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Abstra
t

In this paper we 
onsider appli
ations of lo
al in
uen
e (Cook, 1986) to evaluate

small perturbations in the model or data set in the 
ontext of stru
tural 
omparative


alibration (Bolfarine and Galea, 1995) assuming that the measurements obtained follow

a multivariate ellipti
al distribution. Di�erent perturbation s
hemes are investigated and

an appli
ation is 
onsidered to a real data set, using the ellipti
al t�distribution.
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1 Introdu
tion

The main obje
t of this paper is the study of lo
al in
uen
e and diagnosti
 in 
omparative


alibration models designed to 
ompare the eÆ
ien
y of several measuring devi
es (or instru-

ments) when measuring the same unknown quantity x in a 
ommon group of individuals or

experimental units. It is assumed that the observed measurements follow a multivariate ellip-

ti
al distribution. Moreover, the 
omparative 
alibration model 
an be seen as a spe
ial 
ase

of the general multivariate measurement error model (Fuller, 1987).

Comparing measuring devi
es whi
h varies in pri
ing, fastness and other features, su
h as

eÆ
ien
y, has been of growing interest in several areas like engineering, medi
ine, psy
hology

and agri
ulture. Grubbs (1948, 1973) reports data on an experiment designed for 
omparing

three 
ronometers and Barnett (1969) reports on the 
omparison of four 
ombinations of two

instruments and two operators for measuring vital 
apa
ity. Several other examples in the

medi
al area are reported in the literature spe
ially in Kelly (1984, 1985), Chipkevit
h et al.

(1996) and Lu et al. (1997). Examples in agri
ulture are 
onsidered in Fuller (1987) and in

psy
hology and edu
ation in Dunn (1992). Outliers and dete
tion of in
uent observations is an

important step in the analysis of a data set. There are several ways of evaluating the in
uen
e

of perturbations in the data set and in the model given the parameter estimates. Important

reviews 
an be found in the books by Cook and Weisberg (1982) and Chatterjee and Hadi

(1988) and in the paper by Cook (1986). On the other hand, there are just a few works in

the literature for diagnosti
 and in
uen
e of observations in models with measurement errors.

Kelly (1984) 
onsidered a diagnosti
 pro
edure in the stru
tural linear model based on the
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in
uen
e fun
tion. Tanaka et al. (1991) also 
onsider the in
uen
e fun
tion introdu
ed by

Hampel for evaluating the in
uen
e of observations in the analysis of 
ovarian
e stru
tures.

Re
ently, Zhao and Lee (1998) de�ne leverage of one observation and Cook's distan
e in a

simultaneous equation model. Rather than eliminating 
ases, the approa
h proposed by Cook

(1986) is a general method for evaluating, under the maximum likelihood estimators, the

in
uen
e of small perturbations in the model or data set.

Additional results on lo
al in
uen
e and appli
ations in linear regression and mixed models


an be found in Be
kman et al. (1987), Lawran
e (1988), Thomas and Cook (1990), Tsai and

Wu (1992), Paula (1993), Galea et al. (1997) and Lesa�re and Verbeke (1998). Zhao and

Lee (1998) and Kwan and Fung (1998) apply the lo
al in
uen
e approa
h for fa
tor analysis

and simultaneous equations under the normality assumption. Re
ently, Galea et al. (2002a)

apply the lo
al in
uen
e method in fun
tional and stru
tural 
omparative 
alibration models

also under the normal distribution assumption. However, no appli
ation of lo
al in
uen
e

has been 
onsidered for 
omparative 
alibration under ellipti
al models. Thus, the main

obje
t of this paper is to apply the approa
h of lo
al in
uen
e to ellipti
al measurement error

models. As typi
ally 
onsidered in the literature, the relevan
e of using the t-distribution

is related to its 
apability of downweighting in
uent observations. See, for example, Lange

et al. (1989). Several perturbation s
hemes are 
onsidered su
h as 
ase perturbation and

response perturbation. In Se
tion 2 the ellipti
al stru
tural 
omparative 
alibration model is


onsidered and in Se
tion 3 the main 
on
epts of lo
al in
uen
e are revised. In Se
tion 4 model


urvatures are 
onsidered for di�erent perturbation s
hemes and in Se
tion 5 an illustration

of the methodology is presented for a real data set.

2 Ellipti
al 
omparative 
alibration models

Suppose that we have at our disposal p � 2 instruments for measuring a 
hara
teristi
 of

interest x in a group of n experimental units. Let x

i

the true (unknown) value in unit i and

y

ij

the measured value obtained with instrument j in unit i, i = 1; : : : ; n and j = 1; : : : ; p.

A model typi
ally 
onsidered in the literature (see, Jae
h (1964), Co
hran (1968), Barnett

(1969), Williams (1969) and Shyr and Gleser (1986)), for su
h situation is given, in matrix

notation, by

Y

i

= �+ �x

i

+ e

i

(2.1)

= �+BU

i

;

where �=(�

1

; : : : ; �

p

)

>

, � = (�

1

; : : : ; �

p

)

>

are p � 1 ve
tors, B = (�; I

p

) is a p � (p + 1)

matrix, Y

i

= (y

i1

; : : : ; y

ip

)

>

and e

i

= (e

i1

; : : : ; e

ip

)

>

are p � 1 random ve
tors U

i

= (x

i

; e

>

i

)

>

is of dimension (p + 1) � 1 and I

p

denotes the identity matrix of dimension p, i = 1; : : : ; n.

The x

i


an be 
onsidered as unknown parameters in whi
h 
ase the model is 
alled fun
tional

or, it 
an be 
onsidered as independent and identi
ally distributed random variables, in whi
h


ase the model is 
alled stru
tural. In this paper, we 
onsider the stru
tural version, whi
h

is free of in
idental parameters. Finally, it is 
onsidered that the random ve
tors U

1

; : : : ;U

n
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are independent and identi
ally distributed with a distribution whi
h we denote by Q

u

(�;�),

where

� =

�

�

x

0

�

and � =

�

�

x

0

0 D(�)

�

; (2.2)

with D(�) = diag(�

1

; : : : ; �

p

): Typi
ally Q

u

is 
onsidered to be the multivariate normal dis-

tribution with mean ve
tor � and 
ovarian
e matrix �. However, in this paper we 
onsider

it to denote a member of the ellipti
al family of distributions with the normal distribution as

an spe
ial 
ase. Thus, Y

1

; : : : ;Y

n

are independent and identi
ally distributed with a

ording

to the Q

y

(�;V), where

� = �+ ��

x

= �(�) and V = D(�) + �

x

��

0

= V(�); (2.3)

with � = (�

x

;�

>

;�

>

; �

x

;�>)

>

.

Let � = (�

x

;�

>

;�

>

; �

x

;�

>

)

>

, where �

x

= (�

x

+ d)=
; � = � � d�; � = 
� and

�

x

= �

x

=


2

; 
; d 6= 0 2 IR. It 
an be veri�ed that

Q

y

(�(�);V(�)) = Q

y

(�(�);V(�)):

This result implies that ifQ

u

(orQ

y

) follows an ellipti
al distribution, then � is not identi�able.

See Bolfarine and Galea-Rojas (1996). One way of dealing with this problem is to impose

restri
tions on �. It is possible (see Barnett, 1969) to 
onsider that there is a referen
e

instrument (denoted instrument 1, without loss of generality) whi
h measures without bias

(additive or multipli
ative) the quantity of interest. Hen
e, 
orresponding to instrument 1,

it is 
onsidered that �

1

= 0 and �

1

= 1 and under this assumption the model de�ned by

(2.1)-(2.2) be
omes identi�able. Thus, the model proposed by Barnett (1969) is given by

Y

i

=

�

0

�

�

+

�

1

�

�

x

i

+ "

i

; i = 1; : : : ; n; (2.4)

with � = (�

2

; : : : ; �

p

)

>

and � = (�

2

; : : : ; �

p

)

>

:

Theobald and Mallison (1978) make model (2.1)-(2.2) for p � 3 identi�able by 
onsidering

�

x

= 0 and �

x

= 1, that is, the model is de�ned as a fa
tor analysis model. More re
ently, Lu

et al. (1997) 
onsider model (2.1)-(2.2) with �

x

and �

x

as known so that model be
omes iden-

ti�able. Indeed, �

x

and �

x

are estimated by 
onsidering in
orporating additional information

into the model. In all those referen
es, Q

y

is assumed to be the normal distribution.

Repla
ing x

i

= �

x

+

p

�

x

z

i

, with z

i

� (0; 1), that is, a random variable with lo
ation zero

and s
ale 1, in (2.4) and (2.1) it follows that

Y

i

= �+ �z

i

+ "

i

; i = 1; 2; : : : ; n; (2.5)

where � =

�

0

�

�

+

�

1

�

�

�

x

and � =

p

�

x

�

1

�

�

, for the model proposed in Barnett (1969) and

� = �+ ��

x

and � =

p

�

x

�, 
orresponding to the model 
onsidered in Lu et al. (1997).

From the above exposition, it follows that it is possible to work under the ellipti
al family

with model (2.5) whi
h presents 
omputational advantages and from that to obtain results for
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the model proposed by Barnett (1969) and Lu et al. (1997). As mentioned above, inferen
e

for su
h model under the spe
ial 
ase where Q

u

is the normal distribution is 
onsidered in

Barnett (1969), Theobald and Mallison (1978), Bolfarine and Galea (1995) and Lu et al.

(1997). The 
ase where Q

u

is the Student-t distribution with � degrees of freedom, has been

studied in Bolfarine and Galea-Rojas (1996). In the 
ase of p = 2, the model de�ned by (2.4)

or (2.5) 
orresponds to the simple linear regression model with measurement errors and has

been extensively treated in the literature as, for example, in Shyr and Gleser (1986), Fuller

(1987), Arellano and Bolfarine (1996) and Cheng and van Ness (1999). More re
ently, Kwan

and Fung (1998) 
onsider the lo
al in
uen
e approa
h in fa
tor analysis models for studying

the e�e
t on the maximum likelihood estimators of small perturbation in the data or model.

The ellipti
al stru
tural 
omparative 
alibration model or simply, the ellipti
al stru
tural

model 
an be de�ned as:

Y

i

= �+ �z

i

+ "

i

; i = 1; 2; : : : ; n

U

i

=

�

z

i

"

i

�

; 1 � i � n; are iid IE`

p+1

(0;�; g)

9

=

;

(2.6)

where � =

�

1 0

0 D(�)

�

.

This, we have that Y

1

;Y

2

; : : : ;Y

n

are iid IE`

p

(�;V ; g), with density given by:

f

Y

(y) = jV j

�1=2

g((y � �)

>

V

�1

(y � �)); y 2 IR

p

; (2.7)

where g : IR 7! [0;1), the generator density, is su
h that f

1

0

u

p�1

g(u

2

)du < 1 and V =

��

>

+D(�) is the s
ale matrix.

Thus, the main obje
t of this paper is to 
onsider the approa
h of lo
al in
uen
e in the

ellipti
al 
omparative 
alibration model given in (2.5)-(2.7).

3 Lo
al In
uen
e

Let l(�) denote the log-likelihood fun
tion from the postulated model (here � = (�

>

, �

>

,

�

>

)

>

) and let ! be a q� 1 ve
tor of perturbation restri
ted to some open subset of IR

q

. The

perturbations are made in the likelihood fun
tion su
h that it takes form l(�j!). Denoting

the ve
tor of no perturbation by !

0

, we assume l(�j!

0

) = l(�). To asses the in
uen
e of

the perturbations on the maximum likelihood estimate of �, one may 
onsider the likelihood

displa
ement

LD(!) = 2[l(

b

�)� l(

b

�

!

)℄;

where

b

�

!

(

b

�) denotes the maximum likelihood estimator under the model l(�j!)(l(�)).

In some situations, it may be of interest to assess the in
uen
e on a subset �

1

of � =

(�

>

1

; �

>

2

). For example, one may have interest on �

1

= � or �

1

= �. In su
h situations, the
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likelihood displa
ement 
an be de�ned as

LD(!) = 2[l(

b

�)� l(

b

�

1!

;

b

�

2

(

b

�

1!

))℄;

where

b

�

1!


an be obtained from

b

�

!

= (

b

�

>

1!

;

b

�

>

2!

)

>

and

b

�

2

(

b

�

1!

) is the maximum likelihood

estimate of �

2

for �

1!

�xed in the perturbed model.

The idea of lo
al in
uen
e (Cook, 1986) is 
on
erned in 
hara
terizing the behavior of

LD(!) at !

0

. The pro
edure 
onsists in sele
ting a unit dire
tion l, jjljj = 1, and then to


onsider the plot of LD(!

0

+ al) against a with a 2 IR. This plot is 
alled lifted line. Noti
e

that sin
e LD(!

0

) = 0; LD(!

0

+ al) has a lo
al minimum at a = 0. Ea
h lifted line 
an be


hara
terized by 
onsidering the normal 
urvature C

l

(�) around a = 0. The suggestion is to


onsider the dire
tion l

max


orresponding to the largest 
urvature C

lmax

(�). The index plot of

l

max

may reveal those observations that under small perturbations exert notable in
uen
e on

LD(!). Cook (1986) showed that the normal 
urvature at the dire
tion l takes the form

C

l

(�) = 2jl

>

�

>

L

�1

�lj; (3.1)

where � L is the observed Fisher information matrix for the postulated model (! = !

0

) and

� is the p

�

� q matrix with elements

�

ij

=

�

2

l(�j!)

��

i

�!

j

;

evaluated at � =

b

� and ! = !

0

; i = l; :::; p

�

and j = 1; :::; q; p

�

= 3p. Therefore, the

maximization of (3.1) is equivalent to �nding the largest absolute eigenvalue C

lmax

of the

matrix B = �

>

L

�1

�, and l

max

is the 
orresponding eigenve
tor. For the subset �

1

, the


urvature at the dire
tion l is given by

C

l

(�

1

) = 2jl

>

�

>

( L

�1

�B

22

)�lj;

where

B

22

=

�

0 0

0 L

�1

22

�

;

and L

22

is obtained from the partition of L a

ording to the partition of �. The eigenve
tor

l

max


orresponds to the largest absolute eigenvalue of the matrix B =�

>

( L

�1

�B

22

)�.

Other important dire
tion, a

ording to Es
obar and Meeker (1992) (see also Verbeke and

Molenberghs, 2000) is l = e

in

, whi
h 
orresponds to the i�th position, where there is a one.

In that 
ase, the normal 
urvature, 
alled the total lo
al in
uen
e of individual i, is given by

C

i

= 2je

>

in

Be

in

j = 2jb

ii

j, where b

ii

is the i�th element diagonal of B, i = 1; :::; n. Verbeke

and Molenberghs (2000) propose 
onsider the i�th observation in
uential if C

i

is larger than

the 
uto� value 2

q

X

i=1

C

i

=q. We use l

max

and C

i

as diagnosti
s for lo
al in
uen
e.
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Re
ently, Fung and Kwan (1997) presented an interesting dis
ussion on the appli
ation

of the lo
al in
uen
e for other in
uen
e measures than the likelihood displa
ement. They

show that an in
uen
e measure, namely

b

T

!

, is s
ale invariant if

_

� = �

b

T

!

=�!j

!=!

0

= 0.

When this derivative is nonzero the ordering among the 
omponents of l

max

is not ne
es-

sarily preserved under 
hanges in the s
ale. In parti
ular, for the likelihood displa
ement,

_

� = �l(

b

�

!

)=�!j

!=!

0

= 0. This property also follows, for instan
e, for the in
uen
e mea-

sures proposed in Thomas and Cook (1990) and Paula (1993). But this property is not shared

by other in
uen
e measures, as pointed out by Fung and Kwan (1997).

4 Curvature Derivation for Ellipti
al Comparative

Calibration Models

In this se
tion we derive the observed information matrix and the � matrix for di�erent

s
hemes of perturbations.

4.1 The observed information matrix

From (2.7) we have that log-likelihood fun
tion is given by:

l(�) =

n

X

i=1

`

i

(�); (4.1)

where `

i

(�) = �

1

2

logjVj+ log(g(d

i

)) and d

i

= d

i

(�) = (y

i

� �)

>

V

�1

(y

i

� �), i = 1; 2; :::; n

and V as in (2.7). The matrix of se
ond derivatives with respe
t to � is given by:

L =

�

2

l(�)

����

>

�

�

�

�=

b

�

=

0

B

�

L

��

L

��

L

��

L

��

L

��

L

��

1

C

A

(4.2)

where

b

� is the estimator of maximum likelihood of �. The elements of this matrix are given

in the appendix.

4.2 Perturbation of 
ases weights

We 
onsidered the ve
tor of weights ! = (!

1

; :::; !

n

)

>

, for weight the 
ontribution of ea
h 
ase

in the log-likelihood. Thus the perturbed likelihood is:

l(�=!) =

n

X

i=1

!

i

`

i

(�) (4.3)
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where `

i

(�) is de�ned in (4.1). The ve
tor of the no perturbation is !

0

= (1; :::; 1)

>

= 1.

Let �




= (�




1

;�




2

; :::;�




n

) the submatrix of � in (3.1), asso
iated to the parameter 
.

That is, �




i

is the i�th 
olumn of �




; i = 1; :::; n and 
 = �;�;�. Consequently, for using

(4.1), (4.3) and 
al
ulus of ve
tor derivatives (Nel, 1980), we have, after of some 
omputations:

�

�

i

= �2W

g

(d

i

)V

�1

X

i

; (4.4)

�

�

i

= �


�1

[I

p

+ 2W

g

(d

i

)(D

�1

(�)X

i

X

>

i

� 


�1




i1

I

p

)℄D

�1

(�)�; (4.5)

�

�

i

= �

1

2

D

�1

(�)[1� 


�1

D

�1

(�)D(�)�℄ + (4.6)

W

g

(d

i

)D

�2

(�)[�D(X

i

)X

i

+ 2


�1




i2

D(�)X

i

� 


�2




i1

D(�)�℄;

where D(a) = Diag(a

1

; :::; a

p

), for a 2 IR

p

, D

�k

(a) = Diag(a

�k

1

; :::; a

�k

p

); k = 1; 2; 3,

M = D

�1

(�)��

>

D

�1

(�); 
 = 1+�

>

D

�1

(�)�,X

i

= Y

i

��,W

g

(d

i

) =

g

0

(d

i

)

g(d

i

)

; 


i1

=X

>

i

MX

i

and 


i2

= X

>

i

D

�1

(�)�, i = 1; :::; n. Expressions (4.4)-(4.6) are evaluated at the maximum

likelihood estimators. Thus, � in (3.1) takes the form

� =

0

�

�

�

�

�

�

�

1

A

; (4.7)

whi
h is of dimension 3p� n.

4.3 Perturbation of the observations

In this se
tion, the measured values obtained with the instruments are perturbed. Let Y

i

(!

i

)

the perturbation in observation Y

i

, where !

i

= (!

i

1

; :::; !

i

p

)

>

i = 1; :::; n. Some situations of

interest in this 
ase are:

(a) Simultaneous perturbations of the measurements of the p instruments:

Y

i

(!

i

) =

8

<

:

Y

i

+ !

i

; additive perturbation

Y

i

� !

i

; multipli
ative perturbation

where � denotes Hadamard produ
t.

(b) Perturbing the measurements from one instrument. Suppose that it is of interest

perturbing the measurements from one spe
i�
 instrument, say, k; k = 1; :::; p. In this 
ase

Y

i

(!

i

) =

8

<

:

Y

i

+ !

i

� e

k

; additive perturbation

Y

i

� 1

p

(!

i

k

); multipli
ative perturbation
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where e

k

is the k-th unit ve
tor of IR

p

and 1

p

(!

i

k

) = (1; :::; 1; !

i

k

; 1; :::1)

>

, is of dimension p.

Note that in the above perturbation s
hemes there exists !

i

0

su
h that Y

i

(!

i

0

) = Y

i

, for

example, in (a) !

i

0

= (0; :::; 0)

>

in the additive 
ase and !

i

0

= (1; :::; 1)

>

in the multipli
ative


ase.

Let W = (!

1

; :::;!

n

) a matrix p � n, whose 
olumns are !

i

; i = 1; :::; n. Denote ! =

Ve
(W ) = (!

>

1

; :::;!

>

n

)

>

.

Thus, the perturbed log-likelihood fun
tion is given by:

l(�=!) =

n

X

i=1

`

i

(�=!

i

); (4.8)

where `

i

(�=!

i

) = �

1

2

`njV j+ `ng(d

i

(!

i

)), with d

i

(!

i

) = (Y

i

(!

i

)��)

>

V

�1

(Y

i

(!

i

)��) and

Y

i

(!

i

) as de�ned in (a) or (b), i = 1; :::; n.

Di�erentiating L(�=!) with respe
t to ! and � it follows that:

� = (�

�

1

; :::;�

�

n

); (4.9)

where �

�

i

= W

0

g

(d

i

(!

i

))

�

��

d

i

(!

i

)

�

�!

>

i

d

i

(!

i

) +W

g

(d

i

(!

i

))

�

2

d

i

(!

i

)

���!

>

i

, with

�

��

d

i

(!

i

) as in the

unperturbed 
ase, repla
ing Y

i

for Y

i

(!

i

),

�d

i

(!

i

)

�!

>

i

= 2(Y

i

(!

i

) � �)

>

V

�1

�Y

i

(!

i

)

�!

>

i

; i =

1; :::; n and

�

2

d

i

(!

i

)

���!

>

i

=

0

B

B

B

B

B

B

B

B

B

B

�

�

2

d

i

(!

i

)

���!

>

i

�

2

d

i

(!

i

)

���!

>

i

�

2

d

i

(!

i

)

���!

>

i

1

C

C

C

C

C

C

C

C

C

C

A

; i = 1; :::; n:

Note that �

�

i

is the matrix 3p� p; i = 1; :::; n. The above derivations are evaluated at

b

� and

!

0

. In the following, expressions are obtained for the matrix � in 
ases (a) and (b).

Case (a): Let �

a




i

(�

m




i

) the i�th submatrix of dimension p � p, of �




with respe
t to the

additive (multipli
ative) perturbation s
heme, 
 = �;�;� e i = 1; :::; n. From (4.9) evaluating

in !

0

;

�

�

i

= 2(W

0

g

(d

i

)

�d

i

��

X

>

i

�W

g

(d

i

)I

p

)V

�1

; (4.10)
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�

�

i

= 2W

0

g

(d

i

)

�d

i

��

X

>

i

V

�1

(4.11)

+2


�1

W

g

(d

i

)(2V

�1

X

i

�

>

�D

�1

(�)X

i

�

>

+ 


i2

I

p

)D

�1

(�);

�

�

i

= 2W

0

g

(d

i

)

�d

i

��

X

>

i

V

�1

� 2W

g

(d

i

)(D

�1

(�)D(X

i

)V

�1

(4.12)

+


�2

D

�2

(�)(D(�)�X

>

i

M � 


�1




i2

D

�2

(�)D(�)); i = 1; :::; n:

Thus, evaluating (4.10)-(4.12) at the maximum likelihood estimator

b

� of � it follows in the

additive 
ase that

�

a

= (�

a

�

1

; :::;�

a

�

n

); (4.13)

where

�

a

�

i

=

0

B

�

�

a

�

i

�

a

�

i

�

a

�

i

1

C

A

; i = 1; :::; n:

With respe
t to the multipli
ative s
heme, it follows that

�

m




i

= �

a




i

D(Y

i

) ; 
 = �;�;�; i = 1; :::; n (4.14)

Case (b): Without loss of generality, we 
an take k = 1. To obtain the matrix � in

the additive s
heme, we 
an multiply �

a




i

;
 = �;�;� given in (4.14) from the right by

e

1

= (1; 0; :::; 0)

>

2 IR

p

. Analogously, in the multipli
ative s
heme, it suÆ
ient multiplying

�

m

�

i

, given in (4.14), from the right by the same expression. Expressions forW

0

g

(d) andW

g

(d)

are obtained in Galea, Paula and Bolfarine (1997) for some distributions in the ellipti
al family.

4.4 Perturbation of the degrees of freedom in the Student t-model

A spe
ial 
ase of the ellipti
al 
omparative 
alibration model (2.6)-(2.7), is the Student-t,

whi
h follows by assuming that U

i

� t

p+1

(0;�; �); � > 0. Then Y

i

� t

p

(�;V ; �) with

density fun
tion given by:

f

Y

(y) = k(p; �)(� + (y � �)

>

V

�1

(y � �)

�

1

2

(�+p)

(4.15)

where k(p; �) = �

�

p+ �

2

�

�

�=2

=�(�=2)�

p=2

. For this spe
ial model, W

g

(d) = �

1

2

(� + p)(� +

d)

�1

and W

0

g

(d) =

1

2

(� + p)(� + d)

�2

.

Re
ently, several authors have 
onsidered the multivariate Student-t distribution as an

alternative to the normal model be
ause it 
an naturally a

ommodate outliers present in the

9



data. Thus, the Student-t model provides a robust pro
edure for analysing data sets whi
h

may present outliers. Rubin (1983) obtain maximum likelihood estimators for the parameters

of the multivariate Student-t model by using the EM -algorithm; Little (1988) extends the

results in Rubin (1983) for the 
ase of in
omplete data sets, that is, data sets with missing data.

Sutradhar and Ali (1986) 
onsider maximum likelihood estimation in the multivariate Student-

t regression model. Lange et al. (1989) dis
uss the use of the Student-t model in regression

and in problems related to multivariate analysis. Taylor (1992) 
onsiders some other aspe
ts

of the Student-t model. More re
ently, Sutradhar (1993) has 
onsidered an s
ore test aiming

at testing if the 
ovarian
e matrix is equal to some spe
i�ed 
ovarian
e matrix (diagonal, for

example), using the Student-t distribution; Bolfarine and Arellano (1994) introdu
e Student-t

fun
tional and stru
tural measurement error models and Bolfarine and Galea-Rojas (1996)

use the Student-t distribution in stru
tural 
omparative 
alibration models. The Student-t

distribution in
orporates an additional parameter �, namely the degrees of freedom parameter,

whi
h allows adjusting for the kurthosis of the distribution. This parameter 
an be �xed

previously and Lange et al. (1989) and Berkane et al. (1994) re
ommend � = 4, or, otherwise,

get information for it from the data set. In this se
tion � is 
onsidered known and the following

perturbed model is 
onsidered:

Y

i

� t

p

(�;V ; �

0

h(!

i

)); (4.16)

with theY

i

being independent, i = 1; :::; n, where h is a positive and di�erentiable and further,

there exists !

0

i

su
h that h(!

0

i

) = 1. Under the perturbed model, the log-likelihood fun
tion

is given by

l(�=!) =

n

X

i=1

`

i

(�=!

i

); (4.17)

where `

i

(�=!

i

) = `nk(�

i

; p)�

1

2

`njV j �

1

2

(�

i

+ p)`n(�

i

+ d

i

), where �

i

= �

0

h(!

i

); k(�

i

; p) as in

(4.15) with � repla
ed by �

i

and d

i

as de�ned in (4.1), i = 1; :::; n. A

ording to our notation,

! = (!

1

; :::; !

n

)

>

. Thus, following similar pro
edures as 
onsidered in Se
tion 4.3, it follows

that:

� = (�

�

1

; :::;�

�

n

); (4.18)

where

�

�

i

= �

0

h

0

(!

0

i

)

�

1

�

0

+ p

W

g

(d

i

) +W

0

g

(d

i

)

�

�d

i

��

;

i = 1; :::; n. Expression (4.18) should be evaluated at the maximum likelihood estimate

b

�.

The fun
tion h 
an be de�ned as in Es
obar and Meeker (1992), namely, h(!

i

) = a

!

i

, with

a > 0 and !

i

2 [�1; 1℄; i = 1; :::; n. Thus, �

i

= �

0

h(!

i

) takes values in the interval [�

0

=a; a�

0

℄.

For example, we 
an take a = 2 and h

0

(!

0

i

) = `n2, i = 1; :::; n. If !

i

= ! for all i = 1; :::; n;

h(!) is an s
alar type fun
tion. In this 
ase, 
onsidering a Taylor expansion of order 2 of l(

b

�

!

)

around ! = !

0

it follows that

LD

1

(!)

�

=

�

>

(� L)

�1

�(! � !

0

)

2

; (4.19)
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where

� = �

0

h

0

(!

0

)

n

X

i=1

(W

0

g

(d

i

) +

W

g

(d

i

)

�

0

+ p

)

�d

i

��

;

whi
h is of dimension 3p � 1. Note that lim

�

0

!1

C

l

(�) = 0; for all l; jjljj = 1; meaning that

for large �

0

(
lose to normality) there are no dire
tions of lo
al in
uen
e, whi
h is reasonable

sin
e the normal model is independent of �

0

. Thus in the appli
ations presented below, we


onsider only the 
ase of small �

0

.

4.5 Appli
ation

In this se
tion we analyze one real data set given in Barnett (1969). Two instruments used for

measuring the vital 
apa
ity of human lung and operated by skilled and unskilled operators

were 
ompared on a 
ommon group of 72 patients. We will fo
us on the parameter set �, in the

t�model, perturbation of the degrees of freedom and perturbation of 
ases. All 
omputations

were performed in S-Plus.

Figures 1 and 2 present graphi
s of lo
al in
uen
e for the perturbation of 
ase weights

for several degrees of freedom. As expe
ted for small degrees of freedom there are no lo
al

in
uent observations on the maximum likelihood estimators.

However, as � in
reases (
lose to the normal model), some observations (23, 30, 58, 67)

present signi�
ant in
uen
e on the maximum likelihood estimators, as was also veri�ed in

Galea et al. (2002a) for the normal model. This shows that the t-model with small degrees of

freedom 
an be very useful for a

ommodating in
uent observations present on the data sets,

whi
h is not the 
ase with normal models.

Similar results were also obtained in Galea et al. (2002b) in the stru
tural error in variables

models using a t-distribution.

Figures 3, 4 and 5 present graphi
s of lo
al in
uen
e for perturbation of the degrees of

freedom parameter. Note that for �

0

= 1 (Cau
hy model), model perturbation with degrees of

freedom around one, that is, � 2 [1=2; 2℄, observation 45 yields the largest lo
al in
uen
e on

the maximum likelihood estimators. On the other hand, for �

0

= 4, the maximum likelihood

estimators are quite stable with respe
t to small perturbation on the degrees of freedom

parameter. Thus, for the present data set �

0

= 4 seems to be the most adequate value of

parameter degrees of freedom. This 
on
lusion was also rea
hed by Lange et al. (1989) for

several of the data set they have analyzed using di�erent pro
edures of model identi�
ation.

Thus, the lo
al in
uen
e approa
h 
an also be useful in the appropriate sele
tion of the degrees

of freedom parameter.
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Figure 1: Index plot of l

max

for perturbation of 
ase weights
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Figure 2: Index plot of C

i

for perturbation of 
ase weights
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Figure 3: Index plot of l

max

for perturbation of the degrees of freedom
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Figure 4: Index plot of C

i

for perturbation of the degrees of freedom
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Appendix: Computing the observed information matrix in the ellipti
al

stru
tural model

In this appendix the observed information matrix is obtained for the ellipti
al stru
tural

model. From (4.1), it follows that

�`

i

(�)

�


= �

1

2

�`njV j

�


+W

g

(d

i

)d

i


; (A.1)

with d

i


=

�d

i

�


;
 = �;�;� and d

i

= X

>

i

V

�1

X

i

; X

i

= Y

i

� �; i = 1; :::; n: Further, using

results in Nel (1980) related to ve
tor derivatives it follows that,

�`njV j

��

= 0;

�`njV j

��

= 2


�1

D

�1

(�)�;

�`njV j

��

= D

�1

(�)1� 


�1

D

�2

(�)D(�)�;

9

>

>

>

>

=

>

>

>

>

;

(A.2)

d

i�

= �2V

�1

X

i

; (A.3)

d

i�

= �2


�1

D

�1

(�)X

i

X

>

i

D

�1

(�)�+ 2


�2




i1

D

�1

(�)�; (A.4)

d

i�

= �D

�2

(�)D(X

i

)X

i

+ 2


�1




i2

D

�2

(�)D(�)X

i

(A.5)

�


�2




i1

D

�2

(�)D(�)�; i = 1; 2; :::; n

From (A.1) it follows that the observed, per element, information matrix is given by

L

i

= L

i

(�=Y

i

) = �

2

6

6

6

6

6

6

6

6

6

6

4

�

2

`

i

����

>

�

2

`

i

����

>

�

2

`

i

����

>

�

2

`

i

����

>

�

2

`

i

����

>

�

2

`

i

����

>

3

7

7

7

7

7

7

7

7

7

7

5

; (A.6)

i = 1; :::; n, where

�

2

`

i

�
��

>

= �

1

2

�

2

`njV j

�
��

>

+W

0

g

(di)d

i


d

i�

>
+W

g

(d

i

)d

i
�

>
; (A.7)

with d

i
�

>
=

�

2

d

i

�
��

>

; i = 1; 2; :::; n and 
; � = �;�;�, where
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�

2

`njV j

����

>

=

�

2

`njV j

����

>

=

�

2

`njV j

����

>

= 0; (A.8)

�

2

`njV j

����

>

= 2


�1

(V

�1

� 


�1

M); (A.9)

�

2

`njV j

����

>

= �2


�1

V

�1

D

�1

(�)D(�); (A.10)

�

2

`njV j

����

>

= �D

2

(�) + 2


�1

D

�3

(�)D

2

(�) (A.11)

�


�2

D

�1

(�)D(�)MD(�)D

�1

(�);

d

i��

> = 2V

�1

; (A.12)

d

i��

> = 2


�1

(D

�1

(�)�X

>

i

D

�1

(�) + 


i1

(V

�1

� 


�1

M)); (A.13)

d

i��

>
= 2D

�2

(�)D(X

i

)� 2


�1

D

�1

(�)�X

>

i

D(�)D

�2

(�) (A.14)

�2


�1




i2

D

�2

(�)D(�) + 2


�2

MX

i

�

>

D(�)D

�2

(�);

d

i��

>
= �2


�1

D

�1

(�)X

i

X

>

i

D

�1

(�) + 4


�2

D

�1

(�)X

i

X

>

i

M (A.15)

+2
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i1

(V

�1

� 3


�1

M) + 4


�2

MX

i

X

>

i

D

�1

(�);

d

i��

>
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�1

D

�1

(�)X

i

X

>

i

D(�)D

�2

(�) (A.16)
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�2

D

�1

(�)X

i

X

>

i

MD

�1

(�)D(�) + 2


�1




i2

D

�2

(�)D(X

i

)

�2


�2




i1

D

�2

(�)D(�) + 4
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i1
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�1

(�)D(�)
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X

>

i

D(�)D

�2

(�); (A.17)

d

i��

>
= 2D

�3

(�)D

2

(X

i

)� 4


�1




i2

D

�3

(�)D(�)D(X

i

) (A.18)
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�1

D

�2

(�)D(�)X

i

X

>

i

D(�)D

�2

(�)
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�2

D

�2

(�)D(�)X

i

X
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i
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(�)D(�)
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(�)D
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(�)
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i1
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�1

(�)D(�)MD(�)D

�1

( �)

+2


�2

D

�1

(�)D(�)MX

i

X

>

i

D(�)D
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i = 1; 2; :::; n. Thus, the 
omplete observed informationmatrix is L

ob

(�=Y ) =

n

X

i=1

L

i

(�=Y

i

).

Evaluating the observed information matrix at

b

� it follows that L

ob

(

b

�=Y ) = � L given in

(4.2).
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