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1 Introduction

Let g be a complex semi-simple Lie algebra and consider its maximal flag
manifold F = G/P where G is a complex Lie group with Lie algebra g and
P a Borel (minimal parabolic) subgroup of G. For any maximal compact
subgroup U of G we can write F = U/T where T' C U is a maximal torus.
In this paper we study U-invariant almost Hermitian structures on F. Such
a structure is composed of a pair (J,A) with J an invariant almost complex
structure and A an invariant Riemannian metric.

It will become clear at the end of the paper that the central point is
a complete understanding of the class of (1,2)-symplectic, or quasi-Kahler
almost Hermitian structures. Thus we spend most of the time discussing
these invariant structures.

We use the abbreviation iacs for invariant almost complex structure. An
iacs J is said to be (1,2) -admissible if there exists a metric A such that
the pair (J;A) is (1,2)-symplectic. In this paper we give different charac-
terizations of the (1,2)-admissible iacs. The special case of the A; series,
when g = sl(n,C), and F is the manifold of complete flags of subspaces of
C", where considered by Cohen and the authors in [3] (see also [4]), using
a method devised by Burstall and Salamon [2]. This method takes advan-
tage of a natural bijection between invariant almost complex structures and
tournaments. The combinatorics of tournament theory were used in [3] to
derive a special form for (1,2)-admissible iacs. With the aid of this form, the
cone of the corresponding (1,2)-symplectic metrics were determined. Tour-
nament theory was also exploited in Mo and Negreiros [15], Negreiros [16]
and Paredes [17].

In this paper we generalize the above mentioned results to arbitrary com-
plex semi-simple Lie algebras. Our methods here are completely different.
Instead of tournament theory, we use directly the geometrical combinatorics
of root systems and their Weyl groups, obtaining independent proofs, when
specializing to the A; series.

In order to give an account of our results let h C g be a Cartan subalgebra
and denote by II the set of roots of the pair (g,h). An invariant almost
complex structure on F is given by an assignment o € Il — ¢, € {£1},
with e_, = —&,. Analogously, an invariant metric is given by A\, > 0 with
A_a = Aa, @ € II. Thus an invariant almost Hermitian structure is prescribed
by a pair ({ea}, {Aa})-

An easy computation shows that a pair ({e,}, {\a}) is almost Kéahler



(i.e., the fundamental K&hler 2-form €2 is symplectic) if and only if the set
{a : e, = +1} corresponds to a choice of positive roots in II (this implies,
in particular that almost Kéhler structures are Kéhler). By the well known
equivalence between the possible choices of positive roots and Weyl chambers,
we arrive that the set of tacs admitting an almost Kahler metric is in one-
to-one correspondence with the set Weyl chambers in b, which in turn is in
bijection with the Weyl group W.

In the attempt of finding a similar geometric interpretation for the (1, 2)-
admissible zacs we were lead to consider the corresponding affine Weyl group,
and the set of alcoves in h. With this in mind we fix a basic alcove Ay and
associate to an arbitrary alcove A an invariant almost complex structure
J(A) = {ea(A)}. The signs &, (A) are obtained by counting mod2 the
number of hyperplanes {« (1) = k € Z} separating A and A,. We say that
an iacs is affine if it has the type J (A) for some alcove A.

The map A — J (A) turns out to be the desired geometric description of
the (1, 2)-admissible iacs. Indeed in Section 3 we construct for any alcove A
an invariant metric A, turning (J (A),A) into a (1, 2)-symplectic structure.
Thus the affine iacs are (1,2)-admissible. On the other hand most of our
efforts in this paper are directed towards the proof that any (1, 2) -admissible
J is affine. To accomplish this we prove in Section 4 a result which has
independent interest, namely that for any (1,2)-admissible .J there exists
a choice of positive roots IIT such that the set {o > 0 : ¢, = —1} is an
abelian ideal of TI™. This very convenient form generalizes the stair-shaped
incidence matrices of tournaments appearing in [3] in connection with iacs
in the context of the A; series.

In Section 5 we prove that for a given (1,2) -admissible J there exists
an alcove A such that J = J(A), closing the connection between (1,2)-
symplectic structures and the affine Weyl group. The technique here joins
together the results by Shi [19] — characterizing the coordinates of an alcove
— with the abelian ideal form admitted by the (1,2)-symplectic structures.

The abelian ideal form nearly gives a canonical form for the (1, 2)-admissi-
ble tacs, in the sense that every equivalence class of iacs is represented by
some .J in this form, although some classes admit more than one .J. In Section
6 we develop a formula relating two different abelian ideals representing the
same equivalence class of almost Hermitian structures. Up to this section the
affine iacs enters only as an additional description of the (1,2)-symplectic
structures. The analysis of the equivalence classes is our first application of
the affine description.



Our primarily goal was the study of the (1,2)-symplectic strucutures,
seeking applications to harmonic maps through a theorem by Gray and in-
dependently by Lichnerowicz, which asserts that a holomorphic map from a
Riemann surface whose target is a (1, 2)-symplectic almost Hermitian mani-
fold is automatically harmonic (see Gray [7], Lichnerowicz[14], Salamon [18]).
However, having studied the (1, 2)-symplectic structures we realized that in
the invariant setting on F the (1,2)-symplectic is the main one among the
sixteen classes of almost Hermitian manifolds. In fact, relying on Gray and
Hervella [8] we show in Section 7 that these sixteen classes collapse down to
four classes of invariant almost Hermitian structures with three possibilities
for the iacs. These are the Kéhler structures, the (1,2)-symplectic, the class
of all invariant structures and a fourth one (named W, @ W;) which includes
every tacs but only some specific metrics, among them the Cartan-Killing
ones. Most of the proofs in this section are direct consequences of the defining
conditions for the classes. The only case which is more involved, requiring
the results about the (1, 2) -symplectic structures, is the proof that invariant
near Kahler strucutures are Kéhler if the Lie algebra is not A,.

In studing (1, 2)-symplectic structures for the sl (n,C) case through tour-
naments it was considered in [3] the concept of cone-free tournament. One
of the issues there was the proof that iacs associated to such tournaments
are (1,2)-admissible. When stated in terms of roots the cone-free property
can be generalized to a condition on the rank three subsystems of the root
system. In this general context it is possible to prove that cone-free iacs are
affine, and thus (1,2) -admissible. We do not prove this result here, leaving
it to a forthcoming paper.

Now we discuss some links and forthcoming perspectives to our work.
First, the intervenience of the affine Weyl group in the description of the
(1,2)-symplectic strucutures suggest a relationship between them and the
affine Kac-Moody algebra and hence to the loop groups. Indeed it easy to
interpret the (1,2)-symplectic structures in terms of affine Lie algebras and
embeddings of the flag manifolds into loop groups. There are also relations
between (1,2)-symplectic structures and twistors theory (see Eells and Sala-
mon [6]). We do not enter into these matters here, leaving them to another
opportunity.

The abelian ideals of IIT (or the corresponding ideals of the Borel sub-
algebra) which appear extensively in our results, were studied recently by
Kostant [13], connecting them with representation theory of Lie groups and
algebras. One of the results reported in [13] says that the set of abelian ideals
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is in bijection with a subset of alcoves, suggesting a close relation with the in-
variant almost Hermitian structures, in particular with the (1, 2)-symplectic
ones.

In studing the classes of invariant almost Hermitian structures we arrived
incidentally at a partial proof of a conjecture by Wolf and Gray [21] (see
Conjecture 9.8), namely that a homogeneous space U/K of a compact Lie
group U which is not a Hermitian symmetric space, and such that K has
maximal rank in U, admits a near Kahler structure which is not Kahler if
and only if the isotropy subalgebra is the fixed point set of an automorphism
of order three. Our proof is partial in the sense that we consider only the
maximal flag manifolds, that is, the case when the isotropy subgroup is the
centralizer of a maximal torus of U. Further development of our methods to
other flag manifolds are in progress, and eventually will lead to a complete
proof of that conjecture.

2 Flag manifolds

Throughout the paper we assume that the Lie algebra g is simple. There
is no loss of generality in this hypothesis, since the full description of our
objetcs in the semi-simple case can be easily done by the decomposition the
Lie algebras into their simple ideals (cf. [20], Proposition 4.9). Let G be a
complex simple Lie group with Lie algebra g. Given a Cartan subalgebra of
g denote by II the set of roots of the pair (g, h), so that

g=b®> ga

where g, = {X € g : VH € b, [H,X] = a(H) X} denotes the corre-
sponding one-dimensional root space. The Cartan-Killing form (X,Y) =
tr(ad (X)ad (Y)) of g is nondegenerate on . Given o € h* we let H, be
given by « (-) = (Hy, ), and denote by hgr the subspace spanned over R by
H,, o € II. Accordingly b} stands for the real subspace of the dual h* spaned
by the roots.

We fix once and for all a Weyl basis of g which amounts to give X, €
go such that (X,, X ,) = 1, and [X,, X3] = mapXaips with mys € R,
M_q_g = —Mgaps and mes = 0 if a + ( is not a root (see Helgason [9],
Chapter IX).



Let ITT C IT be a choice of positive roots, denote by ¥ the corresponding
simple system of roots and put p = h @ > .+ g for the Borel subalgebra
generated by IIT. We view the maximal flag manifold F of g as the set of
subalgebras conjugate to p. Thus, F = G/P where P is the normalizer of p
in G. Here GG is any complex Lie group with Lie algebra g.

Let u be a compact real form of g. We can take u to be the subspace
spanned by thg and A,, iS,, a € II, where A, = X, — X _, and S, =
Xo+ X_,. Denote by U the compact real form of G corresponding to u. By
the transitive action of U on F we can write F = U/T where T'= PNU is a
maximal torus of U. The Lie algebra of 71" is the real subspace t = ihg.

Denote by by the origin of F, viewed as a homogenous space either of G
or of U. The tangent space of F at by identifies naturally with the subspace
q =uot C u,spanned by A,, iS,, € II. Analogously, the complex tangent
space of F is identified to q¢c = g&h C g, spanned by the root spaces. Clearly,
the adjoint action of 7" on g leaves q invariant.

2.1 Invariant metrics

A U-invariant Riemannian metric ds? on I is completely determined by its
value at the origin, that is, by an inner product (-,-) in g, which is invari-
ant under the adjoint action of 7. Any such inner product has the form
(X,Y), = —(AX,Y) with A : ¢ — q positive-definite with respect to the
Cartan-Killing form. The inner product (-,-), admits a natural extension to
a symmetric bilinear form on the complexification q¢ of g. We do not change
notation for these objects in q and qc either for the bilinear form (-, -), or for
the corresponding complexified map A. The T-invariance of (-, -), is equiva-
lent to the elements of the standard basis A,, ©S,, o € II, being eigenvectors
of A, for the same eigenvalue. Thus, in the complex tangent space we have
A (Xga) = Ao Xq with Ay > 0 and A_, = A,.

We denote by ds% the invariant metric given by A. In the sequel we abuse
language and say that A itself is an invariant metric.

A special class of invariant metric is defined by choosing H in the positive
Weyl chamber corresponding to It and putting

Ap={ a=0a(H):a>0}.

We say that such a metric is of Borel type (see Borel [1]). A Borel type
metric has the following intrinsic description. Let ¢ : iu & br — u © ihg be



given by ¢ (X,) = =X, if @ < 0 and ((X,) = X, if @« > 0. Then an easy
computation shows that

(XaY)AH:<H7[X7<Y]> XY eq.

(See Duistermmat, Kolk and Varadarajan [5].)

2.2 Invariant almost complex structures

A U-invariant almost complex structure J, (abbreviated iacs) on F is com-
pletely determined by its value J : ¢ — q in the tangent space at the origin.
The map J satisfies J? = —1 and commutes with the adjoint action of T’
on q. We denote also by J its complexification to qc. The invariance of J
entails that J(g,) = go for all & € II. The eigenvalues of J are +i and the
eigenvectors in qc¢ are X,, a € II. Hence J(X,) = ie, X, with ¢, = £1
satisfying £, = —¢_,. As usual the eigenvectors associated to +:¢ are said
to be of type (1,0) while the —i-eigenvectors are of type (0,1). Thus the
(1,0) vectors are multiples of X, ¢, = +1, and the (0,1) multiples of X,
€q = —L.

An iacs on F is completely prescribed by a set of signs {4 }aen with
€ o = —€_4. In the sequel we abuse language and say that an invariant
almost complex structure on F is J = {e,}.

Since [ is a homogeneous space of a complex Lie group it has a natural
structure of a complex manifold. The associated integrable almost complex
structure J,. is given by £, = +1 if @ < 0. The conjugate structure —.J, is
also integrable.

2.3 Equivalent structures

Let W be the Weyl group generated by the reflections with respect to the
roots a € II. It is well known that its action on h* leaves II invariant. Also,
W is isomorphic to Ny (h) /T, where Ny () stands for the normalizer of b
in U. The group Ny (h) acts on q¢ by permuting the root spaces. Therefore,
if J is an iacs, wJw ! is also an iacs if W is a representative of w in Ny (h).
Clearly the two iacs defined by J and wJw ! are equivalent in the sense
that one is obtained from the other by a bi-holomorphic map. Since wJw *
depends only on w and not on the representative we have a well defined
action of W on the set of iacs. We denote this action by w - .J. An easy



computation shows that in terms of the signs ¢,, this action is given by

w-J=w-{ea} ={cw-1a}

Analogously, the Weyl group acts on the set of invariant metrics by w-{\,} =
{Aw-1a}- The two actions sum up to an action on the set of invariant almost
Hermitian structures, which is denoted by w - (J;A) = (w - J,w - A).

In the sequel we say that w - J and w - A are equivalent to J and A,
respectively. Of course, equivalent iacs as well equivalent invariant metrics
share the same property. For instance if the pair (J, A) is (1, 2)-symplectic,
the same holds to w - (J,A). Also, the iacs having the form w - J,, w € W,
are provenient of complex structures. We call these the standard zacs.

2.4 Kahler form

It is easy to see that any invariant metric ds} is almost Hermitian with
respect to J, that is, dsi (JX,JY) = dsi (X,Y) (cf. [21], Section 8, and
[15]). Let € = €, 4 stand for the corresponding Kéhler form

Q(X,Y) =dsi (X,JY) =—(AX,JY).

This form extends naturally to a U-invariant 2-form the complexication qc¢
of q, which we also denote by (2. Its value on the basic vectors are:

Q (Xa, Xﬂ) = _i)\a5,5‘<Xou Xﬂ>

Since (X,, Xg) = 0 unless § = —a, €2 is not zero only on the pairs (Xo, X_,),
and Q (X4, X o) = idacq. Relying on the invariance of Q its exterior dif-
ferential is easily computed from a standard formula: If XY, 7 € q are
regarded as vector fields in F then df2 at the origin is given by

—%dQ (X,Y,2)=-Q(X,Y],Z2)+Q(X,Z2].,Y) - QY. Z],X) (1)
(see Kobayashi-Nomizu [12]).

Proposition 2.1 d€2(X,, Xg, X,) is zero unless o+ 4+~ = 0. In this case

dQ (Xa, Xg, X)) = —i3map (Eada + €825 + 27 A) . (2)



Proof: By the expression for the exterior derivative —5dQ (Xo, Xg, X,) is
—Q ([Xa, Xp], Xo) + Q ([Xa, X5, Xp) = Q([Xp, X;], Xa) -

Using that [ X5, X¢| = mseXsie and the definition of Q this expression be-
comes

—Mg,38x(Aat8Xats, Xy) + Manes(Aaty Xaty, Xg) — Mg rca({Agiy Xy, Xa)-

Now, (X;, X¢) # 0 if and only if § + & = 0. Hence this sum is not zero only
when o+ # 4+ v = 0. In this case the it reduces to

—Ma gy Ay + MayEsA_g — MBAEat_q
because (X;, X_5) = 1. But a+ 4+ v = 0 implies that
Ma,p = Mpy = My

(see [9], Lemma III, 5.1). Since mq, = —m, 4, we get (2). ]

Remark: The above proposition provides an alternative of the computation
of df2, different from the proof of [15], which uses the moving frame method
of Cartan.

Taking into account the expression for df) we make the following distinc-
tion between the triples of roots.

Definition 2.2 Let J = {e,} be an iacs. A triple of roots «, 3,y with o +
B+~ =0 is said to be

1. a {0,3}-triple if e =€ =¢,, and
2. a {1,2}-triple otherwise.

Recall that an almost Hermitian manifold is said to be (1, 2) -symplectic
(or quasi-Kéhler) if
dQ (X,Y,Z) =0

when one of the vectors X,Y, Z is of type (1,0) and the other two are of
type (0,1).The structure is (2, 1)-symplectic if the roles of (1,0) and (0,1)
are interchanged. In our invariant case, these two types of almost Hermitian
manifolds are equal. In fact, we have the following criteria for an invariant
pair (J,A) to be (1,2)-symplectic, which follows immediately from formula
(2), and the fact that X, is of type (1,0) if ¢, = +1 and (0,1) if ¢, = —1
(cf. [21], Theorem 9.15).



Proposition 2.3 The invariant pair (J = {e,}, A = {Aa}) is (1, 2)-symplec-
tic iof and only if
Eala +E8Ag T 4N, =0

for every {1,2}-triple {«, 5,7}.

In the sequel we say that A is (1, 2)-symplectic with respect to J if the in-
variant pair (J; A) is (1, 2)-symplectic. Also, J is said to be (1, 2) -invariantly
admissible or simply (1, 2)-admissible if there exists A such that the invariant
pair (J,A) is (1, 2)-symplectic.

Now, recall that an almost Hermitian manifold is said to be almost Kahler
if 2 is symplectic, that is d2 = 0. Also, the manifold is Kahler, if furthermore
J is integrable. By formula (2) there are no {0, 3}-triples for J if the invariant
pair (J, A) is almost Kéhler. In fact, d€2 = 0 implies that e, Ao+ g+, A, =
0 when a+ 8+~ = 0. Hence a {0, 3}-triple would lead to Ao + Ag + A, =0,
which is impossible since A\, > 0. From this remark we can find the iacs
taking part of an almost Kahler structure.

Proposition 2.4 Suppose that the pair (J,\)is almost Kdhler. Then the
set P = {a : e, = +1} is a choice of positive roots with respect to some
lexicographic order in by.

Proof: Since there are no {0, 3}-triples, the set P is closed, that is, a+ 3 € P
if a, 3 € P and a+ (3 is a root. Also, [l = PU (—P). Now, it is well known
that these two properties imply that P is a choice of positive roots. L]

Therefore, the iacs of an invariant almost Kahler structure are equivalent
to the standard ones, which come from complex structures on F. Note that
the set of these zacs is in bijection with the Weyl group or the set of Weyl
chambers in hg.

Corollary 2.5 An invariant almost Hermitian structure on F is almost
Kahler if and only if it is Kahler.

3 Affine zacs

We have seen above that the almost Kéhler (and Kihler) structures are in
bijection with the set of Weyl chamber in hr. With the aim of describing
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the bigger class of (1, 2)-symplectic structures we consider in this section the
set of alcoves, or equivalently, the affine Weyl group associated with the root
system II.

We refer to Humphreys [10] as a basic source for the affine Weyl group.
Consider the subspace hgr. To conform with the usual notation we often
identify br with its dual bj; and write (z, «) instead of a (), x € bg, a € bj;.
Given « € Il and k € Z define the affine hyperplane

H (o, k)={r € br: (z,a) =k}.

The affine Weyl group W, is the group of affine motions of hg generated by
the orthogonal reflections with respect to the hyperplanes H (o, k), o € 11,
k € Z. 1t is well known that W, is the semi-direct product of W by the
group of translations by elements of the lattice L = Z - IIV spanned over Z
by the co-roots

2a

' =={o"= (o, )

ca e 11}

(See [10], Proposition 4.2.) Another relevant group of affine motions is V/\ZL,
which is the semi-direct product of WW by the group of translations by the
lattice R

L={zxebgp:Vaecll, (a,z) € Z}.

The complement A of the set of of hyperplanes H (o, k), a € I1, k € Z,
is the union its connected components, each one of them is an open simplex
called alcove. The affine group W, leaves invariant the union of the hyper-
planes H («, k), o € 11, k € Z, hence W, permutes the alcoves. The action
of W, on the set of alc\oves is free and transitive so that W, is in bijection
with A. The group W, also acts transitively on the set of alcoves, but in
general not freely.

Given an alcove A and a root «, there exists an integer k, = k, (A) such
that

ko < (x,0) < kq+ 1.

Of course, k, = [a ()] for any x € A where [a| denotes the integer part of
the real number a, that is, [a] is the the largest integer such that a — [a] > 0.
According to Shi [19], the integers k, (A) are called the coordinates of the
alcove A. An alcove is completely determined by its coordinates. However, it
is not true that an arbitrary set of integers k,, o € II, form the coordinates
of some alcove. Necessary and sufficient conditions for k., a € II, to be
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the coordinates of an alcove where determined in [19]. We return to these
conditions in Section 5 (see Proposition 5.2). For the moment we content
ourselves with the following necessary conditions, which are easily obtained
from the definition:

1. k_, = —ko,—1and
2. either ky = ko +kgorky =k +kg+1if y=a+ f.

Now, with the aid of the coordinates of the alcoves we introduce the
following class of iacs.

Definition 3.1 Given an alcove A with coordinates k,, the iacs J(A) =
{ea (A)} is defined by eq (A) = (—1)*. We say that J is an affine iacs if it
has the form J = J (A) for some alcove A.

Note that J (A) is indeed an iacs, since k_, = —k, —1, so that e_, (A) =
—£q (A).

The definition of affine 7acs has the following useful geometric interpre-
tation: Giving a choice of positive roots II™ C II, one has the basic alcove

Ay={rebhr:Va>0,0< (zr,a) <1},

having coordinates k, = 0, a > 0. If A is another alcove, and a € IIT,
denote by ¢, (A) the number of hyperplanes of the form H («, k) separating
A of Ay. Since @ > 0, gq (A) = |kq (A)|. Therefore, (1)@ = (1)=&,
so that the number of separating hyperplanes determines J (A).

Before proceding we check that the map A — J(A) which defines the
affine tacs is well behaved under the Weyl group action.

Lemma 3.2 The map A — J(A) is equivariant with respect to the action
of Weyl group W, that is J (wA) = w-J(A), w € W. Here wA is the
restriction to W of the action of W, and w-{c.} = {ew-1a} is the W-action
on the iacs defined before.

Proof: [s immediate from the formula k, (wA) = ky-14 (A) whose proof is
straighforward. O

The affine iacs are intimately related to the (1,2) -admissible ones. Actu-
ally, one of the main purposes of this paper is to prove that these two classes
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of jacs coincide. We show next that affine iacs are (1,2)-admissible. This is
the easy part of the proof that these properties are equivalent. The converse
will be seen in later sections and requires several steps.

Theorem 3.3 Let J = J (A) be an affine invariant complex structure. Then
J is (1, 2)-invariantly admissible.

Proof: Let k, = k, (A) be the coordinates of A. Take z € A and define the
invariant metric A = {\,} by

B l—ca [ a(x)—kyif e =+1
)\a—ga(a(l')_ka)’i‘ _{1—04(1')+ka if e, =—1.

2
Since ko, = [a (x)], it follows that A, > 0 for all . Moreover, A, = A, is
a consequence of e_, = —¢, and k_, = —k, — 1. Hence A is a well defined
invariant metric. We claim that A is (1, 2) -symplectic with respect to J. To
prove this take roots «, § and v such that a + 3+ v = 0. A straighforward
computation shows that

Eatégte,—3
2

Eata FE8Ag + A, = — (ko + ks + k). (3)
By one of the necessary conditions satisfied by the coordinates stated above,
k_y =ko+kgorky+ks+1. Hence ky, = — (ko + kg) — 1 or — (ko + kg) — 2,
so that k, is determined by k., ks and the mod2 cosets of k,, kg and k,.
On the other hand, since .J is affine, £5 = (—1)* for any root d. Therefore
ko + kg + k, is either —1 or —2 and we can decide by one of these values
as soon as we have (g4,eg,£,). With these remarks in mind we check that
Eata +EsAs+E,Ay = 0 for the possible (¢4, g, ¢,) yielding {1, 2}-triples. We
list below the outcomes:

1. (far€p,6y) = (+1,+1,—1), 27882 — 0k ks + Ky = —1.
2. (eay€p,84) = (+1,—1,+1). %ﬁy—:& =—1; ko + kg +k, = —1.

3. (arep,84) = (+1,—1,-1). W — 25 ko + kg +ky=-2.

4. ({—:a,{;‘ﬁ,{;‘,y) = (_17 _17+1)' W = _2; ka + k,@ + k'y = —2.
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This concludes the proof that (J, A) is (1, 2)-symplectic. O

We finish this section by proving a homomorphic property of the affine
tacs which might be useful in their future study.

Recall that the group W, acts transitively on the set of alcoves and is the
semi-direct product of W by the group of translations defined by the lattice
L. Therefore, for every alcove A there exists \ € L and w € W such that
A =tywAy. Applying w=! to this equality, we get

w A = (w’ltAw) Ap.

Now, w~'t\w = t,,-1,, meaning that L is stabilized by W. Hence every alcove
is in the W -orbit of some alcove obtained by translating the basic alcove Ay
by an element of L. Since the map A — J (A) is equivariant, it follows that
every affine iacs is equivalent to one of the form J (tyAg), A € L.

Lemma 3.4 Let A\ € L. Then, the coordinates of txAy are ko, = (A, ) if
a > 0. Accordingly, ko = (\,a) — 1 if a < 0.

Proof: Take x € Ay. Then (tyz,a) = (A, a) + (z,a), so that (A, a) <
(tar,a) < (A, ) +1if a > 0. ]

This lemma implies that ko453 = ko + kg if o, § and o + 3 are positive
roots. Hence, J (tAA) becomes a homomorphism when restricted to n*, that
is, €a4p (taAo) = eq (taAo) ep (11 Ap) if o, f,a + § € IIT. Therefore, any
affine zacs is equivalent to one satisfying this multiplicative property on the
positive roots. We show next that this is also a sufficient condition for an
tacs to be affine.

Proposition 3.5 An iacs J = {e,} is affine if and only if there erists a
choice of positive roots IIT such that €443 = €423 when o, f,a+ F € 11T, In
other words, the restriction of J to n" is a homomorphism.

Proof: It remains only to show that the multiplicative property on the
positive roots imply that J is affine. For this we find A € L such that
Eq = (—1)()"a> if & > 0. Since e4443 = g465 for positive roots, it is enough

to have g,, = (—1)*) where £ = {a4,...,q]} is the corresponding set of
simple roots. Therefore the required A is given by A = ayw; + -+ + quy,
where (1, ;) = d;; and a; = 0 if &, = +1 and a; = 1 otherwise. ]
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4 Abelian ideals

In this section we find a convenient representation for the (1,2)-admissible
tacs, which generalizes the stair-shaped form of the incidence matrices of
tournaments appearing in the context of [3]. We take a (1, 2)-admissible iacs
J = {ea} and let A = {A,} be a corresponding invariant (1, 2)-symplectic
metric.

Definition 4.1 A root « is said to be J-decomposable (or simply decompos-
able) if there are roots 3,7 such that « = 3+ with e, = €3 = €,. The sum
B+ v is a J-decomposition of . A root is J -indecomposable otherwise.

Since —a = (=) + (—7) and e_, = —¢&,, it is clear that £« are simul-
taneously decomposable or indecomposable. We denote by Z (J) or simply
by Z the set of J -indecomposable roots. In general, J-indecomposable roots
may not exist. However, the presence of the (1,2)-symplectic metric A al-
lows a treatment of Z analogous to the usual construction of a simple system
of roots. We start by noting that Z # ). In fact, let « = 3 + v be a J-
decomposition with ¢, = 3 = ¢,. Then {—«, 3,7} is a {1, 2}-triple. Since
(J,A) is (1,2)-symplectic we have A\, = Ag + A, so that A\, > Ag, A,. There-
fore, the roots ¢ € II such that

Ay = min{\, : y € II}
are J-indecomposable. We have further that Z spans bh*.
Lemma 4.2 FEvery root o can be written (possibly in a not unique way) as
a=a+ -+ a;
with o; € L, and such that e, =¢€,,, 1 =1,...,5s.

Proof: Supose that « is J-decomposable. Then o = 3+ . If § and ~ are
indecomposable the result follows. Otherwise, decompose 3 and v and so on.
At each step Ay = A\ + A,. Hence the values of A are strictly decreasing, so
that the successive decompositions finally ends. Also, at each decomposition
a = [+ we have ¢, = €3 = ¢,, implying the last statement. (]

Now, put
It ={a€Tl:c,=+1}.
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Of course, Z =ZTUZ  ifT- = -I" ={a €T :e, =—1}. Since T spans
b*, it follows that Z* also spans h*. Actually, the above lemma ensures that
for an arbitrary root «, we have

a=¢cq(n+ - +a). (4)

with o; € Z7.

Soon it will become clear that in general Z" is not a basis of h*. However,
when this happens, that is, when |Z7| = dim b, the above lemma implies that
Z7 is a simple system of roots and J is equivalent to the standard iacs .J. so
that (J, A) is Kéhler. In any case Z" shares with the simple systems of roots
the following useful property.

Lemma 4.3 Let o, € ZT. Then a— 3 is not a root. Therefore, (a, f) < 0
ifa,Be€I", a#0.

Proof: Suppose that « — 8 = v € II. If e, = +1 , we have the J-
decomposition &« = 4+ 7. On the other hand there is the decomposition
f=a+ (=) if e, = —1, leading to a contradiction. The last statement is
a consequence of the Killing formula for the strings of roots. []

In order to understand the set Z+ we make the following construction.
Write
It ={o,...,an}

where m = |Z7| and let V' be an m-dimensional vector space with basis
B = {vi,...,v,}. The bijection v; € B <> a; € T, induces an onto linear
map P : V. — bh*. Define the symmetric bilinear form (z,y) = (Pz, Py),
x,y € V. Since the Cartan-Killing form is positive definite on bh*, we have

ker P={zx eV :VyeV,(z,y) =0}

Also, (z,z) = (Pxz, Pz) > 0so that (-, -) is positive semi-definite, and satisfies
(u,u) > 0 for u € B.
Now, let Wy be the group generated by the reflections
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with respect to the basic elements v; € B. According to [10], Sections 5.3
and 5.4, Wy is the geometric representation of the Coxeter group defined by
the Killing-Cartan integers

2 (’Ui, ’Uj) . 2(0@, Otj>

(vi, vi) (v, i) '
Note that by Lemma 4.3 above these integers form a generalized Cartan
matrix, so that they indeed define a Coxeter group. Since the form (-,-) is

positive semi-definite, Wy, is a Coxeter group of affine type. Recall that the
root system of Wy is defined to be the set

I ={@(u):ueB,decW)

~

The projection P(II) is the root system in h* generated by Z*. We denote
it by I1(Z%).

Lemma 4.4 II(Z") C IL.

Proof: Define the reflections r; (o) = a — (2(«, ;) /{0y, ;) o; with respect
to the roots in Z%. A simple computation shows that Pos; = r; o P, so that
for every @ € Wy there exists w € W such that P o @ = w o P. Hence, for
any u € II, Pu has the form wa, for some w € W and o € ZT, showing that
Pu e 1L (]

Our next objective is to prove the reverse inclusion, ensuring that Il =
II(Z*). For this we consider the case of Gy separetely with the aim of
simplifying some of the arguments envolving multiple-laced diagrams.

Regarding G, its proper subsystems are 1) the set of short roots, 2) the
set of long roots, both isomorphic to Ay, and 3) the reducible ones, composed
of two orthogonal roots. None of these subsystems can be II (Z1). In fact,
the long roots do not span G over Z, as is the case with II (ZT), which spans
IT. On the other hand, the set of short roots does not admit a generating
set satisfying Lemma 4.3, since it violates the property that the difference of
two roots is not a root. Furthermore, a pair of orthogonal roots do not span
G over Z, as can be easily verified. Hence, we have I1(Z7) = II in the G,
root system.

For the general case we consider roots «, f € II(Z1) and compare the
strings of roots

B—pra,...,0+qaell (IT) B—pa,...,f+quell
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they form in each system IT(Z") and II. The strings are given by the well
known Killing formula
2(a, )

(o, )

p—q=

Of course the right hand side of this formula is independent of the root
system. However, the p’s and ¢’s can be different in the two root systems.
Discarding G, there are the following possibilities:

1. {a, B) # 0 and the roots have the same length. In this case the Killing
numbers are 2(a, #)/(a, @) = 2(a, B)/(B3,3) = %1, and the subspace
spanned by a and  meets I1(Z") and II in an As-subsystem, Both
strings depend only of the subsystem, so that they are the same, re-
gardless the root system.

2. («, ) # 0, and the roots « and [ have different length ({5, 3)/(c, o) =
2 or 1/2). Again the strings are the same, since the subspace spanned

by « and  meets both IT (Z*) and II in the same By-subsystem.

3. (a, ) = 0, the subspace spanned by « and  meets the bigger root
system Il in a By-subsystem, and « and 3 are short roots. In this case
a £ (3 € II but, in principle, it may happen that o & (3 are not IT (Z).
This is the only possibility for the strings to be different.

With this preparation we can prove that
Lemma 4.5 II(Z") =1I.

Proof: It remains to check that II C II(Z"). This inclusion is proved by
induction as follows. Write the set {o € II : ¢, = +1} as {ay,...,an},
ordered in such a way that

)\al S S)\aN-
Then we show that o; € II(Z1) by induction on i. First, o is J-indecom-
posable, since \,, = min{\, : v € II}. Hence, oy € II(Z"). Next, given
i =1,...,N suppose by induction that «; € II(Z") for all j < i. We can
assume that «; is J -decomposable, otherwise «; is already in II (Z"). Then
«; = B+ witheg = ¢, = +1. There are indices j and % such that 8 = «; and
v = ag. Now, Ay, = Ag + Ay, hence j, k < 1, so by the inductive hypothesis
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both 3,7 € II(Z*). To prove that o; € II(Z1) we verify that the strings
of roots determined by 3 and v in IT and II(Z*) are the same. According
to the discussion above the only case to take care is when 3 £ v € II and
(B,7) = 0, that is, # and ~ are short roots in the Bj-subsystem given by
the intersection of II with the subspace spanned by  and 7. There are the
possibilities:

1. eg—y = +1. Then f = (B —) + v is a J-decomposition, so that
Ag = Ag—y + Ay Hence A\g_, < Ag < Ay, and the inductive hypothesis
implies that 3 —y € II(ZT). Now,  — v and 7 have different length.
Hence the Killing formula implies that «; = 3 + v is also a root of
I (Z).

2. eg_y = —1, that is, e,_g = +1. Interchanging the roles of 5 and v we
also conclude that «; € 1 (Z7).

Since the strings are equal, it follows that «; € II(ZT), showing the in-
ductive step, and hence that IT(ZT) =II. O

We show next that the Coxeter graph of Wy, is connected.

Lemma 4.6 Suppose that B = By U By with By N By =0 and (u,v) =0 for
all w € By and v € By. Then either By or By is empty.

Proof: Let V; be the linear span of B;, t = 1,2. We have V =V, & V5 and
these subspaces are mutually orthogonal with respect to (-,-). Since Wy is
generated by the reflections with respect to the elements of B, it follows that

ﬁ:(Vmﬁ)u(VQQﬁ).

On the other hand, Z+ = pB, UpB, is a disjoint union of subsets orthogonal
with respect to the Cartan-Killing form in h*. Also, h* = PV, + PV, and PB;
spans PV;, 1 = 1,2. Hence, PV] is orthogonal to PV5, so that h* = PV, PV5.
Now, using the fact that I1 (Z*) = II, we conclude that

II=(PViNI)U (PVoNII).

However, we are assuming that g is simple, i.e., II is irreducible. Therefore,
either PV; or PV, = 0, implying that one of the subsets B; or B, is empty. [
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The classification of the irreducible affine Coxeter groups is well known
(see [10], [11]). In any one of them the radical of the corresponding quadratic
form (-,-) has dimension at most one:

dim{z e V:Vy eV, (z,y) =0} < 1.
Hence ker P < 1, so that dim V' = dim b or dim b + 1, proving that
Proposition 4.7 Either |I7| =dimb or |Z7| =dimb + 1.

As mentioned above, Z% is a simple system of roots in case |[Z7| = dim b,
forcing J to be equivalent to the standard éacs. On the other hand if |ZF| =
dimh + 1, Wy is a truly affine Coxeter group. The following description of
an affine group from a finite Weyl group is well known (see [10], [11]):

Proposition 4.8 In the space V' of the geometric realization of the affine
root system there are

1. a codimension 1 subspace U CV (U = §*),
2. a finite root system on U, denoted by IT1(V),
3. a simple system of roots X (V) C I1(V), and
4. a generator § of ker P (1-dimensional subspace complementing U)
such that the basis B = {vy,..., vy} is given by
B=X(V)U{d—pu}
where 1 is the highest root with respect to ¥ (V).

We are now in postion to piece together all the previous discussion and
arrive at the following characterization of the set of J-indecomposable roots.

Theorem 4.9 As before let ZT be the set of J-indecomposable roots « such
that e, = +1. Then there exists a simple system of roots ¥ C Il such that
either I+ =X or

It =2u{-u}

where (. is the highest root with respect to 3.
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Proof: 7+ = PB. Hence the theorem follows by the description of B in the
above proposition. L]

Remark: In the light of Lemma 4.3 the statement of the above theorem is
equivalent to the existence of a simple system of roots contained in Z*. In
fact, the only root v which satisfies (v, ) < 0 for all simple roots « is —p.
We were not able to prove directly — without the intervenience of the affine
Weyl groups — that Z* contains a simple system of roots. Nevertheless, we
note that the condition of Lemma 4.3 alone is not enough to ensure that a
set contains a simple system os roots, even if the set spans h*. For instance,
in a B root system, the set L given by the union of the set of long simple
roots with the lowest root spans h* and satisfies (o, ) < 0 for all o, f € L.
But there are no simple system of roots of B, contained in L since the roots
in L are long.

Definition 4.10 Keep fized a simple system of roots X with 11T the corre-
sponding set of positive roots. A subset M C I is said to be an abelian ideal
provided

1. M is abelian, that is, a + 3 is not a root if o, 3 € M.

2. One of the following equivalent conditions is satisfied.

(a) a+v €M ifa€ M and v € ¥ are such that o+ is a root.
(b) a+~ve€ M if o € M and v € II" are such that a + v is a root.

(¢) Suppose that there are simple roots oy, ..., a5 and o € M such
that B, = a+ay + -+ ax is a root for all k =1,...,s. Then
Br € M.

(d) Denote by 1 the highest positive root and suppose that there are
stmple roots au, ..., a5 such that o = p—ay —---—ag € M, and
B =p—ay—-+-—ay is a root forallk =1,...,s. Then B € M.

The equivalence of the conditions follow easily from the

Lemma 4.11 Let «, 3 be positive roots such that o+ 3 is a root. Then there
are simple roots au, . ..,a, such that f = a1 + - - - + a, and all intermediate
sums a+ay +---+ag, k=1,...,s, are roots.
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Proof: Follows by induction on the height of 3, the well known fact that
B is a consecutive sum of simple roots, and the following remark: If § =
31 + (B2 then either oo + 7 or aw + (3 is a root. In turn, this remark is a
consequence of the Jacobi identity. In fact,

0 7£ [gaagﬁ] = [gaa [gﬂlv gﬂ2” = [gaagﬁl]v gﬂz] + [9/5'17 [ga; 9,32”7

so that one of the terms on the right hand side must be # 0, implying that
either o + 31 or a + 33 is a root. ]

Now we are ready state the main result of this section establishing a
special form for (1, 2)-symplectic invariant almost Hermitian structures.

Theorem 4.12 Take a (1,2)-symplectic invariant pair (J,A), J = {e4},
A= (\,). Let ¥ be a simple system of J -indecomposable roots contained in
I%, as ensured by Theorem 4.5. Denote by IIT the set of positive roots and
by p the highest root. Put

M((J,Y)={aell" g, =—1}.
Then,

1. M (J,%) is an abelian ideal.
2. M(J,X)NE =0

3. Fora € M (J, %) suppose that « = p— oy — -+ - — as with oy, € ¥ and
p— p — - — g roots for all k=1,...,s. Then

Mo = A+ Aay + 0 + Aay

4. Let « € TIT\ M (J,X) be such that « = oy + -+ -+ a5 with a; + -+ -+ ag
roots for k =1,...,s. Then

Aa = Aay + 4 Aa,.

5. Take o € M (J,X) and let § € IIT be such that a + (3 is a root. Then
)\a+g = Ay + )\/3.
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Proof: Let « € M (J,X) and 3 € ¥ be such that o + § is a root. If
Eatp = +1 then f = (o + )+ (—a) is a J -decomposition of § contradicting
the fact that § is indecomposable. Hence o+ 3 € M (J,X) and the first of
the equivalent conditions of Definition 4.10 is satisfied. The expressions for
Ao follow easily from this condition and by successively adding a simple root,
where at each step a {1, 2}-triple is involved. Similarly, the last statement
follows from second condition in Definition 4.10.

To see the abelian property, take «, 3 € M (J,X) and suppose, by con-
tradiction that vy = o+ (3 is a root. Then v € M (J,X) so that {—v, «, 5} is
{1, 2}-triple, implying that A, = A\, + Ag. Hence A, > Ay, A contradicting
the expression in the last statement, which was already proved. Finally, by
construction M (J, %) does not meet X. O

Definition 4.13 We say that an iacs J satisfies the abelian ideal property
with repect to ¥ if M (J,X) is an abelian ideal such that M (J,X) N = (.
In this case J has the abelian ideal form or pattern with respect to X.

Remark: Notice that the cone of the invariant metrics A such that (J, A) is
(1, 2)-symplectic is (I + 1)-dimensional (I = dim ), unless in the Kéhler case
where J is the standard almost compex structure. In this the case metrics are
those of Borel type. Also, it is not hard to see that if M (J,X) is an abelian
ideal with M (J,X)NY = (), then the expressions given in above theorem for
A, indeed define a (1,2)-symplectic metric with respect to .J, showing that
J is (1,2)-admissible. In the next section this fact will be proved in another
way, by showing that J is affine if M (J,X) is an abelian ideal.

At this moment it is natural to ask whether the abelian ideal forms of
Theorem 4.12 determine the equivalence classes of the (1, 2)-symplectic struc-
tures under the W-action. Of course, equivalent structures can be put in the
same abelian ideal form. However, it is not true that two J; # J, satisfying
the abelian ideal property with respect to the same X are not equivalent.
Hence, the abelian ideal form is not a truly canonical form, in the sense that
equivalence classes are not determined by them. We discuss these facts in
Section 6, after we have established the correspondence between the (1,2)-
admissible zacs with the affine ones.

For later reference we explicitate the following fact.
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Proposition 4.14 Suppose that J satisfies the abelian ideal property with
respect to . Then Z(J) = X if M(J,X) = 0 and Z(J) = X U {—pu}

otherwise.

Proof: Let a« € IT"\ M (J,X). If a ¢ ¥ then v = f+ with 5,y > 0. Since
M (J,%) is an ideal, the sum a = 4 v is a J-decomposition, so that « is
decomposable. On the other hand, let & € M (J,X) \ {u}. Then oo = p — f3,
with 4 € IIT \ M (J,X), because M (J,) is abelian. Hence, o = p + (—f3)
is a J-decomposition, concluding the proof. L]

5 (1,2)-Symplectic are affine

It was indicated before how to associate with an alcove A an affine iacs
J (A). Also, in Theorem 3.3 we exhibited an invariant metric which is (1, 2)-
symplectic with respect to J (A). The purpose of this section is to prove
that this construction exhausts the totality of (1,2)-invariantly admissible
iacs. Starting with a(1,2)-admissible iacs J we find an alcove A such that
J = J(A). In finding A the metric does not show up, but only the fact that
J can be put in the abelian ideal form described in Theorem 4.12. Thus our
objective is to prove the following statement.

Theorem 5.1 Let J = {e,} be an invariant almost complex structure. Keep
fized a simple system of roots ¥ and assume that

M(J,Y)={a>0:¢, =—1}

is an abelian ideal. Then there exists an alcove A such that J = J (A).

Remark: In Theorem 4.12 we obtained that M (J,%) does not meet X.
However, the proof that J is affine if it has the abelian ideal form does not
require that M (J,X)NYE = 0.

The proof of the above theorem is based on the results of Shi [19] about
the coordinates of an alcove. These results were stated with a specific nor-
malization of our root system II, which is viewed as the set of co-roots of
another root system. B

Thus we start with a root system I normalized in such a way that (o, a) =
1 for all @ € II if it is simply-laced and (a, ) = 1 for the short roots
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otherwise. Given o € II, let a¥ = 2a/(a, @) be the corresponding co-root.
It is well known that the set IIV of co-roots of II is also a root system, and
vice-versa, any root system is the set of co-roots of another system. We view
our orginal root system II as a set of co-roots:

H:ﬁvz{av:<2a>:o¢€ﬁ}
o,

(e.g., if I = B, then II = C and vice-versa). If Il is simply-laced then
II = 211 and both systems are isomorphic. However, if the Dynkin diagram
of II has multiple edges then the long roots of II are the co-roots o with «
running through the short roots of Il and reciprocally.

Now, consider the affine system associated to II. The affine hyperplanes
are defined by

H ' k)y={z: (", 2=k} acll o’ ell,keZ

Given an alcove A and a root a € II there are integers ko = ko (4) such
that k, < (@Y,z) < ko + 1. These integers define the alcove A, but there
are redundancies in the inequalities, so that not every set of integers k, is
associated to an alcove. In fact, we have the following conditions.

Proposition 5.2 A set of integers k,, a € ﬁ*, form the coordinates of an
alcove if and only if for every pair of roots o, 3 € Il such that o+ 3 € 11, the
following inequilities hold:

ok + [BPhs +1 < o+ B (kass +1) (5)
< aka + |BPks + a2 + |82+ |a + B2 - 1.

Proof: See [19], Lemma 1.2 and Proposition 5.1. O

Now, recall the construction of the affine iacs J (A) = { (A)} associated
with the alcove A. We have ¢, = (—l)k"‘(A), hence in order to prove Theorem
5.1 it is enough to find, for the given iacs J = {e,}, a set of integers k,
satifying the inequalities (5) and such that e, = (—1)*. Therefore, we get
Theorem 5.1 as a consequence of the following construction.
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Proposition 5.3 Let J = {c,} be under the conditions of Theorem 5.1,
and, for a > 0, put

- OaagéM(J:E))ga:'i_]- (6)
=\ L ae M3, cq= 1.

Then the inequalities (5) are satisfied by the integers k. Here we are using
the convention kgv = kg, 3 € 11.

We shall prove this proposition in several steps. Consider first the case
where the diagram of IT is simply-laced, so that II = 2II and both root
systems are equivalent. This implies that for a, 8 € II, a+ 3 € Il if and only
if ¥ 4+ Y € II. Furthermore, for any such triple the inequalities (5) reduce
to

ka-i-kg-i-l Ska+5+1 Ska+/€5+2

Now, we consider the possibilities for k4, o > 0, which are defined in (6) by
means of the signs ,. We write (¢4,€8, £a4p) = (£ £ £):

1. (+++): Then, ky = kg = karp = 0, so that the inequalities are
1<1<2.

2. (++—). Then k, = kg =0 and k,ip =1, giving 1 <2 < 2.

3. (+ ——). Then k, =0, and kg = ko1p = 1, and we have 2 <2 < 3.

The signs (+ — +) are not considered since by assumption M (J, X) is an
ideal. Analogously, (— — —) and (— —+) do not show up by the abelian
property of M (J,X). This concludes the proof of Proposition 5.3 in the
simply-laced case.

For the other diagrams we postpone the analysis of G5 in order to simplify
some of the arguments. Hence, in the discussion to follow we assume that
la|> = 1 or 2 if @ € II. We emphasize that the inequalities (5) are written
in terms of triples of roots in IL. However, the definition of £, is based on
the ideal M (J,X) C II. Thus the first step consists in writing down the
inequalities in terms of roots in II. B

Each pair of inequalities is given by a triple (¢, 3, + ) of roots in II.
Writing [ for long root and s for short root, there are the possibilities: (s, s, s),
(I,1,1), (s,1,s) and (s,s,l). The case (,[, s) never occurs. In fact, in a root
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system the sum of two long roots is never a short root (just look at B, or Gy ).
Appart from G4 the only possibility for mixing [ and s is in a By-subsystem.

Now, we translate these possibilities into triples in II, by taking co-roots.
We arrive at the cases (1,1,1), (s, s, s), ({,s,1) and (1,1, s). In the first two cases
oY+ 3Y = (a+ B)". Hence they correspond to triple of roots (u,v,u + v) in
II. The other two cases do not correspond to such triples in II, but to triples
as follows: Given a triple (o, 5, a+ ) in II of the type (s,l,s), we have
oV +26Y = (a+ ()" and reciprocally, a triple (u, v, w) of the type (I, s,1) in
IT comes from (s,1,s) in 1L if u+ 20 = w. Analogously, (s, s,[) triples in Il
correspond to (1,1, s) triples (u,v,w) in II satisfying w = (u + v) /2.

Having established these correspondences we write down the possible in-
equalities using triples in II.

Proposition 5.4 Let II be a double-laced root system. A set of integers k.,
a € IIT, form the coordinates of an alcove if the following inequalities are
satisfied for the corresponding triples of roots in IIT:

1. Oé,ﬂ,a‘i‘ﬂ): (lalal) ka+kﬂ+1 Ska+ﬂ+1 Ska+kﬂ+2
a,B,a+ 03) = (s,s,5): 2ky +2kg+1 < 2koip+2 < 2ko + 2ks +5

(
3. (o, fya+208) = (1,8,1): ko +2kg+1 < korop+1<ky+2ks+3
4. (o, B, (a+ ) /2) = (I,1,5): ko + kg +1 < 2kaypy2+2 < ko + kg +3
Now, the values of k,, defined in Proposition 5.3 must be pluged into these
inequalities. Since k, is given by €,, we write the possibilities in terms of the
signs. In the first two cases only the signs (+++), (++ —) and (— + —)
appear, because M (J,Y) is an abelian ideal. The outcoming inequalities are
depicted in the following table.

T++ [++- [—+-
Il [1<1<2|1<2<2|2<2<3
sss|1<2<5|1<4<5|3<4<T7T

The other cases are described below.

e The case («, 5, +23) = (I,s,1). Take «, f € II* such that o + 20 €
IIT. Then g4 = +1. In fact, 5 = —1 entails o + § € M (J,X), but
then § 4 (a4 () is a sum of two roots in M (J,X), contradicting the
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assumption on this set. Analogously, the case ¢, = —1, eg = +1 and
Ea+23 = +1 does not occur. It remains only the following three cases,
with the correponding inequalities:

I (+4++);1<1<3.
2. (++-);1<2<3.
3. (—+—);2<2<4.

e The case (o, 3, (o + 3) /2) = (1,1, s). Take v and 3 positive roots such
that (o + ) /2 € 11 is a positive root. We can identify the intersection
of IT with the subspace spanned by a and  with the root system B,
whose positive roots are

{a1, ag, a1 + ag, a1 + 20, }.

The identification is in such a way that @ = «; and 8 = a1 + 2as.
Hence (o + ) /2 becomes ay + ay. Through this identification it is
easy to see that 8 = o+ (o + 3) /2. This implies that (44 g)/2 = +1 if
&g = +1.

On the other hand, €(445)2 = =1 if e, = €5 = —1. In fact, using the
identification with B, we see that (o + ) /2 = a+ay and (o + () /2 =
f—as. Hence (a + ) /2 is bigger than v or § depending if vy is positive
or negative in II. In both cases (4442 = +1 would contradict the fact
that M (J,X) is an ideal.

Therefore it remains only the following three cases, with the correpond-
ing inequalities:

L (+4++):1<2<
2. (—+—):2<4<4
3. (—=—):3<4<5s.

This concludes the proof of Proposition 5.3 (and hence of Theorem 5.1)
for the double-laced diagrams.
Now we consider Gy. Write its positive roots as

31 a1+ oy o)+ 209 a1 +3ay 20 + 3as.
2

28



Then the possible J such that M (J, %) is an abelian ideal are j’r ++ + +,
i ++ + -, i + 4+ — — and i + — — —. It is easily checked that these iacs
correspond to alcoves, either by using inequalities (5) or by drawing the set
of alcoves.

6 Equivalent (1,2)-symplectic zacs

In this section we look at the equivalence classes of (1, 2) -symplectic invariant
structures under the action of the Weyl group. Since any structure can be
put in abelian ideal form, it remains to determine when two invariant pairs
(J1,A1) and (J, Ao) satisfying the abelian ideal property with respect to the
same Y are equivalent. Thus we fix ¥ and check if there exists w € W
such that J, = w - J;. Having this in mind we develop here a formula for
M (w - J,¥) when both J and w - J satisfy the abelian ideal property with
respect to X.

Recall that w - J = {e,-1,} if J = {e,}. From this defining expres-
sion it follows immediately that a root « is J-decomposable if and only if
wta is (w - J)-decomposable. Hence, Z (w-J) = wZ (J). The following
proposition characterizes those w € W that do not destroy the abelian ideal
property.

Proposition 6.1 Fiz a simple system of roots ¥ and put ¥ = £ U {—u}.
Two invariant pairs (Ji, A1) and (Jo, Ny), having the abelian ideal form with
respect to ¥ are equivalent if and only (Jo, No) = (w - Jy, w - A1) withw € W
satisfying wy =Y.

Proof: By Proposition 4.14
T(1) = T(J) = (+5) U{%u}.

Moreover, Z (J2) = w'Z (J;). Hence, w and w™! map the subset (+X) U
{xu} onto itself. We claim that Z (J;) = Z7 (Jy) = ¥ U {—u} is also
invariant under w*!. In fact, put J; = {e.} and J, = {J,}. Since the
structures are in abelian ideal form, ¢, = 6, = +1 if « is simple. But
0o = Ew-1q and 4 = 0yq, S0 that w¥ C XU {—p} and w™ 'Y € XU {—u}.
Now, if w™!¥ C ¥, w = 1 and the claim follows. On the other hand, there
exists & € ¥ such that w™'a = —pu, that is, w (—p) = a, which means that

Y U {—p} is invariant under w, and hence under w™".
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Conversely, suppose ¥ U {—pu} is invariant under w*! € W. Then ¥; =
w™'Y is another choice of a simple system of roots within X U {—pu}. Hence,
by Theorem 4.12, J and w - J are in abelian ideal form with respect to both
Y and 21. ]

We denote by Wsg the subgroup of W leaving invariant . Due to the
bijection of W with the set of simple systems of roots, it is clear that Ws

is in bijection with the set of simple systems of roots contained in 3. These
systems are easily determined with the aid of the Coxeter graphs of the affine
Weyl groups (extended Dynkin diagrams). In fact, we have the following
characterization of the simple systems of roots contained in 3.

Lemma 6.2 A subset ¥, C X is a simple system of roots if and only if ¥,
15 a subgraph of the extended diagram equal to the Dynkin diagram of 3.

Proof: Clearly, the condition is necessary, since 3 is the extended diagram.
To prove sufficiency we must keep an eye at the extended Dynkin diagrams.
Since they are easily accessible from textbooks (see [9], page 503 or [10], page
96), we do not reproduce them here. The subgraphs ¥; which are isomorphic
to X are obtained by deleting from 3 either —u or a simple root in a subset
A C X. Checking the coefficients of p with respect to X (see [9], Table I,
page 477 or [10], page 98), one sees that the coefficient of each o € A is 1.
Take a positive root 0 = 2762 nyy, ny > 0. Ifao € A, ng =0o0r1
because n, is smaller than the coefficient of p with respect to . Now, it is
easy to see that [ is a linear combination of (X \ {a}) U {—u} with integer
coefficients m;, which are all > 0 if n, = 0 and < 0 if n, = 1. This implies
that (X \ {a}) U{—pu}, @ € A, is a simple system of roots. m

By inspecting the table of the extended diagrams we find the following
quantities of simple systems Y, C X:

X | A |B|C | D |Es|E;|Es |Gy | Fy
Welll+1]2[2]4]3]2[1]1]1

The numbers in this table are precisely the indices of connectivity of the
affine groups W,. This index is either the order of W, /W, or the order of

the subgroup of W, leaving invariant the basic alcove Aq (see [10], page 98).
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This suggests a relation between the latter subgroup and Ws. In fact, we
have the following construction: Let P be the open parallelepiped

P={rebhg:YVaeX 0<(a,z) <1}

Given w € W there exists exactly one p, € L such that tp,w (Ag) C P (see
[10], page 99), where ¢, is the affine translation by A.

Put ¥ = {oq...,} and let {wy,...,w;} be defined by (w;, ;) = d;;.
According to [10] (see page 99), p, = > aw; with a; = 0 if wta; > 0 and
a; = 1if wle; < 0. Given w € Wy, there is just one simple root, say «,,
such that w='a,, = —p. For the other roots o € ¥, w™la € X, so that
w™ta > 0. Hence, p, = w; if oy = a.

Lemma 6.3 Take w € Wys and o > 0. Then wta > 0 if and only if
{pw, ) =0, and wta < 0 if and only if {py,a) = 1.

Proof: The coefficient by, of i, in oo =3 55050 is (pu, ). As remarked
above, w € Wx implies that the coefficient of the highest root p in the di-
rection of a,, is 1 (see the proof of Lemma 6.2). Hence, (p,,a) = 0 or 1.
Note that w8 € X if 3 # ay, 8 € 3. Hence, if (py,, a) = 0 then wla is
a linear combination with positive integers of w™! (X \ {ay}) C X, so that
wta > 0. On the other hand, (p,,a) = 1, implies that w '« has the form
—p+~y with v a combination of w™ (X \ {a,}), with coefficients necessarily
smaller than the coefficients of u. Therefore, at least one of the coefficients
of wta is < 0, implying that wta < 0. H

The next lemma establishes a relationship between W5 and the subgroup
of W, leaving Aq invariant.

Lemma 6.4 If w € Wy then t, w(Ag) = Ao.

Proof: Take x € Ay and a positive root . Then (t, wz, o) = (py,, ) +
(z,w™'a). Suppose w™'a > 0. Then 0 < (z,w 'a) < 1, and by the above
lemma, (p,,a) = 0. Hence, 0 < (t, wz,o) <1, so that ¢, wr € Aj. Sim-
ilarly, —1 < (z,w'a) < 0 and (py,a) = 1 if wa < 0, concluding that
tp,wxr € Ay in each case. 0
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Remark: The above lemma becomes clear if one thinks of Ay as defining a
chamber of the geometric realization of the affine Weyl group. Since Wy is
the group of automorphisms of 5 , it leaves invariant the basic chamber.

Returning to the equivalence question, let J = J (A) be an affine iacs,
and assume that it satisfies the abelian ideal property of Theorem 4.12, with
M (J,%) the corresponding abelian ideal. By Theorem 5.1 (and Proposition
5.3) we can assume that the coordinates k, = k, (A), o > 0, of A are k, =0
ifag¢ M (J,X)and k, =1ifae M (J,X).

Fixing these notations we shall use the above lemmas to compute the
coordinates of the alcove p,wA for w € Wg. To this aim we note that
the hyperplanes separating Ay and A are H (o, 1), « € M (J,X). Applying
the affine map ¢, w, we see that the hyperplanes separating ¢, wA and
tp, WAy = Ay are

tpwwH (a,1) = H (wa, 1 + (wa, p,)),  a € M(JY). (7)
Lemma 6.5 Take w € W5 and o >0 . Then

( - 0 if wa>0
W& P! = 1 if wa < 0.

Proof: Let a; € ¥ be such that wa; = —p. We have a; = w! (—p), and
since w ' € Wg we conclude that the coefficient of p in the direction of «;
is 1. Clearly, wa > 0 if and only if (w;, ) = 0, because way € ¥ if k # j.
Now, w~te, = —u, so that no simple root «y satisfies woy, = «,,. This
means that the only possibility for wa to have nonzero coefficient in the di-
rection of «, , that is, to have (wa, p,) # 0 is when (w;, @) # 0. Therefore,
(way, py) = 0 if (wj, @) =0, i.e., if wa > 0. On the other hand, if (w;, a) # 0,
the only term which collaborates to the coefficient of «v, is wa; = —pu. Hence,
the coefficient of wa in the direction a, is —1, concluding the proof. []

By this lemma the hyperplanes given in (7) separating t, wA and Ay =
tp, WAy are rewritten as

H (wa,1) if wa>0

H (wa,0) if wa <0 @ € M(J,%). (8)

This implies the following expressions for the coordinates of ¢, wAy:
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Lemma 6.6 Keep the above notations. For 3 >0,

0 if B¢ +wM(J,X)
kg (tp,wAg) =< 1 if fewM(J,X)
-1 if fe —wM(J.X)

Proof: The hyperplanes separating t,, wAg and Ay have the form H (wa, k),
a€ M(J,X), k=0,1. Therefore, if § ¢ fwM (J, %) no hyperplane of the
form H (3, k) separates t,, wAy and Ay, implying that ks (t,,wAq) = 0. Now,
by (8), if f = wa >0, a € M (J,X), then H (3,1) is the only separating hy-
perplane orthogonal to (3, so that kg (t,, wAy) = 1. Finally, if § = —wa > 0,
the separating hyperplane is H (3,0) = H (wa, 0). ]

Now, we apply the following straighforward formula
kg (thA) = kg (A) + (A, 0)
to get the coordinates of the alcove wAj.

Lemma 6.7 Keep the above notations. For 3 >0,

0 if p¢ +twM (J,X) and (B, py)
-1 if B¢ xwM (J,X) and (5, py)
1 if fewM(J,X)

-2 if e —wM(J,X%)

0
1

k/g (’UJAO) =

Proof: The first two lines follow immediately from the previous lemma and
the above formula. The other two cases are consequences of Lemma 6.5. []

Finally we describe the abelian ideal corresponding to w - J if w € Wk
and J has the abelian ideal form with respect to X.

Proposition 6.8 Let J = J (A) be an affine iacs, satisfying the abelian ideal
property with respect to ¥, with M (J,X) the corresponding abelian ideal.
Take w € Ws. Then w - J has the abelian ideal property with respect to ¥,
and M (w - J,X) is

(wM (L)) u{pell” :w'f¢£M(J,X) and (3,p,) =1}
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Proof: By the above lemma this is the set which corresponds to odd k,. [

;From this expression for M (w - J,X) one is able to look at the abelian
ideals which represent the same equivalence class, and eventually find con-
venient canonical forms for the (1, 2) -symplectic invariant almost Hermitian
structures. We refrain ourselves to make here such a detailed analysis, but
look at the case of the standard iacs J. = {e.}, € = +1 if @ > 0, when
M (J,X) = 0. By Proposition 6.8, M (w - .J,X) is the set of positive roots
having nonzero coefficient in the direction of o, if w € Ws. For example, in
the A; series with root a;;, 1 <@ # j < n =1+ 1, any simple root o; ;1 is
oy for some w € Wx. Also, the set positive roots having coefficient in the
Qy = ;41 is the “rectangle” {a,s : 7 < 4,5 > i+ 1}. Any such rectangle
is a representative of the invariant Kahler structures. Note that they meet
the set simple roots, so that the standard iacs cannot be put in the abelian
ideal form of Theorem 4.12.

7 Classes of almost Hermitian structures

Following Grey and Hervella [8] the almost Hermitian structures are classi-
fied into sixteen classes, each one corresponding to an invariant subspace of
a representation of U (n), say on a space . This representation decomposes
into four irreducible components W = W; & Wy @ W3 & W,. The possible
combinations of these components (together with {0}) furnishes the different
classes of almost Hermitian structures. This correspondence respects inclu-
sion, since a class associated to an invariant subspace V; is contained in the
class associated to V5 if Vi C V5. We do not explain here the representation
W neither its irreducible components. We just follow the numbering in [8]
for the components, and their corresponding almost Hermitian classes. For
some of the classes we use their defining property. When this happens we
explicitate them. For instance, {0} corresponds to Kéhler metrics, W, & W,
to (1,2)-symplectic, and the co-symplectic class is given by Wi @& Wy & Wi.
As we shall see within the invariant almost Hermitian structures the six-
teen classes collapse down to these three ones, together with another class,
which includes every ¢acs but only some specific metrics, among them the
Cartan-Killing ones.

To start with recall that we proved in Corollary 2.5 that almost Kahler
structures are Kéhler. In the notation of [8] the almost Kihler structure
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correponds Ws, so that Wy ~ {0}.
The other cases require the Nijenhuis tensor N, which is defined by

%N(X,Y) = [JX,JY] = [X,Y] = J[X, JY] = J[JX,Y]. (9)

In the invariant context with J = {g,}, take roots o and . An easy com-
putation yields

1
—§N (Xo, X3) = Mmap (Eacs + 1 — cafatp — €8a+p) Xats- (10)

Lemma 7.1 Given three roots o, 8 and vy, (N (Xo, Xs),JX,), = 0 unless
a+ B+v=0. In this case,

1
—3 (N (Xa,X35),JX,) = iAyMmap (€acpey +ca+E5+¢5).

Proof: By (10), — (1/2) (N (Xa, X5),JX,), is

iXatsMa,p (Eafp +1 = Eafats — Escats) E1(Xass Xy)

which is zero unless v = — (o + ). Now, the formula in the lemma follows
because (Xo, X_o) =1 and e, = —g445. (]

With this lemma the Hermitian case, that is, when J is integrable, which
means /N = 0 is easily described. This case corresponds to W3 & Wj.

Proposition 7.2 Let J be an iacs such with N = 0. Then the set P = {« :
£q = +1} is a choice of positive roots with respect to some lexicographic order
in bi. Hence, if J is integrable, the pair (J,A) is Kdhler.

Proof: Take a,3 € P such that v = — (o« + f3) is a root. By the above
lemma we have e,ege, + €4 + €3 + ¢, = 0. This implies that ¢, = —1 if
€q = €3 = +1, so that e443 = +1. Therefore, P is closed under addition,
and since Il = P U —P, it follows that P is a choice of positive roots. []

It follows by the inclusion among the classes, that those corresponding to
W3 and W, are also Kahler.

Next, we go directly to the co-symplectic structures Wy & Wy @ Wy, which
will help to solve many other cases.
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Proposition 7.3 Every invariant pair (J,\) is co-symplectic.

Proof: By [8], Section 8, an almost Hermitian structure is co-symplectic if
and only if the form

1
2n—1

0(X) =

D (X, X, Y5) (11)

anihilates. Here {X;} is a basis of the tangent space and {Y;} is the dual basis
with respect to the nondegenerate form €2. In our case we take the basis to be
{Aq4,1Sq : a € ITT}. Tts dual is a multiple of {iS,, A, : @ € II"}. Plugging
these bases into (11), a straighforward computation shows that 6 (X) = 0 is
equivalent to

D (X, Xo, X_g) =0

a>0
for all X. But this is true because d€2 (X3, X,, X5) = 0 unless §+~v+6 =0,
so that for every root v, dQ2 (X, X4, X_o) = 0. ]

Proposition 7.4 In a co-symplectic almost Hermaitian manifold there are
the following equivalences: 1) Wy @ W3 = W1 @ W3 @ Wy, 2) Wi W, ~ Wy
3) Wl@WQ ~ W1®W2®W4,' 4) WQEBW?, ~ WQ@W;;@W;L,' 5) W3®W4 ~ W3,’
6) Wy Wy = Ws.

Proof: Is a direct consequence of Table I in [8]. When §Q2 = 0 the corre-
sponding defining conditions are the same. Note that in [8] the Kéhler form
is denoted by F'and the Nijenhuis tensor by S. []

Therefore, in our invariant setting the classes W5 & W, and W, & W, are
Kahler. Also, W@ W,@® W, is the same as (1, 2)-symplectic (W7 &W;). Next
we show that any invariant structure fall in the class Wo®Ws3 ~ Wo,dW3dWj.
Consider the tensor T'(X,Y, Z) = (N (X,Y),JZ),. The class corresponding
to the subspace Wy @ W3 @ W, is formed by the almost Hermitian structures
for which the symmetrizer G1" of 7' is zero.

Proposition 7.5 Every invariant structure is in Wy @ W3 & Wy.
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Proof: We must show that &7 = 0 for any invariant pair (J; A). By Lemma
7.1 it is enough to show that &1 (X,, X3, X,) = 0 when a + 3+ v = 0,
since these are the only triples of roots satisfying 1" (X,, X5, X,) # 0. In
view of the formula in Lemma 7.1 we must symmetrize only the component
Ay Mg 3, SINCE €456y + o + €5 + €4 1s already symmetric. Summing over the
permutations we have

MM, + AyMig o + AgMay + AaMpy + Ay 0 + Aamiyg =0

because mg, = —my¢. L]

Now, the defining condition for the class Wy & W5 ~ W, & W5 & W, is
the anihilation of the tensor (N (X,Y),X),. We compute it by looking at
the root vectors. Analogous to Lemma 7.1 we have (N (Xo, Xg),X,), =0
unless v + § + v = 0, and in this case

1
—3 (N (Xa, Xp), X5) )\ = MmMap(€agp + €acy +epey + 1)

In particular, (N (Xq, Xg),Xs), = 0 for every root o. Hence, for X =
Y @aXa We get

(N (X7 Xﬂ) ,X)A = Z ((N (XOHX/B) JX’Y)A + (N (XWX,S) JXa)A) . (12)
aFty
Now, —1 (N (Xa, X3), X)), + (N (X, Xp), Xq),) is
Mag ((Aa — Ag) (agp + gy + 564 + 1))

since Mg g = Mgy = My q if o+ B+ =0.

Lemma 7.6 A necessary and sufficient condition for the invariant pair (J, A)
to be in the class Wy @ Wy = W1 @ W3 @ Wy is: Ay = Ag = A, if {o, 8,7} is
a {0, 3} -triple.

Proof: For roots «, 3 and v with a+ 3+~ = 0, the sum ,65+c46,+e58,+1
is not zero if and only if {«, 3,7} is a {0, 3}-triple. Then the sufficiency of
the condition is immediate from the identity (12). On the other hand, it is
easy to see that the condition is necessary by computing (N (X,Y), X) with
X having the form X = X, + X3, o, 8 € 1L L]

The condition of this lemma implies the following existence of metrics.
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Proposition 7.7 Let J = {e,} be an iacs and denote by C (J) the subset
of roots v such that there exists a {0,3} -triple {«, 5,v} containing o. Let
A = {Ao} be an invariant metric such that A\, is constant on C (J). Then
the pair (J,A) is in the class Wi, & W3 = W, @ W3 @ W.

Proof: Follows immediately from the necessary and sufficient condition of
the above lemma. []

Notice that the Cartan-Killing metric is a particular case of A in this
proposition.

To complete our analysis of the invariant almost Hermitian structures
it remains only to look at the near Kdhler case W (which is equivalent to
Wy @ Wy). The class of near Kédhler structures ( 1)) is the intersection
of Wy & W, ((1,2) -symplectic) with Wy @ W3, which we have seen above.
Hence, the condition of Lemma 7.6 is necessary for a pair (J,A) to be near
Kéhler. We use this condition together with the abelian ideal form for the
(1,2)-symplectic strutures to show that any near Kéhler is actually Kéhler
in most of the maximal flag manifolds. First we note that the condition of
Lemma 7.6 can be restated by saying that if o and 3 are roots such that
a+ fis aroot, and g4 = €5 = +1, a4 = —1, then A\, = A\g = Aaqp. (cf.
[21], Theorem 9.17).

Let (J, A) be near Kihler. Then it is (1, 2)-symplectic, so there are ¥ and
IT* a simple system of roots and positive roots where has the abelian ideal
property with M (J,X) = {a > 0:¢, = —1}.

Lemma 7.8 Suppose that there are a, 3 € I\ M (J,X) such that o+ ( €
M (J,X) and B = By + [y with (3;, i = 1,2, positive roots. Then (J,A) is not
near Kdhler.

Proof: Suppose to the contrary that (J, A) is near Kéhler. Then A\, = Ag,
by Lemma 7.6. On the other hand, either o+ 3 or @+ 35 is a root (see the
proof of Lemma 4.11). Suppose, for instance, that o+ (3; is a root. We have
a+ 3= (a+p)+ P € M(J,X). Also, neither ) nor By are in M (J,¥),
because this set is an ideal and § ¢ M (J,X). Hence, {01, B2, —(} is a {1, 2}-
triple, so that Ag > Ag,, Ag,. Also, another aplication of Lemma 7.6 implies
that A\ots, = Ag,. Now, each possibility for €444, lead to a contradiction. In
fact, if €444, = +1 then {o, B, — (o + 1)} is a {1, 2}-triple so that

Ao < )\a+51 = )\/32 < )\5.
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Otherwise, if €443 = —1, Lemma 7.6 applied to o and (3, implies that
Ao = Ag, < Ag. Both cases contradict the fact that A\, = As. L

Corollary 7.9 Put

MY, . ={veM(J,Y):Jael;y—aecllt\ M (J,X)}.

min

Then (J,A) is not near Kdhler if there exists v € M (J,X)
h(y) > 2.

having height

min

Proof: Take v € M (J,X) . with h(y) > 2 and let & € ¥ be such that
f=v—aecll™\ M(J,X). Then h(5) > 2 so that 3 = 31 + (2 for some
pair of positive roots. Therefore oz and (3 are in the conditions of the lemma,
showing that (J, A) cannot be near Kéhler. O

Corollary 7.10 If (J,A) is near Kihler and M (J,X) # 0 then M (J,X)
contains every root o with h () =2, so that M (J,X) = {a > 0: h(a) > 2}.

The condition of this corollary is not satisfied in most of the root systems:

Lemma 7.11 The set I, = {a > 0 : h(«a) > 2} is an abelian ideal only in
the root systems Ay, | < 3, and Bs.

Proof: Appart from A;, [ < 3, and Bs, every Dynkin diagram contains one
of the root systems Ay, B3, C3, D, or G2 as a subdiagram. It is easy to
find in these low rank systems pairs of roots in I, whose sum is still a root.
Hence, in these root systems I is not abelian. Clearly, if a root system II
contains a subsystem such that the correponding I, is not abelian, then the
same holds to II. Finally, it is straighforward to check that I is an abelian
ideal in A;, [ < 3, and Bs, provig the lemma. L]

Now we are able to prove that for most of the root systems every invariant
near Kahler structure is Kahler.

Theorem 7.12 Any invariant near Kdhler structure is Kdhler if g is not
Ay. In A, there exists one equivalence class of iacs admitting a 1-parameter
family of near Kdhler metrics.
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Proof: Take a near Kéhler pair (J; A). Then it is (1, 2)-symplectic, so that
it can be put in canonical form. Clearly, (J,A) is Kéhler if and only if
M (J,%) = (). Hence, by Corollary 7.10 and the previous lemma it is enough
to look at A;, [ < 3, and B;. In the trivial case A;, there are only Kéhler
structures. As to As, its positive roots are aq, am, az, a + ao, as + a3 and
a1 +as+asz. By Corollary 7.10, £, = +1 if and only if o/ is a simple root. Now,
by Lemma 7.6, the near Kahler condition implies that A,, = Aa, = Aoyt
and Ay, = Aa; = Aayras- However, by the (1, 2)-symplectic property we must
have Ao ta; = Aas + Aoy +astas, leading to Ay, ta,4+as = 0, a contradiction.
Hence, there are no near Kéahler structures on As besides the Kéhler one.
Similarly, one checks in By that for the highest root a; + 29, Ay, 420, = 0 if
M (J,X) # 0.

Finally, in Ay we have J = {e,} with g4, = £,, = +1 and €4,44, = —1,
where «; and «s are the simple roots. This J together the one parameter
family of metrics Ao, = Aa, = Aqytay, give rise to near Kahler structures
which are not Kéhler. (]

Remark: The above determination of the near Kahler structures on [ gives
a partial proof of the following conjecture stated Wolf and Gray in [21] : Let
U/K be a homogeneous space of a compact Lie group U which is not Hermi-
tian symmetric and such that the isotropy K has maximal rank. Then there
are invariant almost Hermitian structures on U/K which are near Kéhler but
not Kéahler if and only if the isotropy subalgebra is the fixed point set of an
automorphism of order three. In fact, the unique flag manifold which is Her-
mitian symmetric is A;, while A; and A, are the only flag manifolds having
isotropy subalgebra as the fixed point set of an order three automorphism.

In summary we have the following classes of invariant almost Hermitian
structures on F:

1. Kahler: W, (near Kahler); Wy (almost Kéhler); W3; Wy; Wi & W,
(integrable); Wy & Wy and Wy & Wy.

2. (1,2)-symplectic (quasi-Kahler): W, & Wy, Wi & W, @ W,.

3. Invariant: W), & W, & W3 (co-symplectic); Wy @ Wy; Wy @ W3 @ Wy;
Wy @ Ws; Wi @ W3 @ W,. (The last two for specific metrics and every
iacs.)
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