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Abstrat

In this work a tehnique is presented for the numerial approximation of onservation

laws. It is based both on the Runge-Kutta Disontinuous Galerkin method [3℄ and the

Streamline Upwind Petrov-Galerkin method [2℄. The proposed numerial sheme uses a

disontinuous pieewise polynomial approximation in spae and impliit bakward Euler

time stepping. Numerial osillations within the disontinuous elements are ontrolled

by adding a streamline di�usive term. An optimal relation between the time step (in

terms of the CFL ondition) and the size of the di�usion oe�ient is anlysed for nu-

merial preision. The sheme is implemented using the objet oriented programming

philosophy based on the enviroment desribed in [4℄. Auray and shok apturing

abilities of the method are analysed in terms of two bidimensional model problems, the

rotating hill problem and the bakward faing step problem for the Euler equations of

gas dynamis.

Resumo

Neste trabalho, uma ténia para a aproximação numéria de leis de onservação é

apresentada. Aproveitam-se idéias tanto do método Runge-Kutta Galerkin Desontínuo

[3℄ quanto do método Streamline Upwind Petrov-Galerkin [2℄. O esquema proposto usa

aproxições polinomiais por partes desontínuas para a disretização espaial e o método

de Euler implíito na disretização temporal. Para evitar osilações numérias, um

termo difusivo é apliado no interior dos elementos �nitos, dispensando-se o uso de lim-

itadores. Desenvolve-se um estudo para estabeleer uma relação adequada entre o valor

do número CFL e o oe�iente máximo do termo difusivo, de tal forma a garantir a

estabilidade do esquema e obter preisão numéria ótima. Implementa-se o esquema em

um ambiente omputaional usando a �loso�a de programação orientada para objetos

[4℄. Para ilustrar a ordem de preisão e habilidade do método em apturar hoques,

apresentam-se resultados numérios para dois problemas típios bi-dimensionais, a ro-

tação de um one e o problema onheido omo bakward faing step.
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1 Introdution

The numerial solution of hyperboli onservation laws is a topi of onsiderable importane

for appliations in several �elds, partiularly in �uid dynamis. Typially, solutions of on-

servation laws are haraterized by spontaneous evolution of singular features whih pose a

onsiderable omputational hallenge. There is a great variety of modern alghorithms devised

to ahieve desired properties suh as high-resolution, e�ieny, stability, et ([5℄,[6℄, [7℄). In

this paper, the disussion is onerned with two lasses of methods that have been suess-

fuly applied to onservation laws. Namely, the Streamline Upwind Petrov-Galerkin (SUPG)

method [2℄ and the Runge-Kutta Disontinuous Galerkin (RKDG)method [3℄. Both methods

an be formulated in the same general framework that involves two basi steps.

� Spae disretization. At eah time step, an approximate solution is sought in a �nite

dimensional approximating spae V

h

. It is de�ned by imposing a Galerkin orthogonaly

property (the residual is orthogonal to V

h

). With proper hoies of basis funtions for

V

h

, the result is a system of ordinary di�erential equations.

� Time disretization. The resulting ODE system is disretized by an appropiate ODE

solver.

In the SUPG method, the approximating spaes are, tipially, ontinuos �nite elements

and, for stability purposes, the original onservation law is perturbated by a term ating along

harateristi diretions. This perturbation an be thought of as a numerial di�usion term

in the diretion of the streamlines, whose magnitude is ontrolled in terms of a parameter

Æ, the so alled arti�ial di�usion oe�ient. Usually, inreasing Æ makes the sheme more

stable (larger CFL numbers), but auray deteriorates. For the hoie of Æ, there must

be a ompromise between large CFL and auray. Inreasing �nite elements' order, basis

funtions get wider support, thus loosing e�ieny.

In the RKDG method, the approximate solution is sought in a pieewise disontinuous

polynomial spae and an apropriate expliit Runge-Kutta method is applied in the time

marhing. To ahieve stability, it also inorporates ideas of approximate Riemann solvers and

slope limiters. High order shemes are possible with high degree of loality. However, slope

limiters seem not to be a natural way of stabilization, sine the proedure does not inorporate

any intrisi property of the onservation law, neither suggests an easy implementation in

higher dimensions.

Having these onsiderations in mind, it seems that the best qualities of both methods

ould be ombined into a sheme that, instead of slope limiters, introdues loal streamline

di�usion terms to stabilize the disontinuous Galerkin method. This paper olets some

illustrating results of our experiments in this diretion.

In the very beginning, for simple 1D model problems, we realise that a di�usive term

is unable to stabilize the expliit RKDG method without severe deterioration in auray.

However, giving up the expliit approah, even with the simpliest �rst order Euler sheme,
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the disontinuous Galerkin method with impliit streamline loal di�usion terms shows good

stability regions, regardless the polynomial interpolation order.

With an impliit method, a system of linear equations has to be solved at eah time

step. However, the orresponding matries have simple blok diagonal strutures. This fat,

ombined with objet oriented programming philosophy, whih is based on the enviroment

desribed in [4℄, led to e�ient solvers.

The paper is organized as follows. In Setion 2, there is brief overview of SUPG and

RKDG methods. Setion 3 is dediated to the de�niton of the new sheme, namely the

disontinuous Galerkin method with impliit di�usive term (IDDG) and the study of its

stability. In Setion 4, auray and shok apturing abilities of the IDDG method are

analysed in terms or two bidimensional model problems, the rotating hill problem and the

bakward faing step problem for the Euler equations.

2 SUPG and RKDG methods

In this setion we present a brief review of the referene methods, SUPG and RKGM, aimed

at solving systems of hyperboli onservation laws in divergene form

�

�t

u+r:f(u) = 0; x 2 
 � R

d

; t > 0: (1)

Here f(u) = (f

1

(u); � � � ; f

d

(u)) is the d-dimensional �ux and u(t;x) = (u

1

(t;x); � � � ; u

m

(t;x))

is the unknown m-vetor, subjeted to initial ondition

u(0;x) = u

0

(x): (2)

Eventually, apropriate boundary onditions are also imposed.

Let us suppose that 
 has been subdivided into a �nite element partition M

h

. On this

partition, we onsider �nite element spaes V

h

onsisting of pieewise polynomial of �xed

degree p � 0. This means that, if w 2 V

h

, then wj

C

2 �

p

. Let

B

V

h

= f'

i

(x); i = 1; 2; : : : ; Ng

denotes a set of linearly independent basis spanning V

h

. The approximate solution is sought

in the form

u

h

(t;x) =

N

X

j=1

u

i

(t)'

i

(x):

In a standard Galerkin formulation, we seek u

h

suh that for all j = 1; 2; � � � ; N ,

�

�t

Z




'

j

u

h

�

Z




r'

j

:f(u

h

) +

Z

�


'

j

f(u

h

):~� = 0; (3)
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where ~� denotes the unit outward normal vetor to 
. However, this kind of formulation

ends up being highly unstable.

? The SUPG method

The SUPG method is haraterized by the replaement of equation (3) by the perturbed

one

�

�t

Z




'

j

u

h

�

Z




r'

j

:f(u

h

) +

Z

�


'

j

f(u

h

):~� � Æ

Z




(r'

j

:�)r:f(u

h

) = 0: (4)

The additional term

Æ

Z




(r'

j

:�)r:f(u

h

);

where � is a vetor of matries, is usually alled di�usive term. In the unidimensional ase,

the expression r'

i

:� is interpreted as

r'

i

:� =

d'

i

dx

�;

whereas, in the bidimensional ase, � = (�

1

; �

2

) and

r'

i

:� =

�'

i

�x

�

1

+

�'

i

�y

�

2

:

In the literature, there are several ways of de�ning �. In the present work, the expression of

� is given as in [1℄

� Unidimensional ase

� =

�x

2

f

0

1

jf

0

1

j:

� Bidimensional ase

� = (f

0

1

�; f

0

2

�);

where

� =

"

�

�

�

�

�

��

�x

f

0

1

+

��

�y

f

0

2

�

�

�

�

�

+

�

�

�

�

�

��

�x

f

0

1

+

��

�y

f

0

2

�

�

�

�

�

#

�1

:

? The RKDG method

In the RKDGmethod, the funtions in V

h

are disontinuous and eah of the basis funtions

'

i

2 B

V

h

is supported in a single ell of the partition M

h

. Therefore, in the Galerkin

formulation (3), the integrals may be restrited to the ells of the partition. Beause of

disontinuities on the ell boundaries, the �ux must be replaed by a approximate Riemann

solver or numerial �ux

^

f(u

h

). Therefore, the numerial solution u

h

2 V

h

is found suh that

�

�t

Z

C

'

j

u

h

�

Z

C

r'

j

:f(u

h

) +

Z

�C

'

j

^

f(u

h

):�

C

= 0; (5)
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for all C 2 M

h

and j = 1; � � � ; N . The time disretization is performed by speial expliit

high-order aurate Runge-Kutta methods. If u

n

h

is the solution at t = t

n

, the the solution

at the next time-step u

n+1

h

is obtained after L intermediate steps, by the time-marhing

algorithm

1. ~u

(0)

h

= u

n

h

;

2. For ` = 1; � � � ; L

N

X

i=1

~u

(`)

i

Z

C

'

i

'

j

=

Z

C

u

n

h

'

j

+�t

n

`�1

X

k=0



`k

�

Z

C

r'

j

:f(~u

k

h

)�

Z

�C

'

j

^

f(~u

k

h

):�

C

�

(6)

where ~u

k

h

=

P

N

i=1

~u

k

i

'

i

.

3. u

n+1

h

= ~u

(L)

h

.

At eah intermediate step of this algorithm, there is a system to be solved

K~u

`

= F;

where K is the mass matrix with entries

K

ij

=

Z

C

'

i

'

j

;

and right hand side

F

j

=

Z

C

u

n

h

'

j

+�

k

`�1

X

k=0



`k

�

Z

C

r'

j

:f(~u

k

h

)�

Z

�C

'

j

^

f(~u

k

h

):~�

C

�

:

As noted in [3℄, the hoie of the numerial �ux does not have a signi�ant impat on the

quality of the approximations, regardless the polynomial interpolation degree. Therefore, in

all experiments of the present paper, the simple Lax-Friederis numerial �ux shall be used.

In the pieewise onstant ase (p = 0), and forward Euler sheme in time, the sheme

orresponds to the usual �nite volume method. Typially, if the numerial �ux is hoosen

so that the sheme is monotone, and the problem is for a salar onservation law, them

it is possible to prove the stability and onvergene of the method [6℄. For higher order

polynomials p � 1, and Runge-Kutta of order p+ 1, and Lax-Friederis numerial �ux, it is

suggested in [3℄ that, for stability, the relation

jmax f

0

(u)j

�t

�x

� CFL (7)

must be onsidered with

CFL =

1

2p+ 1

: (8)
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In pratial appliations, with sharp gradient variations, the CFL ondition (8) implies very

small time steps and e�ieny is lost. Usually, to overome this di�ulty, slope limiters

are enfored, at eah intermediate step, by means of a non-linear projetion operator. It is

possible to onstrut slope limiters that ensure stability, without degrading the auray [3℄.

The use of a slope limiter is ruial, mainly when shoks are present. Its ation is similar

to the introdution of di�usion in the interior of the elements, in order to avoid internal

osillations. The slope limiter fores the solution to be under ontrol, aording to the values

on the neighboring elements. Its de�nition does not depend on the onservation law at hand.

3 Di�usive disontinuous Galerkin method

Our purpose is to use arti�ial di�usion, instead of slope limiters, in order to stabilise the

Disontinuous Galerkin Method. Therefore, we ombine formulations (3) and (5) by onsid-

ering the new formulation of �nding a disontinuous pieewise polynomial solution u

h

2 V

h

suh that for all C 2M

h

�

�t

Z

C

'

j

u

h

�

Z

C

r'

j

:f(u

h

) +

Z

�C

'

j

^

f(u

h

):�

C

� Æ

Z

C

(r'

j

:�)r:f(u

h

) = 0; (9)

where � is determined as in the SUPG method. Therefore, the intermediate steps in the

Runge-Kutta algorithm reads

N

X

i=1

~u

(`)

i

Z

C

'

i

'

j

=

Z

C

u

n

h

'

j

+�t

n

`�1

X

k=0



`k

�

Z

C

r'

j

:f(~u

k

h

)

�

Z

�C

'

j

^

f(~u

k

h

):�

C

+ Æ

Z

C

(r'

j

:�)

d

X

s=1

f

0

s

(~u

k

h

)

�

�x

s

~u

k

h

)

: (10)

As a test model problem, onsider the salar linear onservation law, with f(u) = u,

de�ned on the unit interval 
 = [0; 1℄, with periodi boundary onditions and initial data

u

0

(x) =

(

1; 0 � x � 0:5

0; 0:5 � x � 1:

The sheme (10) is applied for di�erent CFL and Æ parameters within the following range

� 0:1 � CFL � 1, with inrement 0:1.

� 0 � Æ � 1, with inrement 0:05.

The next results are for a partition of 50 �nite elements, and Runge-Kutta of order p+1

for polynomial interpolation of degree p. The errors are measured in the jj:jj

L

1

norm. The
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Figure 1: Stability region: expliit di�usion and ontinuous basis funtions.
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Figure 2: Stability region: expliit di�usion and disontinuous basis funtions .

red olour orresponds to unstable regions. For the sake of omparison, similar experiments

are arried out for the SUPG method, with ontinuous approximating funtions of the same

degree. Figure 1 orresponds to the results for SUPG with ontinuous pieewise polynomials

of degree p = 1 and p = 2. The equivalent results for the disontinuous Galerkin method with

di�usive term are presented in Figure 2. Based on these results, the following onluding

remarks are in order:

1. Without visosity term Æ = 0, the Runge-Kutta Galerkin method is stable for CFL �

1

2p+1

, for both ontinuous and disontinuous approximating spaes;

2. The experiments with disontinuous approximating funtions show smaller error am-

plitudes than with ontinuous ones;

3. In both ases, the smallest errors our when the Runge-Kutta Galerkin sheme is
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applied without the di�usion term. The errors inrease with inreasing di�usive oef-

�ient;

4. The addition of the di�usive term is not su�ient to make the sheme stable if the

CFL number is mantained greater than

1

2p+1

.

3.1 IDDG method

Moved by the negative results just desribed, the next step would be to onsider a sheme

where the di�usive term is treated impliitly. However, the implementation of an impliit

Runge-Kutta sheme would require the omputation of the sti�ness matrix at eah interme-

diate step. Having this di�ulty in mind, a single step bakward Euler sheme is tried �rst.

In this ase, formula (10) redues to

N

X

i=1

u

n+1

i

Z

C

"

'

i

'

j

+ Æ�t

n

(r'

j

:�)

d

X

s=1

f

0

s

(u

n+1

h

)

�

�x

s

'

i

#

=

Z

C

u

n

h

'

j

+�t

n

�

Z

C

r'

j

:f(u

n

h

)�

Z

�C

'

j

^

f(u

n

h

):�

C

�

: (11)

We have speial interest in disontinuous �nite elements approximating spaes. However,

the ontinuous ase is also onsidered, for omparsion purposes.

3.1.1 Stability analysis: linear ase

The model problem is the same one onsidered before. The blak dot lines in Figures 3 and

4 orrespond to the ourrene of the smallest errors, indiating the optimal ompromise

between the parameters CFL and Æ for the orresponding sheme.

In Figure 3, the results for the ase of ontinuous approximating funtions with degree

p = 1; 2 and 3 are displayed. Sine this is a lose variation of the lassial SUPG method,

their performane are also similar.

? SUPG with impliit di�usion

� The sheme is stable when the di�usion oe�ient Æ and the CFL parameter satisfy

the relation Æ � 0:5CFL;

� The smallest errors our when Æ � 0:5CFL. This means that the best approximation

ours when the sheme beomes stable, and inreasing the di�usive term deteriorates

the auray.
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Figure 3: Stability region: impliit di�usion and ontinuous basis funions
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Figure 4: Stability region: impliit di�usion and disontinuous basis funtions
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Figure 4 orresponds to the ase of disontinuous approximating funtions with degree

p = 1; 2 and 3. The following aspets are highlighted.

? IDDG method

� The stability region ours when the di�usive oe�ient Æ and the CFL parameter

satisfy the relation

Æ �

10

3

CFL

2

�

2

3

CFL+

1

10

;

� The smallest errors also our lose to the boundary of the stability region

Æ �

10

3

CFL

2

�

2

3

CFL+

1

10

:

This means that the best approximation and stability our simultaneously, and in-

reasing the di�usive term deteriorates the auray. The best performane is for

Æ = 0:2 and CFL = 0:3.

� When ompared with the results of Figure 3, the errors with disontinuous approxi-

mating funtions are smaller than with ontinuous ones;

� The deterioration of the auray with inreasing di�usion oe�ient is less pronoued

in the ase of disontinuous approximating funtions. When using ontinuous approx-

imating funtions, the strong di�usive term smoothens the solution too muh lose to

disontinuites.

� Inreasing the di�usive term in the IDDG method, the numerial solution tends to

beome onstant into the ells. In this sense, with high di�usive terms, the IDDG

method behaves like the lassial �nite volume sheme.

3.1.2 Stability analysis: nonlinear ase

Consider the unidimensional Burgers equation, with periodi boundary onditions on the

interval [�1; 2℄, and initial ondition

u

0

(x) =

8

>

<

>

:

1 �1 � x � 0:25

0 0:25 � x � 0:75

�1 0:75 � x < 2:

The impliit sheme (11) is applied with ontinuous and disontinuous approximanting fun-

tions of degree p = 1, in a grid of 50 �nite elements. Figures 5 and 6 display the error

magnitude in both experiments. The following onlusions hold:
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Figure 5: Stability region: impliit difusion and ontinuous basis funtions.

Figure 6: Stability region: impliit di�usion and disontinuous basis funtions.
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Figure 7: Optimal relation between CFL and Æ for ontinuous basis funtions.

� As in the linear problem, when ontinuous approximating funtions are used, there is

a linear best ompromise between Æ and CFL. However, for the Burgers equation, the

optimal urve is in the interior of the stability region;

� When using disontinuous approximating funtions, Æ and CFL are quadratialy re-

lated to get the best performane and the optimal urve is lose to the boundary of the

stability region;

� The stability region for ontinuous approximating funtions is wider than for disontin-

uous ones. However, inside the stability region, the auray is better for disontinuous

approximating funtions than for ontinuous ones.

3.1.3 Optimal relation between Æ and CFL

In Figures 7 and 8, the urves relating the di�usive oe�ient Æ and the CFL parameter

that give the best auray in the experiments desribed above, are plotted. As shown in

the botton part of Figure 7, when using ontinuous approximating funtions to solve the

linear problem, the urves orresponding to p = 1; 2 and 3 almost oinide. The best linear
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Figure 8: Optimal relation between CFL and Æ for disontinuous basis funtions.

orrelation gives

Æ =

1

2

CFL+

1

20

:

The urve in the upper part orresponds to the Burgers equation and it shows the linear

orrelation

Æ =

1

2

CFL+

3

10

:

In the ase of disontinuous approximating funtions and linear problem, the orrelation

seems to be quadrati, and it is also independent of the interpolation degree, as shown in the

upper part of Figure 8. The orrelation is

Æ =

10

3

CFL

2

�

2

3

CFL +

1

10

:

The urve orresponding to the nonlinear Burgers equation is shown in the lower part of the

same �gure and the orrelation seems also to be quadrati. However, sine the optimal urve

is very lose to the limit of the stability region, suh relations seem not to be useful.
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4 Auray and shok apturing tests

The stability results, presented in the previous setions for 1D model problems, are indiators

of the good performane properties of the proposed IDDG sheme. In this setion, some

typial expamples in 2D are onsidered that on�rm this expetation. For auray analysis,

we shall onsider the rotating hill problem. To analyse the ability of apturing strong shoks,

we shall onsider the bakward-faing step problem for the Euler equations.

4.1 The rotating hill problem

For 
 = [�5; 5℄�[�5; 5℄ � R

2

, x = (x; y) 2 
, and u 2 R, we onsider the linear onservation

law with �ux given by f

1

(u) = �yu and f

2

(u) = xu, initial ondition

u

0

(x) =

(

2:5(1 + os(

2�

3

jjx� x

0

jj) jjx� x

0

jj � 1:5

0 jjx� x

0

jj < 1:5

;

where x

0

= (0; 2:5), and boundary onditions u(t;x) = 0;x 2 
. The exat solution is suh

that at t = 2� it is bak to its initial position, after a omplete rotation around the origin.

For auray analysis, we onsider a sequene of triangular grids whih are obtained by

diagonal ell subdivision of regular retangular grids, with �

x

= �

y

, but the parameters

CFL = 0:6 and Æ = 0:1 are kept onstant in all the ases. The level sets of the numerial

solution obtained with p = 1 and �

x

= 0:2 are shown in Figure 9, at t = 0; t = �; t = 7�=5

and t = 2�. Varying �

x

, the L

1

error measures are shown in Figure 10.

4.2 Bakward faing step

The next example onsiders the Euler equations on the L-shaped region


 = [0:; 0:6℄� [0:; 0:2℄ [ [0; 3:℄� [0:2; 1:℄;

as displayed in Figure 11. For the boundary onditions we onsider: on the left, Dirihlet

boundary ondition u = u

0

, where u

0

is the initial ondition; wall boundary ondition on

the botton �


2

and on the top �


3

; and free �ow on the right �


4

. Interpolation of degree

p = 1, CFL = 0:4 and Æ = 0:75. Level sets for the numerial density alulations are shown

in Figure 12 at t = 0:1, t = 0:58, t = 1: and t = 2:, showing the formation and evolution

of the shok around the orner. The preassure level set at t = 0:78, and lose to the steady

state t = 1:8 are shown in Figure 13.
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Figure 9: Rotating hill: mesh and level sets at t = 0, t = �, t = 7�=5 e t = 2�.
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Figure 10: Convergene analysis: L

1

errors.

Ω

Ω

Ω

Ω

3

40u

2

Estado inicial do fluido

1

Figure 11: Computational domain.
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Figure 12: Density level sets at t = 0:1, t = 0:58, t = 1: and t = 2:
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Figure 13: Pressure level sets at t = 0:78 and t = 1:8 .
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