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Resumo

Neste trabalho propomos um novo m�etodo quase-Newton para solu�
~ao de sis-

temas n~ao lineares. Neste m�etodo fazemos a atualiza�
~ao de duas 
olunas por

itera�
~ao da aproxima�
~ao da inversa da Ja
obiana de maneira a satisfazer (quando

poss��vel) as duas �ultimas equa�
~oes se
antes. Chamamos este m�etodo de ITCUM.

Propomos uma implementa�
~ao 
orreta do ponto de vista da �algebra linear e da

estabilidade num�eri
a; fazemos a an�alise te�ori
a do m�etodo (
onvergên
ia lo
al)

e apresentamos testes num�eri
os, onde 
omparamos o desempenho do ITCUM


om o de outros m�etodos quase-Newton, 
om ênfase maior em ICUM (m�etodo

de atualiza�
~ao de uma 
oluna da Ja
obiana inversa) [13℄.

�

Departamento de Matem�ati
a Apli
ada, IMECC-UNICAMP, Universidade de Campinas,

CP 6065, 13081-970 Campinas, SP, Brasil (vlopes�ime.uni
amp.br).

y

Departamento de Matem�ati
a Apli
ada, IMECC-UNICAMP, Universidade de Campinas,

CP 6065, 13081-970 Campinas, SP, Brasil (luziane�ime.uni
amp.br). Essa autora �e �nan
iada

pela FAPESP (pro
esso 00/00375-4).

z

Departamento de Matem�ati
as, Universidad del Cau
a, Popay�an (Cau
a), Colombia

(rosana�ime.uni
amp.br).

1



Abstra
t

In this work it is introdu
ed a new quasi-Newton method for solving

large-s
ale nonlinear systems of equations. In this method two 
olumns of

the approximation of the inverse Ja
obian are updated, in su
h a way that

the two last se
ant equations are satis�ed (when it is possible) at every

iteration. The new method is 
alled the Inverse Two-Columns Updating

Method (ITCUM). Moreover, it is proposed a right implementation from

the point of view of linear algebra and numeri
al stability. It is presented

a lo
al 
onvergen
e analysis and several numeri
al tests an a 
omparison

between the performan
e of this new quasi-Newton method with other

quasi-Newton methods, in parti
ular the ICUM (Inverse Column Updating

Method) [13℄.

Key words: Quasi-Newton methods, nonlinear systems, inverse two 
olumns-

updating method.
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1 Introdu
tion

To solve nonlinear systems of equations is a ne
essary task in the most applied

areas, su
h as Physi
s, Engineering, Chemistry and Industry. This problem 
on-

sists on: given a nonlinear fun
tion F : IR

n

! IR

n

; 
ontinuously di�erentiable,

�nd a ve
tor x 2 IR

n

su
h that

F (x) = 0: (1)

All pra
ti
al algorithms for solving (1) are iterative. Among them we have New-

ton method and quasi-Newton methods.

Given an initial approximation x

0

2 IR

n

; Newton's method generate a sequen
e

fx

k

g of approximations of a solution to (1) by

x

k+1

= x

k

� J(x

k

)

�1

F (x

k

); (2)

where, J(x

k

) is the Ja
obian matrix of F at x

k

: The Newton iteration 
an be


ostly, sin
e partial derivatives must be 
omputed and the linear system (2)

must be solved at every iteration. This fa
t motivated the development of quasi-

Newton methods, whi
h are de�ned as the generalization of (2) given by

x

k+1

= x

k

� B

�1

k

F (x

k

); (3)

where, the matrix B

k

is an approximation of J(x

k

):

The name \quasi-Newton" was used after 1965 to des
ribe also methods of the

form (3) su
h that the equation below is satis�ed:

B

k+1

s

k

= y

k

= F (x

k+1

)� F (x

k

): (4)

Following [4℄, most authors 
all quasi-Newton all the methods of the form (3),

whereas the 
lass of methods that satisfy (4) are 
alled \se
ant methods". A
-


ordingly, (4) is 
alled \se
ant equation".

Among the se
ant methods, we have Broyden's method [1℄, the Column Updating

Method (CUM ) [11℄ and the Inverse Column Update Method (ICUM) [13℄, [8℄.
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In Broyden's method and in CUM, the updating of the B

k

matrix, is made,

respe
tively, by

B

k+1

= B

k

+

(y

k

� B

k

s

k

)s

T

k

s

T

k

s

k

; (5)

B

k+1

= B

k

+

(y

k

� B

k

s

k

)e

i

k

T

e

i

k

T

s

k

; (6)

where, je

T

j

k

s

k

j = ks

k

k

1

:

In the ICUM, the matrix H

k

; an approximation of the inverse Ja
obian matrix

at x

k

; is updated by

H

k+1

= H

k

+

(s

k

�H

k

y

k

)e

T

j

k

e

T

j

k

y

k

; (7)

where, je

T

j

k

y

k

j = ky

k

k

1

:

In a re
ent numeri
al work, Luk�san e Vl�
ek [9℄, 
on
lude that ICUM is the most

eÆ
ient quasi-Newton method in the solution of large-s
ale nonlinear systems.

In other works, [12℄, it has been asked about the importan
e of the \ previous

se
ant equation" with the propose to determine a relative eÆ
ien
y of di�erent

quasi-Newton methods.

The eÆ
ien
y of ICUM and the aspe
ts mentioned above indu
ed us to intro-

du
e another quasi-Newton method similar to ICUM, where we use two 
olumns

instead of just one, to update the iteration matrix. In this method, H

k

will be

equal to H

k+1

ex
ept in two 
olumns, that will be updated in order to satisfy the

last two se
ant equations.

The de�nition of this method involves diverse situations. It must be observed that

the method is not always well de�ned, be
ause it is possible that the two se
ant

equations may be in
ompatible. Moreover, it is possible, even being 
ompatible,

that the 
ompatibility is so slight that the implementation of the method 
an

be ill-
onditioned. For this reason it is ne
essary a 
areful analysis of the linear

algebra that must be used for its implementation, when it is possible.
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Other aspe
t that is ne
essary to study is related to the theori
al properties of

the new method. This is one of the intermediate methods between ICUM and a

sequential se
ant method [10℄. These last methods have properties well known,

but it is not the 
ase of the intermediate methods.

For large-s
ale problems, it is 
lear that the ICUM is more eÆ
ient than the

sequential se
ant method, whi
h indeed 
an not be eÆ
iently implemented for

this type of problems.

In this work, we introdu
e a method that is very 
losely related to ICUM and

whi
h we 
all the Inverse Two-Columns Updating Method (ITCUM). As we said

before, while in ICUM one 
olumn of the inverse Ja
obian approximation is

updated, in order to satisfy in ea
h iteration, the se
ant equation, in our new

method, introdu
ed here, we update two 
olumns of the inverse Ja
obian ap-

proximation, in su
h a way that the two last se
ant equations are satis�ed at

every iteration.

Moreover, we propose a right implementation in the point of view of Linear

Algebra and numeri
al stability. We present the lo
al 
onvergen
e analysis and

several numeri
al tests where we 
ompare the performan
e of the new quasi-

Newton method with others quasi-Newton methods, parti
ularly, ICUM (Inverse

Column updating Method) [13℄.

The mathemati
al des
ription of ITCUM is given in Se
tion 2 of this paper. In

Se
tion 3 we prove lo
al 
onvergen
e under standard assumptions. In Se
tion 4

we dis
uss the 
omputer implementation and report our numeri
al experiments.

Finally, in Se
tion 5 we state some 
on
lusions and we dis
uss some lines for

future resear
h.

2 Des
ription of the new quasi-Newton method

The Inverse Two-Columns Updating Method (ITCUM) for solving the problem

(1) is de�ned by

x

k+1

= x

k

�H

k

F (x

k

); (8)
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where the inverse Ja
obian approximation H

k

; is updated in su
h a way that

H

k+1

di�ers from the previous matrix in two 
olumns and the two last se
ant

equations are satis�ed at every iteration, that is:

H

k+1

y

k

= s

k

H

k+1

y

k�1

= s

k�1

;

(9)

where s

k

= x

k+1

� x

k

e y

k

= F (x

k+1

)� F (x

k

):

Therefore, the matrix H

k+1

must be a 
orre
tion of rank two to H

k

, that is,

H

k+1

= H

k

+ u

k

i

1

e

T

i

1

+ u

k

i

2

e

T

i

2

; (10)

where, e

i

1

and e

i

2

belong to the 
anoni
al basis of IR

n

and the n-ve
tors u

k

i

1

and

u

k

i

2

must be 
hosen in su
h a way that the equations (9) are satis�ed. In order to

simplify the notation, we suppressed the upper index k in i

1

and i

2

:

Observe that equations (9) may be in
ompatible an therefore the method 
ould

be not de�ned. In order to do an analysis of ITCUM and to determine 
onditions

for a good de�nition of it, we 
onsidered the equations in (9) with H

k+1

de�ned

by (10),

8

<

:

(H

k

+ u

k

i

1

e

T

i

1

+ u

k

i

2

e

T

i

2

)y

k

= s

k

(H

k

+ u

k

i

1

e

T

i

1

+ u

k

i

2

e

T

i

2

)y

k�1

= s

k�1

;

(11)

or, in an equivalent way,

8

<

:

u

k

i

1

(e

T

i

1

y

k

) + u

k

i

2

(e

T

i

2

y

k

) = s

k

�H

k

y

k

u

k

i

1

(e

T

i

1

y

k�1

) + u

k

i

2

(e

T

i

2

y

k�1

) = s

k�1

�H

k

y

k�1

:

(12)

The equations (12) represent, for ea
h k; a linear system of 2n equations and 2n

unknowns: the 
omponents of the ve
tors u

k

i

1

andu

k

i

2

:

Using the notation

e

T

i

1

y

k

= �

k

e

T

i

2

y

k

= �

k

;

e

T

i

1

y

k�1

= 


k

e

T

i

2

y

k�1

= Æ

k

;

(13)
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system (12) in matri
ial form is given by

Au

k

=

0

B

B

B

�

�

k

I

.

.

. �

k

I

� � � � � �




k

I

.

.

. Æ

k

I

1

C

C

C

A

0

B

�

u

k

i

1

� � �

u

k

i

2

1

C

A

=

0

B

�

s

k

�H

k

y

k

� � � � � � � � � � � �

s

k�1

�H

k

y

k�1

1

C

A

=

0

B

�

v

k

1

� � �

v

k

2

1

C

A

= v

k

; (14)

where, A 2 IR

2n�2n

, I is the n� n identity matrix, u

k

2 IR

2n

and v

k

2 IR

2n

.

Therefore, the existen
e of the ve
tors u

k

i

1

e u

k

i

2

satisfying (9) will be determined

by the nonsingularity of the matrix A 2 IR

2n�2n

: It is easy to see that the deter-

minant of A is given by

det(A) =

"

det

 

�

k

�

k




k

Æ

k

!#

n

= �

n

k

:

This shows an interesting fa
t: analyzing the nonsingularity of the 2n�2n matrix

A is equivalent to analyze the nonsingularity of a 2� 2 matrix.

If we assume that �

k

= �

k

Æ

k

� 


k

�

k

6= 0, then the matrix A will be nonsingular.

In order to �nd an general expression for the ve
tor u

k

in (14), its ne
essary to

solve a linear system, what may be done using, for example LU de
omposition

whi
h it is the strategy that we use as follows.

Case 1: j�

k

j � j


k

j > 0:

A = LU =

0

B

B

B

B

�

I

.

.

. O

� � � � � � � � �




k

�

k

I

.

.

. I

1

C

C

C

C

A

0

B

B

B

B

�

�

k

I

.

.

. �

k

I

� � � � � � � � � � � � � � � � � �

O

.

.

.

�

k

Æ

k

� �

k




k

�

k

I

1

C

C

C

C

A

:
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Case 2: j�

k

j < j


k

j:

LU =

0

B

B

B

B

�

I

.

.

. O

� � � � � � � � �

�

k




k

I

.

.

. I

1

C

C

C

C

A

0

B

B

B

B

�




k

I

.

.

. Æ

k

I

� � � � � � � � � � � �

O

.

.

.




k

�

k

� �

k

Æ

k




k

I

1

C

C

C

C

A

=

0

B

B

B

�

O

.

.

. I

� � � � � � � � �

I

.

.

. O

1

C

C

C

A

0

B

B

B

�

�

k

I

.

.

. �

k

I

� � � � � � � � �




k

I

.

.

. Æ

k

I

1

C

C

C

A

= PA:

Using this LU de
omposition, we solve the system (14), that this,

LUu

k

= v

k

;

thus the expression for the ve
tor u

k

is given by

u

k

=

0

B

B

B

B

B

�

Æ

k

v

k

1

� �

k

v

k

2

�

k

� � � � � � � � �

�

k

v

k

2

� 


k

v

k

1

�

k

1

C

C

C

C

C

A

=

0

B

�

u

k

i

1

� � �

u

k

i

2

1

C

A

: (15)

substituting (15) in (10), we obtain

H

k+1

= H

k

+

 

Æ

k

v

k

1

� �

k

v

k

2

�

k

!

e

T

i

1

+

 

�

k

v

k

2

� 


k

v

k

1

�

k

!

e

T

i

2

: (16)

As we observed previously, the matrixH

k+1

di�er from the matrix H

k

only in two


olumns (i

1

and i

2

). From the equality (16), it is possible to write these 
olumns

in the following way

h

k+1

i

1

= h

k

i

1

+

Æ

k

v

k

1

� �

k

v

k

2

�

k

;

h

k+1

i

2

= h

k

i

2

+

�

k

v

k

2

� 


k

v

k

1

�

k

:

(17)
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Substituting the expressions of the ve
tors v

k

1

and v

k

2

given in (12) in (17) we

obtain:

h

k+1

i

1

= h

k

i

1

+

Æ

k

�

k

�

s

k

�H

k

y

k

�

�

�

k

�

k

�

s

k�1

�H

k

y

k�1

�

;

h

k+1

i

2

= h

k

i

2

+

�

k

�

k

�

s

k�1

�H

k

y

k�1

�

�




k

�

k

�

s

k

�H

k

y

k

�

:

(18)

>From (18), for ea
h j = 1; � � � ; n; the jth-
omponent of the 
olumns to be

modi�ed will be updated as follows.

h

k+1

j i

1

=

Æ

k

�

k

0

�

s

k

j

�

X

p6=i

1

h

k

j p

y

k

p

1

A

�

�

k

�

k

0

�

s

k�1

j

�

X

p6=i

1

h

k

j p

y

k�1

p

1

A

(19)

h

k+1

j i

2

=

�

k

�

k

0

�

s

k�1

j

�

X

p6=i

2

h

k

j p

y

k�1

p

1

A

�




k

�

k

0

�

s

k

j

�

X

p6=i

2

h

k

j p

y

k

p

1

A

:

It is interesting to observe that, 
omputationally, it is more 
onvenient to write

the 
olumns i

1

e i

2

of the new matrix in this way:

h

k+1

j i

1

=

Æ

k

�

k

0

�

s

k

j

�

X

p6=i

1

; i

2

h

k

j p

y

k

p

1

A

�

�

k

�

k

0

�

s

k�1

j

�

X

p6=i

1

; i

2

h

k

j p

y

k�1

p

1

A

;

h

k+1

j i

2

=

�

k

�

k

0

�

s

k�1

j

�

X

p6=i

1

; i

2

h

k

j p

y

k�1

p

1

A

�




k

�

k

0

�

s

k

j

�

X

p6=i

1

; i

2

h

k

j p

y

k

p

1

A

;

whi
h 
ould be easily obtained from (19).

As it was mentioned previously, the 
hoi
e of the index i

1

and i

2

of the 
olumns

to be modi�ed is restri
ted to the assumption:

�

k

= (e

T

i

1

y

k

)(e

T

i

2

y

k�1

)� (e

T

i

2

y

k

)(e

T

i

1

y

k�1

) 6= 0: (20)

Noti
e that, in the 
ase that y

k

be
omes a multiple of y

k�1

; �

k

will be zero. This

makes it impossible to 
hoose the 
olumns that must be 
hanged.

We adopted in our numeri
al tests the following 
hoi
e for the index i

1

and i

2

:

jy

k

i

1

j = ky

k

k

1

jy

k�1

i

2

j = ky

k�1

k

1

:
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In the 
ase that �

k

be
omes zero, we 
hanged the index i

2

in su
h a way that

j(�

k

y

k�1

� 


k

y

k

)

i

2

j = k�

k

y

k�1

� 


k

y

k

k

1

:

3 The 
onvergen
e

>From now on, we denoted by k: k the 2-norm ve
tors and matri
es. Assume that

F : 
 � IR

n

! IR

n

; F 2 C

1

(
); 
 an opens and 
onvex set, x

�

2 
; F (x

�

) = 0

and

kJ(x)� J(x

�

)k � Lkx� x

�

k

p

; L; p > 0 (21)

for all x 2 
: A inequality (21) implies that for all u; v 2 


kF (u)� F (v)� J(x

�

)(v � u)k � Lkv � uk�(u; v)

p

; (22)

where �(u; v) = maxfku� x

�

k; kv � x

�

kg (see [1℄).

Assume that J(x

�

) is nonsingular and de�ne M = kJ(x

�

)

�1

k: By (22), we dedu
e

that for all u; v 2 
;

kv � u� J(x

�

)

�1

[F (v)� F (u)℄k �MLkv � uk�(u; v)

p

: (23)

The lo
al 
onvergen
e result is stated in the following theorem. It is very sim-

ilar to the Theorem 3.1 of [16℄ but, sin
e its proof involves some interesting

adaptations we will present it here.

Theorem 2.1 Let fx

k

g e fH

k

g the sequen
es generated by the ITCUM and

assume that F (x

k

) 6= 0 and �

k

6= 0; for all k = 0; 1; :::; let r 2 (0; 1): There exist

" = "

r

; � = �

r

su
h that, if kx

0

� x

�

k � " and kH

k

� J(x

�

)

�1

k � �; whenever

10



k � 1 (mod m) or k = 0; then the sequen
es fx

k

g and fH

k

g are well de�ned,

fx

k

g 
onverges to x

�

and for all k = 0; 1; � � �

kx

k+1

� x

�

k � rkx

k

� x

�

k:

Proof:

De�ne 


1

= 2n

2

M

2

L; 


2

= n

5=2

: Given "; � > 0; de�ne b

i

("; �); i = 0; 1; � � � ; m�

1 by

b

0

("; �) = �

b

1

("; �) = 


2

b

0

("; �) + 


1

"

p

(24)

b

i

("; �) = R 


2

b

i�1

("; �) +R 


1

"

p

; i = 2; � � � ; m� 1;

where R =

2ky

k�1

k

1

ky

k�2

k

1

j�

k

j

; k = 2; 3; � � �

Clearly, we have, for all "; � > 0;

0 < b

0

("; �) < b

1

("; �) < � � � < b

m�1

("; �) and lim

"; �!0

b

i

("; �) = 0 (25)

for i = 0; 1; � � � ; m� 1:

By (25), we 
an 
hoose " = "

r

> 0 and � = �

r

> 0 su
h that " � "

1

and

b

i

("; �) + L"

p

<

r

M

1

; (26)

for i = 0; 1; � � � ; m� 1; where M

1

= maxfkJ(x

�

)k; 2Mg:

Assume that kx

0

� x

�

k � " and kH

k

� J(x

�

)

�1

k � � whenever k � 1 (modm)

or k = 0: We will prove by indu
tion on k that if k � q (modm) then H

k

is

nonsingular,

kH

k

� J(x

�

)

�1

k � b

q

("; �) (27)

kH

k

k � 2M; (28)

kx

k+1

� x

�

k � r kx

k

� x

�

k; (29)

11



for all q = 0; 1; � � � ; m� 1:

For k = 0; by hypothesis,

kH

0

� J(x

�

)

�1

k � � = b

0

("; �); (30)

thus, by (26) and (30),

kH

0

k � kJ(x

�

)

�1

k+ kH

0

� J(x

�

)

�1

k

� kJ(x

�

)

�1

k+ �

� kJ(x

�

)

�1

k+

1

kJ(x

�

)k

� 2kJ(x

�

)

�1

k = 2M:

Thus,

kH

0

k � 2M: (31)

By (22) and (31),

kx

1

� x

�

k = kx

0

� x

�

�H

0

F (x

0

)k

= kx

0

� x

�

�H

0

[F (x

0

)� F (x

�

)� J(x

�

)(x

0

� x

�

)℄

+ H

0

J(x

�

)(x

0

� x

�

)k

� k[I �H

0

J(x

�

)℄(x

0

� x

�

)k+ 2MLkx

0

� x

�

k

p+1

�

�

kJ(x

�

)

�1

�H

0

k kJ(x

�

)k+ 2MLkx

0

� x

�

k

p

�

kx

0

� x

�

k;

by the de�nition of M

1

; the hypothesis kx

0

� x

�

k � "; kH

0

� J(x

�

)

�1

k � �; and

(26), we have:

kx

1

� x

�

k � M

1

�

kJ(x

�

)

�1

�H

0

k+ Lkx

0

� x

�

k

p

�

kx

0

� x

�

k

� M

1

(� + L"

p

) kx

0

� x

�

k

= M

1

(b

0

("; �) + L"

p

) kx

0

� x

�

k � r kx

0

� x

�

k:

Thus, kx

1

� x

�

k � r kx

0

� x

�

k:

12



Consider now k > 0; k � q (mod m): If q = 1; the proofs of (27)-(29) are similar

to the 
ase k = 0: Assume q 6= 1: let us assume now that q > 0; k � 2 and

k � q (mod m):

By the hypothesis of indu
tion, H

k�1

is nonsingular. Let i

1

and i

2

; the indexes

of the 
olumns to be modi�ed, su
h that �

k�1

6= 0: Ea
h 
omponent j; j =

1; 2; � � � ; n of the 
olumn i

1

is given by:

h

k

j i

1

=

Æ

k�1

�

k�1

0

�

s

k�1

j

�

X

p6=i

1

h

k�1

j p

y

k�1

p

1

A

�

�

k�1

�

k�1

0

�

s

k�2

j

�

X

p6=i

1

h

k�1

j p

y

k�2

p

1

A

: (32)

so, H

k

is well de�ned.

By addition and subtra
tion of

Æ

k�1

�

k�1

0

�

X

p6=i

r

h

�

j p

y

k�1

p

1

A

and

�

k�1

�

k�1

0

�

X

p6=i

r

h

�

j p

y

k�2

p

1

A

,

respe
tively, in (32), we have:

h

k

j i

r

=

Æ

k�1

�

k�1

0

�

s

k�1

j

�

X

p6=i

1

h

�

j p

y

k�1

p

+

X

p6=i

1

h

�

j p

y

k�1

p

�

X

p6=i

1

h

k�1

j p

y

k�1

p

1

A

�

�

k�1

�

k�1

0

�

s

k�2

j

�

X

p6=i

1

h

�

j p

y

k�2

p

+

X

p6=i

1

h

�

j p

y

k�2

p

�

X

p6=i

1

h

k�1

j p

y

k�2

p

1

A

; (33)

Therefore, for all j = 1; 2; � � � ; n;

jh

k

j i

1

� h

�

j i

1

j �

�

�

�

�

�

Æ

k�1

�

k�1

�

�

�

�

�

js

k�1

j

�

n

X

p=1

h

�

j p

y

k�1

p

j+

�

�

�

�

�

�

k�1

�

k�1

�

�

�

�

�

js

k�2

j

�

n

X

p=1

h

�

j p

y

k�2

p

j+

(34)

�

�

�

�

�

Æ

k�1

�

k�1

�

�

�

�

�

X

p6=i

1

jh

�

j p

� h

k�1

j p

j jy

k�1

p

j+

�

�

�

�

�

�

k�1

�

k�1

�

�

�

�

�

X

p6=i

1

jh

�

j p

� h

k�1

j p

jjy

k�2

p

j:

De�ning J(x

�

)

�1

= H

�

and using (23), the inequalities jy

k�1

p

j � ky

k�1

k

1

and

jy

k�2

p

j � ky

k�2

k

1

in (34), we obtain:

jh

k

j i

1

� h

�

j i

1

j �

�

�

�

�

�

Æ

k�1

�

k�1

�

�

�

�

�

ks

k�1

� J(x

�

)

�1

y

k�1

k+

�

�

�

�

�

�

k�1

�

k�1

�

�

�

�

�

ks

k�2

� J(x

�

)

�1

y

k�2

k

13



+

�

�

�

�

�

Æ

k�1

�

k�1

�

�

�

�

�

ky

k�1

k

1

n

X

p=1

jh

�

j p

� h

k�1

j p

j+

�

�

�

�

�

�

k�1

�

k�1

�

�

�

�

�

ky

k�2

k

1

n

X

p=1

jh

�

j p

� h

k�1

j p

j

�

�

�

�

�

�

Æ

k�1

�

k�1

�

�

�

�

�

MLks

k�1

k"

p

+

�

�

�

�

�

�

k�1

�

k�1

�

�

�

�

�

MLks

k�2

k"

p

+R

n

X

p=1

jh

�

j p

� h

k�1

j p

j

�

�

�

�

�

�

Æ

k�1

�

k�1

�

�

�

�

�

2M

2

Lky

k�1

k"

p

+

�

�

�

�

�

�

k�1

�

k�1

�

�

�

�

�

2M

2

Lky

k�2

k"

p

+ Rn kJ(x

�

)

�1

�H

k�1

k: (35)

By Lemma 3.1 we have that ks

k�1

k � 2M ky

k�1

k and ks

k�2

k � 2Mky

k�2

k:

We used this in the two previous inequalities.

Using jÆ

k�1

j � ky

k�2

k �

p

n ky

k�2

k

1

and j�

k�1

j � ky

k�1

k �

p

n ky

k�1

k

1

;

in (35) we have:

jh

k

j i

1

� h

�

j i

1

j �

 

ky

k�1

k

1

j�

k�1

j

ky

k�2

k

1

+

ky

k�2

k

1

j�

k�1

j

ky

k�1

k

1

!

p

n 2M

2

L "

p

+ Rn kH

k�1

� J(x

�

)

�1

k;

= R

p

n 2M

2

L "

p

+Rn kH

k�1

� J(x

�

)

�1

k: (36)

In similar form, it is easy to proof an analogous result to (36) for the index i

2

:

That is,

jh

k

j i

2

� h

�

j i

2

j � R

p

n 2M

2

L "

p

+Rn kH

k�1

� J(x

�

)

�1

k: (37)

Also, we have that for the 
omponents of the 
olumns that were not modi�ed a

inequality (36)is satis�ed. i.e, for all s 6= i

1

and s 6= i

2

;

jh

k

j s

� h

�

j s

j = jh

k�1

j s

� h

�

j s

j

� kH

k�1

� J(x

�

)

�1

k

� R

p

n 2M

2

L "

p

+Rn kH

k�1

� J(x

�

)

�1

k: (38)
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Observe that (38) is true be
ause R > 1 and R

p

n 2M

2

L "

p

> 0: Moreover, by

(36), (37) and(38), we 
on
lude that

kH

k

� J(x

�

)

�1

k

1

� nR

�

p

n 2M

2

L "

p

+ n kH

k�1

� J(x

�

)

�1

k

�

: (39)

Thus, by (39) and (24), we have:

kH

k

� J(x

�

)

�1

k �

p

n kH

k

� J(x

�

)

�1

k

1

� R

�

n

2

2M

2

L "

p

+ n

5=2

kH

k�1

� J(x

�

)

�1

k

�

� R

�

n

2

2M

2

L "

p

+ n

5=2

b

q�1

("; �)

�

= R (


2

b

q�1

("; �) + 


1

"

p

)

= b

q

("; �): (40)

Then, kH

k

� J(x

�

)

�1

k � b

q

("; �): Thus, by (26),

kH

k

� J(x

�

)

�1

k �

r

M

1

�

1

2M

;

therefore, by Bana
h's Lemma [5℄, H

k

is nonsingular and using the hypothesis,

�

k�1

6= 0; we 
on
lude that for all k; the sequen
es fx

k

g and fH

k

g are well

de�ned.

Moreover

kH

k

k � kJ(x

�

)

�1

k+ kH

k

� J(x

�

)

�1

k

� kJ(x

�

)

�1

k+

r

M

1

� kJ(x

�

)

�1

k+

1

kJ(x

�

)k

� 2 kJ(x

�

)

�1

k = 2M: (41)

So, kH

k

k � 2 M and �nally, by (22), (26) and (41),

kx

k+1

� x

�

k = kx

k

� x

�

�H

k

F (x

k

)k

= kx

k

� x

�

�H

k

h

F (x

k

)� F (x

�

)� J(x

�

)(x

k

� x

�

)

i

�H

k

J(x

�

)(x

k

� x

�

)k

� k [I �H

k

J(x

�

)℄ (x

k

� x

�

)k+ 2M L kx

k

� x

�

k

p+1

15



�

h

kJ(x

�

)k kJ(x

�

)

�1

�H

k

k+ 2M L kx

k

� x

�

k

p

i

kx

k

� x

�

k

� M

1

(b

q

("; �) + L "

p

) kx

k

� x

�

k

� r kx

k

� x

�

k:

Thus, kx

k+1

� x

�

k � r kx

k

� x

�

k; whi
h 
ompletes the proof of the theorem.

4 Computer implementation of ITCUM and nu-

meri
al experiments

In this se
tion, we present some 
omparative implementations of ITCUM. For

this it was used some test problems from [16℄, [8℄, [3℄.

>From the equation (16), letting v

p

1

= s

p

�H

p

y

p

and v

p

2

= s

p�1

� H

p

y

p�1

; we

obtain:

H

k

= H

0

+

k�1

X

p=0

 

Æ

p

v

p

1

� �

p

v

p

2

�

p

!

(e

p

i

1

)

T

+

k�1

X

p=0

 

�

p

v

p

2

� 


p

v

p

1

�

p

!

(e

p

i

2

)

T

; (42)

or equivalently

H

k

= H

0

+

k�1

X

p=0

w

p

1

(e

p

i

1

)

T

+

k�1

X

p=0

w

p

2

(e

p

i

2

)

T

; (43)

where

w

p

1

=

Æ

p

v

p

1

� �

p

v

p

2

�

p

and w

p

2

=

�

p

v

p

2

� 


p

v

p

1

�

p

:

The implementation of ITCUM is based on the formula (43). Thus, in ea
h

iteration k; the 
al
ulus of H

k

implies in the storage of two ve
tors (w

k

1

ew

k

2

)

and two additional indexes (i

1

and i

2

). For this reason, the number of 
onse
utive

iterations of the method is limited by the availability of memory to the 
omputer.

Considering that there is suÆ
ient spa
e to store m pairs of ve
tors, then it is

possible to do one \Newton" iteration

1

and m 
onse
utive ITCUM iterations.

1

In the restarts, we did not use the \ exa
t" Ja
obian.
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Therefore, if � � 0 (modm); � 2 f1; :::; m� 1g, we obtain:

H

�+�

= H

�

+

��1

X

l=0

w

�+l

1

(e

�+l

i

1

)

T

+

��1

X

l=0

w

�+l

2

(e

�+l

i

2

)

T

: (44)

Then, the parameter m determines the number of possibles iterations of type

ITCUM between two restarts. We used m = 30 when we worked with the large-

s
ale problems (for the other problems it was not ne
essary to do restarts).

The problems tested in this work were organized in two 
lasses: short-s
ale and

large-s
ale problems a

ording to the number of variables that they have. We

present them as follows.

Short-s
ale problems :

1: Rosenbro
k (n=2). [3℄. x

0

= (�1:2; 1)

T

:

2: Freudenstein-Roth (n=2). [3℄. x

0

= (0:5; �2)

T

:

3: Powell badly s
aled fun
tion (n=2). [3℄. x

0

= (0:5; �2)

T

:

4: Powell singular fun
tion (n=4). [3℄. x

0

= (0:5; �2)

T

:

5: Extended Rosenbro
k (n=50). [3℄. x

0

= (�1:2; 1;�1:2; 1; :::)

T

:

6: Trigonometri
 fun
tion (n=2). [3℄. x

0

= (1=n; :::; 1=n)

T

:

7: Dis
rete boundary value fun
tion (n=2). Fun
tion 28 in [3℄.

x

0

= (�

j

); where �

j

= t

j

(t

j

� 1); h = 1=(n+ 1) e t

j

= jh:

8: Broyden banded fun
tion (n=2). [3℄. x

0

= (�1; :::; �1)

T

:

9: Linear System (n=50). [8℄. x

0

= (1; �1; 1; �1; :::)

T

:

10: Chandrasekhar H-equation (n=50). [8℄. x

0

= (0; :::; 0)

T

:

17



Large-s
ale problems:

Problems 11 to 15: Ea
h test is generated as a �nite-di�eren
e dis
retization

of a Poisson equation in the square [0; 1℄ � [0; 1℄: The number of divisions of

the interval is denoted by N (32 and 50). In all 
ases, the starting point is

x

0

= (�1; �1; :::; �1)

T

and the number of variables is n = (N � 1)

2

.

The Ja
obian of ea
h one of the large-s
ale problems is sparse with �vediagonal

stru
ture; thus it 
an be 
onsidered \well represented" by its the tridiagonal part.

Motivated by this fa
t, if k � 0 (mod m); we 
hose:

H

k

= [P

�

(J(x

k

))℄

�1

; (45)

where, P

�

is the orthogonal proje
tion operator on the subspa
e of tridiagonal

matri
es. Thus, the algorithms are restarted using m = 30:

For the short-s
ale problems, when k = 0; 1; we 
hose:

H

k

= [P

D

(J(x

k

))℄

�1

; (46)

where, P

D

is the orthogonal proje
tion operator on the subspa
e of diagonal

matri
es. If one of the elements of this diagonal Ja
obian matrix is null, we

repla
ed it by 1:

In a

ording to Lema 2.1, near an isolated solution it is not possible that y

k

= 0:

This fa
t may o

ur far from x

�

whi
h makes �

k�1

= 0; independently of the


hoi
e of the index. In the numeri
al tests, this situation is dete
ted verifying

the inequality:

ky

k

k � 10

�6

kF (x

k

)k: (47)

In the 
ase (47) is satis�ed, we de�ned H

k+1

= H

k

:

In ea
h iteration k; the 
hoi
e of indexes i

1

and i

2

of the 
olumns to be modi�ed

was done a

ording to the des
ription in Se
tion 2, with a small variation to

avoid instabilities problems in h

k+1

: For this, we de�ned a parameter for 
hanging

the value of sigma (tol

�

). Thus, the index i

2

will be altered when:

j�

k

j � tol

�

: (48)
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In our numeri
al tests we used tol

�

= 10

�4

for the problems 11, 12, 13 and

tol

�

= 10

�6

for the other problems.

Based on [16℄, we used the following 
onvergen
e 
riteria:

kF (x

k

)k

1

� 10

�5

kF (x

0

)k

1

short-s
ale

kF (x

k

)k

1

� 10

�3

kF (x

0

)k

1

large-s
ale.

We also stopped the exe
ution of the numeri
al tests when the number of iter-

ations ex
eeded 200 or when kF (x

k

)k

1

� 10

4

kF (x

0

)k

1

: In the �rst 
ase, we

say that ITCUM did not 
onverge (it is represented, in the tables, by the term

NC) and in the se
ond one, we say that the method diverged ( whi
h it will be

represented in the tables with the term DIV).

We 
ompare the performan
e of ITCUM with the Newton method and with

other quasi-Newton methods: Broyden's method [1℄, CUM [11℄, ICUM [16℄. The

implementation of these methods were done as in [16℄.

The numeri
al tests were run in an AMD Athlon - 800 MHZ 
omputer, in the

state University of Campinas using the MATLAB 6.0 with single pre
ision.

The numeri
al results are presented in Tables 1 to 3. Ea
h one of them has

six 
olumns indi
ating, respe
tively, the problem, the number of iterations used

for Newton, Broyden, CUM, ICUM and ITCUM. For the large s
ale problems

aditional to the number of iterations used for ea
h method (KON), we present

the 
omputer CPU time in se
onds (TIME). In this 
ase, the results of ea
h test

is represented by a pair (KON; TIME).
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Prob Newton Broyden CUM ICUM ITCUM

1 2 12 13 8 5

2 41 Div Div 19 NC

3 11 33 40 83 22

4 4 60 67 Div 56

5 2 12 13 8 5

6 9 8 8 9 8

7 2 5 5 5 4

8 4 6 5 5 6

9 1 4 5 4 4

Table1: Short-s
ale problems.


 Newton Broyden CUM ICUM ITCUM

0.1 3 3 4 4 3

0.5 3 6 6 6 5

0.9 5 10 10 9 7

0.99 6 12 33 12 11

0.999 7 14 39 13 13

1� 10

�4

8 17 32 15 13

1� 10

�5

9 24 38 16 15

1� 10

�6

10 27 43 17 16

1� 10

�7

10 31 39 17 16

1� 10

�8

10 28 33 17 16

1 10 33 33 17 16
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Table 2:Chandrasekhar H-equation.

Pr N Newton Broyden CUM ICUM ITCUM

11 32 (2; 0.65) (62; 5.55) (59; 4.89) (54; 4.67) (44; 4.55)

50 (2; 2.97) (112; 38.83) (105; 33.89) (67; 22.30) (82; 29.33)

12 32 (5; 1.54) (52; 4.39) (56; 5.11) (47; 4.45) (44; 4.61)

50 (4; 5.76) (99; 35.08) (86; 27.74) (65; 21.59) (66; 24.50)

13 32 (9; 2.70) (65; 5.94) (64; 5.93) (55; 5.05) (56; 5.61)

50 (9; 12.58) (149; 52.68) (75; 24.88) (64; 21.42) (62; 23.81)

14 32 (2; 0.71) (68; 5.99) (95; 7.96) (62; 5.54) (51; 5.06)

50 (2; 3.08) (155; 59.65) (176; 55.42) (92; 29.55) (101; 35.70)

15 32 (1; 0.39) (62; 4.72) (82; 5.82) (61; 5.00) (57; 5.05)

50 (1; 1.59) (132; 43.17) (141; 41.36) (115; 34.38) (111; 36.52)

Table 3: Large-s
ale Problems.

Observe that in several 
ases, the performan
e of ITCUM is worse that of the

ICUM, whi
h is not strange be
ause, in nonlinear problems, it is pra
ti
ally

impossible to �nd the best method (in performan
e ) for all the problems.

For determining the new 
olumns, while ICUM has to manipulate with only one

equation, ITCUM needs to solve a linear system, where there exists the possibility

of null determinant of the matrix of the system.

When the dimension of the problems in
reases, the performan
e of ITCUM be-


omes, in mean, inferior to that of ICUM (Table 3); This fa
t o

urs be
ause

for the implementation of this method, the 
hoi
e of indexes be
omes more 
om-

pli
ated be
ause of the size of the ve
tors.

Other numeri
al tests, di�erent from that mentioned previously, were done. In

these tests, we worked with several versions of ITCUM, generated from the dif-
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ferent 
hoi
es for the index i

1

e i

2

and from the various 
riteria used for to alter

them (when it is ne
essary) in the implementation. Among the versions that we

used, the 
riterion of 
hoi
e des
ribed in Se
tion 3 was of the best performan
e

in the problems tested in this work, as was expe
ted by the observation??????
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