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Abstra
t

In this work a te
hnique is presented for the numeri
al approximation of 
onservation

laws. It is based both on the Runge-Kutta Dis
ontinuous Galerkin method [3℄ and the

Streamline Upwind Petrov-Galerkin method [2℄. The proposed numeri
al s
heme uses a

dis
ontinuous pie
ewise polynomial approximation in spa
e and impli
it ba
kward Euler

time stepping. Numeri
al os
illations within the dis
ontinuous elements are 
ontrolled

by adding a streamline di�usive term. An optimal relation between the time step (in

terms of the CFL 
ondition) and the size of the di�usion 
oe�
ient is anlysed for nu-

meri
al pre
ision. The s
heme is implemented using the obje
t oriented programming

philosophy based on the enviroment des
ribed in [4℄. A

ura
y and sho
k 
apturing

abilities of the method are analysed in terms of two bidimensional model problems, the

rotating hill problem and the ba
kward fa
ing step problem for the Euler equations of

gas dynami
s.

Resumo

Neste trabalho, uma té
ni
a para a aproximação numéri
a de leis de 
onservação é

apresentada. Aproveitam-se idéias tanto do método Runge-Kutta Galerkin Des
ontínuo

[3℄ quanto do método Streamline Upwind Petrov-Galerkin [2℄. O esquema proposto usa

aproxições polinomiais por partes des
ontínuas para a dis
retização espa
ial e o método

de Euler implí
ito na dis
retização temporal. Para evitar os
ilações numéri
as, um

termo difusivo é apli
ado no interior dos elementos �nitos, dispensando-se o uso de lim-

itadores. Desenvolve-se um estudo para estabele
er uma relação adequada entre o valor

do número CFL e o 
oe�
iente máximo do termo difusivo, de tal forma a garantir a

estabilidade do esquema e obter pre
isão numéri
a ótima. Implementa-se o esquema em

um ambiente 
omputa
ional usando a �loso�a de programação orientada para objetos

[4℄. Para ilustrar a ordem de pre
isão e habilidade do método em 
apturar 
hoques,

apresentam-se resultados numéri
os para dois problemas típi
os bi-dimensionais, a ro-

tação de um 
one e o problema 
onhe
ido 
omo ba
kward fa
ing step.
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1 Introdu
tion

The numeri
al solution of hyperboli
 
onservation laws is a topi
 of 
onsiderable importan
e

for appli
ations in several �elds, parti
ularly in �uid dynami
s. Typi
ally, solutions of 
on-

servation laws are 
hara
terized by spontaneous evolution of singular features whi
h pose a


onsiderable 
omputational 
hallenge. There is a great variety of modern alghorithms devised

to a
hieve desired properties su
h as high-resolution, e�
ien
y, stability, et
 ([5℄,[6℄, [7℄). In

this paper, the dis
ussion is 
on
erned with two 
lasses of methods that have been su

ess-

fuly applied to 
onservation laws. Namely, the Streamline Upwind Petrov-Galerkin (SUPG)

method [2℄ and the Runge-Kutta Dis
ontinuous Galerkin (RKDG)method [3℄. Both methods


an be formulated in the same general framework that involves two basi
 steps.

� Spa
e dis
retization. At ea
h time step, an approximate solution is sought in a �nite

dimensional approximating spa
e V

h

. It is de�ned by imposing a Galerkin orthogonaly

property (the residual is orthogonal to V

h

). With proper 
hoi
es of basis fun
tions for

V

h

, the result is a system of ordinary di�erential equations.

� Time dis
retization. The resulting ODE system is dis
retized by an appropiate ODE

solver.

In the SUPG method, the approximating spa
es are, tipi
ally, 
ontinuos �nite elements

and, for stability purposes, the original 
onservation law is perturbated by a term a
ting along


hara
teristi
 dire
tions. This perturbation 
an be thought of as a numeri
al di�usion term

in the dire
tion of the streamlines, whose magnitude is 
ontrolled in terms of a parameter

Æ, the so 
alled arti�
ial di�usion 
oe�
ient. Usually, in
reasing Æ makes the s
heme more

stable (larger CFL numbers), but a

ura
y deteriorates. For the 
hoi
e of Æ, there must

be a 
ompromise between large CFL and a

ura
y. In
reasing �nite elements' order, basis

fun
tions get wider support, thus loosing e�
ien
y.

In the RKDG method, the approximate solution is sought in a pie
ewise dis
ontinuous

polynomial spa
e and an apropriate expli
it Runge-Kutta method is applied in the time

mar
hing. To a
hieve stability, it also in
orporates ideas of approximate Riemann solvers and

slope limiters. High order s
hemes are possible with high degree of lo
ality. However, slope

limiters seem not to be a natural way of stabilization, sin
e the pro
edure does not in
orporate

any intrisi
 property of the 
onservation law, neither suggests an easy implementation in

higher dimensions.

Having these 
onsiderations in mind, it seems that the best qualities of both methods


ould be 
ombined into a s
heme that, instead of slope limiters, introdu
es lo
al streamline

di�usion terms to stabilize the dis
ontinuous Galerkin method. This paper 
ole
ts some

illustrating results of our experiments in this dire
tion.

In the very beginning, for simple 1D model problems, we realise that a di�usive term

is unable to stabilize the expli
it RKDG method without severe deterioration in a

ura
y.

However, giving up the expli
it approa
h, even with the simpliest �rst order Euler s
heme,
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the dis
ontinuous Galerkin method with impli
it streamline lo
al di�usion terms shows good

stability regions, regardless the polynomial interpolation order.

With an impli
it method, a system of linear equations has to be solved at ea
h time

step. However, the 
orresponding matri
es have simple blo
k diagonal stru
tures. This fa
t,


ombined with obje
t oriented programming philosophy, whi
h is based on the enviroment

des
ribed in [4℄, led to e�
ient solvers.

The paper is organized as follows. In Se
tion 2, there is brief overview of SUPG and

RKDG methods. Se
tion 3 is dedi
ated to the de�niton of the new s
heme, namely the

dis
ontinuous Galerkin method with impli
it di�usive term (IDDG) and the study of its

stability. In Se
tion 4, a

ura
y and sho
k 
apturing abilities of the IDDG method are

analysed in terms or two bidimensional model problems, the rotating hill problem and the

ba
kward fa
ing step problem for the Euler equations.

2 SUPG and RKDG methods

In this se
tion we present a brief review of the referen
e methods, SUPG and RKGM, aimed

at solving systems of hyperboli
 
onservation laws in divergen
e form

�

�t

u+r:f(u) = 0; x 2 
 � R

d

; t > 0: (1)

Here f(u) = (f

1

(u); � � � ; f

d

(u)) is the d-dimensional �ux and u(t;x) = (u

1

(t;x); � � � ; u

m

(t;x))

is the unknown m-ve
tor, subje
ted to initial 
ondition

u(0;x) = u

0

(x): (2)

Eventually, apropriate boundary 
onditions are also imposed.

Let us suppose that 
 has been subdivided into a �nite element partition M

h

. On this

partition, we 
onsider �nite element spa
es V

h


onsisting of pie
ewise polynomial of �xed

degree p � 0. This means that, if w 2 V

h

, then wj

C

2 �

p

. Let

B

V

h

= f'

i

(x); i = 1; 2; : : : ; Ng

denotes a set of linearly independent basis spanning V

h

. The approximate solution is sought

in the form

u

h

(t;x) =

N

X

j=1

u

i

(t)'

i

(x):

In a standard Galerkin formulation, we seek u

h

su
h that for all j = 1; 2; � � � ; N ,

�

�t

Z




'

j

u

h

�

Z




r'

j

:f(u

h

) +

Z

�


'

j

f(u

h

):~� = 0; (3)
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where ~� denotes the unit outward normal ve
tor to 
. However, this kind of formulation

ends up being highly unstable.

? The SUPG method

The SUPG method is 
hara
terized by the repla
ement of equation (3) by the perturbed

one

�

�t

Z




'

j

u

h

�

Z




r'

j

:f(u

h

) +

Z

�


'

j

f(u

h

):~� � Æ

Z




(r'

j

:�)r:f(u

h

) = 0: (4)

The additional term

Æ

Z




(r'

j

:�)r:f(u

h

);

where � is a ve
tor of matri
es, is usually 
alled di�usive term. In the unidimensional 
ase,

the expression r'

i

:� is interpreted as

r'

i

:� =

d'

i

dx

�;

whereas, in the bidimensional 
ase, � = (�

1

; �

2

) and

r'

i

:� =

�'

i

�x

�

1

+

�'

i

�y

�

2

:

In the literature, there are several ways of de�ning �. In the present work, the expression of

� is given as in [1℄

� Unidimensional 
ase

� =

�x

2

f

0

1

jf

0

1

j:

� Bidimensional 
ase

� = (f

0

1

�; f

0

2

�);

where

� =

"

�

�

�

�

�

��

�x

f

0

1

+

��

�y

f

0

2

�

�

�

�

�

+

�

�

�

�

�

��

�x

f

0

1

+

��

�y

f

0

2

�

�

�

�

�

#

�1

:

? The RKDG method

In the RKDGmethod, the fun
tions in V

h

are dis
ontinuous and ea
h of the basis fun
tions

'

i

2 B

V

h

is supported in a single 
ell of the partition M

h

. Therefore, in the Galerkin

formulation (3), the integrals may be restri
ted to the 
ells of the partition. Be
ause of

dis
ontinuities on the 
ell boundaries, the �ux must be repla
ed by a approximate Riemann

solver or numeri
al �ux

^

f(u

h

). Therefore, the numeri
al solution u

h

2 V

h

is found su
h that

�

�t

Z

C

'

j

u

h

�

Z

C

r'

j

:f(u

h

) +

Z

�C

'

j

^

f(u

h

):�

C

= 0; (5)
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for all C 2 M

h

and j = 1; � � � ; N . The time dis
retization is performed by spe
ial expli
it

high-order a

urate Runge-Kutta methods. If u

n

h

is the solution at t = t

n

, the the solution

at the next time-step u

n+1

h

is obtained after L intermediate steps, by the time-mar
hing

algorithm

1. ~u

(0)

h

= u

n

h

;

2. For ` = 1; � � � ; L

N

X

i=1

~u

(`)

i

Z

C

'

i

'

j

=

Z

C

u

n

h

'

j

+�t

n

`�1

X

k=0




`k

�

Z

C

r'

j

:f(~u

k

h

)�

Z

�C

'

j

^

f(~u

k

h

):�

C

�

(6)

where ~u

k

h

=

P

N

i=1

~u

k

i

'

i

.

3. u

n+1

h

= ~u

(L)

h

.

At ea
h intermediate step of this algorithm, there is a system to be solved

K~u

`

= F;

where K is the mass matrix with entries

K

ij

=

Z

C

'

i

'

j

;

and right hand side

F

j

=

Z

C

u

n

h

'

j

+�

k

`�1

X

k=0




`k

�

Z

C

r'

j

:f(~u

k

h

)�

Z

�C

'

j

^

f(~u

k

h

):~�

C

�

:

As noted in [3℄, the 
hoi
e of the numeri
al �ux does not have a signi�
ant impa
t on the

quality of the approximations, regardless the polynomial interpolation degree. Therefore, in

all experiments of the present paper, the simple Lax-Friederi
s numeri
al �ux shall be used.

In the pie
ewise 
onstant 
ase (p = 0), and forward Euler s
heme in time, the s
heme


orresponds to the usual �nite volume method. Typi
ally, if the numerial �ux is 
hoosen

so that the s
heme is monotone, and the problem is for a s
alar 
onservation law, them

it is possible to prove the stability and 
onvergen
e of the method [6℄. For higher order

polynomials p � 1, and Runge-Kutta of order p+ 1, and Lax-Friederi
s numeri
al �ux, it is

suggested in [3℄ that, for stability, the relation

jmax f

0

(u)j

�t

�x

� CFL (7)

must be 
onsidered with

CFL =

1

2p+ 1

: (8)
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In pra
ti
al appli
ations, with sharp gradient variations, the CFL 
ondition (8) implies very

small time steps and e�
ien
y is lost. Usually, to over
ome this di�
ulty, slope limiters

are enfor
ed, at ea
h intermediate step, by means of a non-linear proje
tion operator. It is

possible to 
onstru
t slope limiters that ensure stability, without degrading the a

ura
y [3℄.

The use of a slope limiter is 
ru
ial, mainly when sho
ks are present. Its a
tion is similar

to the introdu
tion of di�usion in the interior of the elements, in order to avoid internal

os
illations. The slope limiter for
es the solution to be under 
ontrol, a

ording to the values

on the neighboring elements. Its de�nition does not depend on the 
onservation law at hand.

3 Di�usive dis
ontinuous Galerkin method

Our purpose is to use arti�
ial di�usion, instead of slope limiters, in order to stabilise the

Dis
ontinuous Galerkin Method. Therefore, we 
ombine formulations (3) and (5) by 
onsid-

ering the new formulation of �nding a dis
ontinuous pie
ewise polynomial solution u

h

2 V

h

su
h that for all C 2M

h

�

�t

Z

C

'

j

u

h

�

Z

C

r'

j

:f(u

h

) +

Z

�C

'

j

^

f(u

h

):�

C

� Æ

Z

C

(r'

j

:�)r:f(u

h

) = 0; (9)

where � is determined as in the SUPG method. Therefore, the intermediate steps in the

Runge-Kutta algorithm reads

N

X

i=1

~u

(`)

i

Z

C

'

i

'

j

=

Z

C

u

n

h

'

j

+�t

n

`�1

X

k=0




`k

�

Z

C

r'

j

:f(~u

k

h

)

�

Z

�C

'

j

^

f(~u

k

h

):�

C

+ Æ

Z

C

(r'

j

:�)

d

X

s=1

f

0

s

(~u

k

h

)

�

�x

s

~u

k

h

)

: (10)

As a test model problem, 
onsider the s
alar linear 
onservation law, with f(u) = u,

de�ned on the unit interval 
 = [0; 1℄, with periodi
 boundary 
onditions and initial data

u

0

(x) =

(

1; 0 � x � 0:5

0; 0:5 � x � 1:

The s
heme (10) is applied for di�erent CFL and Æ parameters within the following range

� 0:1 � CFL � 1, with in
rement 0:1.

� 0 � Æ � 1, with in
rement 0:05.

The next results are for a partition of 50 �nite elements, and Runge-Kutta of order p+1

for polynomial interpolation of degree p. The errors are measured in the jj:jj

L

1

norm. The
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Figure 1: Stability region: expli
it di�usion and 
ontinuous basis fun
tions.
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Figure 2: Stability region: expli
it di�usion and dis
ontinuous basis fun
tions .

red 
olour 
orresponds to unstable regions. For the sake of 
omparison, similar experiments

are 
arried out for the SUPG method, with 
ontinuous approximating fun
tions of the same

degree. Figure 1 
orresponds to the results for SUPG with 
ontinuous pie
ewise polynomials

of degree p = 1 and p = 2. The equivalent results for the dis
ontinuous Galerkin method with

di�usive term are presented in Figure 2. Based on these results, the following 
on
luding

remarks are in order:

1. Without vis
osity term Æ = 0, the Runge-Kutta Galerkin method is stable for CFL �

1

2p+1

, for both 
ontinuous and dis
ontinuous approximating spa
es;

2. The experiments with dis
ontinuous approximating fun
tions show smaller error am-

plitudes than with 
ontinuous ones;

3. In both 
ases, the smallest errors o

ur when the Runge-Kutta Galerkin s
heme is
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applied without the di�usion term. The errors in
rease with in
reasing di�usive 
oef-

�
ient;

4. The addition of the di�usive term is not su�
ient to make the s
heme stable if the

CFL number is mantained greater than

1

2p+1

.

3.1 IDDG method

Moved by the negative results just des
ribed, the next step would be to 
onsider a s
heme

where the di�usive term is treated impli
itly. However, the implementation of an impli
it

Runge-Kutta s
heme would require the 
omputation of the sti�ness matrix at ea
h interme-

diate step. Having this di�
ulty in mind, a single step ba
kward Euler s
heme is tried �rst.

In this 
ase, formula (10) redu
es to

N

X

i=1

u

n+1

i

Z

C

"

'

i

'

j

+ Æ�t

n

(r'

j

:�)

d

X

s=1

f

0

s

(u

n+1

h

)

�

�x

s

'

i

#

=

Z

C

u

n

h

'

j

+�t

n

�

Z

C

r'

j

:f(u

n

h

)�

Z

�C

'

j

^

f(u

n

h

):�

C

�

: (11)

We have spe
ial interest in dis
ontinuous �nite elements approximating spa
es. However,

the 
ontinuous 
ase is also 
onsidered, for 
omparsion purposes.

3.1.1 Stability analysis: linear 
ase

The model problem is the same one 
onsidered before. The bla
k dot lines in Figures 3 and

4 
orrespond to the o

urren
e of the smallest errors, indi
ating the optimal 
ompromise

between the parameters CFL and Æ for the 
orresponding s
heme.

In Figure 3, the results for the 
ase of 
ontinuous approximating fun
tions with degree

p = 1; 2 and 3 are displayed. Sin
e this is a 
lose variation of the 
lassi
al SUPG method,

their performan
e are also similar.

? SUPG with impli
it di�usion

� The s
heme is stable when the di�usion 
oe�
ient Æ and the CFL parameter satisfy

the relation Æ � 0:5CFL;

� The smallest errors o

ur when Æ � 0:5CFL. This means that the best approximation

o

urs when the s
heme be
omes stable, and in
reasing the di�usive term deteriorates

the a

ura
y.
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Figure 3: Stability region: impli
it di�usion and 
ontinuous basis fun
ions
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Figure 4: Stability region: impli
it di�usion and dis
ontinuous basis fun
tions
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Figure 4 
orresponds to the 
ase of dis
ontinuous approximating fun
tions with degree

p = 1; 2 and 3. The following aspe
ts are highlighted.

? IDDG method

� The stability region o

urs when the di�usive 
oe�
ient Æ and the CFL parameter

satisfy the relation

Æ �

10

3

CFL

2

�

2

3

CFL+

1

10

;

� The smallest errors also o

ur 
lose to the boundary of the stability region

Æ �

10

3

CFL

2

�

2

3

CFL+

1

10

:

This means that the best approximation and stability o

ur simultaneously, and in-


reasing the di�usive term deteriorates the a

ura
y. The best performan
e is for

Æ = 0:2 and CFL = 0:3.

� When 
ompared with the results of Figure 3, the errors with dis
ontinuous approxi-

mating fun
tions are smaller than with 
ontinuous ones;

� The deterioration of the a

ura
y with in
reasing di�usion 
oe�
ient is less pronou
ed

in the 
ase of dis
ontinuous approximating fun
tions. When using 
ontinuous approx-

imating fun
tions, the strong di�usive term smoothens the solution too mu
h 
lose to

dis
ontinuites.

� In
reasing the di�usive term in the IDDG method, the numeri
al solution tends to

be
ome 
onstant into the 
ells. In this sense, with high di�usive terms, the IDDG

method behaves like the 
lassi
al �nite volume s
heme.

3.1.2 Stability analysis: nonlinear 
ase

Consider the unidimensional Burgers equation, with periodi
 boundary 
onditions on the

interval [�1; 2℄, and initial 
ondition

u

0

(x) =

8

>

<

>

:

1 �1 � x � 0:25

0 0:25 � x � 0:75

�1 0:75 � x < 2:

The impli
it s
heme (11) is applied with 
ontinuous and dis
ontinuous approximanting fun
-

tions of degree p = 1, in a grid of 50 �nite elements. Figures 5 and 6 display the error

magnitude in both experiments. The following 
on
lusions hold:
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Figure 5: Stability region: impli
it difusion and 
ontinuous basis fun
tions.

Figure 6: Stability region: impli
it di�usion and dis
ontinuous basis fun
tions.
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Figure 7: Optimal relation between CFL and Æ for 
ontinuous basis fun
tions.

� As in the linear problem, when 
ontinuous approximating fun
tions are used, there is

a linear best 
ompromise between Æ and CFL. However, for the Burgers equation, the

optimal 
urve is in the interior of the stability region;

� When using dis
ontinuous approximating fun
tions, Æ and CFL are quadrati
aly re-

lated to get the best performan
e and the optimal 
urve is 
lose to the boundary of the

stability region;

� The stability region for 
ontinuous approximating fun
tions is wider than for dis
ontin-

uous ones. However, inside the stability region, the a

ura
y is better for dis
ontinuous

approximating fun
tions than for 
ontinuous ones.

3.1.3 Optimal relation between Æ and CFL

In Figures 7 and 8, the 
urves relating the di�usive 
oe�
ient Æ and the CFL parameter

that give the best a

ura
y in the experiments des
ribed above, are plotted. As shown in

the botton part of Figure 7, when using 
ontinuous approximating fun
tions to solve the

linear problem, the 
urves 
orresponding to p = 1; 2 and 3 almost 
oin
ide. The best linear

14



Figure 8: Optimal relation between CFL and Æ for dis
ontinuous basis fun
tions.


orrelation gives

Æ =

1

2

CFL+

1

20

:

The 
urve in the upper part 
orresponds to the Burgers equation and it shows the linear


orrelation

Æ =

1

2

CFL+

3

10

:

In the 
ase of dis
ontinuous approximating fun
tions and linear problem, the 
orrelation

seems to be quadrati
, and it is also independent of the interpolation degree, as shown in the

upper part of Figure 8. The 
orrelation is

Æ =

10

3

CFL

2

�

2

3

CFL +

1

10

:

The 
urve 
orresponding to the nonlinear Burgers equation is shown in the lower part of the

same �gure and the 
orrelation seems also to be quadrati
. However, sin
e the optimal 
urve

is very 
lose to the limit of the stability region, su
h relations seem not to be useful.
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4 A

ura
y and sho
k 
apturing tests

The stability results, presented in the previous se
tions for 1D model problems, are indi
ators

of the good performan
e properties of the proposed IDDG s
heme. In this se
tion, some

typi
al expamples in 2D are 
onsidered that 
on�rm this expe
tation. For a

ura
y analysis,

we shall 
onsider the rotating hill problem. To analyse the ability of 
apturing strong sho
ks,

we shall 
onsider the ba
kward-fa
ing step problem for the Euler equations.

4.1 The rotating hill problem

For 
 = [�5; 5℄�[�5; 5℄ � R

2

, x = (x; y) 2 
, and u 2 R, we 
onsider the linear 
onservation

law with �ux given by f

1

(u) = �yu and f

2

(u) = xu, initial 
ondition

u

0

(x) =

(

2:5(1 + 
os(

2�

3

jjx� x

0

jj) jjx� x

0

jj � 1:5

0 jjx� x

0

jj < 1:5

;

where x

0

= (0; 2:5), and boundary 
onditions u(t;x) = 0;x 2 
. The exa
t solution is su
h

that at t = 2� it is ba
k to its initial position, after a 
omplete rotation around the origin.

For a

ura
y analysis, we 
onsider a sequen
e of triangular grids whi
h are obtained by

diagonal 
ell subdivision of regular retangular grids, with �

x

= �

y

, but the parameters

CFL = 0:6 and Æ = 0:1 are kept 
onstant in all the 
ases. The level sets of the numeri
al

solution obtained with p = 1 and �

x

= 0:2 are shown in Figure 9, at t = 0; t = �; t = 7�=5

and t = 2�. Varying �

x

, the L

1

error measures are shown in Figure 10.

4.2 Ba
kward fa
ing step

The next example 
onsiders the Euler equations on the L-shaped region


 = [0:; 0:6℄� [0:; 0:2℄ [ [0; 3:℄� [0:2; 1:℄;

as displayed in Figure 11. For the boundary 
onditions we 
onsider: on the left, Diri
hlet

boundary 
ondition u = u

0

, where u

0

is the initial 
ondition; wall boundary 
ondition on

the botton �


2

and on the top �


3

; and free �ow on the right �


4

. Interpolation of degree

p = 1, CFL = 0:4 and Æ = 0:75. Level sets for the numeri
al density 
al
ulations are shown

in Figure 12 at t = 0:1, t = 0:58, t = 1: and t = 2:, showing the formation and evolution

of the sho
k around the 
orner. The preassure level set at t = 0:78, and 
lose to the steady

state t = 1:8 are shown in Figure 13.
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Figure 9: Rotating hill: mesh and level sets at t = 0, t = �, t = 7�=5 e t = 2�.
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Figure 10: Convergen
e analysis: L

1

errors.

Ω

Ω

Ω

Ω

3

40u

2

Estado inicial do fluido

1

Figure 11: Computational domain.
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Figure 12: Density level sets at t = 0:1, t = 0:58, t = 1: and t = 2:
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Figure 13: Pressure level sets at t = 0:78 and t = 1:8 .
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