An Inverse Two-Columns Updating Method for
solving large-scale nonlinear systems of equations

Véra Lucia Rocha Lopes * Luziane Ferreira-Mendonca '
Rosana Pérez *

Resumo

Neste trabalho propomos um novo método quase-Newton para solucao de sis-
temas nao lineares. Neste método fazemos a atualizacao de duas colunas por
iteragao da aproximacao da inversa da Jacobiana de maneira a satisfazer (quando
possivel) as duas tltimas equagoes secantes. Chamamos este método de ITCUM.
Propomos uma implementacao correta do ponto de vista da algebra linear e da
estabilidade numérica; fazemos a anédlise tedrica do método (convergéncia local)
e apresentamos testes numéricos, onde comparamos o desempenho do ITCUM
com o de outros métodos quase-Newton, com énfase maior em ICUM (método
de atualizagdo de uma coluna da Jacobiana inversa) [13].

*Departamento de Matemdtica Aplicada, IMECC-UNICAMP, Universidade de Campinas,
CP 6065, 13081-970 Campinas, SP, Brasil (vlopes@ime.unicamp.br).

tDepartamento de Matematica Aplicada, IMECC-UNICAMP, Universidade de Campinas,
CP 6065, 13081-970 Campinas, SP, Brasil (luziane@ime.unicamp.br). Essa autora é financiada
pela FAPESP (processo 00/00375-4).

!Departamento de Matematicas, Universidad del Cauca, Popayin (Cauca), Colombia
(rosana@ime.unicamp.br).

Abstract

In this work it is introduced a new quasi-Newton method for solving
large-scale nonlinear systems of equations. In this method two columns of
the approximation of the inverse Jacobian are updated, in such a way that
the two last secant equations are satisfied (when it is possible) at every
iteration. The new method is called the Inverse Two-Columns Updating
Method (ITCUM). Moreover, it is proposed a right implementation from
the point of view of linear algebra and numerical stability. It is presented
a local convergence analysis and several numerical tests an a comparison
between the performance of this new quasi-Newton method with other
quasi-Newton methods, in particular the ICUM (Inverse Column Updating
Method) [13].

Key words: Quasi-Newton methods, nonlinear systems, inverse two columns-
updating method.

1 Introduction

To solve nonlinear systems of equations is a necessary task in the most applied
areas, such as Physics, Engineering, Chemistry and Industry. This problem con-
sists on: given a nonlinear function F' : IR™ — IR", continuously differentiable,
find a vector z € IR™ such that

F(z) =0. (1)

All practical algorithms for solving (1) are iterative. Among them we have New-
ton method and quasi-Newton methods.

Given an initial approximation zy € IR", Newton’s method generate a sequence
{z} of approximations of a solution to (1) by

Tep1 =z — J(2) T F (), (2)

where, J(z) is the Jacobian matrix of F' at x;. The Newton iteration can be
costly, since partial derivatives must be computed and the linear system (2)
must be solved at every iteration. This fact motivated the development of quasi-
Newton methods, which are defined as the generalization of (2) given by

Thyr = o — By F (a), (3)
where, the matrix By is an approximation of J(zy).

The name “quasi-Newton” was used after 1965 to describe also methods of the
form (3) such that the equation below is satisfied:

Biyisk = yr = F(xp11) — F(xg). (4)

Following [4], most authors call quasi-Newton all the methods of the form (3),
whereas the class of methods that satisfy (4) are called “secant methods”. Ac-
cordingly, (4) is called “secant equation”.

Among the secant methods, we have Broyden’s method [1], the Column Updating
Method (CUM) [11] and the Inverse Column Update Method (ICUM) [13], [8].

In Broyden’s method and in CUM, the updating of the By matrix, is made,
respectively, by

(yk - Bksk)sf (5)
T)

(y* — Byst)e;, T
e;, sk

By = By +

By = Bp+

: (6)
where, |e] si| = ||sk/lc-

In the ICUM, the matrix Hj, an approximation of the inverse Jacobian matrix
at zy, is updated by

(sk — Hyyr)e],

T
€, Yk

Hyp = Hy + : (7)

where, |e] yi| = [|yk/]oo-

In a recent numerical work, Luksan e Vlcek [9], conclude that ICUM is the most
efficient quasi-Newton method in the solution of large-scale nonlinear systems.
In other works, [12], it has been asked about the importance of the “ previous
secant equation” with the propose to determine a relative efficiency of different
quasi-Newton methods.

The efficiency of ICUM and the aspects mentioned above induced us to intro-
duce another quasi-Newton method similar to ICUM, where we use two columns
instead of just one, to update the iteration matrix. In this method, Hj will be
equal to Hy,q except in two columns, that will be updated in order to satisfy the
last two secant equations.

The definition of this method involves diverse situations. It must be observed that
the method is not always well defined, because it is possible that the two secant
equations may be incompatible. Moreover, it is possible, even being compatible,
that the compatibility is so slight that the implementation of the method can
be ill-conditioned. For this reason it is necessary a careful analysis of the linear
algebra that must be used for its implementation, when it is possible.

Other aspect that is necessary to study is related to the theorical properties of
the new method. This is one of the intermediate methods between ICUM and a
sequential secant method [10]. These last methods have properties well known,
but it is not the case of the intermediate methods.

For large-scale problems, it is clear that the ICUM is more efficient than the
sequential secant method, which indeed can not be efficiently implemented for
this type of problems.

In this work, we introduce a method that is very closely related to ICUM and
which we call the Inverse Two-Columns Updating Method (ITCUM). As we said
before, while in ICUM one column of the inverse Jacobian approximation is
updated, in order to satisfy in each iteration, the secant equation, in our new
method, introduced here, we update two columns of the inverse Jacobian ap-
proximation, in such a way that the two last secant equations are satisfied at
every iteration.

Moreover, we propose a right implementation in the point of view of Linear
Algebra and numerical stability. We present the local convergence analysis and
several numerical tests where we compare the performance of the new quasi-
Newton method with others quasi-Newton methods, particularly, ICUM (Inverse
Column updating Method) [13].

The mathematical description of ITCUM is given in Section 2 of this paper. In
Section 3 we prove local convergence under standard assumptions. In Section 4
we discuss the computer implementation and report our numerical experiments.
Finally, in Section 5 we state some conclusions and we discuss some lines for
future research.

2 Description of the new quasi-Newton method

The Inverse Two-Columns Updating Method (ITCUM) for solving the problem
(1) is defined by

oM = oF — HF(2), (8)

where the inverse Jacobian approximation Hj, is updated in such a way that
Hy ., differs from the previous matrix in two columns and the two last secant
equations are satisfied at every iteration, that is:

k

9
Hppy*™' = 57, ®)

Hk+1yk = S

where s% = 2% — 2% e y* = F(aF+) — F(2F).
Therefore, the matrix Hi,; must be a correction of rank two to Hj, that is,

kT o o kT
Hypr = Hy + ug €, + ug,e;,, (10)
where, e;, and e;, belong to the canonical basis of IR" and the n-vectors u} and
uf must be chosen in such a way that the equations (9) are satisfied. In order to
simplify the notation, we suppressed the upper index £ in 4; and is.

Observe that equations (9) may be incompatible an therefore the method could
be not defined. In order to do an analysis of ITCUM and to determine conditions
for a good definition of it, we considered the equations in (9) with Hy . defined
by (10),

21 el 12 712

kT k AT\, k=1 _ k=1
(Hk+uilei1 + ui2ei2)y = sk

(11)

{(Hk+u’?eT + ubel)yt = sk

or, in an equivalent way,

ub (el'y*) + ub(ely®) = & — Hyyt 12)
uf (e y*=1) + wl(elfy*) = F71— HyyFl

The equations (12) represent, for each k, a linear system of 2n equations and 2n
unknowns: the components of the vectors u¥ and uf .

Using the notation

S w0 (13)
el yh-l = 4 ely=t = ok,

system (12) in matricial form is given by

Ll G | uf sk — Hyy¥ ok
Auf = R [= .- | =0k (14)
,Yk I: 6FT Ug sh=1 — Hkykfl UéC

where, A € IR?*?" | is the n x n identity matrix, u* € IR?*" and v* € IR*".
Therefore, the existence of the vectors uf e u¥ satisfying (9) will be determined
by the nonsingularity of the matrix A € IR>"*?", Tt is easy to see that the deter-
minant of A is given by

det(A) = [det (i: ?,I:)] = o}.

This shows an interesting fact: analyzing the nonsingularity of the 2n x 2n matrix
A is equivalent to analyze the nonsingularity of a 2 x 2 matrix.

If we assume that o = o¥6% — *% £ 0, then the matrix A will be nonsingular.
In order to find an general expression for the vector u* in (14), its necessary to
solve a linear system, what may be done using, for example LU decomposition
which it is the strategy that we use as follows.

Case 1: [o*| > |4*| > 0:

I ¢} ok I gk 1
A:LU — . o .. .k.(;k;....l;.}ﬁ.
lkI I O @ k67 I
(07 (07

Case 2: |o*| < [7*|:

I . 0 Ll N ok 1
o - Ceee Cee e e

k kgk _ o kgk
S A 0 T oy
0% v
O : I ofT 1 BRI

_ e o 2

I : O LN BEELY |

Using this LU decomposition, we solve the system (14), that this,
LUu* = oF,
thus the expression for the vector u* is given by

k,k k,k
0% vy — B3

ok u;cl
B = ..] (15)
ot — o |\
ok
substituting (15) in (10), we obtain
skok — gk ok — Ak
Hy1 = Hy + (1762 e, + QTM e, . (16)

As we observed previously, the matrix Hy; differ from the matrix Hj only in two
columns (i and iy). From the equality (16), it is possible to write these columns
in the following way

5kvk o ﬁkvk
k+1 k 1 2
hi™ = hi + — %
akvk ,kak (17)
k+1 k 2 1
h’iQ — hi2 + T

Substituting the expressions of the vectors v¥ and v} given in (12) in (17) we
obtain:

k+1 k o BE k—1
h2.1+ = h, —|——(S —Hky) O_k(Si_Hkyi)a
18
B+l hk+a_k(5k1_H kl)_lk(sk_H k) ()
i T M T kY oF kY) -
;From (18), for each j = 1,---,n, the jth-component of the columns to be
modified will be updated as follows.
51@ Bk
k+1
haz T gk (33 - Z h]pyp) ok Z hypyp
pFi1 pFi1
(19)

k+1 ¥ E—1 v*
hmz = % j Zhypp e Sj _Zhypyp :

o pFiz pFiz

It is interesting to observe that, computationally, it is more convenient to write
the columns i; e iy of the new matrix in this way:

hk+1:6_k(Zhy) Bk(Zhy)
jit k| S in¥p P ipJp ’

o

pFi, i PFi1, iz
k k
(6
L e .
hyw T gk (j Z hyp Yp) (Z h]pyp>’
pFEil1, 02 PFi1,i2

which could be easily obtained from (19).

As it was mentioned previously, the choice of the index i; and iy of the columns
to be modified is restricted to the assumption:

o = (el y")(ely") — (ely") (el y") £ 0. (20)

Notice that, in the case that 3* becomes a multiple of y*~!, o* will be zero. This

makes it impossible to choose the columns that must be changed.

We adopted in our numerical tests the following choice for the index i; and s :

il = lly*lloo o e[

In the case that o* becomes zero, we changed the index i, in such a way that

k=1

|(ay V)i | = lofy " — Py .

3 The convergence

;From now on, we denoted by ||. || the 2-norm vectors and matrices. Assume that
F:QCc R"— IR, FeC'(Q), Qan opens and convex set, z, € Q, F(z,) =0
and

17(x) = J(z")|| < Lllz = 2™[]", L, p>0 (21)
for all x € Q. A inequality (21) implies that for all u,v € Q
[1F(u) = F(v) = J(2.)(v —w)|| < Lljv — ullo(u, v)", (22)
where o(u,v) = max{||u — z.[, [[v — z.||} (see [1]).

Assume that J(z,) is nonsingular and define M = ||.J(x,)!||. By (22), we deduce
that for all u,v € €,

lv—u—J(@) " [F(v) = Fu)]l| < ML|lv — ullo(u,v)". (23)

The local convergence result is stated in the following theorem. It is very sim-
ilar to the Theorem 3.1 of [16] but, since its proof involves some interesting
adaptations we will present it here.

Theorem 2.1 Let {z*} e {H,} the sequences generated by the ITCUM and
assume that F(z*) # 0 and o* # 0, for all k = 0,1,...; let r € (0, 1). There exist
e = &, 0 = n, such that, if ||2° — z*|| < & and ||Hy — J(xz*)7'|| < n, whenever

10

k =1 (mod m) or k = 0, then the sequences {x*} and {Hy} are well defined,

{2*} converges to x* and for all k = 0,1, -

Iz = 2" < rfla® — 27,

Proof:
Define ¢; = 2n2M?L, ¢, = n®?. Given ¢, n > 0, define b;(¢, 1), i =0, 1, -+
1 by

bo(e,m) = 1

b1 (8, T]) = 6260(5, T]) + 618p

bi(e,n) = Recabi1(e,n)+ Rey &P, i=2,-,m—1,

D) k—1 o k—2 -

where B = 2¥" llolly™ll k=23

||
Clearly, we have, for all ¢, n > 0,

0<bo(e,n) <bi(e,m) < -+ <bm_i1(e,n) and lim0 bi(g,m) =0

8,77*}
fori=0,1,---, m—1.
By (25), we can choose ¢ = ¢, > 0 and n = 1, > 0 such that ¢ < &; and
r
b; (e, Le? < —|
(e, n) + Le A
fori=0,1, -+, m—1, where M; = max{||.J(z*)||,2M}.

(25)

(26)

Assume that ||2° — 2*|| < ¢ and ||H}, — J(2*)7'|| < n whenever &k = 1 (modm)
or k = 0. We will prove by induction on k that if £ = ¢ (modm) then Hj is

nonsingular,
[Hy = J(2*) M < by(e, m)
[Hell < 2M,
|25 =2 < rlla® -2,

11

forallg=0,1,---,m—1.

For k£ = 0, by hypothesis,

[Hy = J(z") M| < 0= bo(e, m), (30)
thus, by (26) and (30),
[Holl < [[7(2") Ml + 1 Ho — J(=*) |
< @)+
o 1
< [[J(=") 1||+m
< 2l|J(")7| = 2M.
Thus,
[Hol| < 2M. (31)
By (22) and (31),
la' —=a*|| = |la® — 2" — HoF(z")

= |2 — 2" — Hy[F(2°) = F(2*) — J(2*)(2° — z")]
+ HyJ(z*)(2° — 2%)||

IN

[= HoJ (+")](2° — a*)|| + 2M L|ja® — 2*[|"*!
< (17" = Holl |7 (@) + 2ML[|2" — 2*[]?) [}a® — 27,

by the definition of My, the hypothesis ||2° — z*|| < ¢, ||[Hy — J(z*)7!|| <7, and
(26), we have:

1

[

IN

M, (||J(«’13*)71 — Holl + L[|z — $*||p) 2% — z*|
< M, (n+ L&) ||!.L‘0 — 2|
= M (bo(e, n) + LeP) [|l2° — 2*|| < 7 |l2® —2*].

Thus, [|z! —z*|| < 7|2 — 2*].

12

Consider now k£ > 0, k = ¢ (mod m). If ¢ = 1, the proofs of (27)-(29) are similar
to the case £ = 0. Assume ¢ # 1. let us assume now that ¢ > 0,k > 2 and
= ¢ (mod m).

By the hypothesis of induction, Hy_; is nonsingular. Let ¢; and 75, the indexes
of the columns to be modified, such that o*~! # 0. Each component j, j =

1, 2, ---, n of the column ¢; is given by:
k 5k ' k=1, k—1 Bk ' k=1, k—2
hjn T gk Z hyp Yp ok Z hyp Yp) (32)
pFi pFi1

so, H;, is well defined.

k b1 Bk 1
(Z hS Yy~) and (Z W oYy~)

pFir
respectively, in (32), we have:

5k—1
k _ k—1 k—1, k—1
h] (2 k—1 (Z h’]pyp + Z hjpyp Z hJP yp)

g pFi1 pFi1 pFi1

Bk_l
- = D W Do My = k] (33)

pFit pFil pFi1

Therefore, for all j =1, 2, ---,n,
5k 1

1055, = hjs]

Ji1 Ji1

Z hﬂpyp 2| +
(34)

> hs, = B |y

pFi1

Zhﬂpyp 1| +

‘Bkl

5191 k—1
S Wiy B |

pFi1

Defining J(z*)"" = H* and using (23), the inequalities [y}~ '] < [ly* || and
s 2 < [ly"2||s in (34), we obtain:

5k 1
ogk—1

k—1
BE | s

jin M ¥ = () "y A+ || s =) Ty

13

6k_1 k—1 h* o hk 1 ﬂk ! k—2 h* o hk 1
+ ==y ||ooZ| [+ o= Iy ||ooZ|
g p=1 p=1
5k—1 k—1
< || ML|Is"e? + ‘B ML||s*~ 2||5”+R2|h* — bt
o =1
! 2 k=112P 4 Bk ' 2 k=2 -p
< | 2MELly e+ 2M°L{|y""|le
+ Rnl|lJ(z*)™" — Hy_y||. (35)

By Lemma 3.1 we have that ||s* 7| < 2M ||y*]| and ||s*72|] < 2M||y*2|.
We used this in the two previous inequalities.

Using [6°7| < [ly*? < Vi lly* e and |B*'] < [ly" '] < VR Iy oo,
in (35) we have:

h — b < ||yk71||00 k—2 ||yk72||00 k—1 2M2L p
| VES]zl| — |0-k:—1| ||y ||OO + |0-k:—1| ||y ||OO \/ﬁ €
+ R ||Hgy = J (=)',
= RvVn2M?LeP + Rn||Hy_y — J(x*)7Y]. (36)

In similar form, it is easy to proof an analogous result to (36) for the index is.
That is,

Bk, — 1| < RVn2MPLe? + Rn||Hey — J(*)7Y. (37)

Ji2 J iz

Also, we have that for the components of the columns that were not modified a
inequality (36)is satisfied. i.e, for all s # i; and s # i,

k * _ k—1 *
|hjs_h’js| - |h’]s _h]s|
< | Hg—r — J(=)7
< RVn2M?Le” + Rn||Hy 1 — J(x*) Y. (38)

14

Observe that (38) is true because R > 1 and R\/n2M?LeP > 0. Moreover, by
(36), (37) and(38), we conclude that

1Hy = T (") oo < nR (Vn2M*Le? +n | Hyoy — J(z*) 7). (39)
Thus, by (39) and (24), we have:
[H = J@)7 < Vo l[He = J(@) 7w

< R(n*2M°Le” + 02 ||Hy s — J(z*)7]))
< (n 2M?Le? + n° b, (e, 77))
= R(caby1(g,m) +c1EP)
= by(e, m). (40)
Then, |[Hy — J(z*)" '] < by(g, n). Thus, by (26),
#e = I < 5 < g

therefore, by Banach’s Lemma [5], Hy is nonsingular and using the hypothesis,
of=1 £ 0, we conclude that for all k, the sequences {x;} and {H;} are well
defined.

Moreover
|Hell < @)+ [[H — J ()|
T 1
< @)+ — < [T +
M, | (z*)]]
< 2 J(@)7] = 2M. (41)

So, ||Hg|| < 2 M and finally, by (22), (26) and (41),

ot = [t -t - HyF ()|

= |l* — o — B [F") = F@') = T(a)(@* —)
— Hid (@) (k=)|
[T = Hl (@) (2 =)|+ 2 M L ¥ = 2771

Ik

IN

15

< [||J(~’U*)|| 1T (z*) ™" — Hgl| + 2 M L ||2* — $*||p] |2 — z*|
< M (by(z,) + LeP) ||z* — 2]
< r||:z:k —z*|.

Thus, ||25T! — 2*|| < r||2¥ — 2*||, which completes the proof of the theorem. §

4 Computer implementation of ITCUM and nu-
merical experiments

In this section, we present some comparative implementations of ITCUM. For
this it was used some test problems from [16], [8], [3].

;From the equation (16), letting v} = s* — H,y? and v} = s ' — Hyy?" ', we
obtain:

k-1 0,0 Ap, P k—1 PP _ ADyyP
=+ 3 (P T ey S (TR e)

P P
p=0 g p=0 g

or equivalently

k-1 k-1
Hy=Ho+ Y wi(ef)"+ Y wh(el,)", (43)
p=0 p=0
where
wh = 75%11) i and wh = 7@%3 — fypvll"
obp oPp

The implementation of ITCUM is based on the formula (43). Thus, in each
iteration k, the calculus of Hj implies in the storage of two vectors (wfew))
and two additional indexes (i; andiy). For this reason, the number of consecutive

iterations of the method is limited by the availability of memory to the computer.

Considering that there is sufficient space to store m pairs of vectors, then it is
possible to do one “Newton” iteration! and m consecutive ITCUM iterations.

141

'Tn the restarts, we did not use the “ exact” Jacobian.

16

Therefore, if p =0 (modm), 8 € {1,...,m — 1}, we obtain:

Then, the parameter m determines the number of possibles iterations of type
ITCUM between two restarts. We used m = 30 when we worked with the large-
scale problems (for the other problems it was not necessary to do restarts).

The problems tested in this work were organized in two classes: short-scale and

large-scale problems according to the number of variables that they have. We
present them as follows.

Short-scale problems :

1: Rosenbrock (n=2). [3]. 7o = (—1.2, 1)T.

2: Freudenstein-Roth (n=2). [3]. z, = (0.5, —2)7.

3: Powell badly scaled function (n=2). [3]. zo = (0.5, —2)7.

4: Powell singular function (n=4). [3]. z, = (0.5, —2)7.

5: Extended Rosenbrock (n=50). [3]. 2o = (—1.2, 1,-1.2, 1,...)T.
6: Trigonometric function (n=2). [3]. zo = (1/n, ..., 1/n)".

7: Discrete boundary value function (n=2). Function 28 in [3].
Tog = (fj), where fj = tj(t]‘ —].), h = 1/(n+].) e t]‘ = jh

8: Broyden banded function (n=2). [3]. 7 = (-1, ..., —1)T.
9: Linear System (n=50). [8]. 7o = (1, —1,1, —1,...) .
10: Chandrasekhar H-equation (n=50). [8]. =5 = (0, ..., 0)”.

17

Large-scale problems:

Problems 11 to 15: Each test is generated as a finite-difference discretization
of a Poisson equation in the square [0, 1] x [0, 1]. The number of divisions of
the interval is denoted by N (32 and 50). In all cases, the starting point is
zo = (=1, =1, ..., =1)T and the number of variables is n = (N — 1),

The Jacobian of each one of the large-scale problems is sparse with fivediagonal
structure; thus it can be considered “well represented” by its the tridiagonal part.
Motivated by this fact, if £ = 0 (mod m), we chose:

Hy = [P-(J (=), (45)

where, P, is the orthogonal projection operator on the subspace of tridiagonal
matrices. Thus, the algorithms are restarted using m = 30.

For the short-scale problems, when £ = 0,1, we chose:
Hy, = [Pp(J(«"))] 7, (46)

where, Pp is the orthogonal projection operator on the subspace of diagonal
matrices. If one of the elements of this diagonal Jacobian matrix is null, we
replaced it by 1.

In according to Lema 2.1, near an isolated solution it is not possible that 3* = 0.
This fact may occur far from 2* which makes ¢*~! = 0, independently of the
choice of the index. In the numerical tests, this situation is detected verifying
the inequality:

Iyl < 107 1F)] (47)
In the case (47) is satisfied, we defined Hy 4 = Hy.

In each iteration k, the choice of indexes i; and i of the columns to be modified
was done according to the description in Section 2, with a small variation to
avoid instabilities problems in A . For this, we defined a parameter for changing
the value of sigma (tol,). Thus, the index i, will be altered when:

0| < tol,. (48)

18

In our numerical tests we used tol, = 10~* for the problems 11, 12, 13 and
tol, = 107° for the other problems.

Based on [16], we used the following convergence criteria:

| F(2%)]| oo < 10751 F (2°)]| short-scale
| F(2%)]| oo < 1073 F (2°)]| large-scale.

We also stopped the execution of the numerical tests when the number of iter-
ations exceeded 200 or when ||F(2%)||, > 10%|F(2°)]|s. In the first case, we
say that ITCUM did not converge (it is represented, in the tables, by the term
NC) and in the second one, we say that the method diverged (which it will be
represented in the tables with the term DIV).

We compare the performance of ITCUM with the Newton method and with
other quasi-Newton methods: Broyden’s method [1], CUM [11], ICUM [16]. The
implementation of these methods were done as in [16].

The numerical tests were run in an AMD Athlon - 800 MHZ computer, in the
state University of Campinas using the MATLAB 6.0 with single precision.

The numerical results are presented in Tables 1 to 3. FEach one of them has
six columns indicating, respectively, the problem, the number of iterations used
for Newton, Broyden, CUM, ICUM and ITCUM. For the large scale problems
aditional to the number of iterations used for each method (KON), we present
the computer CPU time in seconds (TIME). In this case, the results of each test
is represented by a pair (KON; TIME).

19

Prob | Newton | Broyden | CUM | ICUM | ITCUM
1 2 12 13 8 5
2 41 Div Div 19 NC
3 11 33 40 83 22
4 4 60 67 Div 56
5 2 12 13 8 5
6 9 8 8 9 8
7 2 5 5 5 4
8 4 6 5 5 6
9 1 4 5 4 4
Tablel: Short-scale problems.
c Newton | Broyden | CUM | ICUM | ITCUM
0.1 3 3 4 4 3
0.5 3 6 6 6 5
0.9 5 10 10 9 7
0.99 6 12 33 12 11
0.999 7 14 39 13 13
1-10* 8 17 32 15 13
1-107° 9 24 38 16 15
1-1076 10 27 43 17 16
1-1077 10 31 39 17 16
1-10"8 10 28 33 17 16
1 10 33 33 17 16

20

Table 2: Chandrasekhar H-equation.

Pr | N | Newton Broyden CUM ICUM ITCUM
11 | 32| (2; 0.65) (62; 5.55) (59; 4.89) (54; 4.67) (44; 4.55)
50 | (2;2.97) | (112; 38.83) | (105; 33.89) | (67; 22.30) | (82; 29.33)
12 32| (5 1.54) | (52;4.39) | (56;5.11) | (47;4.45) | (44; 4.61)
50 | (4; 5.76) (99; 35.08) | (86; 27.74) | (65; 21.59) | (66; 24.50)
13 | 32| (9; 2.70) (65; 5.94) (64; 5.93) (55; 5.05) (56; 5.61)
50 | (9; 12.58) | (149; 52.68) | (75; 24.88) | (64; 21.42) | (62; 23.81)
14 | 32| (2;0.71) (68; 5.99) (95; 7.96) (62; 5.54) (51; 5.06)
50 | (2; 3.08) | (155; 59.65) | (176; 55.42) | (92; 29.55) | (101; 35.70)
15 | 32| (1; 0.39) (62; 4.72) (82; 5.82) (61; 5.00) (57; 5.05)
50 | (1;1.59) | (132; 43.17) | (141; 41.36) | (115; 34.38) | (111; 36.52)

Table 3: Large-scale Problems.

Observe that in several cases, the performance of ITCUM is worse that of the
ICUM, which is not strange because, in nonlinear problems, it is practically
impossible to find the best method (in performance) for all the problems.

For determining the new columns, while ICUM has to manipulate with only one
equation, ITCUM needs to solve a linear system, where there exists the possibility
of null determinant of the matrix of the system.

When the dimension of the problems increases, the performance of ITCUM be-
comes, in mean, inferior to that of ICUM (Table 3); This fact occurs because
for the implementation of this method, the choice of indexes becomes more com-
plicated because of the size of the vectors.

Other numerical tests, different from that mentioned previously, were done. In
these tests, we worked with several versions of ITCUM, generated from the dif-

21

ferent choices for the index 7; e i3 and from the various criteria used for to alter
them (when it is necessary) in the implementation. Among the versions that we
used, the criterion of choice described in Section 3 was of the best performance

22

References

1]

8]

[10]

[11]

Broyden, C. G.; Dennis, J. E. Jr; Moré, J. J. (1973). On the local and
superlinear convergence of quasi-Newton methods, J. Inst. Math. Appl. 12,
pp 223-245.

Cunha, M. C. C. (2000). Métodos Numéricos, Editora da UNICAMP, 2.ed.,
Campinas, SP.

Dennis, J. E. Jr; Moré, J. J.(1997). Quase-Newton methods, motivation and
theory, SIAM Review 19, pp 46-89.

Dennis, J. E. Jr; Schnabel, R. B.(1983). Numerical methods for uncon-
strained optimization and nonlinear equations, Prentice Hall, Englewood

Cliffs, N.J.

Golub, G. H.; Van Loan, Ch. F.(1995). Matriz Computations, The Johns
Hopkins University Press, 3nd. edition, Baltimore and London.

Gomes-Ruggiero, M. A. (1990). Método quase-Newton para resolugdo de sis-
temas nao lineares esparsos e de grande porte, Tese de Doutorado, FEE-
Unicamp, Campinas, Brasil.

Gomes-Ruggiero, M. A.; Martinez, J. M.; Moretti, A. C.(1992). Comparing
algorithms for solving sparse nonlinear systems of equations, SIAM J. Sci.
Stat. Comput. 13, pp 459-483.

Lopes, V. L. R.; Martinez, J. M.(1995). Convergence properties of the inverse
column-updating method, Optimization Methods and Software 6, pp 127-
144.

Luksan,L.; Vléek, J.(1998). Computational experience with globally con-
vergent descent methods for large sparse systems of nonlinear equations,
Optimization Methods and Software 8, pp 185-199.

Martinez, J. M.(1979). Three new algorithms based on the sequential secant
method, BIT 19, pp 236-243.

Martinez, J. M.(1984). A quasi-Newton method with modification of one
column per iteration, Computing 33, pp 353-362.

23

[12]

[13]

[14]

[15]

[16]

Martinez, J. M.; Ochi, L. S.(1982). Sobre dois métodos de Broyden,
Matemdtica Aplicada e Computacional 1, pp 135-141.

Martinez, J. M.; Zambaldi, M. C.(1992). An inverse column-updating
method for solving large-scale nonlinear systems of equations, Optimization
Methods and Software 1, pp 129-140.

Moré, J. J.; Garbow, B. S.; Hillstrom, K. E. (1981). Testing unconstrained
optimization software, ACM Transactions on Mathematical Software 7, pp
17-41.

Ortega, J. M.; Rheinboldt, W. G. (1970). [lterative solution of nonlinear
equations in several variables, Academic Press, NY.

Zambaldi, M. C. (1993). Novos resultados sobre formulas secantes e apli-
cacoes, Tese de Doutorado, Departamento de Matematica Aplicada, UNI-
CAMP, Campinas, Brasil.

24

