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Abstrat

In this paper we onsider appliations of loal inuene (Cook, 1986) to evaluate

small perturbations in the model or data set in the ontext of strutural omparative

alibration (Bolfarine and Galea, 1995) assuming that the measurements obtained follow

a multivariate elliptial distribution. Di�erent perturbation shemes are investigated and

an appliation is onsidered to a real data set, using the elliptial t�distribution.
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1 Introdution

The main objet of this paper is the study of loal inuene and diagnosti in omparative

alibration models designed to ompare the eÆieny of several measuring devies (or instru-

ments) when measuring the same unknown quantity x in a ommon group of individuals or

experimental units. It is assumed that the observed measurements follow a multivariate ellip-

tial distribution. Moreover, the omparative alibration model an be seen as a speial ase

of the general multivariate measurement error model (Fuller, 1987).

Comparing measuring devies whih varies in priing, fastness and other features, suh as

eÆieny, has been of growing interest in several areas like engineering, mediine, psyhology

and agriulture. Grubbs (1948, 1973) reports data on an experiment designed for omparing

three ronometers and Barnett (1969) reports on the omparison of four ombinations of two

instruments and two operators for measuring vital apaity. Several other examples in the

medial area are reported in the literature speially in Kelly (1984, 1985), Chipkevith et al.

(1996) and Lu et al. (1997). Examples in agriulture are onsidered in Fuller (1987) and in

psyhology and eduation in Dunn (1992). Outliers and detetion of inuent observations is an

important step in the analysis of a data set. There are several ways of evaluating the inuene

of perturbations in the data set and in the model given the parameter estimates. Important

reviews an be found in the books by Cook and Weisberg (1982) and Chatterjee and Hadi

(1988) and in the paper by Cook (1986). On the other hand, there are just a few works in

the literature for diagnosti and inuene of observations in models with measurement errors.

Kelly (1984) onsidered a diagnosti proedure in the strutural linear model based on the
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inuene funtion. Tanaka et al. (1991) also onsider the inuene funtion introdued by

Hampel for evaluating the inuene of observations in the analysis of ovariane strutures.

Reently, Zhao and Lee (1998) de�ne leverage of one observation and Cook's distane in a

simultaneous equation model. Rather than eliminating ases, the approah proposed by Cook

(1986) is a general method for evaluating, under the maximum likelihood estimators, the

inuene of small perturbations in the model or data set.

Additional results on loal inuene and appliations in linear regression and mixed models

an be found in Bekman et al. (1987), Lawrane (1988), Thomas and Cook (1990), Tsai and

Wu (1992), Paula (1993), Galea et al. (1997) and Lesa�re and Verbeke (1998). Zhao and

Lee (1998) and Kwan and Fung (1998) apply the loal inuene approah for fator analysis

and simultaneous equations under the normality assumption. Reently, Galea et al. (2002a)

apply the loal inuene method in funtional and strutural omparative alibration models

also under the normal distribution assumption. However, no appliation of loal inuene

has been onsidered for omparative alibration under elliptial models. Thus, the main

objet of this paper is to apply the approah of loal inuene to elliptial measurement error

models. As typially onsidered in the literature, the relevane of using the t-distribution

is related to its apability of downweighting inuent observations. See, for example, Lange

et al. (1989). Several perturbation shemes are onsidered suh as ase perturbation and

response perturbation. In Setion 2 the elliptial strutural omparative alibration model is

onsidered and in Setion 3 the main onepts of loal inuene are revised. In Setion 4 model

urvatures are onsidered for di�erent perturbation shemes and in Setion 5 an illustration

of the methodology is presented for a real data set.

2 Elliptial omparative alibration models

Suppose that we have at our disposal p � 2 instruments for measuring a harateristi of

interest x in a group of n experimental units. Let x

i

the true (unknown) value in unit i and

y

ij

the measured value obtained with instrument j in unit i, i = 1; : : : ; n and j = 1; : : : ; p.

A model typially onsidered in the literature (see, Jaeh (1964), Cohran (1968), Barnett

(1969), Williams (1969) and Shyr and Gleser (1986)), for suh situation is given, in matrix

notation, by

Y

i

= �+ �x

i

+ e

i

(2.1)

= �+BU

i

;

where �=(�

1

; : : : ; �

p

)

>

, � = (�

1

; : : : ; �

p

)

>

are p � 1 vetors, B = (�; I

p

) is a p � (p + 1)

matrix, Y

i

= (y

i1

; : : : ; y

ip

)

>

and e

i

= (e

i1

; : : : ; e

ip

)

>

are p � 1 random vetors U

i

= (x

i

; e

>

i

)

>

is of dimension (p + 1) � 1 and I

p

denotes the identity matrix of dimension p, i = 1; : : : ; n.

The x

i

an be onsidered as unknown parameters in whih ase the model is alled funtional

or, it an be onsidered as independent and identially distributed random variables, in whih

ase the model is alled strutural. In this paper, we onsider the strutural version, whih

is free of inidental parameters. Finally, it is onsidered that the random vetors U

1

; : : : ;U

n
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are independent and identially distributed with a distribution whih we denote by Q

u

(�;�),

where

� =

�

�

x

0

�

and � =

�

�

x

0

0 D(�)

�

; (2.2)

with D(�) = diag(�

1

; : : : ; �

p

): Typially Q

u

is onsidered to be the multivariate normal dis-

tribution with mean vetor � and ovariane matrix �. However, in this paper we onsider

it to denote a member of the elliptial family of distributions with the normal distribution as

an speial ase. Thus, Y

1

; : : : ;Y

n

are independent and identially distributed with aording

to the Q

y

(�;V), where

� = �+ ��

x

= �(�) and V = D(�) + �

x

��

0

= V(�); (2.3)

with � = (�

x

;�

>

;�

>

; �

x

;�>)

>

.

Let � = (�

x

;�

>

;�

>

; �

x

;�

>

)

>

, where �

x

= (�

x

+ d)=; � = � � d�; � = � and

�

x

= �

x

=

2

; ; d 6= 0 2 IR. It an be veri�ed that

Q

y

(�(�);V(�)) = Q

y

(�(�);V(�)):

This result implies that ifQ

u

(orQ

y

) follows an elliptial distribution, then � is not identi�able.

See Bolfarine and Galea-Rojas (1996). One way of dealing with this problem is to impose

restritions on �. It is possible (see Barnett, 1969) to onsider that there is a referene

instrument (denoted instrument 1, without loss of generality) whih measures without bias

(additive or multipliative) the quantity of interest. Hene, orresponding to instrument 1,

it is onsidered that �

1

= 0 and �

1

= 1 and under this assumption the model de�ned by

(2.1)-(2.2) beomes identi�able. Thus, the model proposed by Barnett (1969) is given by

Y

i

=

�

0

�

�

+

�

1

�

�

x

i

+ "

i

; i = 1; : : : ; n; (2.4)

with � = (�

2

; : : : ; �

p

)

>

and � = (�

2

; : : : ; �

p

)

>

:

Theobald and Mallison (1978) make model (2.1)-(2.2) for p � 3 identi�able by onsidering

�

x

= 0 and �

x

= 1, that is, the model is de�ned as a fator analysis model. More reently, Lu

et al. (1997) onsider model (2.1)-(2.2) with �

x

and �

x

as known so that model beomes iden-

ti�able. Indeed, �

x

and �

x

are estimated by onsidering inorporating additional information

into the model. In all those referenes, Q

y

is assumed to be the normal distribution.

Replaing x

i

= �

x

+

p

�

x

z

i

, with z

i

� (0; 1), that is, a random variable with loation zero

and sale 1, in (2.4) and (2.1) it follows that

Y

i

= �+ �z

i

+ "

i

; i = 1; 2; : : : ; n; (2.5)

where � =

�

0

�

�

+

�

1

�

�

�

x

and � =

p

�

x

�

1

�

�

, for the model proposed in Barnett (1969) and

� = �+ ��

x

and � =

p

�

x

�, orresponding to the model onsidered in Lu et al. (1997).

From the above exposition, it follows that it is possible to work under the elliptial family

with model (2.5) whih presents omputational advantages and from that to obtain results for
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the model proposed by Barnett (1969) and Lu et al. (1997). As mentioned above, inferene

for suh model under the speial ase where Q

u

is the normal distribution is onsidered in

Barnett (1969), Theobald and Mallison (1978), Bolfarine and Galea (1995) and Lu et al.

(1997). The ase where Q

u

is the Student-t distribution with � degrees of freedom, has been

studied in Bolfarine and Galea-Rojas (1996). In the ase of p = 2, the model de�ned by (2.4)

or (2.5) orresponds to the simple linear regression model with measurement errors and has

been extensively treated in the literature as, for example, in Shyr and Gleser (1986), Fuller

(1987), Arellano and Bolfarine (1996) and Cheng and van Ness (1999). More reently, Kwan

and Fung (1998) onsider the loal inuene approah in fator analysis models for studying

the e�et on the maximum likelihood estimators of small perturbation in the data or model.

The elliptial strutural omparative alibration model or simply, the elliptial strutural

model an be de�ned as:

Y

i

= �+ �z

i

+ "

i

; i = 1; 2; : : : ; n

U

i

=

�

z

i

"

i

�

; 1 � i � n; are iid IE`

p+1

(0;�; g)

9

=

;

(2.6)

where � =

�

1 0

0 D(�)

�

.

This, we have that Y

1

;Y

2

; : : : ;Y

n

are iid IE`

p

(�;V ; g), with density given by:

f

Y

(y) = jV j

�1=2

g((y � �)

>

V

�1

(y � �)); y 2 IR

p

; (2.7)

where g : IR 7! [0;1), the generator density, is suh that f

1

0

u

p�1

g(u

2

)du < 1 and V =

��

>

+D(�) is the sale matrix.

Thus, the main objet of this paper is to onsider the approah of loal inuene in the

elliptial omparative alibration model given in (2.5)-(2.7).

3 Loal Inuene

Let l(�) denote the log-likelihood funtion from the postulated model (here � = (�

>

, �

>

,

�

>

)

>

) and let ! be a q� 1 vetor of perturbation restrited to some open subset of IR

q

. The

perturbations are made in the likelihood funtion suh that it takes form l(�j!). Denoting

the vetor of no perturbation by !

0

, we assume l(�j!

0

) = l(�). To asses the inuene of

the perturbations on the maximum likelihood estimate of �, one may onsider the likelihood

displaement

LD(!) = 2[l(

b

�)� l(

b

�

!

)℄;

where

b

�

!

(

b

�) denotes the maximum likelihood estimator under the model l(�j!)(l(�)).

In some situations, it may be of interest to assess the inuene on a subset �

1

of � =

(�

>

1

; �

>

2

). For example, one may have interest on �

1

= � or �

1

= �. In suh situations, the
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likelihood displaement an be de�ned as

LD(!) = 2[l(

b

�)� l(

b

�

1!

;

b

�

2

(

b

�

1!

))℄;

where

b

�

1!

an be obtained from

b

�

!

= (

b

�

>

1!

;

b

�

>

2!

)

>

and

b

�

2

(

b

�

1!

) is the maximum likelihood

estimate of �

2

for �

1!

�xed in the perturbed model.

The idea of loal inuene (Cook, 1986) is onerned in haraterizing the behavior of

LD(!) at !

0

. The proedure onsists in seleting a unit diretion l, jjljj = 1, and then to

onsider the plot of LD(!

0

+ al) against a with a 2 IR. This plot is alled lifted line. Notie

that sine LD(!

0

) = 0; LD(!

0

+ al) has a loal minimum at a = 0. Eah lifted line an be

haraterized by onsidering the normal urvature C

l

(�) around a = 0. The suggestion is to

onsider the diretion l

max

orresponding to the largest urvature C

lmax

(�). The index plot of

l

max

may reveal those observations that under small perturbations exert notable inuene on

LD(!). Cook (1986) showed that the normal urvature at the diretion l takes the form

C

l

(�) = 2jl

>

�

>

L

�1

�lj; (3.1)

where � L is the observed Fisher information matrix for the postulated model (! = !

0

) and

� is the p

�

� q matrix with elements

�

ij

=

�

2

l(�j!)

��

i

�!

j

;

evaluated at � =

b

� and ! = !

0

; i = l; :::; p

�

and j = 1; :::; q; p

�

= 3p. Therefore, the

maximization of (3.1) is equivalent to �nding the largest absolute eigenvalue C

lmax

of the

matrix B = �

>

L

�1

�, and l

max

is the orresponding eigenvetor. For the subset �

1

, the

urvature at the diretion l is given by

C

l

(�

1

) = 2jl

>

�

>

( L

�1

�B

22

)�lj;

where

B

22

=

�

0 0

0 L

�1

22

�

;

and L

22

is obtained from the partition of L aording to the partition of �. The eigenvetor

l

max

orresponds to the largest absolute eigenvalue of the matrix B =�

>

( L

�1

�B

22

)�.

Other important diretion, aording to Esobar and Meeker (1992) (see also Verbeke and

Molenberghs, 2000) is l = e

in

, whih orresponds to the i�th position, where there is a one.

In that ase, the normal urvature, alled the total loal inuene of individual i, is given by

C

i

= 2je

>

in

Be

in

j = 2jb

ii

j, where b

ii

is the i�th element diagonal of B, i = 1; :::; n. Verbeke

and Molenberghs (2000) propose onsider the i�th observation inuential if C

i

is larger than

the uto� value 2

q

X

i=1

C

i

=q. We use l

max

and C

i

as diagnostis for loal inuene.
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Reently, Fung and Kwan (1997) presented an interesting disussion on the appliation

of the loal inuene for other inuene measures than the likelihood displaement. They

show that an inuene measure, namely

b

T

!

, is sale invariant if

_

� = �

b

T

!

=�!j

!=!

0

= 0.

When this derivative is nonzero the ordering among the omponents of l

max

is not nees-

sarily preserved under hanges in the sale. In partiular, for the likelihood displaement,

_

� = �l(

b

�

!

)=�!j

!=!

0

= 0. This property also follows, for instane, for the inuene mea-

sures proposed in Thomas and Cook (1990) and Paula (1993). But this property is not shared

by other inuene measures, as pointed out by Fung and Kwan (1997).

4 Curvature Derivation for Elliptial Comparative

Calibration Models

In this setion we derive the observed information matrix and the � matrix for di�erent

shemes of perturbations.

4.1 The observed information matrix

From (2.7) we have that log-likelihood funtion is given by:

l(�) =

n

X

i=1

`

i

(�); (4.1)

where `

i

(�) = �

1

2

logjVj+ log(g(d

i

)) and d

i

= d

i

(�) = (y

i

� �)

>

V

�1

(y

i

� �), i = 1; 2; :::; n

and V as in (2.7). The matrix of seond derivatives with respet to � is given by:

L =

�

2

l(�)

����

>

�

�

�

�=

b

�

=

0

B

�

L

��

L

��

L

��

L

��

L

��

L

��

1

C

A

(4.2)

where

b

� is the estimator of maximum likelihood of �. The elements of this matrix are given

in the appendix.

4.2 Perturbation of ases weights

We onsidered the vetor of weights ! = (!

1

; :::; !

n

)

>

, for weight the ontribution of eah ase

in the log-likelihood. Thus the perturbed likelihood is:

l(�=!) =

n

X

i=1

!

i

`

i

(�) (4.3)
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where `

i

(�) is de�ned in (4.1). The vetor of the no perturbation is !

0

= (1; :::; 1)

>

= 1.

Let �



= (�



1

;�



2

; :::;�



n

) the submatrix of � in (3.1), assoiated to the parameter .

That is, �



i

is the i�th olumn of �



; i = 1; :::; n and  = �;�;�. Consequently, for using

(4.1), (4.3) and alulus of vetor derivatives (Nel, 1980), we have, after of some omputations:

�

�

i

= �2W

g

(d

i

)V

�1

X

i

; (4.4)

�

�

i

= �

�1

[I

p

+ 2W

g

(d

i

)(D

�1

(�)X

i

X

>

i

� 

�1



i1

I

p

)℄D

�1

(�)�; (4.5)

�

�

i

= �

1

2

D

�1

(�)[1� 

�1

D

�1

(�)D(�)�℄ + (4.6)

W

g

(d

i

)D

�2

(�)[�D(X

i

)X

i

+ 2

�1



i2

D(�)X

i

� 

�2



i1

D(�)�℄;

where D(a) = Diag(a

1

; :::; a

p

), for a 2 IR

p

, D

�k

(a) = Diag(a

�k

1

; :::; a

�k

p

); k = 1; 2; 3,

M = D

�1

(�)��

>

D

�1

(�);  = 1+�

>

D

�1

(�)�,X

i

= Y

i

��,W

g

(d

i

) =

g

0

(d

i

)

g(d

i

)

; 

i1

=X

>

i

MX

i

and 

i2

= X

>

i

D

�1

(�)�, i = 1; :::; n. Expressions (4.4)-(4.6) are evaluated at the maximum

likelihood estimators. Thus, � in (3.1) takes the form

� =

0

�

�

�

�

�

�

�

1

A

; (4.7)

whih is of dimension 3p� n.

4.3 Perturbation of the observations

In this setion, the measured values obtained with the instruments are perturbed. Let Y

i

(!

i

)

the perturbation in observation Y

i

, where !

i

= (!

i

1

; :::; !

i

p

)

>

i = 1; :::; n. Some situations of

interest in this ase are:

(a) Simultaneous perturbations of the measurements of the p instruments:

Y

i

(!

i

) =

8

<

:

Y

i

+ !

i

; additive perturbation

Y

i

� !

i

; multipliative perturbation

where � denotes Hadamard produt.

(b) Perturbing the measurements from one instrument. Suppose that it is of interest

perturbing the measurements from one spei� instrument, say, k; k = 1; :::; p. In this ase

Y

i

(!

i

) =

8

<

:

Y

i

+ !

i

� e

k

; additive perturbation

Y

i

� 1

p

(!

i

k

); multipliative perturbation
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where e

k

is the k-th unit vetor of IR

p

and 1

p

(!

i

k

) = (1; :::; 1; !

i

k

; 1; :::1)

>

, is of dimension p.

Note that in the above perturbation shemes there exists !

i

0

suh that Y

i

(!

i

0

) = Y

i

, for

example, in (a) !

i

0

= (0; :::; 0)

>

in the additive ase and !

i

0

= (1; :::; 1)

>

in the multipliative

ase.

Let W = (!

1

; :::;!

n

) a matrix p � n, whose olumns are !

i

; i = 1; :::; n. Denote ! =

Ve(W ) = (!

>

1

; :::;!

>

n

)

>

.

Thus, the perturbed log-likelihood funtion is given by:

l(�=!) =

n

X

i=1

`

i

(�=!

i

); (4.8)

where `

i

(�=!

i

) = �

1

2

`njV j+ `ng(d

i

(!

i

)), with d

i

(!

i

) = (Y

i

(!

i

)��)

>

V

�1

(Y

i

(!

i

)��) and

Y

i

(!

i

) as de�ned in (a) or (b), i = 1; :::; n.

Di�erentiating L(�=!) with respet to ! and � it follows that:

� = (�

�

1

; :::;�

�

n

); (4.9)

where �

�

i

= W

0

g

(d

i

(!

i

))

�

��

d

i

(!

i

)

�

�!

>

i

d

i

(!

i

) +W

g

(d

i

(!

i

))

�

2

d

i

(!

i

)

���!

>

i

, with

�

��

d

i

(!

i

) as in the

unperturbed ase, replaing Y

i

for Y

i

(!

i

),

�d

i

(!

i

)

�!

>

i

= 2(Y

i

(!

i

) � �)

>

V

�1

�Y

i

(!

i

)

�!

>

i

; i =

1; :::; n and

�

2

d

i

(!

i

)

���!

>

i

=

0

B

B

B

B

B

B

B

B

B

B

�

�

2

d

i

(!

i

)

���!

>

i

�

2

d

i

(!

i

)

���!

>

i

�

2

d

i

(!

i

)

���!

>

i

1

C

C

C

C

C

C

C

C

C

C

A

; i = 1; :::; n:

Note that �

�

i

is the matrix 3p� p; i = 1; :::; n. The above derivations are evaluated at

b

� and

!

0

. In the following, expressions are obtained for the matrix � in ases (a) and (b).

Case (a): Let �

a



i

(�

m



i

) the i�th submatrix of dimension p � p, of �



with respet to the

additive (multipliative) perturbation sheme,  = �;�;� e i = 1; :::; n. From (4.9) evaluating

in !

0

;

�

�

i

= 2(W

0

g

(d

i

)

�d

i

��

X

>

i

�W

g

(d

i

)I

p

)V

�1

; (4.10)
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�

�

i

= 2W

0

g

(d

i

)

�d

i

��

X

>

i

V

�1

(4.11)

+2

�1

W

g

(d

i

)(2V

�1

X

i

�

>

�D

�1

(�)X

i

�

>

+ 

i2

I

p

)D

�1

(�);

�

�

i

= 2W

0

g

(d

i

)

�d

i

��

X

>

i

V

�1

� 2W

g

(d

i

)(D

�1

(�)D(X

i

)V

�1

(4.12)

+

�2

D

�2

(�)(D(�)�X

>

i

M � 

�1



i2

D

�2

(�)D(�)); i = 1; :::; n:

Thus, evaluating (4.10)-(4.12) at the maximum likelihood estimator

b

� of � it follows in the

additive ase that

�

a

= (�

a

�

1

; :::;�

a

�

n

); (4.13)

where

�

a

�

i

=

0

B

�

�

a

�

i

�

a

�

i

�

a

�

i

1

C

A

; i = 1; :::; n:

With respet to the multipliative sheme, it follows that

�

m



i

= �

a



i

D(Y

i

) ;  = �;�;�; i = 1; :::; n (4.14)

Case (b): Without loss of generality, we an take k = 1. To obtain the matrix � in

the additive sheme, we an multiply �

a



i

; = �;�;� given in (4.14) from the right by

e

1

= (1; 0; :::; 0)

>

2 IR

p

. Analogously, in the multipliative sheme, it suÆient multiplying

�

m

�

i

, given in (4.14), from the right by the same expression. Expressions forW

0

g

(d) andW

g

(d)

are obtained in Galea, Paula and Bolfarine (1997) for some distributions in the elliptial family.

4.4 Perturbation of the degrees of freedom in the Student t-model

A speial ase of the elliptial omparative alibration model (2.6)-(2.7), is the Student-t,

whih follows by assuming that U

i

� t

p+1

(0;�; �); � > 0. Then Y

i

� t

p

(�;V ; �) with

density funtion given by:

f

Y

(y) = k(p; �)(� + (y � �)

>

V

�1

(y � �)

�

1

2

(�+p)

(4.15)

where k(p; �) = �

�

p+ �

2

�

�

�=2

=�(�=2)�

p=2

. For this speial model, W

g

(d) = �

1

2

(� + p)(� +

d)

�1

and W

0

g

(d) =

1

2

(� + p)(� + d)

�2

.

Reently, several authors have onsidered the multivariate Student-t distribution as an

alternative to the normal model beause it an naturally aommodate outliers present in the

9



data. Thus, the Student-t model provides a robust proedure for analysing data sets whih

may present outliers. Rubin (1983) obtain maximum likelihood estimators for the parameters

of the multivariate Student-t model by using the EM -algorithm; Little (1988) extends the

results in Rubin (1983) for the ase of inomplete data sets, that is, data sets with missing data.

Sutradhar and Ali (1986) onsider maximum likelihood estimation in the multivariate Student-

t regression model. Lange et al. (1989) disuss the use of the Student-t model in regression

and in problems related to multivariate analysis. Taylor (1992) onsiders some other aspets

of the Student-t model. More reently, Sutradhar (1993) has onsidered an sore test aiming

at testing if the ovariane matrix is equal to some spei�ed ovariane matrix (diagonal, for

example), using the Student-t distribution; Bolfarine and Arellano (1994) introdue Student-t

funtional and strutural measurement error models and Bolfarine and Galea-Rojas (1996)

use the Student-t distribution in strutural omparative alibration models. The Student-t

distribution inorporates an additional parameter �, namely the degrees of freedom parameter,

whih allows adjusting for the kurthosis of the distribution. This parameter an be �xed

previously and Lange et al. (1989) and Berkane et al. (1994) reommend � = 4, or, otherwise,

get information for it from the data set. In this setion � is onsidered known and the following

perturbed model is onsidered:

Y

i

� t

p

(�;V ; �

0

h(!

i

)); (4.16)

with theY

i

being independent, i = 1; :::; n, where h is a positive and di�erentiable and further,

there exists !

0

i

suh that h(!

0

i

) = 1. Under the perturbed model, the log-likelihood funtion

is given by

l(�=!) =

n

X

i=1

`

i

(�=!

i

); (4.17)

where `

i

(�=!

i

) = `nk(�

i

; p)�

1

2

`njV j �

1

2

(�

i

+ p)`n(�

i

+ d

i

), where �

i

= �

0

h(!

i

); k(�

i

; p) as in

(4.15) with � replaed by �

i

and d

i

as de�ned in (4.1), i = 1; :::; n. Aording to our notation,

! = (!

1

; :::; !

n

)

>

. Thus, following similar proedures as onsidered in Setion 4.3, it follows

that:

� = (�

�

1

; :::;�

�

n

); (4.18)

where

�

�

i

= �

0

h

0

(!

0

i

)

�

1

�

0

+ p

W

g

(d

i

) +W

0

g

(d

i

)

�

�d

i

��

;

i = 1; :::; n. Expression (4.18) should be evaluated at the maximum likelihood estimate

b

�.

The funtion h an be de�ned as in Esobar and Meeker (1992), namely, h(!

i

) = a

!

i

, with

a > 0 and !

i

2 [�1; 1℄; i = 1; :::; n. Thus, �

i

= �

0

h(!

i

) takes values in the interval [�

0

=a; a�

0

℄.

For example, we an take a = 2 and h

0

(!

0

i

) = `n2, i = 1; :::; n. If !

i

= ! for all i = 1; :::; n;

h(!) is an salar type funtion. In this ase, onsidering a Taylor expansion of order 2 of l(

b

�

!

)

around ! = !

0

it follows that

LD

1

(!)

�

=

�

>

(� L)

�1

�(! � !

0

)

2

; (4.19)
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where

� = �

0

h

0

(!

0

)

n

X

i=1

(W

0

g

(d

i

) +

W

g

(d

i

)

�

0

+ p

)

�d

i

��

;

whih is of dimension 3p � 1. Note that lim

�

0

!1

C

l

(�) = 0; for all l; jjljj = 1; meaning that

for large �

0

(lose to normality) there are no diretions of loal inuene, whih is reasonable

sine the normal model is independent of �

0

. Thus in the appliations presented below, we

onsider only the ase of small �

0

.

4.5 Appliation

In this setion we analyze one real data set given in Barnett (1969). Two instruments used for

measuring the vital apaity of human lung and operated by skilled and unskilled operators

were ompared on a ommon group of 72 patients. We will fous on the parameter set �, in the

t�model, perturbation of the degrees of freedom and perturbation of ases. All omputations

were performed in S-Plus.

Figures 1 and 2 present graphis of loal inuene for the perturbation of ase weights

for several degrees of freedom. As expeted for small degrees of freedom there are no loal

inuent observations on the maximum likelihood estimators.

However, as � inreases (lose to the normal model), some observations (23, 30, 58, 67)

present signi�ant inuene on the maximum likelihood estimators, as was also veri�ed in

Galea et al. (2002a) for the normal model. This shows that the t-model with small degrees of

freedom an be very useful for aommodating inuent observations present on the data sets,

whih is not the ase with normal models.

Similar results were also obtained in Galea et al. (2002b) in the strutural error in variables

models using a t-distribution.

Figures 3, 4 and 5 present graphis of loal inuene for perturbation of the degrees of

freedom parameter. Note that for �

0

= 1 (Cauhy model), model perturbation with degrees of

freedom around one, that is, � 2 [1=2; 2℄, observation 45 yields the largest loal inuene on

the maximum likelihood estimators. On the other hand, for �

0

= 4, the maximum likelihood

estimators are quite stable with respet to small perturbation on the degrees of freedom

parameter. Thus, for the present data set �

0

= 4 seems to be the most adequate value of

parameter degrees of freedom. This onlusion was also reahed by Lange et al. (1989) for

several of the data set they have analyzed using di�erent proedures of model identi�ation.

Thus, the loal inuene approah an also be useful in the appropriate seletion of the degrees

of freedom parameter.
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Figure 1: Index plot of l

max

for perturbation of ase weights
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Figure 2: Index plot of C

i

for perturbation of ase weights
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Figure 3: Index plot of l

max

for perturbation of the degrees of freedom
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Figure 4: Index plot of C

i

for perturbation of the degrees of freedom
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Appendix: Computing the observed information matrix in the elliptial

strutural model

In this appendix the observed information matrix is obtained for the elliptial strutural

model. From (4.1), it follows that

�`

i

(�)

�

= �

1

2

�`njV j

�

+W

g

(d

i

)d

i

; (A.1)

with d

i

=

�d

i

�

; = �;�;� and d

i

= X

>

i

V

�1

X

i

; X

i

= Y

i

� �; i = 1; :::; n: Further, using

results in Nel (1980) related to vetor derivatives it follows that,

�`njV j

��

= 0;

�`njV j

��

= 2

�1

D

�1

(�)�;

�`njV j

��

= D

�1

(�)1� 

�1

D

�2

(�)D(�)�;

9

>

>

>

>

=

>

>

>

>

;

(A.2)

d

i�

= �2V

�1

X

i

; (A.3)

d

i�

= �2

�1

D

�1

(�)X

i

X

>

i

D

�1

(�)�+ 2

�2



i1

D

�1

(�)�; (A.4)

d

i�

= �D

�2

(�)D(X

i

)X

i

+ 2

�1



i2

D

�2

(�)D(�)X

i

(A.5)

�

�2



i1

D

�2

(�)D(�)�; i = 1; 2; :::; n

From (A.1) it follows that the observed, per element, information matrix is given by

L

i

= L

i

(�=Y

i

) = �

2

6

6

6

6

6

6

6

6

6

6
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2

`
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����

>

�

2

`
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����

>

�
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`
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����

>

�

2

`
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����

>

�
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`

i

����

>

�

2

`

i

����

>

3

7

7

7

7

7

7

7

7

7

7

5

; (A.6)

i = 1; :::; n, where

�

2

`

i

���

>

= �

1

2

�

2

`njV j

���

>

+W

0

g

(di)d

i

d

i�

>
+W

g

(d

i

)d

i�

>
; (A.7)

with d

i�

>
=

�

2

d

i

���

>

; i = 1; 2; :::; n and ; � = �;�;�, where
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i = 1; 2; :::; n. Thus, the omplete observed informationmatrix is L

ob

(�=Y ) =

n

X

i=1

L

i

(�=Y

i

).

Evaluating the observed information matrix at

b

� it follows that L

ob

(

b

�=Y ) = � L given in

(4.2).
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