x, and for eah x denote d

k

(x) as the distane from its kth nearest

neighbor among the data points x

1

; : : : ; x

n

.

The kth nearest neighbor density estimate is de�ned as,

^

f(x) =

k

2nd

k

(x)

;

where n is the sample size and, typially, k is hosen to be proportional to n

1=2

.

In order to understand this de�nition, suppose that the density at x is f(x). Then,

one would expet about 2rnf(x) observations to fall in the interval [x� r; x + r℄ for

eah r > 0. Sine, by de�nition, exatly k observations fall in the interval [x �

d

k

(x); x + d

k

(x)℄, an estimate of the density at x may be obtained by putting

k = 2d

k

(x)n

^

f (x):

Note that while estimators like histogram are based on the number of observations

falling in a box of �xed width entered at the point of interest, the nearest neighbor

estimate is inversely proportional to the size of the box needed to ontain a given

number of observations. In the tail of the distribution, the distane d

k

(x) will be larger

than in the main part of the distribution, and so the problem of under-smoothing in

the tails should be redued. Like the histogram the nearest neighbor estimate is not a

smooth urve. Moreover, the nearest neighbor estimate does not integrate to one and
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the tails of

^

f(x) die away at rate x

�1

, in other words extremely slowly. Hene, this

estimate is not appropriate if one is required to estimate the entire density. However,

it is possible to generalize the nearest neighbor estimator in a manner related to the

kernel estimate. The generalized kth nearest neighbor estimate is de�ned by,

^

f(x) =

1

nd

k

(x)

n

X

i=1

K(

x�X

i

d

k

(x)

):

Observe that the overall amount of smoothing is governed by the hoie of k, but the

bandwidth used at any partiular point depends on the density of observations near

that point. Again, we fae the problems of disontinuity of at all the points where

the funtion d

k

(x) has disontinuous derivative. The preise integrability and tail

properties will depend on the exat form of the kernel.

Figure 2.4 shows the e�et of the smoothing parameter k on the density estimate.

Observe that as k inreases rougher the density estimate beomes. This e�et is

equivalent when h is approahing to zero in the kernel density estimator.
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Figure 2.4: E�et of the smoothing parameter K on the estimates
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2.2.2 Some Statistial Results of Kernel Density Estimation

As starting point one might want to ompute the expeted value of

^

f . For this,

suppose we have X

i

; : : : ; X

n

i.i.d. random variables with ommon density f and

let K(�) be a probability density funtion de�ned on the real line that satis�es the

following onditions (Prakasa-Rao1983):

� Condition 1. sup

x

K(x) �M <1; jxjK(x)! 0 as jxj ! 1.

� Condition 2. K(x) = K(�x); x 2 (�1;1) with

R

1

�1

x

2

K(x)dx <1.

Then we have, for a nonstohasti h

E[

^

f(x)℄ =

1

nh

n

X

i=1

E[K(

x�X

i

h

)℄

=

1

h

E[K(

x�X

i

h

)℄

=

1

h

Z

K(

x� u

h

)f(u)du

=

Z

K(y)f(x+ yh)dy: (2.2)

Now, let h ! 0. We see that E[

^

f(x)℄ ! f(x)

R

K(y)dy = f(x). Thus,

^

f is an

asymptoti unbiased estimator of f .

To ompute the bias of this estimator we have to make the assumption that the

underlying density is twie di�erentiable. Using a Taylor expansion of f(x+ yh), the

bias of

^

f in estimating f is

b

f

[

^

f(x)℄ =

h

2

2

f

00

(x)

Z

y

2

K(y)dy + o(h

2

):

We observe that sine we have assumed the kernel K is symmetri around zero, we

have that

R

yK(y)hf

0

(x)dy = 0, and the bias is quadrati in h.

1

1

See (Parzen1962)
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Using a similar approah we obtain :

� V ar

f

[

^

f(x)℄ =

1

nh

kKk

2

2

f(x) + o(

1

nh

), where kKk

2

2

=

R

kK(x)k

2

dx

� MSE

f

[

^

f(x)℄ =

1

nh

f(x)kKk

2

2

+

h

4

4

(f

00

(x)

R

y

2

K(y)dy)

2

+ o(

1

nh

) + o(h

4

) ,

where MSE

f

[

^

f ℄ stands for mean squared error of the estimator

^

f of f .

Hene, when the onditions h ! 0 and nh ! 1 are usually assumed, the

MSE

f

[

^

f ℄ ! 0, whih means that the kernel density estimate is a onsistent esti-

mator of the underlying density f . Moreover, MSE balanes variane and squared

bias of the estimator in suh way that the variane term ontrols the under-smoothing

and the bias term ontrols over-smoothing. In other words, an attempt to redue the

bias inreases the variane, making the estimate too noisy (under-smooth). On the

ontrary, minimizing the variane leads to a very smooth estimate (over-smooth) with

high bias.

2.2.3 Bandwidth Seletion

It is natural to think of �nding an optimal bandwidth, say, h

�

suh that h

�

=

argmin

h

MSE

f

[

^

f ℄. H�ardle(1990) shows that

h

�

=

�

f(x)kKk

2

2

(f

00

(x))

2

(

R

y

2

K(y)dy)

2

n

�

1=5

/ n

�1=5

: (2.3)

The problem with this approah is that h

�

depends on two unknown funtions

f(�) and f

00

(�). An approah to overome this problem uses a global measure that an

be de�ned as:

IMSE[

^

f ℄ =

Z

MSE

f

[

^

f(x)℄dx

=

1

nh

kKk

2

2

+

h

4

4

(

Z

y

2

K(y)dy)

2

kf

00

k

2

2

+ o(

1

nh

) + o(h

4

): (2.4)

IMSE is the well known integrated mean squared error of a density estimate.

The optimal value of h onsidering the IMSE is de�ne as

h

opt

= argmin

h>0

IMSE[

^

f ℄:
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it an be shown that,

h

opt

= 

�2=5

2

�

Z

K

2

(x)dx

�

1=5

�

kf

00

k

2

2

�

�1=5

n

�1=5

; (2.5)

where 

2

=

R

y

2

K(y)dy. Unfortunately, (2.5) still depends on the seond derivative

of f , whih measures the speed of utuations in the density of f .

2.2.3.1 Referene to a Standard Distribution

A very natural way to get around the problem of not knowing f

00

is to use a

standard family of distributions to assign a value of the term kf

00

k

2

2

in the expression

(2.5). For example, assume that a density f belongs to a lass normal family with

mean � and variane �

2

, then

Z

(f

00

(x))

2

dx = �

�5

Z

('

00

(x))

2

dx

=

3

8

�

�1

2�

�5

� 0:212�

�5

; (2.6)

where '(x) is the standard normal density. If one uses a Gaussian kernel, then

h

opt

= (4�)

�1=10

(

3

8

�

�1=2

)

�1=5

�n

�1=5

=

�

4

3

�

1=5

�n

�1=5

= 1:06�n

�1=5

(2.7)

Hene, in pratie a possible hoie for h

opt

is 1:06�̂n

�1=5

, where �̂ is the sample

standard deviation.

If we want to make this estimate more insensitive to outliers, we have to use a

more robust estimate for the sale parameter of the distribution. Let

^

R be the sample

interquartile, then one possible hoie for h is

^

h

opt

= 1:06min(�̂;

^

R

(�(3=4)� �(1=4))

)

= 1:06min(�̂;

^

R

1:349

); (2.8)

where � is the standard normal distribution funtion.
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Figure 2.5 exhibits how a robust estimate of the sale an help in hoosing the

bandwidth. Note that by using

^

R we have strong evidene that the underlying density

has two modes.

Histogram of a mixture of two normal densities
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Figure 2.5: Comparison of two bandwidths, �̂ (the sample standard deviation) and

^

R (the sample interquartile) for the mixture 0:7�N(�2; 1) + 0:3�N(1; 1).

2.2.3.2 Maximum likelihood Cross-Validation

Consider kernel density estimates f

h

and suppose we want to test for a spei� h

the hypothesis

f

h

(x) = f(x) vs: f

h

(x) 6= f(x);

for a �xed x The likelihood ratio test would be based on the test statisti f(x)=f

h

(x).

For a good bandwidth this statisti should thus be lose to 1. We would also say that

on the average E [log(f(X)=f

h

)(X)℄ should be lose to 0. Thus, a good bandwidth,

14



whih is minimizing this measure of auray, is in e�et optimizing the Kullbak-

Leibler distane:

d

KL

(f; f

h

) =

Z

log

�

f(x)

f

h

(x)

�

f(x)dx: (2.9)

Of ourse, we are not able to ompute d

KL

(f; f

h

) from the data, sine we do not

know f . But from a theoretial point of view, we an investigate this distane for

the hoie of an appropriate bandwidth h. When d

KL

(f; f

h

) is lose to 0 this would

give the best agreement with the hypothesis f

h

= f . Hene, we are looking for a

bandwidth h, whih minimizes d

KL

(f; f

h

).

Suppose we are given a set of additional observations X

i

, independent of the

others. The likelihood for these observations is

Q

i

f(X

i

). Substituting f

h

in the

likelihood equation we have

Q

i

f

h

(X

i

) and the value of this statisti for di�erent h

would indiate whih value of h is preferable, sine the logarithm of this statisti is

lose to d

KL

(f; f

h

). Usually, we do not have additional observations. A way out of

this dilemma is to base the estimate f

h

on the subset fX

j

g

j 6=i

, and to alulate the

likelihood for X

i

. Denoting the leave-one-out estimate

f

h

(X

i

) = (n� 1)

�1

h

�1

X

j 6=i

K(

X

i

�X

j

h

):

Hene,

n

Y

i=1

f

h;i

(X

i

) = (n� 1)

�n

h

�n

n

Y

i=1

X

j 6=i

K(

X

i

�X

j

h

): (2.10)

However it is onvenient to onsider the logarithm of this statisti normalized with

the fator n

�1

to get the following proedure:

CV

KL

(h) =

1

n

n

X

i=1

log[f

h;i

(X

i

)℄

=

1

n

n

X

i=1

log

h

X

j 6=i

K(

X

i

�X

j

h

)

i

� log[(n� 1)h℄ (2.11)
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Naturally, we hoose h

KL

suh that:

h

KL

= argmax

h

CV

KL

(h): (2.12)

Sine we assumed that X

i

are i.i.d., the sores log f

h;i

(X

i

) are identially distributed

and so,

E [CV

KL

(h)℄ = E [log f

h;i

(X

i

)℄:

Disregarding the leave-one-out e�et, we an write

E [CV

KL

(h)℄ � E

h

Z

log f

h

(x)f(x)dx

i

� �E [d

KL

(f; f

h

)℄ +

Z

log[f(x)℄f(x)dx: (2.13)

The seond term of the right-hand side does not depend on h. Then, we an expet

that we approximate the optimal bandwidth that minimizes d

KL

(f; f

h

).

The Maximum likelihood ross validation has two shortomings:

� When we have idential observations in one point, we may obtain an in�nite

value if CV

KL

(h) and hene we annot de�ne an optimal bandwidth.

� Suppose we use a kernel funtion with �nite support, e.g., the interval [�1; 1℄. If

an observation X

i

is more separated from the other observations than the band-

width h, the likelihood f

h;i

(X

i

) beomes 0. Hene the sore funtion reahes the

value �1. Maximizing CV

KL

(h) fores us to use a large bandwidth to prevent

this degenerated ase. This might lead to slight over-smoothing for the other

observations.
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2.3 Kernel nonparametri Regression Method

Suppose we have i.i.d. observations f(X

i

; Y

i

)g

n

i=1

. Using equation (2.1) we know

how to estimate the denominator by using the kernel density estimation method. For

the numerator one an estimate the joint density using the multipliative kernel

f

h

1

;h

2

(x; y) =

1

n

n

X

i=1

K

h

1

(x�X

i

)K

h

2

(y � Y

i

):

where, K

h

1

(x � X

i

) = h

�1

1

K((x � X

i

)=h

1

), K

h

2

(x � Y

i

) = h

�1

2

K((x � Y

i

)=h

2

). It is

not diÆult to show that

Z

yf

h

1

;h

2

(x; y)dy =

1

n

n

X

i=1

K

h

1

(x�X

i

)Y

i

:

Based on the methodology of kernel density estimation Nadaraya (1964) and Watson

(1964) suggested the following estimator g

h

for g.

g

h

(x) =

P

n

i=1

K

h

(x�X

i

)Y

i

P

n

j=1

K

h

(x�X

j

)

(2.14)

In general, the kernel funtion K

h

(x) = K((x�x

j

)=h) is taken as probability density

funtion symmetri around zero and parameter h is alled smoothing parameter or

bandwidth. In addition, with onditions 2.2.2, g

h

is a onsistent estimator of the

regression urve g and its asymptoti distribution is normal with mean zero and

asymptoti variane (g(x))

�1

�

2

R

(K(s))

2

ds as h ! 0 and nh ! 1. (See details in

H�ardle (1990)). This approah an be extended to the multivariate regression problem

by onsidering the multidimensional kernel density estimation method. (see, details

in Sott (1992))

2.3.1 k-Nearest Neighbor (k-NN)

One may notie that regression by kernels is based on loal averaging of obser-

vations Y

i

in a �xed neighborhood of x. Instead of this �xed neighborhood k-NN

employs varying neighborhoods in the X variable support. That is,
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g

k

(x) =

1

n

N

X

i=1

W

ki

(x)Y

i

; (2.15)

where,

W

ki

(x) =

8

<

:

n=k if i 2 J

x

0 otherwise,

(2.16)

with J

x

= fi : X

i

is one of the k nearest observations to xg

It an be shown that the bias and variane of the k-NN estimator g

k

with weights

(2.16) are given by, for a �xed x

E [g

k

(x)℄� g(x) �

1

24(f(x))

3

[g

00

(x)f(x) + 2g

0

(x)f

0

(x)℄(k=n)

2

(2.17)

and

V ar[g

k

(x)℄ �

�

2

k

: (2.18)

We observe that the bias inreasing and the variane is dereasing in the smoothing

parameter k. To balane this trade-o� one should hoose k � n

4=5

. For details, see

H�ardle (1990).
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Figure 2.6: E�et of the smoothing parameter k on the k-NN regression estimates.

2.4 Loal Polynomial Regression: LOWESS

Cleveland (1979) proposed the algorithm LOWESS, loally weighted satter plot

smoothing, as a resistant method based on loal polynomial �ts. The basi idea is

to start with a loal polynomial (a k-NN type �tting) least squares �t and then to

use robust methods to obtain the �nal �t. Spei�ally, one an �rst �t a polynomial

regression in a neighborhood of x, that is, �nd � 2 R

p+1

whih minimize

n

�1

n

X

i=1

W

ki

�

y

i

�

p

X

j=0

�

j

x

j

�

2

; (2.19)

where W

ki

denote k-NN weights. Compute the residuals �̂

i

and the sale parameter

�̂ = median(�̂

i

). De�ne robustness weights Æ

i

= K(�̂

i

=6�̂), where K(u) = (15=16)(1�

u)

2

, if juj � 1 and K(u) = 0, if otherwise. Then, �t a polynomial regression as in

(2.19) but with weights (Æ

i

W

ki

(x)). Cleveland suggests that p = 1 provides good

balane between omputational ease and the need for exibility to reprodue patterns

in the data. The smoothing parameter an be determined by ross-validation as
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similar to (2.12)

3 Spline Funtions

Due to their simple struture and good approximation properties, polynomials are

widely used in pratie for approximating funtions. For this propose, one usually

divides the interval [a; b℄ in the funtion support into suÆiently small subintervals of

the form [x

0

; x

1

℄; : : : ; [x

k

; x

k+1

℄ and then uses a low degree polynomial p

i

for approxi-

mation over eah interval [x

i

; x

i+1

℄, i = 0; : : : ; k. This proedure produes a pieewise

polynomial approximating funtion s(�);

s(x) = p

i

(x) on [x

i

; x

i+1

℄; i = 0; : : : ; k:

In the general ase, the polynomial piees p

i

(x) are onstruted independently of

eah other and therefore do not onstitute a ontinuous funtion s(x) on [a; b℄. This

is not desirable if the interest is on approximating a smooth funtion. Naturally, it is

neessary to require the polynomial piees p

i

(x) to join smoothly at knots x

1

; : : : ; x

k

,

and to have all derivatives up to a ertain order, oinide at knots. As a result, we

get a smooth pieewise polynomial funtion, alled a spline funtion.

De�nition 3.1 The funtion s(x) is alled a spline funtion (or simply \spline") of

degree r with knots at fx

i

g

k

i=1

if �1 =: x

0

< x

1

< : : : < x

k

< x

k+1

:= 1, where

�1 =: x

0

and x

k+1

:=1 are set by de�nition,

� for eah i = 0; : : : ; k, s(x) oinides on [x

i

; x

i+1

℄ with a polynomial of degree

not greater than r;

� s(x); s

0

(x); : : : ; s

r�1

(x) are ontinuous funtions on (�1;1).

The set S

r

(x

1

; : : : ; x

k

) of spline funtions is alled spline spae. Moreover, the spline

spae is a linear spae with dimension r + k + 1 (Shumaker1981).
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De�nition 3.2 For a given point x 2 (a; b) the funtion

(t� x)

r

+

=

8

<

:

(t� x)

r

if t > x

0 if t � x

is alled the trunated power funtion of degree r with knot x.

Hene, we an express any spline funtion as a linear ombination of r + k + 1 basis

funtions. For this, onsider a set of interior knots fx

1

; : : : ; x

k

g and the basis funtions

f1; t; t

2

; : : : ; t

r

; (t� x

1

)

r

+

; : : : ; (x� t

k

)

r

+

g. Thus, a spline funtion is given by,

s(t) =

r

X

i=0

�

i

t

i

+

k

X

j=r+1

�

j

(t� x

j�r

)

r

+

It would be interesting if we ould have basis funtions that make it easy to om-

pute the spline funtions. It an be shown that B-splines form a basis of spline spaes

(Shumaker1981). Also, B-splines have an important property toward omputation,

they are splines whih have smallest possible support. In other words, B-splines

are zero on a large set. Furthermore, a stable evaluation of B-splines with aid of a

reurrene relation is possible.

De�nition 3.3 Let 


1

= fx

j

g

fj2Zg

be a nondereasing sequene of knots. The i-th

B-spline of order k for the knot sequene 


1

is de�ned by

B

k

j

(t) = �(x

k+j

� x

j

)[x

j

; : : : ; x

k+j

℄(t� x

j

)

k�1

+

for all t 2 R;

where, [x

j

; : : : ; x

k+j

℄(t�x

j

)

k�1

+

is (k�1)th divided di�erene of the funtion (x�x

j

)

k

+

evaluated at points x

j

; : : : ; x

k+j

.

From the de�nition (3.3) we notie that B

k

j

(t) = 0 for all t 62 [x

j

; x

j+k

℄. It fol-

lows that only k B-splines have any partiular interval [x

j

; x

j+1

℄ in their support,

i.e., of all the B-splines of order k for the knot sequene 


1

, only the k B-splines

B

k

j�k+1

; B

k

j�k+2

; : : : ; B

k

j

might be nonzero on the interval [x

j

; x

j+1

℄. (See de Boor

(1978) for details). Moreover, B

k

j

(t) > 0 for all x 2 (x

j

; x

j+k

) and

P

j2Z

B

k

j

(t) = 1,
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that is, the B-spline sequene B

k

j

onsists of nonnegative funtions whih sum up to

1 and provides a partition of unity. Thus, a spline funtion an be written as linear

ombination of B-splines,

s(t) =

X

j2Z

�

j

B

k

j

(t):

The value of the funtion s at point t is simply the value of the funtion

P

j2Z

�

j

B

k

j

(t)

whih makes good sense sine the latter sum has at most k nonzero terms.
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Figure 3.7: Basis Funtions with 6 knots plaed at \x"

Figure 3.7 shows an example of B-splines basis and their ompat support prop-

erty. This property makes the omputation of B-splines easier and numerially stable.

Of speial interest is the set of natural splines of order 2m, m 2 N , with k knots

at x

j

. A spline funtion is a natural spline of order 2m with knots at x

1

; : : : ; x

k

, if, in

addition to the properties implied by de�nition (3.1), it satis�es an extra ondition:

� s is polynomial of order m outside of [x

1

; x

k

℄.
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Consider the interval [a; b℄ � R and the knot sequene a := x

0

< x

1

< : : : < x

k

<

x

k+1

:= b. Then, NS

2m

= fs 2 S(P

2m

) : s

0

= sj

[a;x

1

)

and s

k

= sj

[x

k

;b)

2 P

m

g, is

the natural polynomial spline spae of order 2m with knots at x

1

; : : : ; x

k

. The name

\natural spline" stems from the fat that, as a result of this extra ondition, s satis�es

the so alled natural boundary onditions s

j

(a) = s

j

(b) = 0, j = m; : : : ; 2m� 1.

Now, sine the dimension of S(P

2m

) is 2m + k and we have enfored 2m extra

onditions to de�ne NS

2m

, it is natural to expet the dimension of NS

2m

to be k.

Atually, it is well known that NS

2m

is linear spae of dimension k. See details in

Shumaker (1981).

In some appliations it may be possible to deal with natural splines by using a basis

for S(P

2m

) and enforing the end onditions. For other appliations it is desirable

to have a basis for NS

2m

itself. To onstrut suh a basis onsisting of splines with

small supports we just need funtions based on the usual B-splines. Partiularly,

when m = 2, we will be onstruting basis funtions for the Natural Cubi Spline

Spae, NS

4

.

Shumaker (1972) showed that the basis obtained by Greville (1969) (exept for

a normalization onstant!) and reently used by Kooperberg and Stone (1991)is a

basis for NS

4

.

De�nition 3.4 Let M(x; y) = (y � x)

3

+

and let M [x; x

1

; : : : ; x

k

℄ be the (k � 1)st

divided di�erene of M as a funtion of x taken over the knot sequene x

1

� x

2

: : : �

x

k

with h

i+1

= x

i+1

� x

i

, i = 1; : : : ; k � 1 Then

B

i

(x) =

8

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

:

M [x; x

1

; x

2

; x

3

℄=(h

3

+ 2h

2

) if i = 1

M [x; x

1

; x

2

; x

3

; x

4

℄ if i = 2

(x

i+2

� x

i�2

)M [x; x

i�2

; : : : ; x

i+2

℄ if i = 3; : : : ; k � 2

M [x; x

k�3

; x

k�2

; x

k�1

; x

k

℄ if i = k � 1

M [x; x

k�2

; x

k�1

; x

k

℄(h

k�1

+ 2h

k

) if i = k
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Figure 3.8: Basis Funtions with 6 knots plaed at \x"

3.1 Logspline Density Estimation

In 1991, Kooperberg and Stone introdued another type of algorithm to estimate

an univariate density. This algorithmwas based on the work of Stone (1990) and Stone

and Koo (1985) where the theory of the logspline family of funtions was developed.

Consider an inreasing sequene of knots ft

j

g

K

j=1

, K � 4, in R . Denote by S

0

the set of real funtions suh that s is a ubi polynomial in eah interval of the

form (�1; t

1

℄; [t

1

; t

2

℄; : : : ; [t

K

;1). Elements in S

0

are the well-known ubi splines
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with knots at ft

j

g

K

j=1

. Notie that S

0

is a (K +4)-dimensional linear spae. Now, let

S � S

0

suh that the dimension of S is K with funtions s 2 S linear on (�1; t

1

℄ and

on [t

K

;1). Thus, S has a basis of the form 1; B

1

: : : ; B

K�1

, suh that B

1

is linear

funtion with negative slope on (�1; t

1

℄ and B

2

; : : : ; B

K�1

are onstant funtions on

the same interval. Similarly, B

K�1

is linear funtion with positive slope on [t

K

;1)

and B

1

; : : : ; B

K�2

are onstant on the interval [t

K

;1) (Kooperberg and Stone1991).

Let � be the parametri spae of dimension p = K � 1, suh that for � =

(�

1

; : : : ; �

p

) 2 R

p

, �

1

< 0 and �

p

> 0. Then, de�ne

(�) = log(

Z

R

exp(

K�1

X

j=1

�

j

B

j

(x))dx

and

f(x; �) = expf

K�1

X

j=1

�

j

B

j

(x)� (�)g:

The p-parametri exponential family f(�; �), � 2 � � R

p

of positive twie di�er-

entiable density funtion on R is alled logspline family and the orresponding log-

likelihood funtion is given by

L(�) =

X

log f(x; �) ; � 2 � :

The log-likelihood funtion L(�) is stritly onave and hene the maximum like-

lihood estimator

^

� of � is unique, if it exists. We refer to

^

f = f(�;

^

�) as the logspline

density estimate. Note that the estimation of

^

� makes logspline proedure not essen-

tially nonparametri. Thus, estimation of � by Newton-Raphson, together with small

numbers of basis funtion neessary to estimate a density, make the logspline algo-

rithm extremely fast when it is ompared with Gu's algorithm for smoothing spline

density estimation, (Gu1993).

In the Logspline approah the number of knots is the smoothing parameter. That

is, too many knots leads to a noisy estimate while too few knots gives a very smooth

urve. Based on their experiene of �tting logspline models, Kooperberg and Stone
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provide a table with the number of knots based on the number of observations. No

indiation was found that the number of knots takes in onsideration the struture

of the data (number of modes, bumps, asymmetry, et.). However, an objetive

riterion for the hoie of the number of knots, Stepwise Knot Deletion and Stepwise

knot Addition, are inluded in the logspline proedure.

For 1 � j � p, let B

j

be a linear ombination of a trunated power basis (x� t

k

)

3

+

for the a knot sequene t

1

; : : : ; t

p

, that is,

B

j

(x) = �

j

+ �

j0

x +

X

k

�

jk

(x� t

k

)

3

+

:

Then

X

j

�

j

B

j

(x) =

X

�

j

�

j0

+

X

j

X

k

�

jk

�

j

(x� t

k

)

3

+

:

Let

P

j

^

�

j

�

jk

= �

T

k

^

�. Then, for 1 � k � K Kooperberg and Stone (1991),

SE(�

T

k

^

�) =

q

�

T

k

(I(

^

�))

�1

�

k

)

where I(�) is the Fisher informationmatrix obtained from the log-likelihood funtion.

The knots t

1

and t

K

are onsidered permanent knots, and t

k

, 2 � k � K, are

nonpermanent knots. Then at any step delete (similarly for addition step) that knot

whih has the smallest value of j�

T

k

^

�j=SE(�

T

k

^

�). In this matter, we have a sequene

of models whih ranges from 2 to p� 1 knots. Now, denote by

^

L

m

the log-likelihood

funtion of the mth model (2 � m+2 � p� 1) evaluated at the maximum likelihood

estimate for that model. To speify a stop riteria, Kooperberg and Stone make use

of the Akaike Information Criterion (AIC), that is, AIC

�;m

= �2

^

L

m

+ �(p�m) and

hoose m̂ that minimizes AIC

3;m

. There is no theoretial justi�ation for hoosing

� = 3. The hoie was made, aording to them, beause this value of � makes the

probability that

^

f is bimodal when f is Gamma(5) to be about .1.

It would be interesting to have an algorithmwhih ombines the low omputational

ost of logsplines (due to B-splines and the estimation of their oeÆients) and the

performane of the automati smoothing parameter seletion developed by Gu (1993).
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3.2 Splines Density Estimation: A Dimensionless Approah

Let X

1

; : : : ; X

n

a random sample from a probability density f on a �nite domain

X . Assuming that f > 0 on X , one an make a logisti transformation f = e

g

=(

R

e

g

).

We know that this transformation is not one-to-one and Gu and Qiu (1993) proposed

side onditions on g suh that g(x

0

) = 0; x

0

2 X or

R

X

g = 0. Given those onditions

we have to �nd the minimizer of the penalized log-likelihood

�

1

n

n

X

i=1

g(X

i

) + log

Z

X

e

g

+

�

2

J(g) (3.5)

in a Hilbert spae H, where J is a roughness penalty and � is the smoothing param-

eter. The spae H is a Hilbert spae where the evaluation is ontinuous so that the

�rst term in (3.5) is ontinuous. The penalty term J is a seminorm in H with a null

spae J

?

of �nite dimension M � 1. By taking a �nite dimensional J

?

one prevents

interpolation (i.e. the empirial distribution) and a quadrati J makes easier the nu-

merial solution of the variational problem (3.5). Sine, H is an in�nite dimensional

spae, the minimizer of (3.5) is, in general, not omputable. Thus, (Gu and Qiu1993)

propose alulating the solution of the variational problem in �nite dimensional spae,

say, H

n

, where n is the sample size.

The performane of the smoothing spline estimator depends upon the hoie of

the smoothing parameter �. Gu (1993), suggested a performane-oriented iteration

proedure ( GCV-like proedure) whih updates g and � jointly aording to a per-

formane estimate. The performane is measured by a loss funtion whih was taken

as a symmetrized Kullbak-Leibler distane between e

g

=

R

e

g

and e

g

0

=

R

e

g

0

. Spei�-

ally, if one solves the variational problem (3.5) inH

n

by a standard Newton-Raphson

proedure, then by starting from a urrent iterate ~g, instead of alulating the next

iterate with a �xed �, one may hoose a � that minimizes the loss funtion.

Under this approah, one might ask the following questions:

� Is it possible to estimate a density using K � n basis funtions instead of the
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original n suh that it redues the omputational ost of getting the solution

(3.5) signi�antly ?

� How good would suh an approximation be ?

Dias (1998) gave reasonable answers to those questions by using the basis funtions

B

i

(x) given in De�nition (3.4) that an be easily extend to a multivariate ase by a

tensor produt.

4 Splines nonparametri Regression: The thin-

plate spline on R

d

There are many appliations where a unknown funtion g of one or more variables

and a set of measurements are given suh that:

y

i

= L

i

g + �

i

(4.1)

where L

1

; : : : ;L

n

are linear funtionals de�ned on some linear spae H ontaining g,

and �

1

; : : : ; �

n

are measurement errors usually assumed to be independently identially

normal distributed with mean zero and unknown variane �

2

. Typially, the L

i

will

be point evaluation of the funtion g.

Straight forward least square �tting is often appropriate but it produes a funtion

whih is not suÆiently smooth for some data �tting problems. In suh ases, it

may be better to look for a funtion whih minimizes a riterion that involves a

ombination of goodness of �t and an appropriate measure of smoothness. Let t =

(x

1

; : : : ; x

d

), t

i

= (x

1

(i); : : : ; x

d

(i)) for i = 1; : : : ; n and the evaluation funtionals

L

i

g = g(t

i

), then the regression model (4.1) beomes,

y

i

= g(x

1

(i); : : : ; x

d

(i)) + �

i

: (4.2)
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The thin-plate smoothing spline is the solution to the following variational problem.

Find g 2 H to minimize

L

�

(g) =

1

n

n

X

i=1

(y

i

� g(t

i

))

2

+ �J

d

m

(g) (4.3)

where � is the smoothing parameter whih ontrols the trade o� between �delity to

the data and smoothness and the penalty term J

d

m

is given by

J

d

m

(g) =

X

�

1

+:::+�

d

=m

m!

�

1

! : : : ; �

d

!

Z

1

�1

: : :

Z

1

�1

�

�

m

g

�x

�

1

1

: : : �x

�

d

d

�

2

Y

j

dx

j

:

The ondition 2m� d > 0 is neessary and suÆient in order to have bounded eval-

uation funtionals in H, i.e., H is a reproduing kernel in Hilbert spae. Moreover,

the null spae of the penalty term J

d

m

is the M-dimensional spae spanned by poly-

nomials �

1

; : : : ; �

M

of degree less or equal to m � 1, e.g., �

i

(t) = t

j�1

=(j � 1)!, for

j = 1; : : : ; m.

It an be shown that (see Wahba (1990)), if t

1

; : : : ; t

n

are suh that least squares

regression on �

1

; : : : ; �

M

is unique, then (4.3) has a unique minimizer g

�

, with rep-

resentation

g

�

(t) =

n

X

i=1



i

E

m

(t; t

i

) +

M

X

j=1

b

j

�

j

(t)

= Q+ Tb (4.4)

where, T is a n �M matrix with entries �

j

(t

l

) for j = 1; : : : ;M , l = 1; : : : ; n and

Q is a n � n matrix with entries E

m

(t

l

; t

i

), for i = 1; : : : ; n. The funtion E

m

is

a Green's funtion for the m-iterate Laplaian ((Wahba1990)). For example, when

d = 1, E

m

(t; t

i

) = (t � t

i

)

m�1

+

=(m � 1)!. The oeÆients  and b an be determined

by substituting (4.4) into (4.3). Thus, the optimization problem (4.3) subjet to

T

0

 = 0, is redued to a linear system of equations whih is solved by standard

matrix deomposition suh as QR deomposition. The onstraint T

0

 = 0 is neessary

to guarantee that when omputing the penalty term at g

�

, J

d

m

(g

�

) is onditionally

positive de�nite.

2

E�orts have been done in order to redue substantially the

2

See, (Wahba1990 Silverman and Green1994)
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omputational ost of solving smoothing splines �tting by introduing the onept

of H-splines ((Luo and Wahba1997) and (Dias1999)), where the number of basis

funtions and � at as the smoothing parameters.

A major oneptual problem with spline smoothing is that it is de�ned impliitly

as the solution to a variational problem rather than as an expliit formula involving

the data values. This diÆulty an be resolved, at least approximately, by onsidering

how the estimate behaves on large data sets. It an be shown from the quadrati

nature of (4.3) that g

�

is linear in the observations y

i

, in the sense that there exists

a weight funtion H

�

(s; t) suh that

g

�

(s) =

n

X

i=1

y

i

H

�

(s; t

i

): (4.5)

It is possible to obtain the asymptoti form of the weight funtion, and hene an

approximate expliit form of the estimate. For the sake of simpliity onsider d = 1,

m = 2 and suppose that the design points have loal density f(t) with respet to a

Lesbegue measure on R. Under mild onditions (see, Silverman (1984)), we have as

n!1,

H

�

(s; t) =

1

f(t)

1

h(t)

K(

s� t

h(t)

);

where the kernel funtion K is given by

K(u) =

1

2

exp(�juj=

p

2) sin(juj=

p

2 + �=4);

and the bandwidth h(t) satis�es

h(t) = �

1=4

n

�1=4

f(t)

�1=4

:

Based on these formulas, we an see that the spline smoother is approximately a

onvolution smoothing method but the data are not onvolved with a kernel with

�xed bandwidth, in fat, h varies aross the sample.
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4.1 Additive Models

The additive model is a generalization of the usual linear regression model and

what has made it so popular for statistial inferene is that the linear model is linear in

the preditor variables (explanatory variables). One we have �tted the linear model

we an examine the preditor variables separately, in the absene of interations.

Additive models also are linear in their preditor variables. An additive model is

de�ned by

y

i

= � +

p

X

j=1

g

j

(t

j

) + �

i

(4.6)

where t

j

are the preditor variables and as de�ned before in setion 4, �

i

are unor-

related error measurements with E [�

i

℄ = 0 and V ar[�

i

℄ = �

2

. The funtions g

j

are

unknown but assumed to be smooth funtions lying in some metri spae. Setion

4 desribes a general framework for de�ning and estimating general nonparametri

regression models whih inludes additive models as a speial ase. For this, suppose

that 
 is the spae of the vetor preditor t and assume the H is reproduing kernel

in Hilbert spae. Hene H has the deomposition

H = H

0

+

p

X

k=1

H

k

(4.7)

whereH

0

is spanned by �

1

; : : : ; �

M

andH

k

has the reproduing kernel E

k

(�; �), de�ned

in setion 4. The spae H

0

is the spae of funtions that are not to be penalized in

the optimization. For example, reall equation (4.3) and let m = 2 then H

0

is the

spae of linear funtions in t.

The optimization problem beomes: For a given set of preditors t

1

; : : : ; t

n

, �nd

the minimizer of

n

X

i=1

fy

i

�

p

X

k=0

g

k

(t

i

)g

2

+

k

X

k=1

�

k

jjg

k

jj

2

H

k

; (4.8)

with g

k

2 H

k

. Then, the theory of reproduing kernel guarantees that a minimizer
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exists and has the form

ĝ =

p

X

k=1

Q

k

+ Tb; (4.9)

where Q

k

and T are given in equation (4.4) and the vetors  and b are found by

minimizing the �nite dimensional penalized least square riterion

jjy � Tb�

p

X

k=1

Q

k

jj+

p

X

k=1

�

k



T

k

Q

k



2

: (4.10)

This general problem (4.9) an potentially be solved by a bak�tting type algorithm

(Hastie and Tibshirani1990).

Algorithm 4.1 1. Initialize g

j

= g

(0)

j

for j = 0; : : : ; p.

2. Cyle j = 0; : : : ; p; : : : ; j = 0; : : : ; p; : : :

ĝ

j

= S

j

(y �

X

j 6=k

g

j

(t

j

))

3. Continue (ii) until the individual funtions do not hange.

where y = (y

1

; : : : ; y

n

), S

j

= Q

k

(Q

k

+ �

k

I)

�1

, for j = 1; : : : ; p, and S

0

= T (T

T

T )

�1

.

One may observe that omitting the onstant term � in (4.6) does not hange the

resulting estimates.

4.2 Generalized Cross-Validation Method for Splines non-

parametri Regression

Without loss of generality, let's take d = 1 and m = 2. The solution of (4.3)

depends strongly on the smoothing parameter. Craven and Wahba (1979) provide an

automati data-driven proedure to estimate �. For this, let g

[k℄

�

be the minimizer of

1

n

X

i 6=k

(y

i

� g(t

i

))

2

+ �

Z

(g

00

(u))

2

du;
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the optimization problem with the kth data point left out. Then following Wahba's

notation, the ordinary ross-validation funtion V

0

(�) is de�ned as

V

0

(�) =

1

n

n

X

k=1

(y

k

� g

[k℄

�

(t

k

))

2

; (4.11)

and the leave-one-out estimate of � is the minimizer of V

0

(�). To proeed, we need

to desribe the inuene matrix. It is not diÆult to show (see (Wahba1990)) that,

for �xed � we have by (4.5) that g

�

is linear in the observations y

i

, that is, in matrix

notation

g

�

= H

�

y:

At this stage, one may think that the omputation of this problem is prohibitive but

Craven and Wahba (1979) give us a very useful mathematial identity, whih will not

be proved here, but is

(y

k

� g

[k℄

�

(t

k

)) = (y

k

� g

�

(t

k

))=(1� h

kk

(�); (4.12)

where h

kk

(�) is the kth entry of H

�

. By substituting (4.12) into (4.11) we obtain a

simpli�ed form of V

0

, that is,

V

0

(�) =

1

n

n

X

k=1

(y

k

� g

�

(t

k

))

2

=(1� h

kk

(�))

2

(4.13)

The right hand of (4.13) is easier to ompute than (4.11), however the GCV is even

easier. The generalized ross-validation (GCV) is method for hoosing the smoothing

parameter �, whih is based on leaving-one-out, but it has two advantages. It is

easy to ompute and it posses some important theoretial properties the would be

impossible to prove for leaving-one-out, although, as pointed out by Wahba, in many

ases the GCV and leaving-one-out estimates will give similar answers. The GCV

funtion is de�ned by

V (�) =

1

n

n

X

k=1

(y

k

� g

�

(t

k

))

2

=(1�

�

h

kk

(�))

2

=

1

n

jj(I �H

�

)yjj

2

[

1

n

tr(I �H

�

℄

2

; (4.14)
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where

�

h

kk

(�) = (1=n)tr(H

�

), with tr(H

�

) standing for the trae of H

�

. Note that

V (�) is a weighted version of V

0

(�). In addition, if h

kk

(�) does not depend on k, then

V

0

(�) = V (�) for all � > 0.

It is important to observe that GCV is a preditive mean square error riteria.

Note that by de�ning the preditive mean square error T (�) as

T (�) =

1

n

n

X

i=1

(L

i

g

�

� L

i

g)

2

(4.15)

where, L

i

is the evaluation funtional de�ned in setion 3.2, the GCV estimate of �

is the minimizer of (4.15). Consider the expeted value of T (�),

E [T (�)℄ =

1

n

n

X

i=1

E [(L

i

g

�

� L

i

g)

2

℄: (4.16)

The GCV theorem (Wahba1990) says that if g is in a reproduing kernel Hiblert spae

then there is a sequene of minimizers

~

�(n) of EV (�) that omes lose to ahieving

the minimum possible value of the expeted mean square error, E [T (�)℄, using

~

�(n),

as n!1. That is, let the expetation ineÆieny I

�

n

be de�ned as

I

�

n

=

E [T (

~

�(n))℄

E [T (�

�

)℄

;

where �

�

is the minimizer of E [T (�)℄. Then, under mild onditions as suh the ones

desribed and disussed by Golub, Heath and Wahba (1979) and Craven and Wahba

(1979), we have I

�

n

# 1 as n!1.

Figure 4.9 shows the satter plot of the revenue passenger miles own by ommer-

ial airlines in the United States for eah year from 1937 to 1960. (This data an be

found in the software). The smoothing parameter � was omputed by GCV method

through the R funtion smooth.spline().
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airmiles data

Passenger−miles flown by U.S. commercial airlines
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Figure 4.9: Smoothing spline �tting with smoothing parameter obtained by GCV

method

5 Final Comments

Comparing with parametri tehniques we have, for the nonparametri approah,

more exibility sine it allows one to hoose from the in�nite dimensional lass of

funtions where the underlying regression urve is assumed to belong. In general,

this type of hoie depends on the unknown smoothness of the true urve. But for

most of the ases one an assume mild restritions suh that a regression urve has

an absolutely ontinuous �rst derivative and a square integrable seond derivative.

Nevertheless, nonparametri estimators are less eÆient than the parametri ones

when a parametri model is valid. For many parametri estimators the mean square

error goes to zero with rate of n

�1

, while nonparametri estimators have rate of n

��

,

� 2 [0; 1℄, and � depends on the smoothness of the underlying urve. When the

postulate parametri model is not valid, many parametri estimators annot have, ad

ho, rate n

�1

. In fat, those estimators will not onverge to the true urve. One of the
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advantages of the adaptive basis funtions proedures, e.g., H-splines methods is the

ability to vary the amount of smoothing in response to the inhomogeneous urvature

of the true funtions at di�erent loations. Those methods have been very suess-

ful in apturing the struture of the unknown funtion. In general, nonparametri

estimators are good andidates when one does not know the form of the underlying

urve.
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