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Abstrat. In this paper we establish the existene of multiple solutions for the semilinear

ellipti problem

��u = g(x; u) in 


u = 0 on �
;

where 
 � R

N

is a bounded domain with smooth boundary �
, g : 
 � R ! R is a

funtion of lass C

1

suh that g(x; 0) = 0 and whih is asymptotially linear at in�nity.

We onsidered both ases, resonant and nonresonant. We use ritial groups to distinguish

the ritial points.

1. Introdution

Let us onsider the problem

��u = g(x; u) in 


u = 0 on �
;

(1)

where 
 � R

N

is a open bounded domain with smooth boundary �
 and g : 
 � R ! R

be a funtion of lass C

1

suh that g(x; 0) = 0, whih implies that (1) possesses the trivial

solution u = 0. We will be interested in nontrivial solutions. Assume that

lim sup

jtj!1

g(x; t)

t

� `; ` 2 R:

The lassial solutions of the problem (1) orrespond to ritial points of the funtional F

de�ned on H = H

1

0

(
), by

F (u) =

1

2

Z




jruj

2

dx�

Z




G(x; u)dx; u 2 H; (2)

where G(x; t) =

R

t

0

g(x; s)ds. Under the above assumptions F 2 C

2

.

Denote by 0 < �

1

< �

2

� � � � � �

j

� : : : the eigenvalues of (��; H

1

0

). We write

a(x) 6� b(x) to indiate that a(x) � b(x) with strit inequality holding on a set of positive

measure.
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We �rst assume the followings hypotheses on g.

�

g(x;t)

t

is stritly inreasing with respet to t � 0; a:e: in 
; and

g(x;t)

t

is stritly dereasing with respet to t � 0; a:e: in 
:

(3)

�

j

6� L(x) = lim inf

jtj!1

g(x; t)

t

� lim sup

jtj!1

g(x; t)

t

= K(x) 6� �

j+1

; uniformly in 
: (4)

�

j

6� L(x) and lim

jtj!1

[tg(x; t)� 2G(x; t)℄ =1; a:e: x 2 
: (5)

Theorem 1.1. Let g : 
 � R ! R be a funtion of lass C

1

, g(x; 0) = 0, whih satis�es

(3). Suppose that there exist k � 2 and m � 1 suh that

�

k�1

� g

0

(x; 0) < �

k

� �

k+m

� lim inf

jtj!1

g(x; t)

t

� lim sup

jtj!1

g(x; t)

t

� �

k+m+1

;

where the limits are uniform for x in 
. If either (4) or (5) hold with j = k +m. Then

problem (1) has at least two nontrivial solutions.

Theorem 1.2. Let g : 
 � R ! R be a funtion of lass C

1

, g(x; 0) = 0. Suppose that

there exists m � 1 suh that

g

0

(x; 0) < �

1

< �

m+1

� lim inf

jtj!1

g(x; t)

t

� lim sup

jtj!1

g(x; t)

t

� �

m+2

;

where the limits are uniform for x in 
. Suppose that either (4) or (5) hold with j = m+1.

Moreover if (5) hold, assume that there exists C(x) 2 L

1

(
) suh that tg(x; t)� 2G(x; t) �

C(x) 8 t 2 R, a.e. x 2 
. Then problem (1) has at least three nontrivial solutions.

Theorem 1.3. Let g : 
 � R ! R be a funtion of lass C

1

, g(x; 0) = 0, whih satis�es

(3). Suppose that there exists m � 2 suh that

g

0

(x; 0) < �

1

< �

m+1

� lim inf

jtj!1

g(x; t)

t

� lim sup

jtj!1

g(x; t)

t

� �

m+2

;

where the limits are uniform for x in 
. If either (4) or (5) hold with j = m + 1. Then

problem (1) has at least four nontrivial solutions, one of those hanging sign, another one

positive and a third one negative.

Theorem 1.4. Let g : 
 � R ! R be a funtion of lass C

1

, g(x; 0) = 0, whih satis�es

(3). If there exists k � 2 suh that

�

k�1

� g

0

(x; 0) < �

k

< lim

t!�1

g(x; t)

t

< �

k+1

;

where the limits are uniform for x in 
. If 0 is an isolated ritial point then problem (1)

has exatly two nontrivial solutions.
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Remark 1.1. We all (1) a resonant or double resonant problem when it happens, respe-

tively, that

lim

jtj!1

g(x; t)

t

= �

j

;

�

j

� lim inf

jtj!1

g(x; t)

t

� lim sup

jtj!1

g(x; t)

t

� �

j+1

;

for some j � 1, uniform for a.e. x 2 
 (f. [2, 5℄). Multipliity for double resonant

problems were treated by reent papers [23, 24, 25℄. In [23℄, the author onsidered only

the autonomous ase and assume strong resonant hypotheses. Theorem 1.5 below, gives

a example of a funtion that satis�es the hypotheses of Theorem 1.1 and does not satisfy

the hypotheses in [24, 25℄. Under the onditions of Theorem 1.2, but assuming resonane

only at one eigenvalue, Daner & Zhang [13℄ proved that problem (1) has at least one

sign-hanging solution, one positive solution, and one negative solution.

Now onsider the autonomous problem

��u = g(u) in 


u = 0 on �
;

(6)

where g : R ! R is a funtion of lass C

1

suh that g(0) = 0. Castro & Lazer [6℄ and

Ambrosetti & Manini [1℄ proved that if g 2 C

2

, tg

00

(t) > 0 a.e. in R, and

�

k�1

< g

0

(0) < �

k

< lim

t!�1

g

0

(t) < �

k+1

for some k � 1, then (6) has exatly two nontrivial solutions. In Mizoguhi [19℄, it was

shown that if g 2 C

2

, tg

00

(t) > 0 a.e. in R, and

�

k�1

� g

0

(0) < �

k

� �

k+1

< lim

t!�1

g

0

(t) < �

k+2

;

then there exist at least two nontrivial solutions of the problem (6). Our next result extends

the previous results in this autonomous ase.

Theorem 1.5. Let g : R ! R be a funtion of lass C

1

, g(0) = 0, whih satis�es

�

g(t) is onvex if t � 0; and

g(t) is onave if t � 0:

If there exist k � 2 and m � 1 suh that

�

k�1

� g

0

(0) < �

k

� �

k+1

� � � � � �

k+m

< `

�

= lim

t!�1

g

0

(t) � �

k+m+1

;

then problem (6) has at least two nontrivial solutions.

In fat, the above hypothesis on the onvexity of g implies that (see Proposition 3.1)

lim

jtj!1

[tg(t)� 2G(t)℄ =1:

Hene the previous theorem is orollary of Theorem 1.1.
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Remark 1.2. In [4℄, Bartsh, Chang & Wang showed that if g

0

(t) > g(t)=t 8 t 6= 0 and

g

0

(0) < �

1

< �

2

� �

k

< lim

jtj!1

g

0

(t) < �

k+1

; (k > 2);

then problem (6) has at least four nontrivial solution, two of these solutions hange sign,

one is positive and another one is negative. They observe that the nonresonane at in�nity

in the above result an be removed using arguments like in [3℄ and [9℄. In [9℄, the author

assumes a Ladesmam-Lazer ondition and that jg(t) � �

k+1

tj is bounded for all t 2 R.

In [3℄, the authors suppose that jg(t) � �

k+1

tj � (jtj

r

+ 1), for some r 2 (0; 1), with

the purpose of omputing the ritial groups at in�nity. The next result is a orollary of

Theorem 1.3.

Theorem 1.6. Let g : R ! R be a funtion of lass C

1

, g(0) = 0, whih satis�es

�

g(t) is onvex if t � 0; and

g(t) is onave if t � 0:

Suppose that there exist k > 2 suh that

g

0

(0) < �

1

< �

2

� �

k

< lim

t!�1

g(t)

t

= �

k+1

:

Then problem (6) has at least four nontrivial solutions, one of those hange sign, one is

positive and another one is negative.

Remark 1.3. The funtional in the nonresonant ase satis�es the Palais-Smale Condition,

(PS) in short, and the diÆulty in the resonant ase is the lak of a (PS) ondition. But

if the funtion g satis�es

lim

jtj!1

[tg(x; t)� 2G(x; t)℄ =1; uniformly in 
;

then in [11℄, Costa & Magalh~aes showed that this ondition is suÆient to obtain a weak

version of the (PS) ondition, namely the (C) ondition, whih was introdued by Cerami

in [7℄. The (C) ondition was used by Bartolo, Beni & Fortunato in [2℄ to prove a general

minimax theorem (see [20℄ for this results with the (PS) ondition). The so alled Seond

Deformation Lemma, proved by Chang (see [9℄), has a version with the Cerami ondition

replaing the usual (PS) ondition, as proved by Silva & Teixeira in [21℄.

In Setion 2, we ollet some results on Morse Theory, with the funtional satisfying

the Cerami ondition. In Setion 3, we prove some lemmas about the geometry of the

funtional and a ompatness ondition. In Setion 4 we prove the main theorems.

2. Remarks on Critial Point Theory

In this setion some lassial de�nitions and results in Morse Theory are realled. These

results will be used in the proofs of main theorems. In [9℄ the (PS) ondition is used,

whereas we use here a weaker ompatness ondition on the funtionals. This results an

be found in [18℄ with others hypotheses.
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Let H be a Hilbert spae and f : H ! R be a funtional of lass C

1

. Denote the

set of ritial points of f by K. Given  2 R, we set f



= fx 2 H : f(x) � g and

K



= f

�1

() \K.

De�nition 2.1. Given f 2 C

1

(H;R) and  2 R, we say that f satis�es the Cerami

ondition at level  2 R, denoted by (C)



, if every sequene fx

n

g � H satisfying

f(x

n

)!  and (1 + jjx

n

jj)jjf

0

(x

n

)jj ! 0; n!1;

has a onverging subsequene. If f satis�es the (C)



ondition for every  2 R, we say that

it satis�es the (C) ondition.

It is lear that a funtional satisfying the (PS) ondition also satis�es the (C) ondition.

De�nition 2.2. f 2 C

1

(H;R) is said to possess the deformation property if it satis�es the

following ondition

(i) for every a < b suh that K \ f

�1

(a; b) = ;, then f

a

is a strong deformation retrat of

f

b

nK

b

.

The next result is a version of a deformation lemma (for referenes see [9℄) proved in [22℄

(see also [21℄).

Proposition 2.1 (Deformation Lemma). Suppose that f 2 C

1

(H; R) satis�es the (C)

ondition and a is the only possible ritial value of f in the interval [a; b). Assume that

the onneted omponents of K

a

are only isolated points. Then, f

a

is a strong deformation

retrat of f

b

nK

b

.

This lemma is an important tool in Critial Point Theory. Now we state some known

results, whih are also true under the (C) ondition instead of the usual (PS). For proofs

of these results assuming (PS) see [9℄. Where further referenes an be found. These

proofs an be early adapted for the ase when (C) ondition is assumed.

Let Y � X be topologial spaes, denote by H

�

(X; Y ) the singular relative homology

groups with oeÆients in Z.

De�nition 2.3. Let x

0

be an isolated ritial point of f , and let  = f(x

0

). We all

C

p

(f; x

0

) = H

p

(f



\ U

x

0

; (f



n fx

0

g) \ U

x

0

)

the p

th

ritial group of f at x

0

, p = 0; 1; 2; :::, where U

x

0

is a neighborhood of x

0

suh that

K \ (f



\ U

x

0

) = fx

0

g.

Theorem 2.1. Assume that � 2 H

j

(f

b

; f

a

) is nontrivial, and

 = inf

�2�

sup

x2j� j

f(x): (7)

Suppose that f possesses the deformation property. Then there exists x

0

2 K



suh that

C

j

(f; x

0

) 6= 0.

De�nition 2.4. Let D be a j-topologial ball in H, and S be a subset in H. We say that

�D and S homologially link, if �D \ S = ; and j� j \ S 6= ;, for eah singular j hain �

with �� = �D where j� j is the support of � .
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The following proposition provides examples of sets homologially linking, their proofs

are a onsequene of Example 2, 3 and Theorem 1.2 in Chapter II of [9℄.

Proposition 2.2. Let H

1

and H

2

be two losed subspaes of a Hilbert spae H. Suppose

that

H = H

1

�H

2

; dimH

1

<1:

Then, if D

1

= B

R

\H

1

and S

1

= H

2

, �D

1

and S

1

homologially link.

Proposition 2.3. Let H

1

and H

2

be two losed subspaes of a Hilbert spae H. Suppose

that

H = H

1

�H

2

; dimH

1

<1:

Let e 2 H

2

, jjejj = 1, and R; r; � > 0 with � < R. Set D

2

= fx + se ; x 2 H

1

\ B

r

; s 2

[0; R℄g and S

2

= H

2

\ �B

�

. Then �D

2

and S

2

homologially link.

Theorem 2.2 (Theorem 1.1', Chapter II, [9℄). Assume that �D and S homologially link,

where D is a j-topologial ball. If f 2 C(H;R

1

) satis�es

f(x) > a 8x 2 S and f(x) � a 8 x 2 �D;

then H

j

(f

b

; f

a

) 6= 0 for b > Maxff(x) ; x 2 Dg.

We intend to ompute the ritial groups of an isolated ritial point. For this purpose

we present the Shifting Theorem. First, onsider the Splitting Theorem

Theorem 2.3 (Splitting Theorem). Suppose that U is a neighborhood of x

0

in a Hilbert

spae H and that f 2 C

2

(U;R). Assume that x

0

is the only ritial point of f and that

A = d

2

f(x

0

) with kernel N . If 0 is either an isolated point of the spetrum �(A) or not

in �(A), then there exists a ball B

Æ

, Æ > 0, entered at 0, an ordering-preserving loal

homomorphism � de�ned on B

Æ

, and a C

1

mapping h : B

Æ

\N ! N

?

suh that

f Æ �(z + y) =

1

2

(Az; z) + f(h(y) + y); 8x 2 B

Æ

;

where y = P

N

x, z = P

N

?x, and P

N

is the orthogonal projetion onto the subspae N .

We all N = �(U \ N). The following theorem sets up the relationship between the

ritial points of f and those of

~

f := f j

N

. It is proved in [9℄.

Theorem 2.4 (Shifting Theorem). Suppose the hypotheses of the Splitting Theorem. As-

sume that the Morse index of f at x

0

is �, then we have

C

p

(f; x

0

) = C

p��

(

~

f; x

0

); p = 0; 1; : : : :

In addition, if d

2

f(x

0

) has �nite dimensional kernel, then we have

Corollary 2.1. Suppose that N is �nite dimensional with dimension � and x

0

is

(i) a loal minimum of

~

f , then

C

p

(f; x

0

) = Æ

p�

Z;
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(ii) a loal maximum of

~

f , then

C

p

(f; x

0

) = Æ

p(�+�)

Z;

(iii) neither a loal maximum nor a loal minimum of

~

f , then

C

p

(f; x

0

) = 0 for p � �; and p � �+ �:

3. Preliminary Lemmas

Let g : 
 � R ! R be a funtion of lass C

1

suh that g(x; 0) = 0. Suppose that there

exist k � 2 and m � 1 suh that

�

k�1

� g

0

(x; 0) < �

k

�

k+m

6� L(x) = lim inf

jtj!1

g(x; t)

t

� lim sup

jtj!1

g(x; t)

t

� �

k+m+1

;

(8)

where the limits are uniform for x in 
.

Let H = H

1

0

(
) and denote the norms in H

1

0

(
) and L

2

(
) by jj � jj and j � j

2

, respetively.

Let H

1

, H

2

and H

3

be the subspaes of H spanned by the eigenfuntions orresponding to

the eigenvalues f�

1

; : : : ; �

k�1

g, f�

k

; : : : ; �

k+m

g and f�

k+m+1

; : : :g, respetively.

The next result is similar to Lemma 1 in [19℄. The proof given here is a variation of the

one found in [19℄. Let F be de�ned as in (2).

Lemma 3.1. Under the assumptions above and the hypothesis (3), the following statements

hold:

(i) There are r > 0 and a > 0 suh that F (u) � a for all u 2 H

2

�H

3

with jjujj = r;

(ii) F (u)! �1, as jjujj ! 1, for u 2 H

1

�H

2

;

(iii) F (u) � 0 for all u 2 H

3

; and

(iv) F (u) � 0 for all u 2 H

1

.

Proof. By (3) and (8), we an take the positive numbers �, Æ satisfying that

�

k�1

�

g(x; t)

t

� � < �

k

for all t 2 R with jtj � Æ. Moreover, there exists ` 2 R suh that

g(x;t)

t

< ` for all t 2 R

from (3) and (8). Let H

`

= ker(��� `I). Then H

2

�H

3

= V �W , where V = H

2

�H

`

.

For u 2 H

2

�H

3

, put u = v+w, v 2 V and w 2 W . Sine V is spanned by a �nite number

of eigenfuntions whih are L

1

-funtions. Then there exists r > 0 suh that

sup

x2


jv(x)j �

 � `

 � �

� Æ

if jjvjj � r, where  > ` and jrwj

2

2

� jwj

2

2

for all w 2 W . Suppose that jjvjj � r. If

jv(x) + w(x)j � Æ, then
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1

2

�

k

jvj

2

+

1

4

jwj

2

�G(x; v + w)

�

1

2

�

k

jvj

2

+

1

4

jwj

2

�

1

2

�(v + w)

2

=

1

2

�

k

jvj

2

+

1

4

jwj

2

�

1

2

�v

2

�

1

2

�w

2

� �vw

= �

1

4

�jwj

2

+

1

4

( � �)w

2

+

1

2

(�

k

� �)v

2

� �vw

� �

1

4

�jwj

2

+

1

2

(�

k

� �)v

2

� �vw

� �

1

4

`jwj

2

+

1

2

(�

k

� �)v

2

� �vw:

If jv(x) + w(x)j > Æ, we have

jG(x; v + w)j �

1

2

`(v + w)

2

�

1

2

(`� �)Æ

2

and hene

1

2

�

k

jvj

2

+

1

4

jwj

2

�G(x; v + w)

�

1

2

�

k

jvj

2

+

1

4

jwj

2

�

1

2

`(v + w)

2

+

1

2

(`� �)Æ

2

=

1

2

�

k

jvj

2

+

1

4

jwj

2

�

1

2

`jvj

2

�

1

2

`jwj

2

� `vw +

1

2

(`� �)Æ

2

= �

1

4

`jwj

2

+

1

2

(�

k

� �)jvj

2

� �vw

+

1

4

( � `)jwj

2

+ (�� `)vw +

1

2

(�� `)jvj

2

+

1

2

(`� �)Æ

2

� �

1

4

`jwj

2

+

1

2

(�

k

� �)jvj

2

� �vw;

(in order to see the last inequality, onsider

1

4

( � `)jwj

2

+ (�� `)vw +

1

2

(�� `)jvj

2

+

1

2

(`� �)Æ

2

as a quadrati form in w and prove that it is positively de�ned).

Therefore, we obtain

F (u) =

1

2

jjv + wjj

2

�

Z




G(x; u)dx

�

1

4

jjwjj

2

�

1

4

`jwj

2

2

+

1

2

(�

k

� �)jvj

2

2

� min

n

1

4

�

1�

`



�

;

�

k

� �

2`

o

jjujj

2

:
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This implies statement (i). By the hypothesis �

k+m

6� L(x), the Proposition 2 in [12℄ states

that there exists Æ

1

> 0 suh that

jjujj

2

�

Z




L(x)u

2

dx � �Æ

1

jjujj

2

8 u 2 H

1

�H

2

:

To show (ii), let Æ

1

be given above and � > 0 be suh that � < �

1

Æ

1

. By the de�nition of

L(x), there exists M =M(�) suh that

2F (x; t) � (L(x)� �)t

2

�M 8 t 2 R; a:e: x 2 
:

Therefore, for u 2 H

1

�H

2

we have

2F (u) � jjujj

2

�

Z




L(x)u

2

dx+ �juj

2

2

+M j
j

�

�

� Æ

1

+

�

�

1

�

jjujj

2

+M j
j ! �1; as jjujj ! 1;

sine �=�

1

� Æ

1

< 0. We prove (iii) and (iv) by straightforward alulations. �

Let u

0

be a ritial point of F , de�ned by (2). The Morse index �(u

0

) of u

0

measures the

dimension of the maximal subspae of H = H

1

0

(
) on whih F

00

(u

0

) is negative de�nite.

We denote the dimension of the kernel of F

00

(u

0

) by �(u

0

). The next lemma evaluates

�(u

0

) for a nonzero ritial point of F . Similar ideas used in the proof below an be seen

in [19℄ and [6℄.

Lemma 3.2. Under the hypotheses of Lemma 3.1, �(u

0

) � m provided that u

0

is a nonzero

ritial point of F de�ned in (2).

Proof. Let u

0

be a nonzero ritial point of F , that is, a nontrivial weak solution of problem

(6). We denote g(x; u

0

) = g(u

0

) and g

0

(x; u

0

) = g

0

(u

0

). Note that F

00

(u

0

)u = 0 if and only

if

��u = g

0

(u

0

)u in 


u = 0 on �
:

From g(x; 0) = 0, the problem (6) an be rewritten in the form

��u = q(x)u in 


u = 0 on �
;

where q(x) = g(u

0

)=u

0

if u

0

(x) 6= 0 and q(x) = g

0

(0) if u

0

(x) = 0. It is a standard result

that u

0

is a lassial solution of (6). Then u

0

annot vanish identially on every open

subset of 
, by the unique ontinuation property (see [15℄). Let �

1

< �

2

� � � � � �

n

� � � �

and �

1

< �

2

� � � � � �

n

� � � � be eigenvalues of the problems

��u = �q(x)u in 


u = 0 on �
;

(9)

and

��u = �g

0

(u

0

)u in 


u = 0 on �
;

(10)
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respetively. Let f 

n

g and f�

n

g denote the orresponding eigenfuntions of problems (9)

and (10) satisfying

Z




q 

n

 

m

dx = Æ

nm

and

Z




g

0

(u

0

)�

n

�

m

dx = Æ

nm

for all n;m 2 N.

Claim: �

n

< �

n

, for all n 2 N .

In fat, by (3) we have g

0

(u

0

(x)) �

g(u

0

(x))

u

0

(x)

and again by the unique ontinuation property

m

�n

x 2 
 ; g

0

(u

0

(x)) >

g(u

0

(x))

u

0

(x)

o�

> 0:

Then we use Proposition 1.12 A in [14℄, and so the laim is proved.

Next, suppose that f�

n

g and fÆ

n

g denote the eigenvalues of the problems

��u = ��

k+m+1

u in 


u = 0 on �
;

(11)

and

��u = Æ�

k�1

u in 


u = 0 on �
;

(12)

respetively. Immediately, this implies �

n

= �

n

=�

k+m+1

and Æ

n

= �

n

=�

k�1

. By (3) and (4),

we have

�

k�1

<

g(u

0

(x))

u

0

(x)

� g

0

(u

0

(x)) < �

k+m+1

for all x 2 
 suh that u

0

(x) 6= 0. By a method similar to the proof of �

n

< �

n

, we obtain

�

k�1

< Æ

k�1

= 1; 1 = �

k+m+1

< �

k+m+1

and 1 = �

k+m+1

< �

k+m+1

:

From u

0

6= 0, 1 is an eigenvalue of (9). Therefore, it holds that �

k

= 1, or �

k+1

= 1, ..., or

�

k+m

= 1.

If �

k+m

= 1, the fat

�

k+m

< �

k+m

= 1 = �

k+m+1

< �

k+m+1

implies that 1 is not an eigenvalue of (10), i.e. �(u

0

) = 0.

If �

k+m�1

= 1, the fat

�

k+m�1

< �

k+m�1

= 1 = �

k+m+1

< �

k+m+1

implies that �(u

0

) � 1.

Analogously, if �

k+m�2

= 1 then �(u

0

) � 2, ..., if �

k

= 1 then �(u

0

) � m.

This ompletes the proof of the lemma. �
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Now we observe a ompatness ondition for the funtional F de�ned by (2), in the

resonant ase.

Consider g : 
� R ! R be a C

1

-funtion and G(x; t) =

R

t

0

g(x; s)ds suh that

�

j

� lim inf

jtj!1

g(x; t)

t

� lim sup

jtj!1

g(x; t)

t

� �

j+1

; uniformly in 
 ; (13)

there exists C(x) 2 L

1

(
) suh that

tg(x; t)� 2G(x; t) � C(x); 8 t 2 R; a:e x 2 
 ; (14)

and

lim

jtj!1

[tg(x; t)� 2G(x; t)℄ =1; a:e x 2 
: (15)

In [11℄ it was shown that the assumptions (13), (14) and (15) are enough to prove that

funtional the F , de�ned by (2), satis�es the Cerami ondition (see [16℄). Note that the

hypothesis (3) implies (14) with C(x) = 0.

In order to prove that Theorems 1.5 and 1.6 follow from Theorems 1.1 and 1.3, respe-

tively, we have to prove that the funtion g satis�es (15).

Proposition 3.1. Let g : R ! R be a nonlinear funtion of lass C

1

, g(0) = 0, whih

satis�es

�

g(t) is onvex if t � 0 and

g(t) is onave if t � 0:

Moreover, assume that g(t)=t is bounded. Then

lim

jtj!1

[tg(t)� 2G(t)℄ =1: (16)

Proof. Fix t > 0, and note that

1

2

[tg(t)� 2G(t)℄ =

Z

t

0

�

g(t)

t

s� g(s)

�

ds

The onvexity of g gives that (g(t)=t)s > g(s) for s 2 (0; t). Denote by A

t

the region of

the plane between the line s 7! (g(t)=t)s and s 7! g(s) in (0; t). Let s(t) 2 (0; t) de�ned by

g(t)

t

s(t)� g(s(t)) = max

s2(0;t)

�

g(t)

t

s� g(s)

�

;

and the triangle 4

t

with verties (0; 0), (s(t); g(s(t))) and (t; g(t)). We have 4

t

� A

t

by

onvexity of g, hene

j4

t

j �

1

2

[tg(t)� 2G(t)℄:

Therefore the Proposition follows of

Claim: j4

t

j ! 1, as t!1.
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In fat, the height of 4

t

, with referene to base b

t

= [(0; 0); (t; g(t))℄, is

h(t) =

h

g(t)

t

s(t)� g(s(t))

i

os

�

artan

�

g(t)

t

��

:

Hene lim inf

t!1

h(t) > 0, sine g(t)=t is bounded; and b

t

! 1 as t ! 1. The laim

is proved. The argument with t < 0 is entirely similar and the proof of proposition is

omplete. �

Lemma 3.3. Let g : 
 � R ! R be a ontinuous funtion satisfying g(x; t)=t is nonde-

reasing for t > 0, g(x; t) = 0 for all t � 0, and

�

j

� L(x) = lim

t!1

g(x; t)

t

� �

j+1

; j � 2: (17)

Then the C

2�0

-funtional F

+

: H

1

0

! R de�ned by

F

+

(u) =

1

2

Z




jruj

2

dx�

Z




G(x; t)dx;

satis�es the (PS) ondition.

Proof. Let fu

n

g 2 H

1

0

be a sequene suh that fF

+

(u

n

)g is bounded, and jjF

0

+

(u

n

)jj ! 0

as n!1. It follows that for all ' 2 H

1

0

we have

< F

0

+

(u

n

); ' >=

Z




rur'�

Z




g(x; u

n

)'dx! 0; as n!1: (18)

Set ' = u

n

; we have

jju

n

jj

2

�

Z




g(x; u

n

)u

n

dx+O(jju

n

jj) � �

j+1

ju

n

j

2

2

+O(jju

n

jj):

Therefore, we need to show that fju

n

j

2

g is bounded, whih implies that fjju

n

jjg is bounded.

Sine 
 is bounded and g is subritial, then if fjju

n

jjg is bounded, by the ompatness of

Sobolev embedding and by the standard proesses we know that there exists a subsequene

of fu

n

g in H

1

0

whih onverges strongly, hene the Lemma is proved.

Assume by ontradition that ju

n

j

2

!1 as n!1. Let v

n

= u

n

=ju

n

j

2

. Then jv

n

j

2

= 1

and fjjv

n

jjg is bounded. We an assume that v

n

! v weakly in H

1

0

, strongly in L

2

and a.e.

in 
. Thus, u

n

(x)!1 a.e. in 
. From (18) it follows that

Z




[rvr'� L(x)v

+

'℄dx; 8 ' 2 H

1

0

; (19)

where v

+

(x) = maxf0; v(x)g. By the regularity theory we have

��v = L(x)v

+

in 
:

By the maximum priniple and by the unique ontinuation property, v = v

+

� 0 and

L � �

j

or L � �

j+1

. Sine, j � 2, v � 0, whih ontradits jvj

2

= 1. The proof is

ompleted. �
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4. Proofs of main Theorems

It follows from [11℄ that the funtional F , de�ned by (2), satis�es the (C) ondition (or

the (PS) ondition on the nonresonant ase). Then we an use the theorems in Setion 2.

Without loss of generality, we assume that F has only a �nite number of ritial points.

Proof of Theorem 1.1. The ases (4) and (5) are onsidered simultaneously.

Let H

i

, i = 1; 2; 3; be as in Lemma 3.1. Consider

S

1

= B

r

\ (H

2

�H

3

) and D

1

= fv + te ; v 2 H

1

; 0 � t � R; jjv + tejj � Rg;

where B

r

denotes the losed ball with radius r entered of 0, and e 2 H

2

is hosen suh

that

F (u) > 0 8 u 2 S

1

and F (u) � 0 8 u 2 �D

1

; (20)

this is possible by (i) and (iii) in Lemma 3.1. Sine �D

1

and S

1

homologially link and D

1

is a k-topologial ball, by (20) we have H

k

(F

b

; F

0

) 6= 0, where b > maxfF (u) j u 2 Dg (see

Theorem 2.2 in Setion 2). Hene we an onlude, by Theorem 2.1, that there exist u

1

ritial point of F , suh that

C

k

(F; u

1

) 6= 0: (21)

Next, set S

2

= H

3

and D

2

= B

R

\ (H

1

�H

2

). By (ii) and (iv) in Lemma 3.1, we have

F (u) � 0 8 u 2 S

2

and F (u) < 0 8 u 2 �D

2

: (22)

Again, sine �D

2

and S

2

homologially link and D

2

is a (k +m)-topologial ball, we have

that there exist u

2

ritial point of F , suh that

C

k+m

(F; u

2

) 6= 0: (23)

Now we have to prove that u

1

6= u

2

, and are nontrivial. Note that 0 is a ritial point

of F and �(0) + �(0) � k� 1. By Shifting Theorem, C

p

(F; 0) = 0 for all p � k. So u

1

and

u

2

are nontrivial, by (21) and (23). Again by Shifting Theorem (Corollary 2.1) we have,

either

(i) C

p

(F; u

1

) = Æ

p�(u

1

)

, or

(ii) C

p

(F; u

1

) = Æ

p(�(u

1

)+�(u

1

))

, or

(iii) C

p

(F; u

1

) = 0 if p =2 (�(u

1

); (�(u

1

) + �(u

1

)).

If (i) or (ii) hold, then C

k+m

(F; u

1

) = 0 by (21). If (iii) hold then k > �(u

1

) by (21) and

hene k + m > �(u

1

) + �(u

1

) by Lemma 3.2, again C

k+m

(F; u

1

) = 0 by (iii). Therefore

u

1

6= u

2

by (23). The proof of Theorem 1.1 is �nished. �

Proof of Theorem 1.2. Set

g

+

(x; t) =

n

g(x; t); t � 0;

0; t � 0;

and onsider the problem

��u = g

+

(x; u) in 


u = 0 on �
;

(24)
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De�ne

F

+

(u) =

1

2

Z




jruj

2

dx�

Z




G

+

(x; u)dx; u 2 H

1

0

(
):

Then F

+

2 C

2�0

and, by Lemma 3.3, satis�es (PS) ondition.

Sine g

0

(x; 0) < �

1

, u = 0 is a stritly loal minimum of F

+

. Let '

1

> 0 to be the �rst

eigenfuntion of (�; H

1

0

), and onsider  > �

1

suh that G

+

(x; t) � (=2)t

2

� C for t > 0.

Then

F

+

(s'

1

) =

s

2

2

Z




jr'

1

j

2

dx�

Z




G

+

(x; s'

1

)dx

�

�

1

s

2

2

Z




'

2

1

dx�

s

2

2

Z




'

2

1

dx+ C

=

s

2

(�

1

� )

2

Z




'

2

1

dx + C ! �1; as s!1:

By the mountain pass theorem, F

+

has a nontrivial ritial point u

+

. By the maximum

priniple, u

+

> 0. Therefore u

+

is a ritial point of the funtional F de�ned by (2).

Similarly, we get a negative ritial point u

�

of F . Moreover, as in [10℄, we have

rank C

p

(F

�

j

C

1

0

; u

�

) = Æ

p1

:

Thus,

rank C

p

(F j

C

1

0

; u

�

) = rank C

p

(F

�

j

C

1

0

; u

�

) = Æ

p1

8 p = 0; 1; 2; :::

By the proof of the previous theorem, there exists a nontrivial solution u suh that

C

m+1

(F; u) 6= 0; where m � 1:

By Theorem 1 in [8℄, we have

C

m+1

(F j

C

1

0

; u) = C

m+1

(F; u):

Therefore u is a third nontrivial solution. �

Proof of Theorem 1.3. By the proof of the previous theorem, problem (1) has at least

three nontrivial solutions one is positive, another is negative and a third solution u is suh

that

C

m+1

(F; u) 6= 0; m � 2:

So the Theorem follows of next laim.

Claim: (1) has a sign hanging solution w suh that

C

p

(F;w) = Æ

p2

Z:

Proof: We use the notation as in [4℄.

Let P = fu 2 X = C

1

0

(
); u � 0g, D = P[(�P ),

�

D

and '

i

the normalized eigenfuntion

assoiated to �

i

, i = 1; 2; we have '

1

2

Æ

P

.
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The main ingredient in the proof of the Claim is the negative gradient ow '

t

of F in

H, that is,

d

dt

'

t

= �rF Æ '

t

; '

0

= id:

We have that '

t

(u) 2 X for u 2 X and '

t

indues a ontinuous (loal) ow on X whih

we ontinue to denote by '

t

. The main order related property of '

t

is that P and �P are

positively invariant (by g(x; t)t � 0). F has the retrating property on X (see [13℄).

Now the proof follows as in Theorem 3.6 in [4℄. We sketh it briey for ompleteness.

Here we denote by F

a

= fu 2 X; F (u) � ag.

As k > 2 by (ii) in Lemma 3.1 there exists R > 0 suh that F (u) < 0 for any u 2

spanf'

1

; '

2

g with jjujj � R. Now we set

B = fs'

1

+ '

2

; jsj � R; 0 � t � Rg

and

�B = fs'

1

+ '

2

; jsj = R or t 2 f0; Rgg:

We have �B � F

0

[ D. Let � = maxF (B) so that (B; �B) ,! (F

�

[ D;F

0

[ D). Let

�

�

2 H

2

(F

�

[D;F

0

[D) be the image of 1 2 Z = H

2

(B; �B) under the homomorphism

Z = H

2

(B; �B)! H

2

(F

�

[D;F

0

[D)

indued by the inlusion. For  � � let

j



: H

2

(F



[D;F

0

[D)! H

2

(F

�

[D;F

0

[D)

be also indued by the inlusion. Now we de�ne

� = f � � ; �

�

2 image (j



)g

and  = inf �. It is a ritial value by the next lemma and standard deformation arguments.

Lemma 4.1. �

�

6= 0:

In fat, let e

1

2

Æ

P

be the �rst eigenvalue of

��u� g

0

(x; 0)u = �u in 


u = 0 on �
;

and set X

1

= spanfe

1

g, X

2

= X

?

1

\X. We have inf F (X

2

\ �B

�

) � � > 0 for some � > 0

small. This implies

(B; �B) � (F

�

[D;F

0

[D) � (X;X nX

2

\ �B

�

):

Therefore the lemma follows of that the homeomorphism

H

2

(B; �B)! H

2

(X;X nX

2

\ �B

�

)

indued by inlusion is nontrivial (it is showed in [4℄).

As a onsequene of previous lemma we have 0 =2 � beause j

0

= 0. As F

0

[D is a strong

deformation retrat of F



[D for  > 0 small enough (see Remark 5.1 in Appendix), we

have  > 0. Clearly � 2 �, hene  2 (0; �℄.
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We hoose � > 0 small enough. Consider the ommutative diagram

H

2

(F

��

[D;F

0

[D)

?

?

y

j

j

��

&

H

2

(F

+�

[D;F

0

[D)

j

+�

�! H

2

(F

�

[D;F

0

[D)

?

?

y

H

2

(F

+�

[D;F

��

[D)

Sine  + � 2 � there exists �

+�

2 H

2

(F

+�

[ D;F

0

[ D) with j

+�

(�

+�

) = �

�

. Now

�

+�

=2 image (j

��

) beause  � � =2 �. Therefore the exatness of the left olumn yields

H

2

(F

+�

[ D;F

��

[ D) 6= 0. This implies that there exists a ritial point w suh that

w =2 D and C

2

(F;w) 6= 0 (see the Appendix, above).

Let w

+

= maxfw; 0g and w

�

= w

+

� w. By (3) we have

hF

00

(w)w

+

; w

+

i =

Z




(jrw

+

j

2

� g

0

(x; w)w

2

+

)

=

Z




(w

+

g(x; w)� g

0

(x; w)w

2

+

)

=

Z




w

2

+

�

g(x; w)

w

+

� g

0

(x; w)

�

=

Z




w

2

+

�

g(x; w

+

)

w

+

� g

0

(x; w

+

)

�

< 0:

Similarly hF

00

(w)w

�

; w

�

i < 0. As w

+

and w

�

are orthogonal, we have hF

00

(w)u; ui < 0 for

all u 2 spanfw

+

; w

�

g, that is, the Morse index of w is 2. By the Shifting Theorem we have

C

p

(F;w) = Æ

p2

Z. �

Proof of Theorem 1.4. Let a < b suh that F (K) 2 (a; b) (see [1℄), then by the hypoth-

esis

�

k�1

� g

0

(x; 0) < �

k

< lim

t!�1

g(x; t)

t

< �

k+1

; (25)

where the limits are uniformly in 
. It is proved in [17℄, that

C

p

(F; 0) = Æ

p;k�1

Z

and

H

p

(F

b

; F

a

) = Æ

pk

Z:

Moreover, note that if u

0

is a nontrivial ritial point of F by (25), the Lemma 3.2 states

that u

0

is nondegenerate and the Morse index of u

0

is k. Therefore

C

p

(F; u) = Æ

pk

Z:

Let m the number of nontrivial ritial points of F , by the Morse identity, we have

(�1)

k

= (�1)

k�1

+m(�1)

k

:
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It follows that m = 2. Then problem (1) has exatly two solutions. �

5. Appendix

In this setion we prove that if u

1

; :::; u

r

be all the sign hanging ritial points of F at

the level , then we an hoose � > 0 suh that

H

�

(F

+�

[

�

D

;F

��

[

�

D

) '

r

M

i=0

C

�

(F; x

i

):

Again F

a

= fu 2 X; F (u) � ag.

Let N

0

� N be two losed neighborhoods of fu

1

; :::; u

r

g satisfying

dist(N

0

; �N) �

7

8

Æ; Æ > 0:

By the (C) ondition there exist onstants b and � positive, suh that

jjF

0

(u)jj � b 8 x 2 F

+�

n (F

��

[N

0

);

0 < � < Min

n

1

4

Æb

2

;

1

8

Æb

o

:

De�ne a smooth funtion:

p(s) =

�

0 for s =2 [� �; + �℄

1 for s 2 [� �; + �℄;

with 0 � p(s) � 1 and 0 < � <

�

2

. Let A = H n (N

0

)

Æ

8

, where (N

0

)

Æ

= fu 2 H; dist(u;N

0

) �

Æg, and B = N

0

. Let

d(u) =

dist(u;B)

dist(u;A) + dist(u;B)

:

We see that 0 � d(u) � 1, d = 0 on N

0

and d = 1 outside (N

0

) Æ

8

. De�ne

q(s) =

�

1 0 � s � 1

1=s s � 1:

Denote h(u) = d(u)p(F (u))q(jjF

0

(u)jj). Consider the ODE

�

�

(�) = �h(�(�))F

0

(�(�));

�(0) = u

0

8 u

0

2 X:

(26)

The global existene and uniqueness of the ow �(t) on R are known. Let

�(u; t) = �(t); with �(0) = u:

Then � 2 C([0; 1℄�X;X) satis�es

�(1; F

+�

nN) � F

��

:

This result an be found in [9℄, Theorem 3.3 in Chapter I. We use it to prove the next

result.
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Lemma 5.1. Suppose that there are only �nitely many sign hanging ritial points u

1

; :::; u

r

,

of F at the level . Then we an hoose � > 0 and neighborhoods N

i

� X nD of u

i

with

the following properties:

(i) N

i

\N

j

= ; for i 6= j;

(ii) u

i

= N

i

\K;

(iii) F

��

[N

i

is positively invariant under '

t

; and

(iv) there exists T > 0 with '

T

(F

+�

) � F

��

[N

1

[ � � � [N

r

.

Proof. Let be u

0

2 F

�1

[ � �;  + �℄ \ X. By the (C) ondition, we have that there is a

Æ > � suh that 0 < h(u) is bounded when u 2 F

�1

[� Æ; + Æ℄ \H. Let

!(�; u

0

) =

Z

�

0

h(�(�; u

0

))d�; � 2 [0; 1℄; (27)

let t = !(�; u

0

) : [0; 1℄! [0;1), and let '(t; u

0

) = �(�; u

0

). Then

d'

dt

=

d�

d�

d�

dt

= �F

0

(�(�; u

0

)) = �F

0

('(t; u

0

)):

Now we hoose the (N

i

)

0

s satisfying (i), (ii) and (iii), � as in above result and we de�ne

T = maxf!(1; u

0

) ; u

0

2 F

�1

[ � �;  + �℄ \ Xg < 1. Hene, by the previous result, we

have

'

T

(F

+�

nN) � F

��

;

and using (iii) we have (iv). �

Setting N = N

1

[ � � � [ N

r

properties (iii) and (iv), in the above lemma, imply that

F

��

[N[

�

D

is a strong deformation retrat of F

+�

[

�

D

, hene

H

�

(F

��

[N[

�

D

;F

��

[

�

D

) ' H

�

(F

+�

[

�

D

;F

��

[

�

D

):

The exision property of homology implies

H

�

(N;N \ F

��

) ' H

�

(F

��

[N;F

��

)

' H

�

(F

��

[N[

�

D

;F

��

[

�

D

):

Now properties (i) and (ii) yield

H

�

(N;N \ F

��

) '

r

M

i=0

H

�

(N

i

; N

i

\ F

��

) '

r

M

i=0

C

�

(F; x

i

):

How we want to prove.

Remark 5.1. The same idea, in the Lemma 5.1, an be used to show that F

0

[ D is a

strong deformation retrat of F



[D for  > 0 small enough. In fat, we an prove that

the ow used in [22℄ have the same orbits of the ow '

t

.
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