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Abstract

In this paper we consider applications of local influence (Cook, 1986) to evaluate
small perturbations in the model or data set in the context of structural comparative
calibration (Bolfarine and Galea, 1995) assuming that the measurements obtained follow
a multivariate elliptical distribution. Different perturbation schemes are investigated and
an application is considered to a real data set, using the elliptical t—distribution.
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1 Introduction

The main object of this paper is the study of local influence and diagnostic in comparative
calibration models designed to compare the efficiency of several measuring devices (or instru-
ments) when measuring the same unknown quantity = in a common group of individuals or
experimental units. It is assumed that the observed measurements follow a multivariate ellip-
tical distribution. Moreover, the comparative calibration model can be seen as a special case
of the general multivariate measurement error model (Fuller, 1987).

Comparing measuring devices which varies in pricing, fastness and other features, such as
efficiency, has been of growing interest in several areas like engineering, medicine, psychology
and agriculture. Grubbs (1948, 1973) reports data on an experiment designed for comparing
three cronometers and Barnett (1969) reports on the comparison of four combinations of two
instruments and two operators for measuring vital capacity. Several other examples in the
medical area are reported in the literature specially in Kelly (1984, 1985), Chipkevitch et al.
(1996) and Lu et al. (1997). Examples in agriculture are considered in Fuller (1987) and in
psychology and education in Dunn (1992). Outliers and detection of influent observations is an
important step in the analysis of a data set. There are several ways of evaluating the influence
of perturbations in the data set and in the model given the parameter estimates. Important
reviews can be found in the books by Cook and Weisberg (1982) and Chatterjee and Hadi
(1988) and in the paper by Cook (1986). On the other hand, there are just a few works in
the literature for diagnostic and influence of observations in models with measurement errors.
Kelly (1984) considered a diagnostic procedure in the structural linear model based on the



influence function. Tanaka et al. (1991) also consider the influence function introduced by
Hampel for evaluating the influence of observations in the analysis of covariance structures.
Recently, Zhao and Lee (1998) define leverage of one observation and Cook’s distance in a
simultaneous equation model. Rather than eliminating cases, the approach proposed by Cook
(1986) is a general method for evaluating, under the maximum likelihood estimators, the
influence of small perturbations in the model or data set.

Additional results on local influence and applications in linear regression and mixed models
can be found in Beckman et al. (1987), Lawrance (1988), Thomas and Cook (1990), Tsai and
Wu (1992), Paula (1993), Galea et al. (1997) and Lesaffre and Verbeke (1998). Zhao and
Lee (1998) and Kwan and Fung (1998) apply the local influence approach for factor analysis
and simultaneous equations under the normality assumption. Recently, Galea et al. (2002a)
apply the local influence method in functional and structural comparative calibration models
also under the normal distribution assumption. However, no application of local influence
has been considered for comparative calibration under elliptical models. Thus, the main
object of this paper is to apply the approach of local influence to elliptical measurement error
models. As typically considered in the literature, the relevance of using the t¢-distribution
is related to its capability of downweighting influent observations. See, for example, Lange
et al. (1989). Several perturbation schemes are considered such as case perturbation and
response perturbation. In Section 2 the elliptical structural comparative calibration model is
considered and in Section 3 the main concepts of local influence are revised. In Section 4 model
curvatures are considered for different perturbation schemes and in Section 5 an illustration
of the methodology is presented for a real data set.

2 Elliptical comparative calibration models

Suppose that we have at our disposal p > 2 instruments for measuring a characteristic of
interest x in a group of n experimental units. Let x; the true (unknown) value in unit i and
y;; the measured value obtained with instrument j in unit 4, 7 = 1,...,nand j = 1,...,p.
A model typically considered in the literature (see, Jaech (1964), Cochran (1968), Barnett
(1969), Williams (1969) and Shyr and Gleser (1986)), for such situation is given, in matrix
notation, by

where a=(ay,...,a,)", B = (B1,...,8,)" are p x 1 vectors, B = (8,I,) isa px (p+ 1)
matrix, Y; = (¥i1,.--, %) and €; = (i1,...,€;) " are p x 1 random vectors U; = (x;,€; )"
is of dimension (p + 1) x 1 and I, denotes the identity matrix of dimension p, i = 1,...,n.

The x; can be considered as unknown parameters in which case the model is called functional
or, it can be considered as independent and identically distributed random variables, in which
case the model is called structural. In this paper, we consider the structural version, which
is free of incidental parameters. Finally, it is considered that the random vectors Uy,..., U,



are independent and identically distributed with a distribution which we denote by Q,(u,X),

e p= <‘8”4’> and ¥ = (%’E D?d)))’ (2.2)

with D(¢) = diag(¢, ..., ¢,). Typically @, is considered to be the multivariate normal dis-
tribution with mean vector g and covariance matrix 3. However, in this paper we consider
it to denote a member of the elliptical family of distributions with the normal distribution as
an special case. Thus, Yi,...,Y, are independent and identically distributed with according
to the Q,(u, V), where

p=a+ B, = [1,(0) and 'V = D(¢) + ¢IIBB, = V(O)a (23)
with 8 = (pa, ", B, 0, ¢T)7.

_ Let 0 = (ﬂI,ET,BT@I,ET)T, where 7i, = (uy +d)/c, @ = a—dB, B = cB and
b, = ¢ps/c*, c,d# 0 € IR. Tt can be verified that

Qy(1(8),V(0)) = Qy(1(6), V(9)).

This result implies that if @, (or @,) follows an elliptical distribution, then 8 is not identifiable.
See Bolfarine and Galea-Rojas (1996). One way of dealing with this problem is to impose
restrictions on €. It is possible (see Barnett, 1969) to consider that there is a reference
instrument (denoted instrument 1, without loss of generality) which measures without bias
(additive or multiplicative) the quantity of interest. Hence, corresponding to instrument 1,
it is considered that a; = 0 and $; = 1 and under this assumption the model defined by
(2.1)-(2.2) becomes identifiable. Thus, the model proposed by Barnett (1969) is given by

with & = (ag,...,q,)" and B = (B, ..., 5)".

Theobald and Mallison (1978) make model (2.1)-(2.2) for p > 3 identifiable by considering
i = 0 and ¢, = 1, that is, the model is defined as a factor analysis model. More recently, Lu
et al. (1997) consider model (2.1)-(2.2) with p, and ¢, as known so that model becomes iden-
tifiable. Indeed, p, and ¢, are estimated by considering incorporating additional information
into the model. In all those references, (), is assumed to be the normal distribution.

Replacing x; = pp + /é2;, with z; ~ (0,1), that is, a random variable with location zero
and scale 1, in (2.4) and (2.1) it follows that

Y., =p+Az;+e,i=1,2,...,n, (2.5)

where pu = (&) + (b),ux and A = /¢, ([13), for the model proposed in Barnett (1969) and

p=a+Bu, and A= +/¢,0, corresponding to the model considered in Lu et al. (1997).
From the above exposition, it follows that it is possible to work under the elliptical family
with model (2.5) which presents computational advantages and from that to obtain results for



the model proposed by Barnett (1969) and Lu et al. (1997). As mentioned above, inference
for such model under the special case where (), is the normal distribution is considered in
Barnett (1969), Theobald and Mallison (1978), Bolfarine and Galea (1995) and Lu et al.
(1997). The case where @, is the Student-¢ distribution with v degrees of freedom, has been
studied in Bolfarine and Galea-Rojas (1996). In the case of p = 2, the model defined by (2.4)
or (2.5) corresponds to the simple linear regression model with measurement errors and has
been extensively treated in the literature as, for example, in Shyr and Gleser (1986), Fuller
(1987), Arellano and Bolfarine (1996) and Cheng and van Ness (1999). More recently, Kwan
and Fung (1998) consider the local influence approach in factor analysis models for studying
the effect on the maximum likelihood estimators of small perturbation in the data or model.

The elliptical structural comparative calibration model or simply, the elliptical structural
model can be defined as:

YZ:[,L+AZZ+€Z,Z:]_,2,,TL

(2.6)
U, = (é’), 1 <i<n, areiid IEl,,(0,%;g)
1 0
where X = )
(s pis))
This, we have that Y',Y5,..., Y, are iid IE(,(,V'; g), with density given by:
fy@) =VI""(y—w)'V ' (y—n), ye R, (2.7)

where g : IR — [0,00), the generator density, is such that fi*u?'g(u?)du < co and V' =
AT + D(¢) is the scale matrix.

Thus, the main object of this paper is to consider the approach of local influence in the
elliptical comparative calibration model given in (2.5)-(2.7).

3 Local Influence

Let [(0) denote the log-likelihood function from the postulated model (here @ = (T, AT,
@ ")") and let w be a ¢ x 1 vector of perturbation restricted to some open subset of IR?. The
perturbations are made in the likelihood function such that it takes form /(@|w). Denoting
the vector of no perturbation by wg, we assume [(@|w,) = [(0). To asses the influence of
the perturbations on the maximum likelihood estimate of @, one may consider the likelihood
displacement,

LD(w) = 2[1(8) — 1(8.)],

where 8,,(6) denotes the maximum likelihood estimator under the model [(6|w)(1(8)).
In some situations, it may be of interest to assess the influence on a subset 6, of 8 =
(0],0,). For example, one may have interest on 8; = X or 8; = ¢. In such situations, the



likelihood displacement can be defined as

LD(w) = 2[l(0) — (01, 0:(01,))],
where @1, can be obtained from 6, = (Efw,ﬁ;f and 6, (Elw) is the maximum likelihood
estimate of @, for @, fixed in the perturbed model.

The idea of local influence (Cook, 1986) is concerned in characterizing the behavior of
LD(w) at wy. The procedure consists in selecting a unit direction I, ||I|| = 1, and then to
consider the plot of LD(wg + al) against a with a € IR. This plot is called lifted line. Notice
that since LD(wy) =0, LD(wq + al) has a local minimum at a = 0. Each lifted line can be
characterized by considering the normal curvature C;(0) around a = 0. The suggestion is to
consider the direction I,y corresponding to the largest curvature Cipax(@). The index plot of
lnax may reveal those observations that under small perturbations exert notable influence on
LD(w). Cook (1986) showed that the normal curvature at the direction I takes the form

Cy(0) =2ITAT L7'Al|, (3.1)

where — L is the observed Fisher information matrix for the postulated model (w = wq) and
A is the p* X ¢ matrix with elements

o%1(0
5, P10k
8918&)]'
evaluated at @ = 0 and w = wo,t = I,...,p* and 57 = 1,...,q, p* = 3p. Therefore, the
maximization of (3.1) is equivalent to finding the largest absolute eigenvalue Cjpax of the

matrix B = AT LilA, and I,y is the corresponding eigenvector. For the subset 84, the
curvature at the direction [ is given by

Ci(6,) =2ITAT( L™ — By,)Al,

0O O
B22—<0 L221> ;

and Ly, is obtained from the partition of L according to the partition of 8. The eigenvector
Imax corresponds to the largest absolute eigenvalue of the matrix B = AT( L™ — By)A.

where

Other important direction, according to Escobar and Meeker (1992) (see also Verbeke and
Molenberghs, 2000) is I = e;,, which corresponds to the i—th position, where there is a one.
In that case, the normal curvature, called the total local influence of individual ¢, is given by
C; = 2|e) Be;,| = 2|b;|, where by; is the i—th element diagonal of B, i = 1,...,n. Verbeke
and Molenberghs (2000) propose consider the i—th observation influential if C; is larger than

q

the cutoff value 2 Z C;/q. We use .« and C; as diagnostics for local influence.
i=1



Recently, Fung and Kwan (1997) presented an interesting discussion on the application
of the local influence for other influence measures than the likelihood displacement. They
show that an influence measure, namely 7, is scale invariant if I' = 97T, JOw|w-w, = 0.
When this derivative is nonzero the ordering among the components of I, is not neces-
sarily preserved under changes in the scale. In particular, for the likelihood displacement,
I = Bl( w)/0W|w=w, = 0. This property also follows, for instance, for the influence mea-
sures proposed in Thomas and Cook (1990) and Paula (1993). But this property is not shared
by other influence measures, as pointed out by Fung and Kwan (1997).

4 Curvature Derivation for Elliptical Comparative
Calibration Models

In this section we derive the observed information matrix and the A matrix for different
schemes of perturbations.

4.1 The observed information matrix

From (2.7) we have that log-likelihood function is given by:

= Zzi(e), (4.1)

where £;(0) = —1log|V|+log(g(d;)) and d; =di(0) = (y, —p) V' (y; —w), i=1,2,...,n
and V as in (2.7). The matrix of second derivatives with respect to € is given by:

921(8) Lpp Lux Lug
Lepg

where 8 is the estimator of maximum likelihood of @. The elements of this matrix are given
in the appendix.

4.2 Perturbation of cases weights

We considered the vector of weights w = (wy, ...,w,) ", for weight the contribution of each case
in the log-likelihood. Thus the perturbed likelihood is:

[(0/w) = Zwé (4.3)



where /;(0) is defined in (4.1). The vector of the no perturbation is wy = (1,...,1)" = 1.

Let Ay = (A, A, ..., A, ) the submatrix of A in (3.1), associated to the parameter .
That is, A,, is the i—th column of A,,7 =1,...,n and v = pu, A, ¢. Consequently, for using
(4.1), (4.3) and calculus of vector derivatives (Nel, 1980), we have, after of some computations:

Ap, = —2W,(d)V ' X, (4.4)
Ay, =~ +2W,(d) (D™ ($)X.X] — ¢ eaL)ID7 ($)A, (45)
Mg =—5D (@)1 —c "D (BDNA + (4.6)

W,(d;)D*(¢)[—D(X;) X + 2¢ 'ciaD(A) X — ¢ 2en D(A)A],
where D(a) = Diag(ay, ..., a,), for a € IR?, D~%(a) = Diag(a;*, ..., a;*), k = 1,2, 3,

a,
M =D Y)AX' D (¢), c=1+X"D )X, Xi = Yi—p, Wy(d;) = %

and cip = X, DY (@)A, i = 1,...,n. Expressions (4.4)-(4.6) are evaluated at the maximum
likelihood estimators. Thus, A in (3.1) takes the form
Ap
A=| Ax |, (4.7)
B¢

y Cil = XiTMXz'

which is of dimension 3p x n.

4.3 Perturbation of the observations

In this section, the measured values obtained with the instruments are perturbed. Let Y;(w;)
the perturbation in observation Y;, where w; = (w;,, ..., wip)T ¢t =1,...,n. Some situations of
interest in this case are:

(a) Simultaneous perturbations of the measurements of the p instruments:

Y, + w;, additive perturbation
Y, * w;, multiplicative perturbation

where x denotes Hadamard product.

(b) Perturbing the measurements from one instrument. Suppose that it is of interest
perturbing the measurements from one specific instrument, say, k, £k = 1, ..., p. In this case

Y, + w; *x e;; additive perturbation
Y; x 1,(w;, ), multiplicative perturbation



where e, is the k-th unit vector of IR and 1,(w;,) = (1,...,1,w;,,1,...1) T, is of dimension p.

Note that in the above perturbation schemes there exists w;, such that Y;(w;,) =Y, for
example, in (a) w;, = (0,...,0)" in the additive case and w;, = (1,...,1)T in the multiplicative
case.

Let W = (wq,...,w,) a matrix p x n, whose columns are w;,i = 1,...,n. Denote w =
Vec(W) = (w/,...,w, ).

n

Thus, the perturbed log-likelihood function is given by:
1(0/w) = ZE (8/w;), (4.8)

1
where 0;(0/w;) = —§€n|V| +Ing(d;(w;)), with dj(w;) = (Yi(w;) —p) TV (Y i(w;) — ) and
Y ;(w;) as defined in (a) or (b), i =1,....,n
Differentiating L(0/w) with respect to w and @ it follows that:
A= (Ag-Ag, ), (4.9)
, 9] 9] 0%d;(w;
where Ag = Wg(di(wi))a—e i(w )(9 T di(w;) + Wy (di(w;)) (:)
Ow

. 0 '
P00 "1 ggilwi) as in the

= 2(Y;(w;) —p)' V! 0T

unperturbed case, replacing Y; for Y ;(w;), i =

1,...,n and
opdw,

000w] | 0w,

Opow,

Note that Ag is the matrix 3p x p,i = 1,...,n. The above derivations are evaluated at 0 and
wy. In the following, expressions are obtained for the matrix A in cases (a) and (b).

Case (a): Let A2 (AT the i—th submatrix of dimension p x p, of A, with respect to the
additive (multiplicative) perturbation scheme, v = pu, A\, ¢p e i = 1, ..., n. From (4.9) evaluating
in wy;

dd;
op

Ap, =2W)(d;) -~ X = Wy(d)I,)V', (4.10)



ad;

8)‘XTV ! (4.11)

Ay, = 2W(d;)
+2¢ W, (d) 2V X AT = D Y (@) X AT + cin,)D (),

0d;
0¢

+¢ 2D (@) (DMNAX] M — ¢ tei;D 2(p)D(N)), i =1,...,n.

Ag = 2W(di)o "XV —2W,(d)(D7 (@) D(X )V (4.12)

Thus, evaluating (4.10)-(4.12) at the maximum likelihood estimator 6 of 6 it follows in the
additive case that

A® = (A} 0, “9 ), (4.13)
where
A‘b,_ A‘X_ ,1=1,..,n
A‘bi

With respect to the multiplicative scheme, it follows that
AT =A'D(Y:); y=mXA0, i=1,..,n (4.14)

Case (b): Without loss of generality, we can take k¥ = 1. To obtain the matrix A in
the additive scheme, we can multiply A2,y = u, A, @ given in (4.14) from the right by

= (1,0,...,0)" € IRP. Analogously, in the multiplicative scheme, it sufficient multiplying
A"ﬁi, given in (4.14), from the right by the same expression. Expressions for Wy (d) and W,(d)
are obtained in Galea, Paula and Bolfarine (1997) for some distributions in the elliptical family.

4.4 Perturbation of the degrees of freedom in the Student {-model

A special case of the elliptical comparative calibration model (2.6)-(2.7), is the Student-t,
which follows by assuming that U; ~ t¢,.,(0,%;v), v > 0. Then Y,; ~ t,(p, V;v) with
density function given by:

v (¥) = k(p, V) (v + (y — p) TV Yy — p) 3049 (4.15)

1
where k(p, v (p + V) v/ /T (v/2)mP/2. For this special model, W,(d) = —5(1/ +p)(v+
1
d) ' and W)(d) = 5(1/ +p)(v+d)?

Recently, several authors have considered the multivariate Student-¢ distribution as an
alternative to the normal model because it can naturally accommodate outliers present in the



data. Thus, the Student-t model provides a robust procedure for analysing data sets which
may present outliers. Rubin (1983) obtain maximum likelihood estimators for the parameters
of the multivariate Student-t model by using the FM-algorithm; Little (1988) extends the
results in Rubin (1983) for the case of incomplete data sets, that is, data sets with missing data.
Sutradhar and Ali (1986) consider maximum likelihood estimation in the multivariate Student-
t regression model. Lange et al. (1989) discuss the use of the Student-t model in regression
and in problems related to multivariate analysis. Taylor (1992) considers some other aspects
of the Student-t model. More recently, Sutradhar (1993) has considered an score test aiming
at testing if the covariance matrix is equal to some specified covariance matrix (diagonal, for
example), using the Student-¢ distribution; Bolfarine and Arellano (1994) introduce Student-t
functional and structural measurement error models and Bolfarine and Galea-Rojas (1996)
use the Student-¢ distribution in structural comparative calibration models. The Student-¢
distribution incorporates an additional parameter v, namely the degrees of freedom parameter,
which allows adjusting for the kurthosis of the distribution. This parameter can be fixed
previously and Lange et al. (1989) and Berkane et al. (1994) recommend v = 4, or, otherwise,
get information for it from the data set. In this section v is considered known and the following
perturbed model is considered:

Y, ~ t,(p, Vi ph(w;)), (4.16)

with the Y, being independent, i = 1, ..., n, where h is a positive and differentiable and further,
there exists wy, such that h(wp,) = 1. Under the perturbed model, the log-likelihood function
is given by

1(0/w) = Z&(G/wi), (4.17)

1 1
where (;(0/w;) = (nk(v;, p) — §€n|V| — 5(1/2 + p)ln(v; + d;), where v; = voh(w;), k(v;, p) as in
(4.15) with v replaced by v; and d; as defined in (4.1), i =1, ...,n. According to our notation,
w = (wi,...,w,)". Thus, following similar procedures as considered in Section 4.3, it follows
that:
A= (Mg, A ), (4.18)

n

where

ad;
96

Ag, = noh'(wp,) { Wo(di) + W;(di)}

v +p
i = 1,...,n. Expression (4.18) should be evaluated at the maximum likelihood estimate 0.
The function h can be defined as in Escobar and Meeker (1992), namely, h(w;) = a*i, with
a>0and w; € [-1,1],i = 1,...,n. Thus, v; = vyh(w;) takes values in the interval [vy/a, avy).
For example, we can take a = 2 and h'(wy,) = n2,i=1,..,n. fw, =w foralli=1,...,n;
h(w) is an scalar type function. In this case, considering a Taylor expansion of order 2 of I(8.,)
around w = wy it follows that

LD (w) =2 AT(— L)' A(w — wp)?, (4.19)

10



where
o SN W,(d;) . 0d;
A =vph!(we) > (Wy(d;) + y0+p)%’

=1

which is of dimension 3p x 1. Note that lim,, ., C;(8) = 0, for all I, ||l|| = 1, meaning that
for large 14 (close to normality) there are no directions of local influence, which is reasonable
since the normal model is independent of 1. Thus in the applications presented below, we
consider only the case of small 1.

4.5 Application

In this section we analyze one real data set given in Barnett (1969). Two instruments used for
measuring the vital capacity of human lung and operated by skilled and unskilled operators
were compared on a common group of 72 patients. We will focus on the parameter set @, in the
t—model, perturbation of the degrees of freedom and perturbation of cases. All computations
were performed in S-Plus.

Figures 1 and 2 present graphics of local influence for the perturbation of case weights
for several degrees of freedom. As expected for small degrees of freedom there are no local
influent observations on the maximum likelihood estimators.

However, as v increases (close to the normal model), some observations (23, 30, 58, 67)
present, significant influence on the maximum likelihood estimators, as was also verified in
Galea et al. (2002a) for the normal model. This shows that the t-model with small degrees of
freedom can be very useful for accommodating influent observations present on the data sets,
which is not the case with normal models.

Similar results were also obtained in Galea et al. (2002b) in the structural error in variables
models using a t-distribution.

Figures 3, 4 and 5 present graphics of local influence for perturbation of the degrees of
freedom parameter. Note that for 5 = 1 (Cauchy model), model perturbation with degrees of
freedom around one, that is, v € [1/2, 2], observation 45 yields the largest local influence on
the maximum likelihood estimators. On the other hand, for vy = 4, the maximum likelihood
estimators are quite stable with respect to small perturbation on the degrees of freedom
parameter. Thus, for the present data set vy = 4 seems to be the most adequate value of
parameter degrees of freedom. This conclusion was also reached by Lange et al. (1989) for
several of the data set they have analyzed using different procedures of model identification.
Thus, the local influence approach can also be useful in the appropriate selection of the degrees
of freedom parameter.

11



Figure 1: Index plot of 1., for perturbation of case weights
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Figure 2: Index plot of C; for perturbation of case weights
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Figure 3: Index plot of I, for perturbation of the degrees of freedom
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Figure 4: Index plot of C; for perturbation of the degrees of freedom
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Figure 5: Plots of the likelihood displacement LD;(w) versus w
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Appendix: Computing the observed information matrix in the elliptical
structural model

In this appendix the observed information matrix is obtained for the elliptical structural
model. From (4.1), it follows that

o6;(0) _18€n|V|
oy 2 Oy

+ W, (d;)ds, (A1)

od; . .
with d;, = 5,7 =u N\ ¢andd =XV 'X;, X;=Y;—p,i=1,..,n. Further, using

results in Nel (1980) related to vector derivatives it follows that,

dln|V | dln|V | et
= =2¢"' D

(A.2)

OV _ poi(gyi—c o 2(¢) DA,

¢
dyy = —2V7'X;, (A.3)
diy = —2c7'D7 Y P)X; X DY P)A+ 22y DTH (D), (A.4)
diqg = —D72(¢)D(XZ)XZ + 26716i2D72(¢)D(A)X2' (A5)
—c 2y D2 (P)D(A)A, i = 1,2, ...,n
From (A.1) it follows that the observed, per element, information matrix is given by
[ 0% 0?1, 0%0; T
oo™  OudXT Oudep’

0?1, 0?1,
Ll:LZOYZ:— ’ : ) A6
(6/¥:) OXOXT  OXOP T (A.6)

0?(;

I 0pog’ |
t=1,...,n, where
0%(; 10%n|V| -
0%d;

with dWTT = 1=1,2,...,n and v, 7 = u, A, ¢, where

OyoT T’

14



V| V]| 9|V

— — =0,

oo™  udNT  Oude’

2

8 €n|‘:_| _ Cfl(V—l . cilM),

ONOX

2

TV _ o1y 1D (¢)D(A),

ONOD "

82€n|V| 2 —1 -3 2
=_D +2¢ D D7(X

9000 (@) +2c (@) D(A)

—¢ 2D (¢)D(AYMD(A) D"\ (¢h),

2V,
27 (D7 (P)AX D7 (@) + ca (V' — ¢ M)),

2D72(p)D(X;) — 2¢7 ' D7 ()AX] D(A)D?(¢)
—2¢ 'epD 3 () D(A) + 2¢ M X, A" D(A)D*(9),

—2c'D ) X; X[ DY) +4c D (p) X; X M
+2¢%cy (V1 =3¢ M) +4c* M X; X D™ (o),

27" D7 (¢) X; X D(A)D?()

—2¢72D7 () X; X M D7 (p)D(A) + 2¢  cinD 72 () D(X ;)
—2¢ 2y D 2(d)D(A) + 4c ey MD () D(N)
—4c?MX ;X D(A)D%(¢),

2D *(¢)D*(X;) — 4¢ 'cinD *(¢) D(A)D(X ;)
—2¢ "D 2(¢p) D(
(

¢)D(AN)X,; X[ D(A\)D2(¢)
+2¢72 D72 (¢)D(N) X;: X[ M D™ (¢)D(N)
+2¢ % D () D*(N)
~2¢ ¢y D7 () D(A) M D(XA)D™'( ¢)
)

D(A
+2¢72D" (@) DN MX ;X D(A)D%(¢p),
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(A.9)

(A.10)

(A.11)

(A.12)
(A.13)

(A.14)

(A.15)

(A.16)

(A.17)

(A.18)



i =1,2,...,n. Thus, the complete observed information matrix is L, (0/Y") = Z L;(0/Y;).
i=1
Evaluating the observed information matrix at @ it follows that L,,(@/Y) = — L given in

(4.2).

Acknowledgements

The authors acknowledges the partial financial support from CNPq-Brasil and Project Fonde-
cyt 1000424-Chile.

References

Arellano, R. and Bolarine, H. (1996). A note on the simple structural regression model. An-
nals of the Institute of Statistical Mathematics, 48, 111-125.

Barnett, V.D. (1969). Simultaneous pairwise linear structural relationships. Biometrics, 25,
129-142.

Bechman, R., Nachtsheim, C. and Cook, R. (1987). Diagnostics for mixed-model analysis of
variance. Technometrics, 29, 413-426.

Berkane, M., Kano, Y. and Bentler, P.M.(1994). Pseudo maximun likelihood estimation in
elliptical theory: Effects of misspecification. Computational Statistics € Data Analysis, 18,
255-267.

Bolfarine, H. and Arellano-Valle, R. B.(1994). Robust modeling in measurement error models
using the Student-t distributions. Brazilian Journal of Probability and Statistics, 8, 67-84.

Bolfarine, H. and Galea, M.(1995). Structural comparative calibration using the EM algo-
rithm. Journal of Applied Statistics, 22, 277-292.

Bolfarine, H. and Galea-Rojas, M.(1996). One structural comparative calibration under a
t-models. Computational Statistics, 11, 63-85.

Chatterjee, S. Hadi, A.S. (1988). Sensivity Analysis in Linear Regression, John Wiley. New
York.

Cheng, C. and van Ness, J. (1999). Statistical Regression With Measurement Error, Arnold.
London.

16



Chipkevitch, E., Nishimura, R., Tu, D. and Galea-Rojas (1996). Clinical measurement of tes-
ticular volume in adolescents: Comparison of the reliability of 5 methods. Journal of Urology,
156, 2050-2053.

Cochran, W.G. (1968). Errors of measurement in statistics. Technometrics, 10, 637-666.

Cook, R.D. (1986). Assessment of local influence. Journal of the Royal Statistical Society, B,
48, 133-169.

Cook, R.D. and Weisberg, S. (1982). Residuals and Influence in Regression, Chapman and
Hall. London.

Dunn, G. (1992). Design and Analysis of Reliability: The statistical evaluation of measure-
ment errors. Edward Arnold. New York.

Escobar, E. and Meeker, W. (1992). Assessing influence in regression analysis with censored
data. Biometrics, 48, 507-528.

Fuller, W.A. (1987). Measurement error models. Wiley, New York.

Fung, W. and Kwan, C.(1997). A note on local influence based on normal curvature. Journal
of the Royal Statistical Society, B, 59, 839-843.

Galea, M., Paula, G.A. and Bolfarine, H. (1997). Local influence in elliptical linear regression
models. The Statistician, 46, 71-79.

Galea, M., Bolfarine, H. and de Castro, M. (2002a). Local influence in comparative calibration
models. Biometrical Journal, 44, 59-81.

Galea, M., Bolfarine, H. and Vilca, F. (2002b). Influence diagnostics for structural errors-in-
variables model under the student—t distribution. Journal of Applied Statistics. To appear.

Grubbs, F.E. (1948). On estimating precision of measuring instruments and product variabil-
ity. Journal of the American Statistical Association, 43, 243-264.

Grubbs, F.E. (1973). Errors of measurement, precision, accuracy and the statistical compar-
ison of measuring instruments. Technometrics 15, 53-66.

Jaech, J.L. (1964). A program to estimate measurement errors in nondestructive avaluation
of fuel element quality. Technometrics, 6, 293-300.

17



Kaaks, R., Riboli, E., Estive, J., van Kappel and van Staveren (1994). Estimating the accu-
racy of questionnaire assessments: Validation in terms of strutural equation models. Statistics
in Medicine, 13, 127-142.

Kelly, G. (1984).The influence function in the errors in variables problem. The Annals of
Statistics, 12, 87-100.

Kelly, G. (1985). Use of the structural equations model in assessing the reliability of a new
measurement technique. Applied Statistics, 34, 258-263.

Kwan, C. and Fung, W. (1998). Assessing local influence for specific restricted likelihood:
Application to factor analysis. Psychometrika, 63, 35-46.

Lange, K.L., Little, R.J. and Taylor, J. (1989). Robust statistical modelling using the -
distribution. Journal of the American Statistical Association, 84, 881-896.

Lawrance, A.J. (1988). Regression transformation diagnostic using local influence. Journal
of the American Statistical Association, 83, 1067-1072.

Lesaffre, E. and Verbeke, G. (1998). Local influence in linear mixed models. Biometrics, 54,
570-583.

Little, R.J. (1988). Robust estimation of the mean and covariance matrix from data with
missing values. Applied Statistics, 37, 23-38.

Lu, Y., Ye, K., Mathur, A., Hui, S., Fuerst, T. and Genant, H. (1997). Comparative calibra-
tion without a gold standard. Statistics in Medicine, 16, 1889-1905.

Paula, G.A. (1993). Assessing local influence in restricted regressions models. Computational
Statistics and Data Analysis 16, 63-79.

Rubin. D.B. (1983). Iteratively reweighted least squares. Encyclopedia of the Statistical Sci-
ences, 4, 272-275.

Sutradhar, B.C. (1993). Score tests for the covariance matrix of the elliptical ¢-distribution.
Journal of Multivariate Analysis, 46, 1-12.

Shyr, J. and Gleser, L. (1986). Inference about comparative precision in linear structural
relationships. Journal of Statistical Planning and Inference, 14, 339-358.

Sutradhar, B.C. and Ali, M.M. (1996). Estimation of the parameter of a regression model
with a multivariate ¢ error variable. Communications in Statistics - Theory and Methods, 15,

18



429-450.

Tanaka, Y., Watadani, S. and Moon, S. (1991). Influence in covariance structure analysis

with an application to confirmatory factor analysis. Commutations in Statistics-Theory and
Methods, 20, 3805-3821.

Taylor, J. (1992). Properties of modelling the error distribution with an extra shape parame-
ter. Computational Statistics € Data Analysis, 13, 33-46.

Theobald, C.M. and Mallison, J.R. (1978). Comparative callibration, linear structural rela-
tionship and congeneric measurements. Biometrics, 34, 39-45.

Thomas, W. and Cook, R.D. (1990). Assessing influence on predictions from generalized lin-
ear models. Technometrics, 32, 59-65.

Tsai, C.L. and Wu, X. (1992). Assessing local influence in linear regression models with first-
order autoregressive or heteroscedastic error structure. Statistics and Probability Letters, 14,
247-252.

Verbeke, G. and Molenberghs, G. (2000). Linear mized models for longitudinal data. Springer.
New York.

Williams E.J. (1969). Regression methods in calibration problems. Bulletin of the Interna-
tional Statistical Institute, 43, 17-28.

Zhao, Y. and Lee, A. (1998). Influence diagnostics for simultaneous equations models. Aus-
tralian and New Zealand Journal Statistics, 40, 345-357.

19



