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Abstract

In this work a technique is presented for the numerical approximation of conservation
laws. It is based both on the Runge-Kutta Discontinuous Galerkin method [3| and the
Streamline Upwind Petrov-Galerkin method |2]. The proposed numerical scheme uses a
discontinuous piecewise polynomial approximation in space and implicit backward Euler
time stepping. Numerical oscillations within the discontinuous elements are controlled
by adding a streamline diffusive term. An optimal relation between the time step (in
terms of the CFL condition) and the size of the diffusion coefficient is anlysed for nu-
merical precision. The scheme is implemented using the object oriented programming
philosophy based on the enviroment described in [4]. Accuracy and shock capturing
abilities of the method are analysed in terms of two bidimensional model problems, the
rotating hill problem and the backward facing step problem for the Euler equations of
gas dynamics.

Resumo

Neste trabalho, uma técnica para a aproximagao numérica de leis de conservacao é
apresentada. Aproveitam-se idéias tanto do método Runge-Kutta Galerkin Descontinuo
[3] quanto do método Streamline Upwind Petrov-Galerkin [2]. O esquema proposto usa
aproxigoes polinomiais por partes descontinuas para a discretizagao espacial e o método
de Euler implicito na discretizacao temporal. Para evitar oscilacoes numéricas, um
termo difusivo é aplicado no interior dos elementos finitos, dispensando-se o uso de lim-
itadores. Desenvolve-se um estudo para estabelecer uma relacao adequada entre o valor
do nimero CFL e o coeficiente maximo do termo difusivo, de tal forma a garantir a
estabilidade do esquema e obter precisao numeérica 6tima. Implementa-se o esquema em
um ambiente computacional usando a filosofia de programacao orientada para objetos
[4]. Para ilustrar a ordem de precisdao e habilidade do método em capturar choques,
apresentam-se resultados numéricos para dois problemas tipicos bi-dimensionais, a ro-
tacdo de um cone e o problema conhecido como backward facing step.
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1 Introduction

The numerical solution of hyperbolic conservation laws is a topic of considerable importance
for applications in several fields, particularly in fluid dynamics. Typically, solutions of con-
servation laws are characterized by spontaneous evolution of singular features which pose a
considerable computational challenge. There is a great variety of modern alghorithms devised
to achieve desired properties such as high-resolution, efficiency, stability, etc ([5],|6], [7]). In
this paper, the discussion is concerned with two classes of methods that have been success-
fuly applied to conservation laws. Namely, the Streamline Upwind Petrov-Galerkin (SUPG)
method [2] and the Runge-Kutta Discontinuous Galerkin (RKDG) method [3]. Both methods
can be formulated in the same general framework that involves two basic steps.

e Space discretization. At each time step, an approximate solution is sought in a finite
dimensional approximating space V},. It is defined by imposing a Galerkin orthogonaly
property (the residual is orthogonal to V},). With proper choices of basis functions for
Vi, the result is a system of ordinary differential equations.

o Time discretization. The resulting ODE system is discretized by an appropiate ODE
solver.

In the SUPG method, the approximating spaces are, tipically, continuos finite elements
and, for stability purposes, the original conservation law is perturbated by a term acting along
characteristic directions. This perturbation can be thought of as a numerical diffusion term
in the direction of the streamlines, whose magnitude is controlled in terms of a parameter
0, the so called artificial diffusion coefficient. Usually, increasing § makes the scheme more
stable (larger CF'L numbers), but accuracy deteriorates. For the choice of ¢, there must
be a compromise between large C'F'L and accuracy. Increasing finite elements’ order, basis
functions get wider support, thus loosing efficiency.

In the RKDG method, the approximate solution is sought in a piecewise discontinuous
polynomial space and an apropriate explicit Runge-Kutta method is applied in the time
marching. To achieve stability, it also incorporates ideas of approximate Riemann solvers and
slope limiters. High order schemes are possible with high degree of locality. However, slope
limiters seem not to be a natural way of stabilization, since the procedure does not incorporate
any intrisic property of the conservation law, neither suggests an easy implementation in
higher dimensions.

Having these considerations in mind, it seems that the best qualities of both methods
could be combined into a scheme that, instead of slope limiters, introduces local streamline
diffusion terms to stabilize the discontinuous Galerkin method. This paper colects some
illustrating results of our experiments in this direction.

In the very beginning, for simple 1D model problems, we realise that a diffusive term
is unable to stabilize the explicit RKDG method without severe deterioration in accuracy.
However, giving up the explicit approach, even with the simpliest first order Euler scheme,



the discontinuous Galerkin method with implicit streamline local diffusion terms shows good
stability regions, regardless the polynomial interpolation order.

With an implicit method, a system of linear equations has to be solved at each time
step. However, the corresponding matrices have simple block diagonal structures. This fact,
combined with object oriented programming philosophy, which is based on the enviroment
described in [4], led to efficient solvers.

The paper is organized as follows. In Section 2, there is brief overview of SUPG and
RKDG methods. Section 3 is dedicated to the definiton of the new scheme, namely the
discontinuous Galerkin method with implicit diffusive term (IDDG) and the study of its
stability. In Section 4, accuracy and shock capturing abilities of the IDDG method are
analysed in terms or two bidimensional model problems, the rotating hill problem and the
backward facing step problem for the Euler equations.

2 SUPG and RKDG methods

In this section we present a brief review of the reference methods, SUPG and RKGM, aimed
at solving systems of hyperbolic conservation laws in divergence form

0
au—i—V.f(u):O, x€QCRY t>0. (1)

Here f(u) = (f1(u),- -, fa(u)) is the d-dimensional flux and u(t,x) = (u1(t, %), -, upn(t, x))
is the unknown m-vector, subjected to initial condition

u(0,x) = up(x). (2)

Eventually, apropriate boundary conditions are also imposed.

Let us suppose that {2 has been subdivided into a finite element partition M. On this
partition, we consider finite element spaces V}, consisting of piecewise polynomial of fixed
degree p > 0. This means that, if w € V}, then w|c € II,. Let

BVh:{(pi(X), Z:1,2,,N}

denotes a set of linearly independent basis spanning V},. The approximate solution is sought
in the form

up(t, x) = Zl u;(t)pi(x).

In a standard Galerkin formulation, we seek uy such that for all j =1,2,---, N,

0 N
o L eiun— [ Veifu) + [ oif(w)n=0. (3)



where 77 denotes the unit outward normal vector to (2. However, this kind of formulation
ends up being highly unstable.

x The SUPG method

The SUPG method is characterized by the replacement of equation (3) by the perturbed
one

)
o | eiun— [ Vb + [ pitn)n—o [ (V0.8 V@) =0. (4
The additional term
5 /Q (V;.8) V.£(up),

where [ is a vector of matrices, is usually called diffusive term. In the unidimensional case,
the expression V;.[ is interpreted as

dp;
ir B,

whereas, in the bidimensional case, § = (1, f2) and

V.0 =

0y; 0y;
—¢61 Zﬂ

V.3

In the literature, there are several ways of defining 3. In the present work, the expression of
 is given as in |1]

e Unidimensional case

AZL' ’
f1|f1|
e Bidimensional case
ﬁ - (flTa fZT)a
where )
af af n . 317 ’ B
H fi+ gl ‘xﬁ+@ﬁ]

x« The RKDG method

In the RKDG method, the functions in V}, are discontinuous and each of the basis functions
@i € By, is supported in a single cell of the partition M). Therefore, in the Galerkin
formulation (3), the integrals may be restricted to the cells of the partition. Because of
discontinuities on the cell boundaries, the flux must be replaced by a approzimate Riemann
solver or numerical fluz f(uh) Therefore, the numerical solution u; € V), is found such that

0 .
51 o ermn = [ Verfm) + [ eif(un)ne =0, ()
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for all C' € My, and j = 1,---, N. The time discretization is performed by special explicit
high-order accurate Runge-Kutta methods. If u}} is the solution at ¢ = ¢,,, the the solution
at the next time-step u} ' is obtained after L intermediate steps, by the time-marching

algorithm

1. uy,” = uy;
2. For/=1,---,L
al (©) - k £k
i [ ;= [ ule; + Aty {/v-.r-/ k). } 6
Sil? [ = [[uier + At 3 ca{ [ V@) = [ eif@ac} 6
where @f = SN @k

3. uptt = ﬂsf).
At each intermediate step of this algorithm, there is a system to be solved
Ki*=F,
where K is the mass matrix with entries
Ki; = /C Pipj,

and right hand side

(-1

Fi= [ubei+ 0 e [ Vortah) - [ gibab)ic}.
k=0

As noted in [3], the choice of the numerical flux does not have a significant impact on the
quality of the approximations, regardless the polynomial interpolation degree. Therefore, in
all experiments of the present paper, the simple Lax-Friederics numerical flux shall be used.

In the piecewise constant case (p = 0), and forward Euler scheme in time, the scheme
corresponds to the usual finite volume method. Typically, if the numerial flux is choosen
so that the scheme is monotone, and the problem is for a scalar conservation law, them
it is possible to prove the stability and convergence of the method [6]. For higher order
polynomials p > 1, and Runge-Kutta of order p + 1, and Lax-Friederics numerical flux, it is
suggested in |3] that, for stability, the relation

|maxf’(u)|%§C'FL (7)

must be considered with )

2p+1°

CFL =



In practical applications, with sharp gradient variations, the CFL condition (8) implies very
small time steps and efficiency is lost. Usually, to overcome this difficulty, slope limiters
are enforced, at each intermediate step, by means of a non-linear projection operator. It is
possible to construct slope limiters that ensure stability, without degrading the accuracy [3].
The use of a slope limiter is crucial, mainly when shocks are present. Its action is similar
to the introduction of diffusion in the interior of the elements, in order to avoid internal
oscillations. The slope limiter forces the solution to be under control, according to the values
on the neighboring elements. Its definition does not depend on the conservation law at hand.

3  Diffusive discontinuous Galerkin method

Our purpose is to use artificial diffusion, instead of slope limiters, in order to stabilise the
Discontinuous Galerkin Method. Therefore, we combine formulations (3) and (5) by consid-
ering the new formulation of finding a discontinuous piecewise polynomial solution u, € V,,
such that for all C' € M,

o e [ Verfn) + [ ke 6 [ (Vo) VEm)=0, (9

where (3 is determined as in the SUPG method. Therefore, the intermediate steps in the
Runge-Kutta algorithm reads

N -1

(¢ u
il )/ o = / ulo; + Aty Y e {/ Ve (i)
= C C k=0 ¢

f‘ ~k 5 \V4 L ~k 0 ~k 10
[ et 46 [ (Vor0) 3 )it} (10

As a test model problem, consider the scalar linear conservation law, with f(u) = u,
defined on the unit interval 2 = [0, 1], with periodic boundary conditions and initial data

o= [ L 0205
Y=V 0, 05<a <.

The scheme (10) is applied for different C'F'L and § parameters within the following range
e 0.1 <CFL <1, with increment 0.1.
e 0 < <1, with increment 0.05.

The next results are for a partition of 50 finite elements, and Runge-Kutta of order p+ 1
for polynomial interpolation of degree p. The errors are measured in the ||.||z: norm. The
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Figure 1: Stability region: explicit diffusion and continuous basis functions.
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Figure 2: Stability region: explicit diffusion and discontinuous basis functions .

red colour corresponds to unstable regions. For the sake of comparison, similar experiments
are carried out for the SUPG method, with continuous approximating functions of the same
degree. Figure 1 corresponds to the results for SUPG with continuous piecewise polynomials
of degree p = 1 and p = 2. The equivalent results for the discontinuous Galerkin method with
diffusive term are presented in Figure 2. Based on these results, the following concluding
remarks are in order:

1. Without viscosity term ¢ = 0, the Runge-Kutta Galerkin method is stable for CFL <

1 . . . . . .
CTESE for both continuous and discontinuous approximating spaces;

2. The experiments with discontinuous approximating functions show smaller error am-
plitudes than with continuous ones;

3. In both cases, the smallest errors occur when the Runge-Kutta Galerkin scheme is



applied without the diffusion term. The errors increase with increasing diffusive coef-
ficient;

4. The addition of the diffusive term is not sufﬁcient to make the scheme stable if the

CFL number is mantained greater than +1

3.1 IDDG method

Moved by the negative results just described, the next step would be to consider a scheme
where the diffusive term is treated implicitly. However, the implementation of an implicit
Runge-Kutta scheme would require the computation of the stiffness matrix at each interme-
diate step. Having this difficulty in mind, a single step backward Euler scheme is tried first.
In this case, formula (10) reduces to

0
Zun+1/ l%%_'_dAt (Ve;.8 Zf nl) - ]:
/Cu;fcpj + At, {/C V,f(up) — /ac gojf(u;f).nc} ) (11)

We have special interest in discontinuous finite elements approximating spaces. However,
the continuous case is also considered, for comparsion purposes.

3.1.1 Stability analysis: linear case

The model problem is the same one considered before. The black dot lines in Figures 3 and
4 correspond to the occurrence of the smallest errors, indicating the optimal compromise
between the parameters C'F'L and § for the corresponding scheme.

In Figure 3, the results for the case of continuous approximating functions with degree
p = 1,2 and 3 are displayed. Since this is a close variation of the classical SUPG method,
their performance are also similar.

* SUPG with implicit diffusion

e The scheme is stable when the diffusion coefficient 6 and the C'F' L parameter satisfy
the relation ¢ > 0.5CFL;

e The smallest errors occur when 6 ~ 0.5 C'F' L. This means that the best approximation
occurs when the scheme becomes stable, and increasing the diffusive term deteriorates
the accuracy.
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Figure 4 corresponds to the case of discontinuous approximating functions with degree
p = 1,2 and 3. The following aspects are highlighted.

+x IDDG method

The stability region occurs when the diffusive coefficient 0 and the C'F'L parameter

satisfy the relation
1

1 2
5> Weprz_2opp+ L
3 3 10

e The smallest errors also occur close to the boundary of the stability region

10 2 1
§~ —CFL? - -CFL + —.
3 3 10
This means that the best approximation and stability occur simultaneously, and in-
creasing the diffusive term deteriorates the accuracy. The best performance is for

0=0.2and CFL =0.3.

e When compared with the results of Figure 3, the errors with discontinuous approxi-
mating functions are smaller than with continuous ones;

e The deterioration of the accuracy with increasing diffusion coefficient is less pronouced
in the case of discontinuous approximating functions. When using continuous approx-
imating functions, the strong diffusive term smoothens the solution too much close to
discontinuites.

e Increasing the diffusive term in the IDDG method, the numerical solution tends to
become constant into the cells. In this sense, with high diffusive terms, the IDDG
method behaves like the classical finite volume scheme.

3.1.2 Stability analysis: nonlinear case

Consider the unidimensional Burgers equation, with periodic boundary conditions on the
interval [—1, 2], and initial condition

1 -1 <2<0.25
uo(z) = 0 025<z<0.75
-1 0.7 <z <2

The implicit scheme (11) is applied with continuous and discontinuous approximanting func-
tions of degree p = 1, in a grid of 50 finite elements. Figures 5 and 6 display the error
magnitude in both experiments. The following conclusions hold:
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e As in the linear problem, when continuous approximating functions are used, there is
a linear best compromise between 0 and C'F'L. However, for the Burgers equation, the
optimal curve is in the interior of the stability region;

e When using discontinuous approximating functions, 0 and C'F'L are quadraticaly re-
lated to get the best performance and the optimal curve is close to the boundary of the
stability region;

e The stability region for continuous approximating functions is wider than for discontin-
uous ones. However, inside the stability region, the accuracy is better for discontinuous
approximating functions than for continuous ones.

3.1.3 Optimal relation between ¢ and C'F'L

In Figures 7 and 8, the curves relating the diffusive coefficient 6 and the C'F'L parameter
that give the best accuracy in the experiments described above, are plotted. As shown in
the botton part of Figure 7, when using continuous approximating functions to solve the
linear problem, the curves corresponding to p = 1,2 and 3 almost coincide. The best linear
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correlation gives
1 1
0=-CFL+ —.
2 20
The curve in the upper part corresponds to the Burgers equation and it shows the linear

correlation . 5
0==-CFL+ —.
2 * 10
In the case of discontinuous approximating functions and linear problem, the correlation
seems to be quadratic, and it is also independent of the interpolation degree, as shown in the

upper part of Figure 8. The correlation is

10 2 1
§=—-CFL* - >CFL+ —.
3 3 10
The curve corresponding to the nonlinear Burgers equation is shown in the lower part of the
same figure and the correlation seems also to be quadratic. However, since the optimal curve

is very close to the limit of the stability region, such relations seem not to be useful.
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4 Accuracy and shock capturing tests

The stability results, presented in the previous sections for 1D model problems, are indicators
of the good performance properties of the proposed IDDG scheme. In this section, some
typical expamples in 2D are considered that confirm this expectation. For accuracy analysis,
we shall consider the rotating hill problem. To analyse the ability of capturing strong shocks,
we shall consider the backward-facing step problem for the Euler equations.

4.1 The rotating hill problem

For Q) = [-5,5]x[-5,5] C R? x = (z,y) € , and u € R, we consider the linear conservation
law with flux given by fi(u) = —yu and f5(u) = zu, initial condition

2.5(1 + cos(%E||x — %o X —Xg|| £ 1.5
T ] e 1S
where xy = (0,2.5), and boundary conditions u(t,x) = 0,x € Q. The exact solution is such
that at t = 27 it is back to its initial position, after a complete rotation around the origin.
For accuracy analysis, we consider a sequence of triangular grids which are obtained by
diagonal cell subdivision of regular retangular grids, with A, = A,, but the parameters
CFL = 0.6 and 6 = 0.1 are kept constant in all the cases. The level sets of the numerical
solution obtained with p = 1 and A, = 0.2 are shown in Figure 9, at t = 0,t = n,t = 7n/5
and t = 27. Varying A, the L, error measures are shown in Figure 10.

4.2 Backward facing step

The next example considers the Euler equations on the L-shaped region
2 =10.,0.6] x [0.,0.2] U [0,3.] x [0.2,1.],

as displayed in Figure 11. For the boundary conditions we consider: on the left, Dirichlet
boundary condition u = uy , where ug is the initial condition; wall boundary condition on
the botton 02y and on the top 0€23; and free flow on the right 024. Interpolation of degree
p=1, CFL=0.4 and § = 0.75. Level sets for the numerical density calculations are shown
in Figure 12 at t = 0.1, t = 0.58, t = 1. and ¢t = 2., showing the formation and evolution
of the shock around the corner. The preassure level set at ¢ = 0.78, and close to the steady
state t = 1.8 are shown in Figure 13.
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