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Abstra
t

In re
ent years several e
onomi
 data have been analyzed by nonparametri


approa
hes. This paper is a review of a few of the most useful pro
edures in the

nonparametri
 e
onometri
 �eld. In parti
ular, it des
ribes the theory and the

appli
ations of nonparametri
 
urve estimation (density and regression) prob-

lems with emphasis in kernel, nearest neighbor, orthogonal series, smoothing

splines, logsplines and H-splines methods.

1 Introdu
tion

It is always useful to begin the study of regression analysis by making use of

simple models. For this, assume that we have 
olle
ted observations from a 
ontinuous

variable Y at n values of a predi
t variable t. Let (t

j

; y

j

) su
h that:

y

j

= g(t

j

) + "

j

; j = 1; : : : ; n; (1.1)

where the random variables "

j

are un
orrelated with mean zero and varian
e �

2

.

Moreover, g(t

j

) are the values obtained from some unknown fun
tion g 
omputed

at the points t

1

; : : : ; t

n

. In general, the fun
tion g is 
alled regression fun
tion or

regression 
urve.
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A parametri
 regression model assumes that the form of g is known up to a �nite

number of parameters. That is, we 
an write a parametri
 regression model by,

y

j

= g(t

j

; �

1

; : : : ; �

p

) + "

j

; j = 1; : : : ; n (1.2)

where � = (�

1

; : : : ; �

p

)

T

2 R

p

. Thus, to determine from the data a 
urve g is equiv-

alent to determine the ve
tor of parameters �. One may noti
e that, if g has a linear

form, i.e., g(t;�) =

P

p

j=1

�

j

x

j

(t), where fx

j

(t)g

p

j=1

are the explanatory variables,

e.g., as in polynomial regression x

j

(t) = t

j�1

, then we are dealing with a situation of

a linear parametri
 regression model.

Certainly, there are other methods of �tting 
urves to data. A 
olle
tion of te
h-

niques known as nonparametri
 regression, for example, allows great 
exibility in the

possible form of the regression 
urve. In parti
ular, assume no parametri
 form for g.

In fa
t, a nonparametri
 regression model makes the assumption that the regression


urve belongs to some in�nite 
olle
tion of 
urves. For example, g 
an be in the


lass of fun
tions that are di�erentiable with a square integrable se
ond derivatives,

et
. Consequently, in order to propose a nonparametri
 model one may just need to


hoose an appropriate spa
e of fun
tions where he/she believes that the regression


urve lies. This 
hoi
e, usually, is motivated by the degree of the smoothness of g.

Then, one uses the data to determine an element of this fun
tion spa
e that 
an rep-

resent the unknown regression 
urve. Consequently, nonparametri
 te
hniques rely

more heavily on the data for information about g than their parametri
 
ounterparts.

Unfortunately, nonparametri
 estimators have some disadvantages. In general, they

are less eÆ
ient than the parametri
 estimators when the parametri
 model is appro-

priate. For most parametri
 estimators the risk will de
ay to zero at a rate of n

�1

while the nonparametri
 estimators have rate of n

��

, where the parameter � 2 (0; 1)

depends on the smoothness of g. For example, when g is twi
e di�erentiable the rate

is usually, n

�4=5

. However, in the 
ase where the parametri
 model is in
orre
t, ad

ho
, the rate n

�1


annot be a
hieved. In fa
t, the parametri
 estimator does not even


onverge to the true regression 
urve.
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2 Kernel estimation

Suppose we have n independent measurements f(t

i

; y

i

)g

n

i=1

, the regression equa-

tion is, in general, des
ribed as in (1.1). Note that the regression 
urve g is the


onditional expe
tation of the independent variable Y given the predi
t variable T ,

that is, g(t) = E [Y jT = t℄. When we try to approximate the mean response fun
tion

g, we 
on
entrate on the average dependen
e of Y on T = t. This means that we try

to estimate the 
onditional mean 
urve

g(t) = E [Y jT = t℄ =

Z

y

f(t; y)

f(t)

dy; (2.1)

where f(t; y) denotes the joint density of (T; Y ) and f(t) the marginal density of T .

In order to provide an estimate ĝ(t) of g we need to obtain estimates of f(t; y) and

f(t). Consequently, a density estimation methodology will be des
ribed.

2.1 The Histogram

The histogram is one of the �rst, and one of the most 
ommon, methods of den-

sity estimation. It is important to bear in mind that the histogram is a smoothing

te
hnique used to estimate the unknown density and hen
e it deserves some 
onsid-

eration.

Let us try to 
ombine the data by 
ounting how many data points fall into a small

interval of length h. This kind of interval is 
alled a bin. Observe that the well known

dot plot (Box, Hunter and Hunter1978, 25{26) is a parti
ular type of histogram where

h = 0.

Without loss of generality, we 
onsider a bin 
entered at 0, namely the interval

[�h=2; h=2) and let F

X

be the distribution fun
tion of X su
h that F

X

is absolutely


ontinuous with respe
t to a Lesbegue measure on R. Consequently the probability

that an observation of X will fall into the interval [�h=2; h=2) is given by:

P (X 2 [�h=2; h=2)) =

Z

h=2

�h=2

f

X

(x)dx;

3



where f

X

is the density of X.

A natural estimate of this probability is the relative frequen
y of the observations

in this interval, that is, we 
ount the number of observations falling into the interval

and divide it by the total number of observations. In other words, given the data

X

1

; : : : ; X

n

, we have:

P (X 2 [�h=2; h=2)) �

1

n

#fX

i

2 [�h=2; h=2)g:

Now applying the mean value theorem for 
ontinuous bounded fun
tion we obtain,

P (X 2 [�h=2; h=2)) =

Z

h=2

�h=2

f(x)dx = f(�)h;

with � 2 [�h=2; h=2). Thus, we arrive at the following density estimate:

^

f

h

(x) =

1

nh

#fX

i

2 [�h=2; h=2)g;

for all x 2 [�h=2; h=2).

Formally, suppose we observe random variables X

1

; : : : ; X

n

whose unknown 
om-

mon density is f . Let k be the number of bins, and de�ne C

j

= [x

0

+(j�1)h; x

0

+jh),

j = 1; : : : ; k. Now, take n

j

=

P

n

i=1

I(X

i

2 C

j

), where the fun
tion I(x 2 A) is de�ned

to be :

I(x 2 A) =

8

<

:

1 if x 2 A

0 otherwise,

and,

P

k

j=1

n

j

= n. Then,

^

f

h

(x) =

1

nh

k

X

j=1

n

j

I(x 2 C

j

);

for all x. Here Note that the density estimate

^

f

h

depends strongly upon the his-

togram bandwidth h. By varying h we 
an have di�erent shapes of

^

f

h

. For example,

if one in
reases h, one is averaging over more data and the histogram appears to

be smoother. When h ! 0, the histogram be
omes a very noisy representation of
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the data (needle-plot, H�ardle(1990)). The opposite, situation when h ! 1, the

histogram, now, be
omes overly smooth (box-shaped, H�ardle(1990)). Thus, h is the

smoothing parameter of this type of density estimate, and the question of how to


hoose the histogram bandwidth h turns out to be an important question in rep-

resenting the data via the histogram. For details on how to estimate h see H�ardle

(1990).

2.2 Kernel Density Estimation

The motivation behind the histogram 
an be expanded quite naturally. For this


onsider a weight fun
tion,

K(x) =

8

<

:

1

2

; if j x j< 1

0; otherwise

and de�ne the estimator,

^

f(x) =

1

nh

n

X

i=1

K(

x�X

i

h

):

We 
an see that

^

f extends the idea of the histogram. Noti
e that this estimate just

pla
es a \box" of side (width) 2h and height (2nh)

�1

on ea
h observation and then

sums to obtain

^

f . See Silverman (1986) for a dis
ussion of this kind of estimator.

It is not diÆ
ult to verify that

^

f is not a 
ontinuous fun
tion and has zero deriva-

tives everywhere ex
ept on the jump points X

i

� h. Besides having the undesirable


hara
ter of nonsmoothness (Silverman1986), it 
ould give a misleading impression

to a untrained observer sin
e its a somewhat ragged 
hara
ter might suggest several

di�erent bumps.

Figure 2.1 shows the nonsmooth 
hara
ter of the naive estimate. The data seem

to have two major modes. However, the naive estimator suggests several di�erent

small bumps.
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Figure 2.1: Naive estimate 
onstru
ted from Old faithful geyser data with h = 0:1

To over
ome some of these diÆ
ulties, 
onditions have been introdu
ed on the

fun
tion K. That is, K must be nonnegative kernel fun
tion that satis�es the follow-

ing property:

Z

1

�1

K(x)dx = 1:

In other words K(x) is a symmetri
 probability density fun
tion, as for instan
e, the

normal density, it will follow from de�nition that

^

f will itself be a probability density.

In addition,

^

f will inherit all the 
ontinuity and di�erentiability properties of the

kernel K. For example, if K is a normal density then

^

f will be a smooth 
urve with

derivatives of all orders.
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Figure 2.2 exhibits the smooth properties of

^

f when Gaussian kernel is used.
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Figure 2.2: Kernel density estimate 
onstru
ted from Old faithful geyser data with

Gaussian kernel and h = 0:25

Note that an estimate based on the kernel fun
tion pla
es \bumps" on the obser-

vations and the shape of those \bumps" is determined by the kernel fun
tion K. The

bandwidth h sets the width around ea
h observation and this bandwidth 
ontrols the

degree of smoothness of a density estimate. It is possible to verify that as h! 0, the

estimate be
omes a sum of Dira
 delta fun
tions at the observations while as h!1,

it eliminates all the lo
al roughness and possibly important details are missed.

The data for the �gure 2.3 whi
h is labelled \in
ome" were provided to me by

Charles Kooperberg. This data set 
onsists of 7125 random samples of yearly net

in
ome in the United Kingdom (Family Expenditure Survey, 1968-1983). The in
ome
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Histogram of income data

transformed data
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Figure 2.3: Bandwidth e�e
t on kernel density estimates. The data set in
ome was

res
aled to have mean 1.

data is 
onsiderably large and so it is more of a 
hallenge to 
omputing resour
es and

there are severe outliers. The peak at 0.24 is due to the UK old age pension, whi
h


aused many people to have nearly identi
al in
omes. The width of the peak is about

0.02, 
ompared to the range 11.5 of the data. The rise of the density to the left of

the peak is very steep.

There is a vast (Silverman1986) literature on kernel density estimation studying

its mathemati
al properties and proposing several algorithms to obtain an estimated

based on it. This method of density estimation be
ame, apart from histogram, the

most 
ommonly used estimator. However it has the drawba
ks when the underlying

density has long tails (Silverman1986). What 
auses this problem is the fa
t that the

bandwidth is �xed for all observations, not 
onsidering any lo
al 
hara
teristi
 of the

data.
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In order to solve this problem several other Kernel Density Estimation Methods

were proposed su
h as the nearest neighbor and the variable kernel. A detailed

dis
ussion and illustration of these methods 
an be found in Silverman (1986).

2.2.1 The Nearest Neighbor Method

The idea behind of the nearest neighbor method is to adapt the amount of smooth-

ing to lo
al 
hara
teristi
s of the data. The degree of smoothing is then 
ontrolled by

an integer k. Essentially, the nearest neighbor density estimator uses distan
es from

x in f(x) to the data point. For example, let d(x

1

; x) be the distan
e of data point

x

1

from the point x, and for ea
h x denote d

k

(x) as the distan
e from its kth nearest

neighbor among the data points x

1

; : : : ; x

n

.

The kth nearest neighbor density estimate is de�ned as,

^

f(x) =

k

2nd

k

(x)

;

where n is the sample size and, typi
ally, k is 
hosen to be proportional to n

1=2

.

In order to understand this de�nition, suppose that the density at x is f(x). Then,

one would expe
t about 2rnf(x) observations to fall in the interval [x� r; x + r℄ for

ea
h r > 0. Sin
e, by de�nition, exa
tly k observations fall in the interval [x �

d

k

(x); x + d

k

(x)℄, an estimate of the density at x may be obtained by putting

k = 2d

k

(x)n

^

f (x):

Note that while estimators like histogram are based on the number of observations

falling in a box of �xed width 
entered at the point of interest, the nearest neighbor

estimate is inversely proportional to the size of the box needed to 
ontain a given

number of observations. In the tail of the distribution, the distan
e d

k

(x) will be larger

than in the main part of the distribution, and so the problem of under-smoothing in

the tails should be redu
ed. Like the histogram the nearest neighbor estimate is not a

smooth 
urve. Moreover, the nearest neighbor estimate does not integrate to one and
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the tails of

^

f(x) die away at rate x

�1

, in other words extremely slowly. Hen
e, this

estimate is not appropriate if one is required to estimate the entire density. However,

it is possible to generalize the nearest neighbor estimator in a manner related to the

kernel estimate. The generalized kth nearest neighbor estimate is de�ned by,

^

f(x) =

1

nd

k

(x)

n

X

i=1

K(

x�X

i

d

k

(x)

):

Observe that the overall amount of smoothing is governed by the 
hoi
e of k, but the

bandwidth used at any parti
ular point depends on the density of observations near

that point. Again, we fa
e the problems of dis
ontinuity of at all the points where

the fun
tion d

k

(x) has dis
ontinuous derivative. The pre
ise integrability and tail

properties will depend on the exa
t form of the kernel.

Figure 2.4 shows the e�e
t of the smoothing parameter k on the density estimate.

Observe that as k in
reases rougher the density estimate be
omes. This e�e
t is

equivalent when h is approa
hing to zero in the kernel density estimator.
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0
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2
3

4
5

data

de
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ity

True
K=40
K=30
K=20

100 obs. from N(0.5,0.1)

Figure 2.4: E�e
t of the smoothing parameter K on the estimates
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2.2.2 Some Statisti
al Results of Kernel Density Estimation

As starting point one might want to 
ompute the expe
ted value of

^

f . For this,

suppose we have X

i

; : : : ; X

n

i.i.d. random variables with 
ommon density f and

let K(�) be a probability density fun
tion de�ned on the real line that satis�es the

following 
onditions (Prakasa-Rao1983):

� Condition 1. sup

x

K(x) �M <1; jxjK(x)! 0 as jxj ! 1.

� Condition 2. K(x) = K(�x); x 2 (�1;1) with

R

1

�1

x

2

K(x)dx <1.

Then we have, for a nonsto
hasti
 h

E[

^

f(x)℄ =

1

nh

n

X

i=1

E[K(

x�X

i

h

)℄

=

1

h

E[K(

x�X

i

h

)℄

=

1

h

Z

K(

x� u

h

)f(u)du

=

Z

K(y)f(x+ yh)dy: (2.2)

Now, let h ! 0. We see that E[

^

f(x)℄ ! f(x)

R

K(y)dy = f(x). Thus,

^

f is an

asymptoti
 unbiased estimator of f .

To 
ompute the bias of this estimator we have to make the assumption that the

underlying density is twi
e di�erentiable. Using a Taylor expansion of f(x+ yh), the

bias of

^

f in estimating f is

b

f

[

^

f(x)℄ =

h

2

2

f

00

(x)

Z

y

2

K(y)dy + o(h

2

):

We observe that sin
e we have assumed the kernel K is symmetri
 around zero, we

have that

R

yK(y)hf

0

(x)dy = 0, and the bias is quadrati
 in h.

1

1

See (Parzen1962)
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Using a similar approa
h we obtain :

� V ar

f

[

^

f(x)℄ =

1

nh

kKk

2

2

f(x) + o(

1

nh

), where kKk

2

2

=

R

kK(x)k

2

dx

� MSE

f

[

^

f(x)℄ =

1

nh

f(x)kKk

2

2

+

h

4

4

(f

00

(x)

R

y

2

K(y)dy)

2

+ o(

1

nh

) + o(h

4

) ,

where MSE

f

[

^

f ℄ stands for mean squared error of the estimator

^

f of f .

Hen
e, when the 
onditions h ! 0 and nh ! 1 are usually assumed, the

MSE

f

[

^

f ℄ ! 0, whi
h means that the kernel density estimate is a 
onsistent esti-

mator of the underlying density f . Moreover, MSE balan
es varian
e and squared

bias of the estimator in su
h way that the varian
e term 
ontrols the under-smoothing

and the bias term 
ontrols over-smoothing. In other words, an attempt to redu
e the

bias in
reases the varian
e, making the estimate too noisy (under-smooth). On the


ontrary, minimizing the varian
e leads to a very smooth estimate (over-smooth) with

high bias.

2.2.3 Bandwidth Sele
tion

It is natural to think of �nding an optimal bandwidth, say, h

�

su
h that h

�

=

argmin

h

MSE

f

[

^

f ℄. H�ardle(1990) shows that

h

�

=

�

f(x)kKk

2

2

(f

00

(x))

2

(

R

y

2

K(y)dy)

2

n

�

1=5

/ n

�1=5

: (2.3)

The problem with this approa
h is that h

�

depends on two unknown fun
tions

f(�) and f

00

(�). An approa
h to over
ome this problem uses a global measure that 
an

be de�ned as:

IMSE[

^

f ℄ =

Z

MSE

f

[

^

f(x)℄dx

=

1

nh

kKk

2

2

+

h

4

4

(

Z

y

2

K(y)dy)

2

kf

00

k

2

2

+ o(

1

nh

) + o(h

4

): (2.4)

IMSE is the well known integrated mean squared error of a density estimate.

The optimal value of h 
onsidering the IMSE is de�ne as

h

opt

= argmin

h>0

IMSE[

^

f ℄:

12



it 
an be shown that,

h

opt

= 


�2=5

2

�

Z

K

2

(x)dx

�

1=5

�

kf

00

k

2

2

�

�1=5

n

�1=5

; (2.5)

where 


2

=

R

y

2

K(y)dy. Unfortunately, (2.5) still depends on the se
ond derivative

of f , whi
h measures the speed of 
u
tuations in the density of f .

2.2.3.1 Referen
e to a Standard Distribution

A very natural way to get around the problem of not knowing f

00

is to use a

standard family of distributions to assign a value of the term kf

00

k

2

2

in the expression

(2.5). For example, assume that a density f belongs to a 
lass normal family with

mean � and varian
e �

2

, then

Z

(f

00

(x))

2

dx = �

�5

Z

('

00

(x))

2

dx

=

3

8

�

�1

2�

�5

� 0:212�

�5

; (2.6)

where '(x) is the standard normal density. If one uses a Gaussian kernel, then

h

opt

= (4�)

�1=10

(

3

8

�

�1=2

)

�1=5

�n

�1=5

=

�

4

3

�

1=5

�n

�1=5

= 1:06�n

�1=5

(2.7)

Hen
e, in pra
ti
e a possible 
hoi
e for h

opt

is 1:06�̂n

�1=5

, where �̂ is the sample

standard deviation.

If we want to make this estimate more insensitive to outliers, we have to use a

more robust estimate for the s
ale parameter of the distribution. Let

^

R be the sample

interquartile, then one possible 
hoi
e for h is

^

h

opt

= 1:06min(�̂;

^

R

(�(3=4)� �(1=4))

)

= 1:06min(�̂;

^

R

1:349

); (2.8)

where � is the standard normal distribution fun
tion.
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Figure 2.5 exhibits how a robust estimate of the s
ale 
an help in 
hoosing the

bandwidth. Note that by using

^

R we have strong eviden
e that the underlying density

has two modes.

Histogram of a mixture of two normal densities
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Figure 2.5: Comparison of two bandwidths, �̂ (the sample standard deviation) and

^

R (the sample interquartile) for the mixture 0:7�N(�2; 1) + 0:3�N(1; 1).

2.2.3.2 Maximum likelihood Cross-Validation

Consider kernel density estimates f

h

and suppose we want to test for a spe
i�
 h

the hypothesis

f

h

(x) = f(x) vs: f

h

(x) 6= f(x);

for a �xed x The likelihood ratio test would be based on the test statisti
 f(x)=f

h

(x).

For a good bandwidth this statisti
 should thus be 
lose to 1. We would also say that

on the average E [log(f(X)=f

h

)(X)℄ should be 
lose to 0. Thus, a good bandwidth,
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whi
h is minimizing this measure of a

ura
y, is in e�e
t optimizing the Kullba
k-

Leibler distan
e:

d

KL

(f; f

h

) =

Z

log

�

f(x)

f

h

(x)

�

f(x)dx: (2.9)

Of 
ourse, we are not able to 
ompute d

KL

(f; f

h

) from the data, sin
e we do not

know f . But from a theoreti
al point of view, we 
an investigate this distan
e for

the 
hoi
e of an appropriate bandwidth h. When d

KL

(f; f

h

) is 
lose to 0 this would

give the best agreement with the hypothesis f

h

= f . Hen
e, we are looking for a

bandwidth h, whi
h minimizes d

KL

(f; f

h

).

Suppose we are given a set of additional observations X

i

, independent of the

others. The likelihood for these observations is

Q

i

f(X

i

). Substituting f

h

in the

likelihood equation we have

Q

i

f

h

(X

i

) and the value of this statisti
 for di�erent h

would indi
ate whi
h value of h is preferable, sin
e the logarithm of this statisti
 is


lose to d

KL

(f; f

h

). Usually, we do not have additional observations. A way out of

this dilemma is to base the estimate f

h

on the subset fX

j

g

j 6=i

, and to 
al
ulate the

likelihood for X

i

. Denoting the leave-one-out estimate

f

h

(X

i

) = (n� 1)

�1

h

�1

X

j 6=i

K(

X

i

�X

j

h

):

Hen
e,

n

Y

i=1

f

h;i

(X

i

) = (n� 1)

�n

h

�n

n

Y

i=1

X

j 6=i

K(

X

i

�X

j

h

): (2.10)

However it is 
onvenient to 
onsider the logarithm of this statisti
 normalized with

the fa
tor n

�1

to get the following pro
edure:

CV

KL

(h) =

1

n

n

X

i=1

log[f

h;i

(X

i

)℄

=

1

n

n

X

i=1

log

h

X

j 6=i

K(

X

i

�X

j

h

)

i

� log[(n� 1)h℄ (2.11)
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Naturally, we 
hoose h

KL

su
h that:

h

KL

= argmax

h

CV

KL

(h): (2.12)

Sin
e we assumed that X

i

are i.i.d., the s
ores log f

h;i

(X

i

) are identi
ally distributed

and so,

E [CV

KL

(h)℄ = E [log f

h;i

(X

i

)℄:

Disregarding the leave-one-out e�e
t, we 
an write

E [CV

KL

(h)℄ � E

h

Z

log f

h

(x)f(x)dx

i

� �E [d

KL

(f; f

h

)℄ +

Z

log[f(x)℄f(x)dx: (2.13)

The se
ond term of the right-hand side does not depend on h. Then, we 
an expe
t

that we approximate the optimal bandwidth that minimizes d

KL

(f; f

h

).

The Maximum likelihood 
ross validation has two short
omings:

� When we have identi
al observations in one point, we may obtain an in�nite

value if CV

KL

(h) and hen
e we 
annot de�ne an optimal bandwidth.

� Suppose we use a kernel fun
tion with �nite support, e.g., the interval [�1; 1℄. If

an observation X

i

is more separated from the other observations than the band-

width h, the likelihood f

h;i

(X

i

) be
omes 0. Hen
e the s
ore fun
tion rea
hes the

value �1. Maximizing CV

KL

(h) for
es us to use a large bandwidth to prevent

this degenerated 
ase. This might lead to slight over-smoothing for the other

observations.

16



2.3 Kernel nonparametri
 Regression Method

Suppose we have i.i.d. observations f(X

i

; Y

i

)g

n

i=1

. Using equation (2.1) we know

how to estimate the denominator by using the kernel density estimation method. For

the numerator one 
an estimate the joint density using the multipli
ative kernel

f

h

1

;h

2

(x; y) =

1

n

n

X

i=1

K

h

1

(x�X

i

)K

h

2

(y � Y

i

):

where, K

h

1

(x � X

i

) = h

�1

1

K((x � X

i

)=h

1

), K

h

2

(x � Y

i

) = h

�1

2

K((x � Y

i

)=h

2

). It is

not diÆ
ult to show that

Z

yf

h

1

;h

2

(x; y)dy =

1

n

n

X

i=1

K

h

1

(x�X

i

)Y

i

:

Based on the methodology of kernel density estimation Nadaraya (1964) and Watson

(1964) suggested the following estimator g

h

for g.

g

h

(x) =

P

n

i=1

K

h

(x�X

i

)Y

i

P

n

j=1

K

h

(x�X

j

)

(2.14)

In general, the kernel fun
tion K

h

(x) = K((x�x

j

)=h) is taken as probability density

fun
tion symmetri
 around zero and parameter h is 
alled smoothing parameter or

bandwidth. In addition, with 
onditions 2.2.2, g

h

is a 
onsistent estimator of the

regression 
urve g and its asymptoti
 distribution is normal with mean zero and

asymptoti
 varian
e (g(x))

�1

�

2

R

(K(s))

2

ds as h ! 0 and nh ! 1. (See details in

H�ardle (1990)). This approa
h 
an be extended to the multivariate regression problem

by 
onsidering the multidimensional kernel density estimation method. (see, details

in S
ott (1992))

2.3.1 k-Nearest Neighbor (k-NN)

One may noti
e that regression by kernels is based on lo
al averaging of obser-

vations Y

i

in a �xed neighborhood of x. Instead of this �xed neighborhood k-NN

employs varying neighborhoods in the X variable support. That is,

17



g

k

(x) =

1

n

N

X

i=1

W

ki

(x)Y

i

; (2.15)

where,

W

ki

(x) =

8

<

:

n=k if i 2 J

x

0 otherwise,

(2.16)

with J

x

= fi : X

i

is one of the k nearest observations to xg

It 
an be shown that the bias and varian
e of the k-NN estimator g

k

with weights

(2.16) are given by, for a �xed x

E [g

k

(x)℄� g(x) �

1

24(f(x))

3

[g

00

(x)f(x) + 2g

0

(x)f

0

(x)℄(k=n)

2

(2.17)

and

V ar[g

k

(x)℄ �

�

2

k

: (2.18)

We observe that the bias in
reasing and the varian
e is de
reasing in the smoothing

parameter k. To balan
e this trade-o� one should 
hoose k � n

4=5

. For details, see

H�ardle (1990).
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Figure 2.6: E�e
t of the smoothing parameter k on the k-NN regression estimates.

2.4 Lo
al Polynomial Regression: LOWESS

Cleveland (1979) proposed the algorithm LOWESS, lo
ally weighted s
atter plot

smoothing, as a resistant method based on lo
al polynomial �ts. The basi
 idea is

to start with a lo
al polynomial (a k-NN type �tting) least squares �t and then to

use robust methods to obtain the �nal �t. Spe
i�
ally, one 
an �rst �t a polynomial

regression in a neighborhood of x, that is, �nd � 2 R

p+1

whi
h minimize

n

�1

n

X

i=1

W

ki

�

y

i

�

p

X

j=0

�

j

x

j

�

2

; (2.19)

where W

ki

denote k-NN weights. Compute the residuals �̂

i

and the s
ale parameter

�̂ = median(�̂

i

). De�ne robustness weights Æ

i

= K(�̂

i

=6�̂), where K(u) = (15=16)(1�

u)

2

, if juj � 1 and K(u) = 0, if otherwise. Then, �t a polynomial regression as in

(2.19) but with weights (Æ

i

W

ki

(x)). Cleveland suggests that p = 1 provides good

balan
e between 
omputational ease and the need for 
exibility to reprodu
e patterns

in the data. The smoothing parameter 
an be determined by 
ross-validation as
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similar to (2.12)

3 Spline Fun
tions

Due to their simple stru
ture and good approximation properties, polynomials are

widely used in pra
ti
e for approximating fun
tions. For this propose, one usually

divides the interval [a; b℄ in the fun
tion support into suÆ
iently small subintervals of

the form [x

0

; x

1

℄; : : : ; [x

k

; x

k+1

℄ and then uses a low degree polynomial p

i

for approxi-

mation over ea
h interval [x

i

; x

i+1

℄, i = 0; : : : ; k. This pro
edure produ
es a pie
ewise

polynomial approximating fun
tion s(�);

s(x) = p

i

(x) on [x

i

; x

i+1

℄; i = 0; : : : ; k:

In the general 
ase, the polynomial pie
es p

i

(x) are 
onstru
ted independently of

ea
h other and therefore do not 
onstitute a 
ontinuous fun
tion s(x) on [a; b℄. This

is not desirable if the interest is on approximating a smooth fun
tion. Naturally, it is

ne
essary to require the polynomial pie
es p

i

(x) to join smoothly at knots x

1

; : : : ; x

k

,

and to have all derivatives up to a 
ertain order, 
oin
ide at knots. As a result, we

get a smooth pie
ewise polynomial fun
tion, 
alled a spline fun
tion.

De�nition 3.1 The fun
tion s(x) is 
alled a spline fun
tion (or simply \spline") of

degree r with knots at fx

i

g

k

i=1

if �1 =: x

0

< x

1

< : : : < x

k

< x

k+1

:= 1, where

�1 =: x

0

and x

k+1

:=1 are set by de�nition,

� for ea
h i = 0; : : : ; k, s(x) 
oin
ides on [x

i

; x

i+1

℄ with a polynomial of degree

not greater than r;

� s(x); s

0

(x); : : : ; s

r�1

(x) are 
ontinuous fun
tions on (�1;1).

The set S

r

(x

1

; : : : ; x

k

) of spline fun
tions is 
alled spline spa
e. Moreover, the spline

spa
e is a linear spa
e with dimension r + k + 1 (S
humaker1981).
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De�nition 3.2 For a given point x 2 (a; b) the fun
tion

(t� x)

r

+

=

8

<

:

(t� x)

r

if t > x

0 if t � x

is 
alled the trun
ated power fun
tion of degree r with knot x.

Hen
e, we 
an express any spline fun
tion as a linear 
ombination of r + k + 1 basis

fun
tions. For this, 
onsider a set of interior knots fx

1

; : : : ; x

k

g and the basis fun
tions

f1; t; t

2

; : : : ; t

r

; (t� x

1

)

r

+

; : : : ; (x� t

k

)

r

+

g. Thus, a spline fun
tion is given by,

s(t) =

r

X

i=0

�

i

t

i

+

k

X

j=r+1

�

j

(t� x

j�r

)

r

+

It would be interesting if we 
ould have basis fun
tions that make it easy to 
om-

pute the spline fun
tions. It 
an be shown that B-splines form a basis of spline spa
es

(S
humaker1981). Also, B-splines have an important property toward 
omputation,

they are splines whi
h have smallest possible support. In other words, B-splines

are zero on a large set. Furthermore, a stable evaluation of B-splines with aid of a

re
urren
e relation is possible.

De�nition 3.3 Let 


1

= fx

j

g

fj2Zg

be a nonde
reasing sequen
e of knots. The i-th

B-spline of order k for the knot sequen
e 


1

is de�ned by

B

k

j

(t) = �(x

k+j

� x

j

)[x

j

; : : : ; x

k+j

℄(t� x

j

)

k�1

+

for all t 2 R;

where, [x

j

; : : : ; x

k+j

℄(t�x

j

)

k�1

+

is (k�1)th divided di�eren
e of the fun
tion (x�x

j

)

k

+

evaluated at points x

j

; : : : ; x

k+j

.

From the de�nition (3.3) we noti
e that B

k

j

(t) = 0 for all t 62 [x

j

; x

j+k

℄. It fol-

lows that only k B-splines have any parti
ular interval [x

j

; x

j+1

℄ in their support,

i.e., of all the B-splines of order k for the knot sequen
e 


1

, only the k B-splines

B

k

j�k+1

; B

k

j�k+2

; : : : ; B

k

j

might be nonzero on the interval [x

j

; x

j+1

℄. (See de Boor

(1978) for details). Moreover, B

k

j

(t) > 0 for all x 2 (x

j

; x

j+k

) and

P

j2Z

B

k

j

(t) = 1,
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that is, the B-spline sequen
e B

k

j


onsists of nonnegative fun
tions whi
h sum up to

1 and provides a partition of unity. Thus, a spline fun
tion 
an be written as linear


ombination of B-splines,

s(t) =

X

j2Z

�

j

B

k

j

(t):

The value of the fun
tion s at point t is simply the value of the fun
tion

P

j2Z

�

j

B

k

j

(t)

whi
h makes good sense sin
e the latter sum has at most k nonzero terms.
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Figure 3.7: Basis Fun
tions with 6 knots pla
ed at \x"

Figure 3.7 shows an example of B-splines basis and their 
ompa
t support prop-

erty. This property makes the 
omputation of B-splines easier and numeri
ally stable.

Of spe
ial interest is the set of natural splines of order 2m, m 2 N , with k knots

at x

j

. A spline fun
tion is a natural spline of order 2m with knots at x

1

; : : : ; x

k

, if, in

addition to the properties implied by de�nition (3.1), it satis�es an extra 
ondition:

� s is polynomial of order m outside of [x

1

; x

k

℄.
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Consider the interval [a; b℄ � R and the knot sequen
e a := x

0

< x

1

< : : : < x

k

<

x

k+1

:= b. Then, NS

2m

= fs 2 S(P

2m

) : s

0

= sj

[a;x

1

)

and s

k

= sj

[x

k

;b)

2 P

m

g, is

the natural polynomial spline spa
e of order 2m with knots at x

1

; : : : ; x

k

. The name

\natural spline" stems from the fa
t that, as a result of this extra 
ondition, s satis�es

the so 
alled natural boundary 
onditions s

j

(a) = s

j

(b) = 0, j = m; : : : ; 2m� 1.

Now, sin
e the dimension of S(P

2m

) is 2m + k and we have enfor
ed 2m extra


onditions to de�ne NS

2m

, it is natural to expe
t the dimension of NS

2m

to be k.

A
tually, it is well known that NS

2m

is linear spa
e of dimension k. See details in

S
humaker (1981).

In some appli
ations it may be possible to deal with natural splines by using a basis

for S(P

2m

) and enfor
ing the end 
onditions. For other appli
ations it is desirable

to have a basis for NS

2m

itself. To 
onstru
t su
h a basis 
onsisting of splines with

small supports we just need fun
tions based on the usual B-splines. Parti
ularly,

when m = 2, we will be 
onstru
ting basis fun
tions for the Natural Cubi
 Spline

Spa
e, NS

4

.

S
humaker (1972) showed that the basis obtained by Greville (1969) (ex
ept for

a normalization 
onstant!) and re
ently used by Kooperberg and Stone (1991)is a

basis for NS

4

.

De�nition 3.4 Let M(x; y) = (y � x)

3

+

and let M [x; x

1

; : : : ; x

k

℄ be the (k � 1)st

divided di�eren
e of M as a fun
tion of x taken over the knot sequen
e x

1

� x

2

: : : �

x

k

with h

i+1

= x

i+1

� x

i

, i = 1; : : : ; k � 1 Then

B

i

(x) =

8

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

:

M [x; x

1

; x

2

; x

3

℄=(h

3

+ 2h

2

) if i = 1

M [x; x

1

; x

2

; x

3

; x

4

℄ if i = 2

(x

i+2

� x

i�2

)M [x; x

i�2

; : : : ; x

i+2

℄ if i = 3; : : : ; k � 2

M [x; x

k�3

; x

k�2

; x

k�1

; x

k

℄ if i = k � 1

M [x; x

k�2

; x

k�1

; x

k

℄(h

k�1

+ 2h

k

) if i = k

23



                                                                                                                                                                                                                                                                                                            

x

y

0 2 4 6 8 10

0
1

2
3

4

x x x x x x

B_{1}
B_{2}
B_{3}
B_{4}
B_{5}
B_{6}

Basis for Natural Spline

Figure 3.8: Basis Fun
tions with 6 knots pla
ed at \x"

3.1 Logspline Density Estimation

In 1991, Kooperberg and Stone introdu
ed another type of algorithm to estimate

an univariate density. This algorithmwas based on the work of Stone (1990) and Stone

and Koo (1985) where the theory of the logspline family of fun
tions was developed.

Consider an in
reasing sequen
e of knots ft

j

g

K

j=1

, K � 4, in R . Denote by S

0

the set of real fun
tions su
h that s is a 
ubi
 polynomial in ea
h interval of the

form (�1; t

1

℄; [t

1

; t

2

℄; : : : ; [t

K

;1). Elements in S

0

are the well-known 
ubi
 splines
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with knots at ft

j

g

K

j=1

. Noti
e that S

0

is a (K +4)-dimensional linear spa
e. Now, let

S � S

0

su
h that the dimension of S is K with fun
tions s 2 S linear on (�1; t

1

℄ and

on [t

K

;1). Thus, S has a basis of the form 1; B

1

: : : ; B

K�1

, su
h that B

1

is linear

fun
tion with negative slope on (�1; t

1

℄ and B

2

; : : : ; B

K�1

are 
onstant fun
tions on

the same interval. Similarly, B

K�1

is linear fun
tion with positive slope on [t

K

;1)

and B

1

; : : : ; B

K�2

are 
onstant on the interval [t

K

;1) (Kooperberg and Stone1991).

Let � be the parametri
 spa
e of dimension p = K � 1, su
h that for � =

(�

1

; : : : ; �

p

) 2 R

p

, �

1

< 0 and �

p

> 0. Then, de�ne


(�) = log(

Z

R

exp(

K�1

X

j=1

�

j

B

j

(x))dx

and

f(x; �) = expf

K�1

X

j=1

�

j

B

j

(x)� 
(�)g:

The p-parametri
 exponential family f(�; �), � 2 � � R

p

of positive twi
e di�er-

entiable density fun
tion on R is 
alled logspline family and the 
orresponding log-

likelihood fun
tion is given by

L(�) =

X

log f(x; �) ; � 2 � :

The log-likelihood fun
tion L(�) is stri
tly 
on
ave and hen
e the maximum like-

lihood estimator

^

� of � is unique, if it exists. We refer to

^

f = f(�;

^

�) as the logspline

density estimate. Note that the estimation of

^

� makes logspline pro
edure not essen-

tially nonparametri
. Thus, estimation of � by Newton-Raphson, together with small

numbers of basis fun
tion ne
essary to estimate a density, make the logspline algo-

rithm extremely fast when it is 
ompared with Gu's algorithm for smoothing spline

density estimation, (Gu1993).

In the Logspline approa
h the number of knots is the smoothing parameter. That

is, too many knots leads to a noisy estimate while too few knots gives a very smooth


urve. Based on their experien
e of �tting logspline models, Kooperberg and Stone
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provide a table with the number of knots based on the number of observations. No

indi
ation was found that the number of knots takes in 
onsideration the stru
ture

of the data (number of modes, bumps, asymmetry, et
.). However, an obje
tive


riterion for the 
hoi
e of the number of knots, Stepwise Knot Deletion and Stepwise

knot Addition, are in
luded in the logspline pro
edure.

For 1 � j � p, let B

j

be a linear 
ombination of a trun
ated power basis (x� t

k

)

3

+

for the a knot sequen
e t

1

; : : : ; t

p

, that is,

B

j

(x) = �

j

+ �

j0

x +

X

k

�

jk

(x� t

k

)

3

+

:

Then

X

j

�

j

B

j

(x) =

X

�

j

�

j0

+

X

j

X

k

�

jk

�

j

(x� t

k

)

3

+

:

Let

P

j

^

�

j

�

jk

= �

T

k

^

�. Then, for 1 � k � K Kooperberg and Stone (1991),

SE(�

T

k

^

�) =

q

�

T

k

(I(

^

�))

�1

�

k

)

where I(�) is the Fisher informationmatrix obtained from the log-likelihood fun
tion.

The knots t

1

and t

K

are 
onsidered permanent knots, and t

k

, 2 � k � K, are

nonpermanent knots. Then at any step delete (similarly for addition step) that knot

whi
h has the smallest value of j�

T

k

^

�j=SE(�

T

k

^

�). In this matter, we have a sequen
e

of models whi
h ranges from 2 to p� 1 knots. Now, denote by

^

L

m

the log-likelihood

fun
tion of the mth model (2 � m+2 � p� 1) evaluated at the maximum likelihood

estimate for that model. To spe
ify a stop 
riteria, Kooperberg and Stone make use

of the Akaike Information Criterion (AIC), that is, AIC

�;m

= �2

^

L

m

+ �(p�m) and


hoose m̂ that minimizes AIC

3;m

. There is no theoreti
al justi�
ation for 
hoosing

� = 3. The 
hoi
e was made, a

ording to them, be
ause this value of � makes the

probability that

^

f is bimodal when f is Gamma(5) to be about .1.

It would be interesting to have an algorithmwhi
h 
ombines the low 
omputational


ost of logsplines (due to B-splines and the estimation of their 
oeÆ
ients) and the

performan
e of the automati
 smoothing parameter sele
tion developed by Gu (1993).
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3.2 Splines Density Estimation: A Dimensionless Approa
h

Let X

1

; : : : ; X

n

a random sample from a probability density f on a �nite domain

X . Assuming that f > 0 on X , one 
an make a logisti
 transformation f = e

g

=(

R

e

g

).

We know that this transformation is not one-to-one and Gu and Qiu (1993) proposed

side 
onditions on g su
h that g(x

0

) = 0; x

0

2 X or

R

X

g = 0. Given those 
onditions

we have to �nd the minimizer of the penalized log-likelihood

�

1

n

n

X

i=1

g(X

i

) + log

Z

X

e

g

+

�

2

J(g) (3.5)

in a Hilbert spa
e H, where J is a roughness penalty and � is the smoothing param-

eter. The spa
e H is a Hilbert spa
e where the evaluation is 
ontinuous so that the

�rst term in (3.5) is 
ontinuous. The penalty term J is a seminorm in H with a null

spa
e J

?

of �nite dimension M � 1. By taking a �nite dimensional J

?

one prevents

interpolation (i.e. the empiri
al distribution) and a quadrati
 J makes easier the nu-

meri
al solution of the variational problem (3.5). Sin
e, H is an in�nite dimensional

spa
e, the minimizer of (3.5) is, in general, not 
omputable. Thus, (Gu and Qiu1993)

propose 
al
ulating the solution of the variational problem in �nite dimensional spa
e,

say, H

n

, where n is the sample size.

The performan
e of the smoothing spline estimator depends upon the 
hoi
e of

the smoothing parameter �. Gu (1993), suggested a performan
e-oriented iteration

pro
edure ( GCV-like pro
edure) whi
h updates g and � jointly a

ording to a per-

forman
e estimate. The performan
e is measured by a loss fun
tion whi
h was taken

as a symmetrized Kullba
k-Leibler distan
e between e

g

=

R

e

g

and e

g

0

=

R

e

g

0

. Spe
i�-


ally, if one solves the variational problem (3.5) inH

n

by a standard Newton-Raphson

pro
edure, then by starting from a 
urrent iterate ~g, instead of 
al
ulating the next

iterate with a �xed �, one may 
hoose a � that minimizes the loss fun
tion.

Under this approa
h, one might ask the following questions:

� Is it possible to estimate a density using K � n basis fun
tions instead of the
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original n su
h that it redu
es the 
omputational 
ost of getting the solution

(3.5) signi�
antly ?

� How good would su
h an approximation be ?

Dias (1998) gave reasonable answers to those questions by using the basis fun
tions

B

i

(x) given in De�nition (3.4) that 
an be easily extend to a multivariate 
ase by a

tensor produ
t.

4 Splines nonparametri
 Regression: The thin-

plate spline on R

d

There are many appli
ations where a unknown fun
tion g of one or more variables

and a set of measurements are given su
h that:

y

i

= L

i

g + �

i

(4.1)

where L

1

; : : : ;L

n

are linear fun
tionals de�ned on some linear spa
e H 
ontaining g,

and �

1

; : : : ; �

n

are measurement errors usually assumed to be independently identi
ally

normal distributed with mean zero and unknown varian
e �

2

. Typi
ally, the L

i

will

be point evaluation of the fun
tion g.

Straight forward least square �tting is often appropriate but it produ
es a fun
tion

whi
h is not suÆ
iently smooth for some data �tting problems. In su
h 
ases, it

may be better to look for a fun
tion whi
h minimizes a 
riterion that involves a


ombination of goodness of �t and an appropriate measure of smoothness. Let t =

(x

1

; : : : ; x

d

), t

i

= (x

1

(i); : : : ; x

d

(i)) for i = 1; : : : ; n and the evaluation fun
tionals

L

i

g = g(t

i

), then the regression model (4.1) be
omes,

y

i

= g(x

1

(i); : : : ; x

d

(i)) + �

i

: (4.2)
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The thin-plate smoothing spline is the solution to the following variational problem.

Find g 2 H to minimize

L

�

(g) =

1

n

n

X

i=1

(y

i

� g(t

i

))

2

+ �J

d

m

(g) (4.3)

where � is the smoothing parameter whi
h 
ontrols the trade o� between �delity to

the data and smoothness and the penalty term J

d

m

is given by

J

d

m

(g) =

X

�

1

+:::+�

d

=m

m!

�

1

! : : : ; �

d

!

Z

1

�1

: : :

Z

1

�1

�

�

m

g

�x

�

1

1

: : : �x

�

d

d

�

2

Y

j

dx

j

:

The 
ondition 2m� d > 0 is ne
essary and suÆ
ient in order to have bounded eval-

uation fun
tionals in H, i.e., H is a reprodu
ing kernel in Hilbert spa
e. Moreover,

the null spa
e of the penalty term J

d

m

is the M-dimensional spa
e spanned by poly-

nomials �

1

; : : : ; �

M

of degree less or equal to m � 1, e.g., �

i

(t) = t

j�1

=(j � 1)!, for

j = 1; : : : ; m.

It 
an be shown that (see Wahba (1990)), if t

1

; : : : ; t

n

are su
h that least squares

regression on �

1

; : : : ; �

M

is unique, then (4.3) has a unique minimizer g

�

, with rep-

resentation

g

�

(t) =

n

X

i=1




i

E

m

(t; t

i

) +

M

X

j=1

b

j

�

j

(t)

= Q
+ Tb (4.4)

where, T is a n �M matrix with entries �

j

(t

l

) for j = 1; : : : ;M , l = 1; : : : ; n and

Q is a n � n matrix with entries E

m

(t

l

; t

i

), for i = 1; : : : ; n. The fun
tion E

m

is

a Green's fun
tion for the m-iterate Lapla
ian ((Wahba1990)). For example, when

d = 1, E

m

(t; t

i

) = (t � t

i

)

m�1

+

=(m � 1)!. The 
oeÆ
ients 
 and b 
an be determined

by substituting (4.4) into (4.3). Thus, the optimization problem (4.3) subje
t to

T

0


 = 0, is redu
ed to a linear system of equations whi
h is solved by standard

matrix de
omposition su
h as QR de
omposition. The 
onstraint T

0


 = 0 is ne
essary

to guarantee that when 
omputing the penalty term at g

�

, J

d

m

(g

�

) is 
onditionally

positive de�nite.

2

E�orts have been done in order to redu
e substantially the

2

See, (Wahba1990 Silverman and Green1994)
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omputational 
ost of solving smoothing splines �tting by introdu
ing the 
on
ept

of H-splines ((Luo and Wahba1997) and (Dias1999)), where the number of basis

fun
tions and � a
t as the smoothing parameters.

A major 
on
eptual problem with spline smoothing is that it is de�ned impli
itly

as the solution to a variational problem rather than as an expli
it formula involving

the data values. This diÆ
ulty 
an be resolved, at least approximately, by 
onsidering

how the estimate behaves on large data sets. It 
an be shown from the quadrati


nature of (4.3) that g

�

is linear in the observations y

i

, in the sense that there exists

a weight fun
tion H

�

(s; t) su
h that

g

�

(s) =

n

X

i=1

y

i

H

�

(s; t

i

): (4.5)

It is possible to obtain the asymptoti
 form of the weight fun
tion, and hen
e an

approximate expli
it form of the estimate. For the sake of simpli
ity 
onsider d = 1,

m = 2 and suppose that the design points have lo
al density f(t) with respe
t to a

Lesbegue measure on R. Under mild 
onditions (see, Silverman (1984)), we have as

n!1,

H

�

(s; t) =

1

f(t)

1

h(t)

K(

s� t

h(t)

);

where the kernel fun
tion K is given by

K(u) =

1

2

exp(�juj=

p

2) sin(juj=

p

2 + �=4);

and the bandwidth h(t) satis�es

h(t) = �

1=4

n

�1=4

f(t)

�1=4

:

Based on these formulas, we 
an see that the spline smoother is approximately a


onvolution smoothing method but the data are not 
onvolved with a kernel with

�xed bandwidth, in fa
t, h varies a
ross the sample.
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4.1 Additive Models

The additive model is a generalization of the usual linear regression model and

what has made it so popular for statisti
al inferen
e is that the linear model is linear in

the predi
tor variables (explanatory variables). On
e we have �tted the linear model

we 
an examine the predi
tor variables separately, in the absen
e of intera
tions.

Additive models also are linear in their predi
tor variables. An additive model is

de�ned by

y

i

= � +

p

X

j=1

g

j

(t

j

) + �

i

(4.6)

where t

j

are the predi
tor variables and as de�ned before in se
tion 4, �

i

are un
or-

related error measurements with E [�

i

℄ = 0 and V ar[�

i

℄ = �

2

. The fun
tions g

j

are

unknown but assumed to be smooth fun
tions lying in some metri
 spa
e. Se
tion

4 des
ribes a general framework for de�ning and estimating general nonparametri


regression models whi
h in
ludes additive models as a spe
ial 
ase. For this, suppose

that 
 is the spa
e of the ve
tor predi
tor t and assume the H is reprodu
ing kernel

in Hilbert spa
e. Hen
e H has the de
omposition

H = H

0

+

p

X

k=1

H

k

(4.7)

whereH

0

is spanned by �

1

; : : : ; �

M

andH

k

has the reprodu
ing kernel E

k

(�; �), de�ned

in se
tion 4. The spa
e H

0

is the spa
e of fun
tions that are not to be penalized in

the optimization. For example, re
all equation (4.3) and let m = 2 then H

0

is the

spa
e of linear fun
tions in t.

The optimization problem be
omes: For a given set of predi
tors t

1

; : : : ; t

n

, �nd

the minimizer of

n

X

i=1

fy

i

�

p

X

k=0

g

k

(t

i

)g

2

+

k

X

k=1

�

k

jjg

k

jj

2

H

k

; (4.8)

with g

k

2 H

k

. Then, the theory of reprodu
ing kernel guarantees that a minimizer
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exists and has the form

ĝ =

p

X

k=1

Q

k


+ Tb; (4.9)

where Q

k

and T are given in equation (4.4) and the ve
tors 
 and b are found by

minimizing the �nite dimensional penalized least square 
riterion

jjy � Tb�

p

X

k=1

Q

k


jj+

p

X

k=1

�

k




T

k

Q

k




2

: (4.10)

This general problem (4.9) 
an potentially be solved by a ba
k�tting type algorithm

(Hastie and Tibshirani1990).

Algorithm 4.1 1. Initialize g

j

= g

(0)

j

for j = 0; : : : ; p.

2. Cy
le j = 0; : : : ; p; : : : ; j = 0; : : : ; p; : : :

ĝ

j

= S

j

(y �

X

j 6=k

g

j

(t

j

))

3. Continue (ii) until the individual fun
tions do not 
hange.

where y = (y

1

; : : : ; y

n

), S

j

= Q

k

(Q

k

+ �

k

I)

�1

, for j = 1; : : : ; p, and S

0

= T (T

T

T )

�1

.

One may observe that omitting the 
onstant term � in (4.6) does not 
hange the

resulting estimates.

4.2 Generalized Cross-Validation Method for Splines non-

parametri
 Regression

Without loss of generality, let's take d = 1 and m = 2. The solution of (4.3)

depends strongly on the smoothing parameter. Craven and Wahba (1979) provide an

automati
 data-driven pro
edure to estimate �. For this, let g

[k℄

�

be the minimizer of

1

n

X

i 6=k

(y

i

� g(t

i

))

2

+ �

Z

(g

00

(u))

2

du;
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the optimization problem with the kth data point left out. Then following Wahba's

notation, the ordinary 
ross-validation fun
tion V

0

(�) is de�ned as

V

0

(�) =

1

n

n

X

k=1

(y

k

� g

[k℄

�

(t

k

))

2

; (4.11)

and the leave-one-out estimate of � is the minimizer of V

0

(�). To pro
eed, we need

to des
ribe the in
uen
e matrix. It is not diÆ
ult to show (see (Wahba1990)) that,

for �xed � we have by (4.5) that g

�

is linear in the observations y

i

, that is, in matrix

notation

g

�

= H

�

y:

At this stage, one may think that the 
omputation of this problem is prohibitive but

Craven and Wahba (1979) give us a very useful mathemati
al identity, whi
h will not

be proved here, but is

(y

k

� g

[k℄

�

(t

k

)) = (y

k

� g

�

(t

k

))=(1� h

kk

(�); (4.12)

where h

kk

(�) is the kth entry of H

�

. By substituting (4.12) into (4.11) we obtain a

simpli�ed form of V

0

, that is,

V

0

(�) =

1

n

n

X

k=1

(y

k

� g

�

(t

k

))

2

=(1� h

kk

(�))

2

(4.13)

The right hand of (4.13) is easier to 
ompute than (4.11), however the GCV is even

easier. The generalized 
ross-validation (GCV) is method for 
hoosing the smoothing

parameter �, whi
h is based on leaving-one-out, but it has two advantages. It is

easy to 
ompute and it posses some important theoreti
al properties the would be

impossible to prove for leaving-one-out, although, as pointed out by Wahba, in many


ases the GCV and leaving-one-out estimates will give similar answers. The GCV

fun
tion is de�ned by

V (�) =

1

n

n

X

k=1

(y

k

� g

�

(t

k

))

2

=(1�

�

h

kk

(�))

2

=

1

n

jj(I �H

�

)yjj

2

[

1

n

tr(I �H

�

℄

2

; (4.14)

33



where

�

h

kk

(�) = (1=n)tr(H

�

), with tr(H

�

) standing for the tra
e of H

�

. Note that

V (�) is a weighted version of V

0

(�). In addition, if h

kk

(�) does not depend on k, then

V

0

(�) = V (�) for all � > 0.

It is important to observe that GCV is a predi
tive mean square error 
riteria.

Note that by de�ning the predi
tive mean square error T (�) as

T (�) =

1

n

n

X

i=1

(L

i

g

�

� L

i

g)

2

(4.15)

where, L

i

is the evaluation fun
tional de�ned in se
tion 3.2, the GCV estimate of �

is the minimizer of (4.15). Consider the expe
ted value of T (�),

E [T (�)℄ =

1

n

n

X

i=1

E [(L

i

g

�

� L

i

g)

2

℄: (4.16)

The GCV theorem (Wahba1990) says that if g is in a reprodu
ing kernel Hiblert spa
e

then there is a sequen
e of minimizers

~

�(n) of EV (�) that 
omes 
lose to a
hieving

the minimum possible value of the expe
ted mean square error, E [T (�)℄, using

~

�(n),

as n!1. That is, let the expe
tation ineÆ
ien
y I

�

n

be de�ned as

I

�

n

=

E [T (

~

�(n))℄

E [T (�

�

)℄

;

where �

�

is the minimizer of E [T (�)℄. Then, under mild 
onditions as su
h the ones

des
ribed and dis
ussed by Golub, Heath and Wahba (1979) and Craven and Wahba

(1979), we have I

�

n

# 1 as n!1.

Figure 4.9 shows the s
atter plot of the revenue passenger miles 
own by 
ommer-


ial airlines in the United States for ea
h year from 1937 to 1960. (This data 
an be

found in the software). The smoothing parameter � was 
omputed by GCV method

through the R fun
tion smooth.spline().
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airmiles data

Passenger−miles flown by U.S. commercial airlines
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Figure 4.9: Smoothing spline �tting with smoothing parameter obtained by GCV

method

5 Final Comments

Comparing with parametri
 te
hniques we have, for the nonparametri
 approa
h,

more 
exibility sin
e it allows one to 
hoose from the in�nite dimensional 
lass of

fun
tions where the underlying regression 
urve is assumed to belong. In general,

this type of 
hoi
e depends on the unknown smoothness of the true 
urve. But for

most of the 
ases one 
an assume mild restri
tions su
h that a regression 
urve has

an absolutely 
ontinuous �rst derivative and a square integrable se
ond derivative.

Nevertheless, nonparametri
 estimators are less eÆ
ient than the parametri
 ones

when a parametri
 model is valid. For many parametri
 estimators the mean square

error goes to zero with rate of n

�1

, while nonparametri
 estimators have rate of n

��

,

� 2 [0; 1℄, and � depends on the smoothness of the underlying 
urve. When the

postulate parametri
 model is not valid, many parametri
 estimators 
annot have, ad

ho
, rate n

�1

. In fa
t, those estimators will not 
onverge to the true 
urve. One of the
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advantages of the adaptive basis fun
tions pro
edures, e.g., H-splines methods is the

ability to vary the amount of smoothing in response to the inhomogeneous 
urvature

of the true fun
tions at di�erent lo
ations. Those methods have been very su

ess-

ful in 
apturing the stru
ture of the unknown fun
tion. In general, nonparametri


estimators are good 
andidates when one does not know the form of the underlying


urve.

Referen
es

Box, G. E. P., Hunter, W. G. and Hunter, J. S. (1978). Statisti
s for Experiments:

An Introdu
tion to Design, Data Analysis, and Model Building, John Wiley and

Sons (New York, Chi
hester).

Cleveland, W. S. (1979). Robust lo
ally weighted regression and smoothing s
atter-

plots, J. Amer. Statist. Asso
. 74(368): 829{836.

Craven, P. and Wahba, G. (1979). Smoothing noisy data with spline fun
tions, Nu-

meris
he Mathematik 31: 377{403.

de Boor, C. (1978). A Pra
ti
al Guide to Splines, Springer Verlag, New York.

Dias, R. (1998). Density estimation via hybrid splines, Journal of Statisti
al Compu-

tation and Simulation 60: 277{294.

Dias, R. (1999). Sequential adaptive non parametri
 regression via h-splines, Com-

muni
ations in Statisti
s: Computations and Simulations 28: 501{515.

Golub, G. H., Heath, M. and Wahba, G. (1979). Generalized 
ross-validation as a

method for 
hoosing a good ridge parameter, Te
hnometri
s 21(2): 215{223.

Greville, T. N. (1969). Theory and Appli
ations of Spline Fun
tions, A
ademi
 Press,

New York.

36



Gu, C. (1993). Smoothing spline density estimation: A dimensionless automati


algorithm, J. of the Amer. Stat'l. Assn. 88: 495{504.

Gu, C. and Qiu, C. (1993). Smoothing spline density estimation:theory, Ann. of

Statisti
s 21: 217{234.

H�ardle, W. (1990). Smoothing Te
hniques With Implementation in S, Springer-Verlag

(Berlin, New York).

Hastie, T. J. and Tibshirani, R. J. (1990). Generalized Additive Models, Chapman

and Hall.

Kooperberg, C. and Stone, C. J. (1991). A study of logspline density estimation,

Computational Statisti
s and Data Analyis 12: 327{347.

Luo, Z. and Wahba, G. (1997). Hybrid adaptive splines, Journal of the Ameri
an

Statisti
al Asso
iation 92: 107{116.

Nadaraya, E. A. (1964). On estimating regression, Theory of probability and its

appli
ations 10: 186{190.

Parzen, E. (1962). On estimation of a probability density fun
tion and mode, Ann.

of Mathemati
al Stat. 33: 1065{1076.

Prakasa-Rao, B. L. S. (1983). Nonparametri
 Fun
tional Estimation, A
ademi
 Press

(Duluth, London).

S
humaker, L. L. (1972). Spline Fun
tions and Aproximation theory, Birkhauser.

S
humaker, L. L. (1981). Spline Fun
tions: Basi
 Theory, WileyIS
i:NJ.

S
ott, D. W. (1992). Multivariate Density Estimation. Theory, Pra
ti
e, and Visual-

ization, John Wiley and Sons (New York, Chi
hester).

37



Silverman, B. W. (1984). Spline smoothing: The equivalent variable kernel method,

Ann. of Statisti
s 12: 898{916.

Silverman, B. W. (1986). Density Estimation for Statisti
s and Data Analysis, Chap-

man and Hall (London).

Silverman, B. W. and Green, P. J. (1994). Nonparametri
 Regression and Generalized

Linear Models, Chapman and Hall (London).

Stone, C. J. (1990). Large-sample inferen
e for log-spline models, Ann. of Statisti
s

18: 717{741.

Stone, C. J. and Koo, C.-Y. (1985). Logspline density estimation, Contemporary

Mathemati
s pp. 1{158.

Wahba, G. (1990). Spline Models for Observational Data, SIAM:PA.

Watson, G. S. (1964). Smooth regression analysis, Sankya A 26: 359{372.

38


