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Resumo

Neste trabalho propomos um novo m�etodo quase-Newton para solu�~ao de sis-

temas n~ao lineares. Neste m�etodo fazemos a atualiza�~ao de duas olunas por

itera�~ao da aproxima�~ao da inversa da Jaobiana de maneira a satisfazer (quando

poss��vel) as duas �ultimas equa�~oes seantes. Chamamos este m�etodo de ITCUM.

Propomos uma implementa�~ao orreta do ponto de vista da �algebra linear e da

estabilidade num�eria; fazemos a an�alise te�oria do m�etodo (onvergênia loal)

e apresentamos testes num�erios, onde omparamos o desempenho do ITCUM

om o de outros m�etodos quase-Newton, om ênfase maior em ICUM (m�etodo

de atualiza�~ao de uma oluna da Jaobiana inversa) [13℄.
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Abstrat

In this work it is introdued a new quasi-Newton method for solving

large-sale nonlinear systems of equations. In this method two olumns of

the approximation of the inverse Jaobian are updated, in suh a way that

the two last seant equations are satis�ed (when it is possible) at every

iteration. The new method is alled the Inverse Two-Columns Updating

Method (ITCUM). Moreover, it is proposed a right implementation from

the point of view of linear algebra and numerial stability. It is presented

a loal onvergene analysis and several numerial tests an a omparison

between the performane of this new quasi-Newton method with other

quasi-Newton methods, in partiular the ICUM (Inverse Column Updating

Method) [13℄.

Key words: Quasi-Newton methods, nonlinear systems, inverse two olumns-

updating method.
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1 Introdution

To solve nonlinear systems of equations is a neessary task in the most applied

areas, suh as Physis, Engineering, Chemistry and Industry. This problem on-

sists on: given a nonlinear funtion F : IR

n

! IR

n

; ontinuously di�erentiable,

�nd a vetor x 2 IR

n

suh that

F (x) = 0: (1)

All pratial algorithms for solving (1) are iterative. Among them we have New-

ton method and quasi-Newton methods.

Given an initial approximation x

0

2 IR

n

; Newton's method generate a sequene

fx

k

g of approximations of a solution to (1) by

x

k+1

= x

k

� J(x

k

)

�1

F (x

k

); (2)

where, J(x

k

) is the Jaobian matrix of F at x

k

: The Newton iteration an be

ostly, sine partial derivatives must be omputed and the linear system (2)

must be solved at every iteration. This fat motivated the development of quasi-

Newton methods, whih are de�ned as the generalization of (2) given by

x

k+1

= x

k

� B

�1

k

F (x

k

); (3)

where, the matrix B

k

is an approximation of J(x

k

):

The name \quasi-Newton" was used after 1965 to desribe also methods of the

form (3) suh that the equation below is satis�ed:

B

k+1

s

k

= y

k

= F (x

k+1

)� F (x

k

): (4)

Following [4℄, most authors all quasi-Newton all the methods of the form (3),

whereas the lass of methods that satisfy (4) are alled \seant methods". A-

ordingly, (4) is alled \seant equation".

Among the seant methods, we have Broyden's method [1℄, the Column Updating

Method (CUM ) [11℄ and the Inverse Column Update Method (ICUM) [13℄, [8℄.
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In Broyden's method and in CUM, the updating of the B

k

matrix, is made,

respetively, by

B

k+1

= B

k

+

(y

k

� B

k

s

k

)s

T

k

s

T

k

s

k

; (5)

B

k+1

= B

k

+

(y

k

� B

k

s

k

)e

i

k

T

e

i

k

T

s

k

; (6)

where, je

T

j

k

s

k

j = ks

k

k

1

:

In the ICUM, the matrix H

k

; an approximation of the inverse Jaobian matrix

at x

k

; is updated by

H

k+1

= H

k

+

(s

k

�H

k

y

k

)e

T

j

k

e

T

j

k

y

k

; (7)

where, je

T

j

k

y

k

j = ky

k

k

1

:

In a reent numerial work, Luk�san e Vl�ek [9℄, onlude that ICUM is the most

eÆient quasi-Newton method in the solution of large-sale nonlinear systems.

In other works, [12℄, it has been asked about the importane of the \ previous

seant equation" with the propose to determine a relative eÆieny of di�erent

quasi-Newton methods.

The eÆieny of ICUM and the aspets mentioned above indued us to intro-

due another quasi-Newton method similar to ICUM, where we use two olumns

instead of just one, to update the iteration matrix. In this method, H

k

will be

equal to H

k+1

exept in two olumns, that will be updated in order to satisfy the

last two seant equations.

The de�nition of this method involves diverse situations. It must be observed that

the method is not always well de�ned, beause it is possible that the two seant

equations may be inompatible. Moreover, it is possible, even being ompatible,

that the ompatibility is so slight that the implementation of the method an

be ill-onditioned. For this reason it is neessary a areful analysis of the linear

algebra that must be used for its implementation, when it is possible.
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Other aspet that is neessary to study is related to the theorial properties of

the new method. This is one of the intermediate methods between ICUM and a

sequential seant method [10℄. These last methods have properties well known,

but it is not the ase of the intermediate methods.

For large-sale problems, it is lear that the ICUM is more eÆient than the

sequential seant method, whih indeed an not be eÆiently implemented for

this type of problems.

In this work, we introdue a method that is very losely related to ICUM and

whih we all the Inverse Two-Columns Updating Method (ITCUM). As we said

before, while in ICUM one olumn of the inverse Jaobian approximation is

updated, in order to satisfy in eah iteration, the seant equation, in our new

method, introdued here, we update two olumns of the inverse Jaobian ap-

proximation, in suh a way that the two last seant equations are satis�ed at

every iteration.

Moreover, we propose a right implementation in the point of view of Linear

Algebra and numerial stability. We present the loal onvergene analysis and

several numerial tests where we ompare the performane of the new quasi-

Newton method with others quasi-Newton methods, partiularly, ICUM (Inverse

Column updating Method) [13℄.

The mathematial desription of ITCUM is given in Setion 2 of this paper. In

Setion 3 we prove loal onvergene under standard assumptions. In Setion 4

we disuss the omputer implementation and report our numerial experiments.

Finally, in Setion 5 we state some onlusions and we disuss some lines for

future researh.

2 Desription of the new quasi-Newton method

The Inverse Two-Columns Updating Method (ITCUM) for solving the problem

(1) is de�ned by

x

k+1

= x

k

�H

k

F (x

k

); (8)
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where the inverse Jaobian approximation H

k

; is updated in suh a way that

H

k+1

di�ers from the previous matrix in two olumns and the two last seant

equations are satis�ed at every iteration, that is:

H

k+1

y

k

= s

k

H

k+1

y

k�1

= s

k�1

;

(9)

where s

k

= x

k+1

� x

k

e y

k

= F (x

k+1

)� F (x

k

):

Therefore, the matrix H

k+1

must be a orretion of rank two to H

k

, that is,

H

k+1

= H

k

+ u

k

i

1

e

T

i

1

+ u

k

i

2

e

T

i

2

; (10)

where, e

i

1

and e

i

2

belong to the anonial basis of IR

n

and the n-vetors u

k

i

1

and

u

k

i

2

must be hosen in suh a way that the equations (9) are satis�ed. In order to

simplify the notation, we suppressed the upper index k in i

1

and i

2

:

Observe that equations (9) may be inompatible an therefore the method ould

be not de�ned. In order to do an analysis of ITCUM and to determine onditions

for a good de�nition of it, we onsidered the equations in (9) with H

k+1

de�ned

by (10),

8

<

:

(H

k

+ u

k

i

1

e

T

i

1

+ u

k

i

2

e

T

i

2

)y

k

= s

k

(H

k

+ u

k

i

1

e

T

i

1

+ u

k

i

2

e

T

i

2

)y

k�1

= s

k�1

;

(11)

or, in an equivalent way,

8

<

:

u

k

i

1

(e

T

i

1

y

k

) + u

k

i

2

(e

T

i

2

y

k

) = s

k

�H

k

y

k

u

k

i

1

(e

T

i

1

y

k�1

) + u

k

i

2

(e

T

i

2

y

k�1

) = s

k�1

�H

k

y

k�1

:

(12)

The equations (12) represent, for eah k; a linear system of 2n equations and 2n

unknowns: the omponents of the vetors u

k

i

1

andu

k

i

2

:

Using the notation

e

T

i

1

y

k

= �

k

e

T

i

2

y

k

= �

k

;

e

T

i

1

y

k�1

= 

k

e

T

i

2

y

k�1

= Æ

k

;

(13)
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system (12) in matriial form is given by

Au

k

=

0

B

B

B

�

�

k

I

.

.

. �

k

I

� � � � � �



k

I

.

.

. Æ

k

I

1

C

C

C

A

0

B

�

u

k

i

1

� � �

u

k

i

2

1

C

A

=

0

B

�

s

k

�H

k

y

k

� � � � � � � � � � � �

s

k�1

�H

k

y

k�1

1

C

A

=

0

B

�

v

k

1

� � �

v

k

2

1

C

A

= v

k

; (14)

where, A 2 IR

2n�2n

, I is the n� n identity matrix, u

k

2 IR

2n

and v

k

2 IR

2n

.

Therefore, the existene of the vetors u

k

i

1

e u

k

i

2

satisfying (9) will be determined

by the nonsingularity of the matrix A 2 IR

2n�2n

: It is easy to see that the deter-

minant of A is given by

det(A) =

"

det

 

�

k

�

k



k

Æ

k

!#

n

= �

n

k

:

This shows an interesting fat: analyzing the nonsingularity of the 2n�2n matrix

A is equivalent to analyze the nonsingularity of a 2� 2 matrix.

If we assume that �

k

= �

k

Æ

k

� 

k

�

k

6= 0, then the matrix A will be nonsingular.

In order to �nd an general expression for the vetor u

k

in (14), its neessary to

solve a linear system, what may be done using, for example LU deomposition

whih it is the strategy that we use as follows.

Case 1: j�

k

j � j

k

j > 0:

A = LU =

0

B

B

B

B

�

I

.

.

. O

� � � � � � � � �



k

�

k

I

.

.

. I

1

C

C

C

C

A

0

B

B

B

B

�

�

k

I

.

.

. �

k

I

� � � � � � � � � � � � � � � � � �

O

.

.

.

�

k

Æ

k

� �

k



k

�

k

I

1

C

C

C

C

A

:
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Case 2: j�

k

j < j

k

j:

LU =

0

B

B

B

B

�

I

.

.

. O

� � � � � � � � �

�

k



k

I

.

.

. I

1

C

C

C

C

A

0

B

B

B

B

�



k

I

.

.

. Æ

k

I

� � � � � � � � � � � �

O

.

.

.



k

�

k

� �

k

Æ

k



k

I

1

C

C

C

C

A

=

0

B

B

B

�

O

.

.

. I

� � � � � � � � �

I

.

.

. O

1

C

C

C

A

0

B

B

B

�

�

k

I

.

.

. �

k

I

� � � � � � � � �



k

I

.

.

. Æ

k

I

1

C

C

C

A

= PA:

Using this LU deomposition, we solve the system (14), that this,

LUu

k

= v

k

;

thus the expression for the vetor u

k

is given by

u

k

=

0

B

B

B

B

B

�

Æ

k

v

k

1

� �

k

v

k

2

�

k

� � � � � � � � �

�

k

v

k

2

� 

k

v

k

1

�

k

1

C

C

C

C

C

A

=

0

B

�

u

k

i

1

� � �

u

k

i

2

1

C

A

: (15)

substituting (15) in (10), we obtain

H

k+1

= H

k

+

 

Æ

k

v

k

1

� �

k

v

k

2

�

k

!

e

T

i

1

+

 

�

k

v

k

2

� 

k

v

k

1

�

k

!

e

T

i

2

: (16)

As we observed previously, the matrixH

k+1

di�er from the matrix H

k

only in two

olumns (i

1

and i

2

). From the equality (16), it is possible to write these olumns

in the following way

h

k+1

i

1

= h

k

i

1

+

Æ

k

v

k

1

� �

k

v

k

2

�

k

;

h

k+1

i

2

= h

k

i

2

+

�

k

v

k

2

� 

k

v

k

1

�

k

:

(17)
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Substituting the expressions of the vetors v

k

1

and v

k

2

given in (12) in (17) we

obtain:

h

k+1

i

1

= h

k

i

1

+

Æ

k

�

k

�

s

k

�H

k

y

k

�

�

�

k

�

k

�

s

k�1

�H

k

y

k�1

�

;

h

k+1

i

2

= h

k

i

2

+

�

k

�

k

�

s

k�1

�H

k

y

k�1

�

�



k

�

k

�

s

k

�H

k

y

k

�

:

(18)

>From (18), for eah j = 1; � � � ; n; the jth-omponent of the olumns to be

modi�ed will be updated as follows.

h

k+1

j i

1

=

Æ

k

�

k

0

�

s

k

j

�

X

p6=i

1

h

k

j p

y

k

p

1

A

�

�

k

�

k

0

�

s

k�1

j

�

X

p6=i

1

h

k

j p

y

k�1

p

1

A

(19)

h

k+1

j i

2

=

�

k

�

k

0

�

s

k�1

j

�

X

p6=i

2

h

k

j p

y

k�1

p

1

A

�



k

�

k

0

�

s

k

j

�

X

p6=i

2

h

k

j p

y

k

p

1

A

:

It is interesting to observe that, omputationally, it is more onvenient to write

the olumns i

1

e i

2

of the new matrix in this way:

h

k+1

j i

1

=

Æ

k

�

k

0

�

s

k

j

�

X

p6=i

1

; i

2

h

k

j p

y

k

p

1

A

�

�

k

�

k

0

�

s

k�1

j

�

X

p6=i

1

; i

2

h

k

j p

y

k�1

p

1

A

;

h

k+1

j i

2

=

�

k

�

k

0

�

s

k�1

j

�

X

p6=i

1

; i

2

h

k

j p

y

k�1

p

1

A

�



k

�

k

0

�

s

k

j

�

X

p6=i

1

; i

2

h

k

j p

y

k

p

1

A

;

whih ould be easily obtained from (19).

As it was mentioned previously, the hoie of the index i

1

and i

2

of the olumns

to be modi�ed is restrited to the assumption:

�

k

= (e

T

i

1

y

k

)(e

T

i

2

y

k�1

)� (e

T

i

2

y

k

)(e

T

i

1

y

k�1

) 6= 0: (20)

Notie that, in the ase that y

k

beomes a multiple of y

k�1

; �

k

will be zero. This

makes it impossible to hoose the olumns that must be hanged.

We adopted in our numerial tests the following hoie for the index i

1

and i

2

:

jy

k

i

1

j = ky

k

k

1

jy

k�1

i

2

j = ky

k�1

k

1

:
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In the ase that �

k

beomes zero, we hanged the index i

2

in suh a way that

j(�

k

y

k�1

� 

k

y

k

)

i

2

j = k�

k

y

k�1

� 

k

y

k

k

1

:

3 The onvergene

>From now on, we denoted by k: k the 2-norm vetors and matries. Assume that

F : 
 � IR

n

! IR

n

; F 2 C

1

(
); 
 an opens and onvex set, x

�

2 
; F (x

�

) = 0

and

kJ(x)� J(x

�

)k � Lkx� x

�

k

p

; L; p > 0 (21)

for all x 2 
: A inequality (21) implies that for all u; v 2 


kF (u)� F (v)� J(x

�

)(v � u)k � Lkv � uk�(u; v)

p

; (22)

where �(u; v) = maxfku� x

�

k; kv � x

�

kg (see [1℄).

Assume that J(x

�

) is nonsingular and de�ne M = kJ(x

�

)

�1

k: By (22), we dedue

that for all u; v 2 
;

kv � u� J(x

�

)

�1

[F (v)� F (u)℄k �MLkv � uk�(u; v)

p

: (23)

The loal onvergene result is stated in the following theorem. It is very sim-

ilar to the Theorem 3.1 of [16℄ but, sine its proof involves some interesting

adaptations we will present it here.

Theorem 2.1 Let fx

k

g e fH

k

g the sequenes generated by the ITCUM and

assume that F (x

k

) 6= 0 and �

k

6= 0; for all k = 0; 1; :::; let r 2 (0; 1): There exist

" = "

r

; � = �

r

suh that, if kx

0

� x

�

k � " and kH

k

� J(x

�

)

�1

k � �; whenever

10



k � 1 (mod m) or k = 0; then the sequenes fx

k

g and fH

k

g are well de�ned,

fx

k

g onverges to x

�

and for all k = 0; 1; � � �

kx

k+1

� x

�

k � rkx

k

� x

�

k:

Proof:

De�ne 

1

= 2n

2

M

2

L; 

2

= n

5=2

: Given "; � > 0; de�ne b

i

("; �); i = 0; 1; � � � ; m�

1 by

b

0

("; �) = �

b

1

("; �) = 

2

b

0

("; �) + 

1

"

p

(24)

b

i

("; �) = R 

2

b

i�1

("; �) +R 

1

"

p

; i = 2; � � � ; m� 1;

where R =

2ky

k�1

k

1

ky

k�2

k

1

j�

k

j

; k = 2; 3; � � �

Clearly, we have, for all "; � > 0;

0 < b

0

("; �) < b

1

("; �) < � � � < b

m�1

("; �) and lim

"; �!0

b

i

("; �) = 0 (25)

for i = 0; 1; � � � ; m� 1:

By (25), we an hoose " = "

r

> 0 and � = �

r

> 0 suh that " � "

1

and

b

i

("; �) + L"

p

<

r

M

1

; (26)

for i = 0; 1; � � � ; m� 1; where M

1

= maxfkJ(x

�

)k; 2Mg:

Assume that kx

0

� x

�

k � " and kH

k

� J(x

�

)

�1

k � � whenever k � 1 (modm)

or k = 0: We will prove by indution on k that if k � q (modm) then H

k

is

nonsingular,

kH

k

� J(x

�

)

�1

k � b

q

("; �) (27)

kH

k

k � 2M; (28)

kx

k+1

� x

�

k � r kx

k

� x

�

k; (29)

11



for all q = 0; 1; � � � ; m� 1:

For k = 0; by hypothesis,

kH

0

� J(x

�

)

�1

k � � = b

0

("; �); (30)

thus, by (26) and (30),

kH

0

k � kJ(x

�

)

�1

k+ kH

0

� J(x

�

)

�1

k

� kJ(x

�

)

�1

k+ �

� kJ(x

�

)

�1

k+

1

kJ(x

�

)k

� 2kJ(x

�

)

�1

k = 2M:

Thus,

kH

0

k � 2M: (31)

By (22) and (31),

kx

1

� x

�

k = kx

0

� x

�

�H

0

F (x

0

)k

= kx

0

� x

�

�H

0

[F (x

0

)� F (x

�

)� J(x

�

)(x

0

� x

�

)℄

+ H

0

J(x

�

)(x

0

� x

�

)k

� k[I �H

0

J(x

�

)℄(x

0

� x

�

)k+ 2MLkx

0

� x

�

k

p+1

�

�

kJ(x

�

)

�1

�H

0

k kJ(x

�

)k+ 2MLkx

0

� x

�

k

p

�

kx

0

� x

�

k;

by the de�nition of M

1

; the hypothesis kx

0

� x

�

k � "; kH

0

� J(x

�

)

�1

k � �; and

(26), we have:

kx

1

� x

�

k � M

1

�

kJ(x

�

)

�1

�H

0

k+ Lkx

0

� x

�

k

p

�

kx

0

� x

�

k

� M

1

(� + L"

p

) kx

0

� x

�

k

= M

1

(b

0

("; �) + L"

p

) kx

0

� x

�

k � r kx

0

� x

�

k:

Thus, kx

1

� x

�

k � r kx

0

� x

�

k:

12



Consider now k > 0; k � q (mod m): If q = 1; the proofs of (27)-(29) are similar

to the ase k = 0: Assume q 6= 1: let us assume now that q > 0; k � 2 and

k � q (mod m):

By the hypothesis of indution, H

k�1

is nonsingular. Let i

1

and i

2

; the indexes

of the olumns to be modi�ed, suh that �

k�1

6= 0: Eah omponent j; j =

1; 2; � � � ; n of the olumn i

1

is given by:

h

k

j i

1

=

Æ

k�1

�

k�1

0

�

s

k�1

j

�

X

p6=i

1

h

k�1

j p

y

k�1

p

1

A

�

�

k�1

�

k�1

0

�

s

k�2

j

�

X

p6=i

1

h

k�1

j p

y

k�2

p

1

A

: (32)

so, H

k

is well de�ned.

By addition and subtration of

Æ

k�1

�

k�1

0

�

X

p6=i

r

h

�

j p

y

k�1

p

1

A

and

�

k�1

�

k�1

0

�

X

p6=i

r

h

�

j p

y

k�2

p

1

A

,

respetively, in (32), we have:

h

k

j i

r

=

Æ

k�1

�

k�1

0

�

s

k�1

j

�

X

p6=i

1

h

�

j p

y

k�1

p

+

X

p6=i

1

h

�

j p

y

k�1

p

�

X

p6=i

1

h

k�1

j p

y

k�1

p

1

A

�

�

k�1

�

k�1

0

�

s

k�2

j

�

X

p6=i

1

h

�

j p

y

k�2

p

+

X

p6=i

1

h

�

j p

y

k�2

p

�

X

p6=i

1

h

k�1

j p

y

k�2

p

1

A

; (33)

Therefore, for all j = 1; 2; � � � ; n;

jh

k

j i

1

� h

�

j i

1

j �

�

�

�

�

�

Æ

k�1

�

k�1

�

�

�

�

�

js

k�1

j

�

n

X

p=1

h

�

j p

y

k�1

p

j+

�

�

�

�

�

�

k�1

�

k�1

�

�

�

�

�

js

k�2

j

�

n

X

p=1

h

�

j p

y

k�2

p

j+

(34)

�

�

�

�

�

Æ

k�1

�

k�1

�

�

�

�

�

X

p6=i

1

jh

�

j p

� h

k�1

j p

j jy

k�1

p

j+

�

�

�

�

�

�

k�1

�

k�1

�

�

�

�

�

X

p6=i

1

jh

�

j p

� h

k�1

j p

jjy

k�2

p

j:

De�ning J(x

�

)

�1

= H

�

and using (23), the inequalities jy

k�1

p

j � ky

k�1

k

1

and

jy

k�2

p

j � ky

k�2

k

1

in (34), we obtain:

jh

k

j i

1

� h

�

j i

1

j �

�

�

�

�

�

Æ

k�1

�

k�1

�

�

�

�

�

ks

k�1

� J(x

�

)

�1

y

k�1

k+

�

�

�

�

�

�

k�1

�

k�1

�

�

�

�

�

ks

k�2

� J(x

�

)

�1

y

k�2

k

13



+

�

�

�

�

�

Æ

k�1

�

k�1

�

�

�

�

�

ky

k�1

k

1

n

X

p=1

jh

�

j p

� h

k�1

j p

j+

�

�

�

�

�

�

k�1

�

k�1

�

�

�

�

�

ky

k�2

k

1

n

X

p=1

jh

�

j p

� h

k�1

j p

j

�

�

�

�

�

�

Æ

k�1

�

k�1

�

�

�

�

�

MLks

k�1

k"

p

+

�

�

�

�

�

�

k�1

�

k�1

�

�

�

�

�

MLks

k�2

k"

p

+R

n

X

p=1

jh

�

j p

� h

k�1

j p

j

�

�

�

�

�

�

Æ

k�1

�

k�1

�

�

�

�

�

2M

2

Lky

k�1

k"

p

+

�

�

�

�

�

�

k�1

�

k�1

�

�

�

�

�

2M

2

Lky

k�2

k"

p

+ Rn kJ(x

�

)

�1

�H

k�1

k: (35)

By Lemma 3.1 we have that ks

k�1

k � 2M ky

k�1

k and ks

k�2

k � 2Mky

k�2

k:

We used this in the two previous inequalities.

Using jÆ

k�1

j � ky

k�2

k �

p

n ky

k�2

k

1

and j�

k�1

j � ky

k�1

k �

p

n ky

k�1

k

1

;

in (35) we have:

jh

k

j i

1

� h

�

j i

1

j �

 

ky

k�1

k

1

j�

k�1

j

ky

k�2

k

1

+

ky

k�2

k

1

j�

k�1

j

ky

k�1

k

1

!

p

n 2M

2

L "

p

+ Rn kH

k�1

� J(x

�

)

�1

k;

= R

p

n 2M

2

L "

p

+Rn kH

k�1

� J(x

�

)

�1

k: (36)

In similar form, it is easy to proof an analogous result to (36) for the index i

2

:

That is,

jh

k

j i

2

� h

�

j i

2

j � R

p

n 2M

2

L "

p

+Rn kH

k�1

� J(x

�

)

�1

k: (37)

Also, we have that for the omponents of the olumns that were not modi�ed a

inequality (36)is satis�ed. i.e, for all s 6= i

1

and s 6= i

2

;

jh

k

j s

� h

�

j s

j = jh

k�1

j s

� h

�

j s

j

� kH

k�1

� J(x

�

)

�1

k

� R

p

n 2M

2

L "

p

+Rn kH

k�1

� J(x

�

)

�1

k: (38)
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Observe that (38) is true beause R > 1 and R

p

n 2M

2

L "

p

> 0: Moreover, by

(36), (37) and(38), we onlude that

kH

k

� J(x

�

)

�1

k

1

� nR

�

p

n 2M

2

L "

p

+ n kH

k�1

� J(x

�

)

�1

k

�

: (39)

Thus, by (39) and (24), we have:

kH

k

� J(x

�

)

�1

k �

p

n kH

k

� J(x

�

)

�1

k

1

� R

�

n

2

2M

2

L "

p

+ n

5=2

kH

k�1

� J(x

�

)

�1

k

�

� R

�

n

2

2M

2

L "

p

+ n

5=2

b

q�1

("; �)

�

= R (

2

b

q�1

("; �) + 

1

"

p

)

= b

q

("; �): (40)

Then, kH

k

� J(x

�

)

�1

k � b

q

("; �): Thus, by (26),

kH

k

� J(x

�

)

�1

k �

r

M

1

�

1

2M

;

therefore, by Banah's Lemma [5℄, H

k

is nonsingular and using the hypothesis,

�

k�1

6= 0; we onlude that for all k; the sequenes fx

k

g and fH

k

g are well

de�ned.

Moreover

kH

k

k � kJ(x

�

)

�1

k+ kH

k

� J(x

�

)

�1

k

� kJ(x

�

)

�1

k+

r

M

1

� kJ(x

�

)

�1

k+

1

kJ(x

�

)k

� 2 kJ(x

�

)

�1

k = 2M: (41)

So, kH

k

k � 2 M and �nally, by (22), (26) and (41),

kx

k+1

� x

�

k = kx

k

� x

�

�H

k

F (x

k

)k

= kx

k

� x

�

�H

k

h

F (x

k

)� F (x

�

)� J(x

�

)(x

k

� x

�

)

i

�H

k

J(x

�

)(x

k

� x

�

)k

� k [I �H

k

J(x

�

)℄ (x

k

� x

�

)k+ 2M L kx

k

� x

�

k

p+1

15



�

h

kJ(x

�

)k kJ(x

�

)

�1

�H

k

k+ 2M L kx

k

� x

�

k

p

i

kx

k

� x

�

k

� M

1

(b

q

("; �) + L "

p

) kx

k

� x

�

k

� r kx

k

� x

�

k:

Thus, kx

k+1

� x

�

k � r kx

k

� x

�

k; whih ompletes the proof of the theorem.

4 Computer implementation of ITCUM and nu-

merial experiments

In this setion, we present some omparative implementations of ITCUM. For

this it was used some test problems from [16℄, [8℄, [3℄.

>From the equation (16), letting v

p

1

= s

p

�H

p

y

p

and v

p

2

= s

p�1

� H

p

y

p�1

; we

obtain:

H

k

= H

0

+

k�1

X

p=0

 

Æ

p

v

p

1

� �

p

v

p

2

�

p

!

(e

p

i

1

)

T

+

k�1

X

p=0

 

�

p

v

p

2

� 

p

v

p

1

�

p

!

(e

p

i

2

)

T

; (42)

or equivalently

H

k

= H

0

+

k�1

X

p=0

w

p

1

(e

p

i

1

)

T

+

k�1

X

p=0

w

p

2

(e

p

i

2

)

T

; (43)

where

w

p

1

=

Æ

p

v

p

1

� �

p

v

p

2

�

p

and w

p

2

=

�

p

v

p

2

� 

p

v

p

1

�

p

:

The implementation of ITCUM is based on the formula (43). Thus, in eah

iteration k; the alulus of H

k

implies in the storage of two vetors (w

k

1

ew

k

2

)

and two additional indexes (i

1

and i

2

). For this reason, the number of onseutive

iterations of the method is limited by the availability of memory to the omputer.

Considering that there is suÆient spae to store m pairs of vetors, then it is

possible to do one \Newton" iteration

1

and m onseutive ITCUM iterations.

1

In the restarts, we did not use the \ exat" Jaobian.
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Therefore, if � � 0 (modm); � 2 f1; :::; m� 1g, we obtain:

H

�+�

= H

�

+

��1

X

l=0

w

�+l

1

(e

�+l

i

1

)

T

+

��1

X

l=0

w

�+l

2

(e

�+l

i

2

)

T

: (44)

Then, the parameter m determines the number of possibles iterations of type

ITCUM between two restarts. We used m = 30 when we worked with the large-

sale problems (for the other problems it was not neessary to do restarts).

The problems tested in this work were organized in two lasses: short-sale and

large-sale problems aording to the number of variables that they have. We

present them as follows.

Short-sale problems :

1: Rosenbrok (n=2). [3℄. x

0

= (�1:2; 1)

T

:

2: Freudenstein-Roth (n=2). [3℄. x

0

= (0:5; �2)

T

:

3: Powell badly saled funtion (n=2). [3℄. x

0

= (0:5; �2)

T

:

4: Powell singular funtion (n=4). [3℄. x

0

= (0:5; �2)

T

:

5: Extended Rosenbrok (n=50). [3℄. x

0

= (�1:2; 1;�1:2; 1; :::)

T

:

6: Trigonometri funtion (n=2). [3℄. x

0

= (1=n; :::; 1=n)

T

:

7: Disrete boundary value funtion (n=2). Funtion 28 in [3℄.

x

0

= (�

j

); where �

j

= t

j

(t

j

� 1); h = 1=(n+ 1) e t

j

= jh:

8: Broyden banded funtion (n=2). [3℄. x

0

= (�1; :::; �1)

T

:

9: Linear System (n=50). [8℄. x

0

= (1; �1; 1; �1; :::)

T

:

10: Chandrasekhar H-equation (n=50). [8℄. x

0

= (0; :::; 0)

T

:

17



Large-sale problems:

Problems 11 to 15: Eah test is generated as a �nite-di�erene disretization

of a Poisson equation in the square [0; 1℄ � [0; 1℄: The number of divisions of

the interval is denoted by N (32 and 50). In all ases, the starting point is

x

0

= (�1; �1; :::; �1)

T

and the number of variables is n = (N � 1)

2

.

The Jaobian of eah one of the large-sale problems is sparse with �vediagonal

struture; thus it an be onsidered \well represented" by its the tridiagonal part.

Motivated by this fat, if k � 0 (mod m); we hose:

H

k

= [P

�

(J(x

k

))℄

�1

; (45)

where, P

�

is the orthogonal projetion operator on the subspae of tridiagonal

matries. Thus, the algorithms are restarted using m = 30:

For the short-sale problems, when k = 0; 1; we hose:

H

k

= [P

D

(J(x

k

))℄

�1

; (46)

where, P

D

is the orthogonal projetion operator on the subspae of diagonal

matries. If one of the elements of this diagonal Jaobian matrix is null, we

replaed it by 1:

In aording to Lema 2.1, near an isolated solution it is not possible that y

k

= 0:

This fat may our far from x

�

whih makes �

k�1

= 0; independently of the

hoie of the index. In the numerial tests, this situation is deteted verifying

the inequality:

ky

k

k � 10

�6

kF (x

k

)k: (47)

In the ase (47) is satis�ed, we de�ned H

k+1

= H

k

:

In eah iteration k; the hoie of indexes i

1

and i

2

of the olumns to be modi�ed

was done aording to the desription in Setion 2, with a small variation to

avoid instabilities problems in h

k+1

: For this, we de�ned a parameter for hanging

the value of sigma (tol

�

). Thus, the index i

2

will be altered when:

j�

k

j � tol

�

: (48)
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In our numerial tests we used tol

�

= 10

�4

for the problems 11, 12, 13 and

tol

�

= 10

�6

for the other problems.

Based on [16℄, we used the following onvergene riteria:

kF (x

k

)k

1

� 10

�5

kF (x

0

)k

1

short-sale

kF (x

k

)k

1

� 10

�3

kF (x

0

)k

1

large-sale.

We also stopped the exeution of the numerial tests when the number of iter-

ations exeeded 200 or when kF (x

k

)k

1

� 10

4

kF (x

0

)k

1

: In the �rst ase, we

say that ITCUM did not onverge (it is represented, in the tables, by the term

NC) and in the seond one, we say that the method diverged ( whih it will be

represented in the tables with the term DIV).

We ompare the performane of ITCUM with the Newton method and with

other quasi-Newton methods: Broyden's method [1℄, CUM [11℄, ICUM [16℄. The

implementation of these methods were done as in [16℄.

The numerial tests were run in an AMD Athlon - 800 MHZ omputer, in the

state University of Campinas using the MATLAB 6.0 with single preision.

The numerial results are presented in Tables 1 to 3. Eah one of them has

six olumns indiating, respetively, the problem, the number of iterations used

for Newton, Broyden, CUM, ICUM and ITCUM. For the large sale problems

aditional to the number of iterations used for eah method (KON), we present

the omputer CPU time in seonds (TIME). In this ase, the results of eah test

is represented by a pair (KON; TIME).
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Prob Newton Broyden CUM ICUM ITCUM

1 2 12 13 8 5

2 41 Div Div 19 NC

3 11 33 40 83 22

4 4 60 67 Div 56

5 2 12 13 8 5

6 9 8 8 9 8

7 2 5 5 5 4

8 4 6 5 5 6

9 1 4 5 4 4

Table1: Short-sale problems.

 Newton Broyden CUM ICUM ITCUM

0.1 3 3 4 4 3

0.5 3 6 6 6 5

0.9 5 10 10 9 7

0.99 6 12 33 12 11

0.999 7 14 39 13 13

1� 10

�4

8 17 32 15 13

1� 10

�5

9 24 38 16 15

1� 10

�6

10 27 43 17 16

1� 10

�7

10 31 39 17 16

1� 10

�8

10 28 33 17 16

1 10 33 33 17 16
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Table 2:Chandrasekhar H-equation.

Pr N Newton Broyden CUM ICUM ITCUM

11 32 (2; 0.65) (62; 5.55) (59; 4.89) (54; 4.67) (44; 4.55)

50 (2; 2.97) (112; 38.83) (105; 33.89) (67; 22.30) (82; 29.33)

12 32 (5; 1.54) (52; 4.39) (56; 5.11) (47; 4.45) (44; 4.61)

50 (4; 5.76) (99; 35.08) (86; 27.74) (65; 21.59) (66; 24.50)

13 32 (9; 2.70) (65; 5.94) (64; 5.93) (55; 5.05) (56; 5.61)

50 (9; 12.58) (149; 52.68) (75; 24.88) (64; 21.42) (62; 23.81)

14 32 (2; 0.71) (68; 5.99) (95; 7.96) (62; 5.54) (51; 5.06)

50 (2; 3.08) (155; 59.65) (176; 55.42) (92; 29.55) (101; 35.70)

15 32 (1; 0.39) (62; 4.72) (82; 5.82) (61; 5.00) (57; 5.05)

50 (1; 1.59) (132; 43.17) (141; 41.36) (115; 34.38) (111; 36.52)

Table 3: Large-sale Problems.

Observe that in several ases, the performane of ITCUM is worse that of the

ICUM, whih is not strange beause, in nonlinear problems, it is pratially

impossible to �nd the best method (in performane ) for all the problems.

For determining the new olumns, while ICUM has to manipulate with only one

equation, ITCUM needs to solve a linear system, where there exists the possibility

of null determinant of the matrix of the system.

When the dimension of the problems inreases, the performane of ITCUM be-

omes, in mean, inferior to that of ICUM (Table 3); This fat ours beause

for the implementation of this method, the hoie of indexes beomes more om-

pliated beause of the size of the vetors.

Other numerial tests, di�erent from that mentioned previously, were done. In

these tests, we worked with several versions of ITCUM, generated from the dif-
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ferent hoies for the index i

1

e i

2

and from the various riteria used for to alter

them (when it is neessary) in the implementation. Among the versions that we

used, the riterion of hoie desribed in Setion 3 was of the best performane

in the problems tested in this work, as was expeted by the observation??????
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