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1 Introdution

Let g be a omplex semi-simple Lie algebra and onsider its maximal ag

manifold F = G=P where G is a omplex Lie group with Lie algebra g and

P a Borel (minimal paraboli) subgroup of G. For any maximal ompat

subgroup U of G we an write F = U=T where T � U is a maximal torus.

In this paper we study U -invariant almost Hermitian strutures on F. Suh

a struture is omposed of a pair (J;�) with J an invariant almost omplex

struture and � an invariant Riemannian metri.

It will beome lear at the end of the paper that the entral point is

a omplete understanding of the lass of (1; 2)-sympleti, or quasi-K�ahler

almost Hermitian strutures. Thus we spend most of the time disussing

these invariant strutures.

We use the abbreviation ias for invariant almost omplex struture. An

ias J is said to be (1; 2) -admissible if there exists a metri � suh that

the pair (J;�) is (1; 2)-sympleti. In this paper we give di�erent hara-

terizations of the (1; 2)-admissible ias. The speial ase of the A

l

series,

when g = sl (n; C ), and F is the manifold of omplete ags of subspaes of

C

n

, where onsidered by Cohen and the authors in [3℄ (see also [4℄), using

a method devised by Burstall and Salamon [2℄. This method takes advan-

tage of a natural bijetion between invariant almost omplex strutures and

tournaments. The ombinatoris of tournament theory were used in [3℄ to

derive a speial form for (1; 2)-admissible ias. With the aid of this form, the

one of the orresponding (1; 2)-sympleti metris were determined. Tour-

nament theory was also exploited in Mo and Negreiros [15℄, Negreiros [16℄

and Paredes [17℄.

In this paper we generalize the above mentioned results to arbitrary om-

plex semi-simple Lie algebras. Our methods here are ompletely di�erent.

Instead of tournament theory, we use diretly the geometrial ombinatoris

of root systems and their Weyl groups, obtaining independent proofs, when

speializing to the A

l

series.

In order to give an aount of our results let h � g be a Cartan subalgebra

and denote by � the set of roots of the pair (g; h). An invariant almost

omplex struture on F is given by an assignment � 2 � 7! "

�

2 f�1g,

with "

��

= �"

�

. Analogously, an invariant metri is given by �

�

> 0 with

�

��

= �

�

, � 2 �. Thus an invariant almost Hermitian struture is presribed

by a pair (f"

�

g; f�

�

g).

An easy omputation shows that a pair (f"

�

g; f�

�

g) is almost K�ahler
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(i.e., the fundamental K�ahler 2-form 
 is sympleti) if and only if the set

f� : "

�

= +1g orresponds to a hoie of positive roots in � (this implies,

in partiular that almost K�ahler strutures are K�ahler). By the well known

equivalene between the possible hoies of positive roots and Weyl hambers,

we arrive that the set of ias admitting an almost K�ahler metri is in one-

to-one orrespondene with the set Weyl hambers in h, whih in turn is in

bijetion with the Weyl group W.

In the attempt of �nding a similar geometri interpretation for the (1; 2)-

admissible ias we were lead to onsider the orresponding aÆne Weyl group,

and the set of aloves in h. With this in mind we �x a basi alove A

0

and

assoiate to an arbitrary alove A an invariant almost omplex struture

J (A) = f"

�

(A)g. The signs "

�

(A) are obtained by ounting mod2 the

number of hyperplanes f� (�) = k 2 Zg separating A and A

0

. We say that

an ias is aÆne if it has the type J (A) for some alove A.

The map A 7! J (A) turns out to be the desired geometri desription of

the (1; 2)-admissible ias. Indeed in Setion 3 we onstrut for any alove A

an invariant metri �, turning (J (A) ;�) into a (1; 2)-sympleti struture.

Thus the aÆne ias are (1; 2)-admissible. On the other hand most of our

e�orts in this paper are direted towards the proof that any (1; 2) -admissible

J is aÆne. To aomplish this we prove in Setion 4 a result whih has

independent interest, namely that for any (1; 2)-admissible J there exists

a hoie of positive roots �

+

suh that the set f� > 0 : "

�

= �1g is an

abelian ideal of �

+

. This very onvenient form generalizes the stair-shaped

inidene matries of tournaments appearing in [3℄ in onnetion with ias

in the ontext of the A

l

series.

In Setion 5 we prove that for a given (1; 2) -admissible J there exists

an alove A suh that J = J (A), losing the onnetion between (1; 2)-

sympleti strutures and the aÆne Weyl group. The tehnique here joins

together the results by Shi [19℄ { haraterizing the oordinates of an alove

{ with the abelian ideal form admitted by the (1; 2)-sympleti strutures.

The abelian ideal form nearly gives a anonial form for the (1; 2)-admissi-

ble ias, in the sense that every equivalene lass of ias is represented by

some J in this form, although some lasses admit more than one J . In Setion

6 we develop a formula relating two di�erent abelian ideals representing the

same equivalene lass of almost Hermitian strutures. Up to this setion the

aÆne ias enters only as an additional desription of the (1; 2)-sympleti

strutures. The analysis of the equivalene lasses is our �rst appliation of

the aÆne desription.
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Our primarily goal was the study of the (1; 2)-sympleti struutures,

seeking appliations to harmoni maps through a theorem by Gray and in-

dependently by Lihnerowiz, whih asserts that a holomorphi map from a

Riemann surfae whose target is a (1; 2)-sympleti almost Hermitian mani-

fold is automatially harmoni (see Gray [7℄, Lihnerowiz[14℄, Salamon [18℄).

However, having studied the (1; 2)-sympleti strutures we realized that in

the invariant setting on F the (1; 2)-sympleti is the main one among the

sixteen lasses of almost Hermitian manifolds. In fat, relying on Gray and

Hervella [8℄ we show in Setion 7 that these sixteen lasses ollapse down to

four lasses of invariant almost Hermitian strutures with three possibilities

for the ias. These are the K�ahler strutures, the (1; 2)-sympleti, the lass

of all invariant strutures and a fourth one (named W

1

�W

3

) whih inludes

every ias but only some spei� metris, among them the Cartan-Killing

ones. Most of the proofs in this setion are diret onsequenes of the de�ning

onditions for the lasses. The only ase whih is more involved, requiring

the results about the (1; 2) -sympleti strutures, is the proof that invariant

near K�ahler struutures are K�ahler if the Lie algebra is not A

2

.

In studing (1; 2)-sympleti strutures for the sl (n; C ) ase through tour-

naments it was onsidered in [3℄ the onept of one-free tournament. One

of the issues there was the proof that ias assoiated to suh tournaments

are (1; 2)-admissible. When stated in terms of roots the one-free property

an be generalized to a ondition on the rank three subsystems of the root

system. In this general ontext it is possible to prove that one-free ias are

aÆne, and thus (1; 2) -admissible. We do not prove this result here, leaving

it to a forthoming paper.

Now we disuss some links and forthoming perspetives to our work.

First, the interveniene of the aÆne Weyl group in the desription of the

(1; 2)-sympleti struutures suggest a relationship between them and the

aÆne Ka-Moody algebra and hene to the loop groups. Indeed it easy to

interpret the (1; 2)-sympleti strutures in terms of aÆne Lie algebras and

embeddings of the ag manifolds into loop groups. There are also relations

between (1; 2)-sympleti strutures and twistors theory (see Eells and Sala-

mon [6℄). We do not enter into these matters here, leaving them to another

opportunity.

The abelian ideals of �

+

(or the orresponding ideals of the Borel sub-

algebra) whih appear extensively in our results, were studied reently by

Kostant [13℄, onneting them with representation theory of Lie groups and

algebras. One of the results reported in [13℄ says that the set of abelian ideals
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is in bijetion with a subset of aloves, suggesting a lose relation with the in-

variant almost Hermitian strutures, in partiular with the (1; 2)-sympleti

ones.

In studing the lasses of invariant almost Hermitian strutures we arrived

inidentally at a partial proof of a onjeture by Wolf and Gray [21℄ (see

Conjeture 9.8), namely that a homogeneous spae U=K of a ompat Lie

group U whih is not a Hermitian symmetri spae, and suh that K has

maximal rank in U , admits a near K�ahler struture whih is not K�ahler if

and only if the isotropy subalgebra is the �xed point set of an automorphism

of order three. Our proof is partial in the sense that we onsider only the

maximal ag manifolds, that is, the ase when the isotropy subgroup is the

entralizer of a maximal torus of U . Further development of our methods to

other ag manifolds are in progress, and eventually will lead to a omplete

proof of that onjeture.

2 Flag manifolds

Throughout the paper we assume that the Lie algebra g is simple. There

is no loss of generality in this hypothesis, sine the full desription of our

objets in the semi-simple ase an be easily done by the deomposition the

Lie algebras into their simple ideals (f. [20℄, Proposition 4.9). Let G be a

omplex simple Lie group with Lie algebra g. Given a Cartan subalgebra of

g denote by � the set of roots of the pair (g; h), so that

g = h�

X

�2�

g

�

where g

�

= fX 2 g : 8H 2 h; [H;X℄ = � (H)Xg denotes the orre-

sponding one-dimensional root spae. The Cartan-Killing form hX; Y i =

tr (ad (X) ad (Y )) of g is nondegenerate on h. Given � 2 h

�

we let H

�

be

given by � (�) = hH

�

; �i, and denote by h

R

the subspae spanned over R by

H

�

, � 2 �. Aordingly h

�

R

stands for the real subspae of the dual h

�

spaned

by the roots.

We �x one and for all a Weyl basis of g whih amounts to give X

�

2

g

�

suh that hX

�

; X

��

i = 1, and [X

�

; X

�

℄ = m

�;�

X

�+�

with m

�;�

2 R,

m

��;��

= �m

�;�

and m

�;�

= 0 if � + � is not a root (see Helgason [9℄,

Chapter IX).
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Let �

+

� � be a hoie of positive roots, denote by � the orresponding

simple system of roots and put p = h �

P

�2�

+

g

�

for the Borel subalgebra

generated by �

+

. We view the maximal ag manifold F of g as the set of

subalgebras onjugate to p. Thus, F = G=P where P is the normalizer of p

in G. Here G is any omplex Lie group with Lie algebra g.

Let u be a ompat real form of g. We an take u to be the subspae

spanned by ih

R

and A

�

, iS

�

, � 2 �, where A

�

= X

�

� X

��

and S

�

=

X

�

+X

��

. Denote by U the ompat real form of G orresponding to u. By

the transitive ation of U on F we an write F = U=T where T = P \ U is a

maximal torus of U . The Lie algebra of T is the real subspae t = ih

R

.

Denote by b

0

the origin of F, viewed as a homogenous spae either of G

or of U . The tangent spae of F at b

0

identi�es naturally with the subspae

q = u	 t � u, spanned by A

�

, iS

�

, � 2 �. Analogously, the omplex tangent

spae of F is identi�ed to q

C

= g	h � g, spanned by the root spaes. Clearly,

the adjoint ation of T on g leaves q invariant.

2.1 Invariant metris

A U -invariant Riemannian metri ds

2

on F is ompletely determined by its

value at the origin, that is, by an inner produt (�; �) in q, whih is invari-

ant under the adjoint ation of T . Any suh inner produt has the form

(X; Y )

�

= �h�X; Y i with � : q ! q positive-de�nite with respet to the

Cartan-Killing form. The inner produt (�; �)

�

admits a natural extension to

a symmetri bilinear form on the omplexi�ation q

C

of q. We do not hange

notation for these objets in q and q

C

either for the bilinear form (�; �)

�

or for

the orresponding omplexi�ed map �. The T -invariane of (�; �)

�

is equiva-

lent to the elements of the standard basis A

�

, iS

�

, � 2 �, being eigenvetors

of �, for the same eigenvalue. Thus, in the omplex tangent spae we have

� (X

�

) = �

�

X

�

with �

�

> 0 and �

��

= �

�

.

We denote by ds

2

�

the invariant metri given by �. In the sequel we abuse

language and say that � itself is an invariant metri.

A speial lass of invariant metri is de�ned by hoosing H in the positive

Weyl hamber orresponding to �

+

and putting

�

H

= f�

�

= � (H) : � > 0g:

We say that suh a metri is of Borel type (see Borel [1℄). A Borel type

metri has the following intrinsi desription. Let � : iu 	 h

R

! u 	 ih

R

be
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given by � (X

�

) = �X

�

if � < 0 and � (X

�

) = X

�

if � > 0. Then an easy

omputation shows that

(X; Y )

�

H

= hH; [X; �Y ℄i X; Y 2 q:

(See Duistermmat, Kolk and Varadarajan [5℄.)

2.2 Invariant almost omplex strutures

A U -invariant almost omplex struture J

�

(abbreviated ias) on F is om-

pletely determined by its value J : q! q in the tangent spae at the origin.

The map J satis�es J

2

= �1 and ommutes with the adjoint ation of T

on q. We denote also by J its omplexi�ation to q

C

. The invariane of J

entails that J (g

�

) = g

�

for all � 2 �. The eigenvalues of J are �i and the

eigenvetors in q

C

are X

�

, � 2 �. Hene J (X

�

) = i"

�

X

�

with "

�

= �1

satisfying "

�

= �"

��

. As usual the eigenvetors assoiated to +i are said

to be of type (1; 0) while the �i-eigenvetors are of type (0; 1). Thus the

(1; 0) vetors are multiples of X

�

, "

�

= +1, and the (0; 1) multiples of X

�

,

"

�

= �1.

An ias on F is ompletely presribed by a set of signs f"

�

g

�2�

with

"

��

= �"

��

. In the sequel we abuse language and say that an invariant

almost omplex struture on F is J = f"

�

g.

Sine F is a homogeneous spae of a omplex Lie group it has a natural

struture of a omplex manifold. The assoiated integrable almost omplex

struture J



is given by "

�

= +1 if � < 0. The onjugate struture �J



is

also integrable.

2.3 Equivalent strutures

Let W be the Weyl group generated by the reetions with respet to the

roots � 2 �. It is well known that its ation on h

�

leaves � invariant. Also,

W is isomorphi to N

U

(h) =T , where N

U

(h) stands for the normalizer of h

in U . The group N

U

(h) ats on q

C

by permuting the root spaes. Therefore,

if J is an ias, wJw

�1

is also an ias if w is a representative of w in N

U

(h).

Clearly the two ias de�ned by J and wJw

�1

are equivalent in the sense

that one is obtained from the other by a bi-holomorphi map. Sine wJw

�1

depends only on w and not on the representative we have a well de�ned

ation of W on the set of ias. We denote this ation by w � J . An easy
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omputation shows that in terms of the signs "

�

, this ation is given by

w � J = w � f"

�

g = f"

w

�1

�

g:

Analogously, the Weyl group ats on the set of invariant metris by w�f�

�

g =

f�

w

�1

�

g. The two ations sum up to an ation on the set of invariant almost

Hermitian strutures, whih is denoted by w � (J;�) = (w � J; w � �).

In the sequel we say that w � J and w � � are equivalent to J and �,

respetively. Of ourse, equivalent ias as well equivalent invariant metris

share the same property. For instane if the pair (J;�) is (1; 2)-sympleti,

the same holds to w � (J;�). Also, the ias having the form w � J



, w 2 W,

are provenient of omplex strutures. We all these the standard ias.

2.4 K�ahler form

It is easy to see that any invariant metri ds

2

�

is almost Hermitian with

respet to J , that is, ds

2

�

(JX; JY ) = ds

2

�

(X; Y ) (f. [21℄, Setion 8, and

[15℄). Let 
 = 


J;�

stand for the orresponding K�ahler form


 (X; Y ) = ds

2

�

(X; JY ) = �h�X; JY i:

This form extends naturally to a U -invariant 2-form the omplexiation q

C

of q, whih we also denote by 
. Its value on the basi vetors are:


 (X

�

; X

�

) = �i�

�

"

�

hX

�

; X

�

i:

Sine hX

�

; X

�

i = 0 unless � = ��, 
 is not zero only on the pairs (X

�

; X

��

),

and 
 (X

�

; X

��

) = i�

�

"

�

. Relying on the invariane of 
 its exterior dif-

ferential is easily omputed from a standard formula: If X; Y; Z 2 q are

regarded as vetor �elds in F then d
 at the origin is given by

�

1

3

d
 (X; Y; Z) = �
 ([X; Y ℄; Z) + 
 ([X;Z℄; Y )� 
 ([Y; Z℄; X) (1)

(see Kobayashi-Nomizu [12℄).

Proposition 2.1 d
 (X

�

; X

�

; X



) is zero unless �+�+  = 0. In this ase

d
 (X

�

; X

�

; X



) = �i3m

�;�

("

�

�

�

+ "

�

�

�

+ "



�



) : (2)
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Proof: By the expression for the exterior derivative �

1

3

d
 (X

�

; X

�

; X



) is

�
 ([X

�

; X

�

℄; X



) + 
 ([X

�

; X



℄; X

�

)� 
 ([X

�

; X



℄; X

�

) :

Using that [X

Æ

; X

�

℄ = m

Æ;�

X

Æ+�

and the de�nition of 
 this expression be-

omes

�m

�;�

"



h�

�+�

X

�+�

; X



i+m

�;

"

�

h�

�+

X

�+

; X

�

i �m

�;

"

�

h�

�+

X

�+

; X

�

i:

Now, hX

Æ

; X

�

i 6= 0 if and only if Æ + � = 0. Hene this sum is not zero only

when � + � +  = 0. In this ase the it redues to

�m

�;�

"



�

�

+m

�;

"

�

�

��

�m

�;

"

�

�

��

beause hX

Æ

; X

�Æ

i = 1. But �+ � +  = 0 implies that

m

�;�

= m

�;

= m

;�

(see [9℄, Lemma III, 5.1). Sine m

�;

= �m

;�

, we get (2).

Remark: The above proposition provides an alternative of the omputation

of d
, di�erent from the proof of [15℄, whih uses the moving frame method

of Cartan.

Taking into aount the expression for d
 we make the following distin-

tion between the triples of roots.

De�nition 2.2 Let J = f"

�

g be an ias. A triple of roots �; �;  with � +

� +  = 0 is said to be

1. a f0; 3g-triple if "

�

= "

�

= "



, and

2. a f1; 2g-triple otherwise.

Reall that an almost Hermitian manifold is said to be (1; 2) -sympleti

(or quasi-K�ahler) if

d
 (X; Y; Z) = 0

when one of the vetors X; Y; Z is of type (1; 0) and the other two are of

type (0; 1).The struture is (2; 1)-sympleti if the roles of (1; 0) and (0; 1)

are interhanged. In our invariant ase, these two types of almost Hermitian

manifolds are equal. In fat, we have the following riteria for an invariant

pair (J;�) to be (1; 2)-sympleti, whih follows immediately from formula

(2), and the fat that X

�

is of type (1; 0) if "

�

= +1 and (0; 1) if "

�

= �1

(f. [21℄, Theorem 9.15).
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Proposition 2.3 The invariant pair (J = f"

�

g;� = f�

�

g) is (1; 2)-symple-

ti if and only if

"

�

�

�

+ "

�

�

�

+ "



�



= 0

for every f1; 2g-triple f�; �; g.

In the sequel we say that � is (1; 2)-sympleti with respet to J if the in-

variant pair (J;�) is (1; 2)-sympleti. Also, J is said to be (1; 2) -invariantly

admissible or simply (1; 2)-admissible if there exists � suh that the invariant

pair (J;�) is (1; 2)-sympleti.

Now, reall that an almost Hermitian manifold is said to be almost K�ahler

if 
 is sympleti, that is d
 = 0. Also, the manifold is K�ahler, if furthermore

J is integrable. By formula (2) there are no f0; 3g-triples for J if the invariant

pair (J;�) is almost K�ahler. In fat, d
 = 0 implies that "

�

�

�

+"

�

�

�

+"



�



=

0 when �+ � +  = 0. Hene a f0; 3g-triple would lead to �

�

+ �

�

+ �



= 0,

whih is impossible sine �

�

> 0. From this remark we an �nd the ias

taking part of an almost K�ahler struture.

Proposition 2.4 Suppose that the pair (J;�) is almost K�ahler. Then the

set P = f� : "

�

= +1g is a hoie of positive roots with respet to some

lexiographi order in h

�

R

.

Proof: Sine there are no f0; 3g-triples, the set P is losed, that is, �+� 2 P

if �; � 2 P and � + � is a root. Also, � = P [ (�P ). Now, it is well known

that these two properties imply that P is a hoie of positive roots.

Therefore, the ias of an invariant almost K�ahler struture are equivalent

to the standard ones, whih ome from omplex strutures on F. Note that

the set of these ias is in bijetion with the Weyl group or the set of Weyl

hambers in h

R

.

Corollary 2.5 An invariant almost Hermitian struture on F is almost

K�ahler if and only if it is K�ahler.

3 AÆne ias

We have seen above that the almost K�ahler (and K�ahler) strutures are in

bijetion with the set of Weyl hamber in h

R

. With the aim of desribing

10



the bigger lass of (1; 2)-sympleti strutures we onsider in this setion the

set of aloves, or equivalently, the aÆne Weyl group assoiated with the root

system �.

We refer to Humphreys [10℄ as a basi soure for the aÆne Weyl group.

Consider the subspae h

R

. To onform with the usual notation we often

identify h

R

with its dual h

�

R

and write hx; �i instead of � (x), x 2 h

R

, � 2 h

�

R

.

Given � 2 � and k 2 Z de�ne the aÆne hyperplane

H (�; k) = fx 2 h

R

: hx; �i = kg:

The aÆne Weyl group W

a

is the group of aÆne motions of h

R

generated by

the orthogonal reetions with respet to the hyperplanes H (�; k), � 2 �,

k 2 Z. It is well known that W

a

is the semi-diret produt of W by the

group of translations by elements of the lattie L = Z � �

_

spanned over Z

by the o-roots

�

_

== f�

_

=

2�

h�; �i

: � 2 �g:

(See [10℄, Proposition 4.2.) Another relevant group of aÆne motions is



W

a

,

whih is the semi-diret produt of W by the group of translations by the

lattie

b

L = fx 2 h

R

: 8� 2 �; h�; xi 2 Zg:

The omplement A of the set of of hyperplanes H (�; k), � 2 �, k 2 Z,

is the union its onneted omponents, eah one of them is an open simplex

alled alove. The aÆne group W

a

leaves invariant the union of the hyper-

planes H (�; k), � 2 �, k 2 Z, hene W

a

permutes the aloves. The ation

of W

a

on the set of aloves is free and transitive so that W

a

is in bijetion

with A. The group



W

a

also ats transitively on the set of aloves, but in

general not freely.

Given an alove A and a root �, there exists an integer k

�

= k

�

(A) suh

that

k

�

< hx; �i < k

�

+ 1:

Of ourse, k

�

= [� (x)℄ for any x 2 A where [a℄ denotes the integer part of

the real number a, that is, [a℄ is the the largest integer suh that a� [a℄ > 0.

Aording to Shi [19℄, the integers k

�

(A) are alled the oordinates of the

alove A. An alove is ompletely determined by its oordinates. However, it

is not true that an arbitrary set of integers k

�

, � 2 �, form the oordinates

of some alove. Neessary and suÆient onditions for k

�

, � 2 �, to be

11



the oordinates of an alove where determined in [19℄. We return to these

onditions in Setion 5 (see Proposition 5.2). For the moment we ontent

ourselves with the following neessary onditions, whih are easily obtained

from the de�nition:

1. k

��

= �k

�

� 1 and

2. either k



= k

�

+ k

�

or k



= k

�

+ k

�

+ 1 if  = � + �.

Now, with the aid of the oordinates of the aloves we introdue the

following lass of ias.

De�nition 3.1 Given an alove A with oordinates k

�

, the ias J (A) =

f"

�

(A)g is de�ned by "

�

(A) = (�1)

k

�

. We say that J is an aÆne ias if it

has the form J = J (A) for some alove A.

Note that J (A) is indeed an ias, sine k

��

= �k

�

�1, so that "

��

(A) =

�"

�

(A).

The de�nition of aÆne ias has the following useful geometri interpre-

tation: Giving a hoie of positive roots �

+

� �, one has the basi alove

A

0

= fx 2 h

R

: 8� > 0; 0 < hx; �i < 1g;

having oordinates k

�

= 0, � > 0. If A is another alove, and � 2 �

+

,

denote by q

�

(A) the number of hyperplanes of the form H (�; k) separating

A of A

0

. Sine � > 0, q

�

(A) = jk

�

(A)j. Therefore, (�1)

k

�

(A)

= (�1)

q

�

(A)

,

so that the number of separating hyperplanes determines J (A).

Before proeding we hek that the map A 7! J (A) whih de�nes the

aÆne ias is well behaved under the Weyl group ation.

Lemma 3.2 The map A 7! J (A) is equivariant with respet to the ation

of Weyl group W, that is J (wA) = w � J (A), w 2 W. Here wA is the

restrition to W of the ation of W

a

and w � f"

�

g = f"

w

�1

�

g is the W-ation

on the ias de�ned before.

Proof: Is immediate from the formula k

�

(wA) = k

w

�1

�

(A) whose proof is

straighforward.

The aÆne ias are intimately related to the (1; 2) -admissible ones. Atu-

ally, one of the main purposes of this paper is to prove that these two lasses

12



of ias oinide. We show next that aÆne ias are (1; 2)-admissible. This is

the easy part of the proof that these properties are equivalent. The onverse

will be seen in later setions and requires several steps.

Theorem 3.3 Let J = J (A) be an aÆne invariant omplex struture. Then

J is (1; 2)-invariantly admissible.

Proof: Let k

�

= k

�

(A) be the oordinates of A. Take x 2 A and de�ne the

invariant metri � = f�

�

g by

�

�

= "

�

(� (x)� k

�

) +

1� "

�

2

=

�

� (x)� k

�

if "

�

= +1

1� � (x) + k

�

if "

�

= �1:

Sine k

�

= [� (x)℄, it follows that �

�

> 0 for all �. Moreover, �

��

= �

�

is

a onsequene of "

��

= �"

�

and k

��

= �k

�

� 1. Hene � is a well de�ned

invariant metri. We laim that � is (1; 2) -sympleti with respet to J . To

prove this take roots �, � and  suh that � + � +  = 0. A straighforward

omputation shows that

"

�

�

�

+ "

�

�

�

+ "



�



=

"

�

+ "

�

+ "



� 3

2

� (k

�

+ k

�

+ k



) : (3)

By one of the neessary onditions satis�ed by the oordinates stated above,

k

�

= k

�

+ k

�

or k

�

+ k

�

+1. Hene k



= � (k

�

+ k

�

)� 1 or � (k

�

+ k

�

)� 2,

so that k



is determined by k

�

, k

�

and the mod2 osets of k

�

, k

�

and k



.

On the other hand, sine J is aÆne, "

Æ

= (�1)

k

Æ

for any root Æ. Therefore

k

�

+ k

�

+ k



is either �1 or �2 and we an deide by one of these values

as soon as we have ("

�

; "

�

; "



). With these remarks in mind we hek that

"

�

�

�

+"

�

�

�

+"



�



= 0 for the possible ("

�

; "

�

; "



) yielding f1; 2g-triples. We

list below the outomes:

1. ("

�

; "

�

; "



) = (+1;+1;�1).

"

�

+"

�

+"



�3

2

= �1; k

�

+ k

�

+ k



= �1.

2. ("

�

; "

�

; "



) = (+1;�1;+1).

"

�

+"

�

+"



�3

2

= �1; k

�

+ k

�

+ k



= �1.

3. ("

�

; "

�

; "



) = (+1;�1;�1).

"

�

+"

�

+"



�3

2

� 2; k

�

+ k

�

+ k



= �2.

4. ("

�

; "

�

; "



) = (�1;�1;+1).

"

�

+"

�

+"



�3

2

= �2; k

�

+ k

�

+ k



= �2.
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This onludes the proof that (J;�) is (1; 2)-sympleti.

We �nish this setion by proving a homomorphi property of the aÆne

ias whih might be useful in their future study.

Reall that the group



W

a

ats transitively on the set of aloves and is the

semi-diret produt of W by the group of translations de�ned by the lattie

b

L. Therefore, for every alove A there exists � 2

b

L and w 2 W suh that

A = t

�

wA

0

. Applying w

�1

to this equality, we get

w

�1

A =

�

w

�1

t

�

w

�

A

0

:

Now, w

�1

t

�

w = t

w

�1

�

, meaning that

b

L is stabilized byW. Hene every alove

is in the W -orbit of some alove obtained by translating the basi alove A

0

by an element of

b

L. Sine the map A 7! J (A) is equivariant, it follows that

every aÆne ias is equivalent to one of the form J (t

�

A

0

), � 2

b

L.

Lemma 3.4 Let � 2

b

L. Then, the oordinates of t

�

A

0

are k

�

= h�; �i if

� > 0. Aordingly, k

�

= h�; �i � 1 if � < 0.

Proof: Take x 2 A

0

. Then ht

�

x; �i = h�; �i + hx; �i, so that h�; �i <

ht

�

x; �i < h�; �i+ 1 if � > 0.

This lemma implies that k

�+�

= k

�

+ k

�

if �, � and � + � are positive

roots. Hene, J (t

�

A) beomes a homomorphism when restrited to n

+

, that

is, "

�+�

(t

�

A

0

) = "

�

(t

�

A

0

) "

�

(t

�

A

0

) if �; �; � + � 2 �

+

. Therefore, any

aÆne ias is equivalent to one satisfying this multipliative property on the

positive roots. We show next that this is also a suÆient ondition for an

ias to be aÆne.

Proposition 3.5 An ias J = f"

�

g is aÆne if and only if there exists a

hoie of positive roots �

+

suh that "

�+�

= "

�

"

�

when �; �; �+ � 2 �

+

. In

other words, the restrition of J to n

+

is a homomorphism.

Proof: It remains only to show that the multipliative property on the

positive roots imply that J is aÆne. For this we �nd � 2

b

L suh that

"

�

= (�1)

h�;�i

if � > 0. Sine "

�+�

= "

�

"

�

for positive roots, it is enough

to have "

�

i

= (�1)

h�;�

i

i

where � = f�

1

; : : : ; �

l

g is the orresponding set of

simple roots. Therefore the required � is given by � = a

1

!

1

+ � � � + a

l

!

l

,

where h�

i

; �

j

i = Æ

ij

and a

i

= 0 if "

i

= +1 and a

i

= 1 otherwise.
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4 Abelian ideals

In this setion we �nd a onvenient representation for the (1; 2)-admissible

ias, whih generalizes the stair-shaped form of the inidene matries of

tournaments appearing in the ontext of [3℄. We take a (1; 2)-admissible ias

J = f"

�

g and let � = f�

�

g be a orresponding invariant (1; 2)-sympleti

metri.

De�nition 4.1 A root � is said to be J-deomposable (or simply deompos-

able) if there are roots �;  suh that � = � +  with "

�

= "

�

= "



. The sum

� +  is a J-deomposition of �. A root is J -indeomposable otherwise.

Sine �� = (��) + (�) and "

��

= �"

�

, it is lear that �� are simul-

taneously deomposable or indeomposable. We denote by I (J) or simply

by I the set of J -indeomposable roots. In general, J-indeomposable roots

may not exist. However, the presene of the (1; 2)-sympleti metri � al-

lows a treatment of I analogous to the usual onstrution of a simple system

of roots. We start by noting that I 6= ;. In fat, let � = � +  be a J-

deomposition with "

�

= "

�

= "



. Then f��; �; g is a f1; 2g-triple. Sine

(J;�) is (1; 2)-sympleti we have �

�

= �

�

+ �



, so that �

�

> �

�

; �



. There-

fore, the roots Æ 2 � suh that

�

Æ

= minf�



:  2 �g

are J-indeomposable. We have further that I spans h

�

.

Lemma 4.2 Every root � an be written (possibly in a not unique way) as

� = �

1

+ � � �+ �

s

with �

i

2 I, and suh that "

�

= "

�

i

, i = 1; : : : ; s.

Proof: Supose that � is J-deomposable. Then � = � + . If � and  are

indeomposable the result follows. Otherwise, deompose � and  and so on.

At eah step �

�

= �

�

+ �



. Hene the values of � are stritly dereasing, so

that the suessive deompositions �nally ends. Also, at eah deomposition

� = � +  we have "

�

= "

�

= "



, implying the last statement.

Now, put

I

+

= f� 2 I : "

�

= +1g:
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Of ourse, I = I

+

[ I

�

if I

�

= �I

+

= f� 2 I : "

�

= �1g. Sine I spans

h

�

, it follows that I

+

also spans h

�

. Atually, the above lemma ensures that

for an arbitrary root �, we have

� = "

�

(�

1

+ � � �+ �

s

) : (4)

with �

i

2 I

+

.

Soon it will beome lear that in general I

+

is not a basis of h

�

. However,

when this happens, that is, when jI

+

j = dimh, the above lemma implies that

I

+

is a simple system of roots and J is equivalent to the standard ias J



so

that (J;�) is K�ahler. In any ase I

+

shares with the simple systems of roots

the following useful property.

Lemma 4.3 Let �; � 2 I

+

. Then ��� is not a root. Therefore, h�; �i � 0

if �; � 2 I

+

, � 6= �.

Proof: Suppose that � � � =  2 �. If "



= +1 , we have the J-

deomposition � = � + . On the other hand there is the deomposition

� = � + (�) if "



= �1, leading to a ontradition. The last statement is

a onsequene of the Killing formula for the strings of roots.

In order to understand the set I

+

we make the following onstrution.

Write

I

+

= f�

1

; : : : ; �

m

g

where m = jI

+

j and let V be an m-dimensional vetor spae with basis

B = fv

1

; : : : ; v

m

g. The bijetion v

i

2 B $ �

i

2 I

+

, indues an onto linear

map P : V ! h

�

. De�ne the symmetri bilinear form (x; y) = hPx; Pyi,

x; y 2 V . Sine the Cartan-Killing form is positive de�nite on h

�

, we have

kerP = fx 2 V : 8y 2 V; (x; y) = 0g:

Also, (x; x) = hPx; Pxi � 0 so that (�; �) is positive semi-de�nite, and satis�es

(u; u) > 0 for u 2 B.

Now, let W

V

be the group generated by the reetions

s

i

(x) = x�

2 (x; v

i

)

(v

i

; v

i

)

v

i

x 2 V;
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with respet to the basi elements v

i

2 B. Aording to [10℄, Setions 5.3

and 5.4, W

V

is the geometri representation of the Coxeter group de�ned by

the Killing-Cartan integers

2 (v

i

; v

j

)

(v

i

; v

i

)

=

2h�

i

; �

j

i

h�

i

; �

i

i

:

Note that by Lemma 4.3 above these integers form a generalized Cartan

matrix, so that they indeed de�ne a Coxeter group. Sine the form (�; �) is

positive semi-de�nite, W

V

is a Coxeter group of aÆne type. Reall that the

root system of W

V

is de�ned to be the set

b

� = fbw (u) : u 2 B; bw 2 W

V

g:

The projetion P (

b

�) is the root system in h

�

generated by I

+

. We denote

it by � (I

+

).

Lemma 4.4 � (I

+

) � �.

Proof: De�ne the reetions r

i

(�) = �� (2h�; �

i

i=h�

i

; �

i

i)�

i

with respet

to the roots in I

+

. A simple omputation shows that P Æ s

i

= r

i

ÆP , so that

for every bw 2 W

V

there exists w 2 W suh that P Æ bw = w Æ P . Hene, for

any u 2

b

�, Pu has the form w�, for some w 2 W and � 2 I

+

, showing that

Pu 2 �.

Our next objetive is to prove the reverse inlusion, ensuring that � =

� (I

+

). For this we onsider the ase of G

2

separetely with the aim of

simplifying some of the arguments envolving multiple-laed diagrams.

Regarding G

2

, its proper subsystems are 1) the set of short roots, 2) the

set of long roots, both isomorphi to A

2

, and 3) the reduible ones, omposed

of two orthogonal roots. None of these subsystems an be � (I

+

). In fat,

the long roots do not span G

2

over Z, as is the ase with � (I

+

), whih spans

�. On the other hand, the set of short roots does not admit a generating

set satisfying Lemma 4.3, sine it violates the property that the di�erene of

two roots is not a root. Furthermore, a pair of orthogonal roots do not span

G

2

over Z, as an be easily veri�ed. Hene, we have � (I

+

) = � in the G

2

root system.

For the general ase we onsider roots �; � 2 � (I

+

) and ompare the

strings of roots

� � p

I

�; : : : ; � + q

I

� 2 �

�

I

+

�

� � p�; : : : ; � + q� 2 �
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they form in eah system � (I

+

) and �. The strings are given by the well

known Killing formula

p� q =

2h�; �i

h�; �i

:

Of ourse the right hand side of this formula is independent of the root

system. However, the p's and q's an be di�erent in the two root systems.

Disarding G

2

, there are the following possibilities:

1. h�; �i 6= 0 and the roots have the same length. In this ase the Killing

numbers are 2h�; �i=h�; �i = 2h�; �i=h�; �i = �1, and the subspae

spanned by � and � meets � (I

+

) and � in an A

2

-subsystem, Both

strings depend only of the subsystem, so that they are the same, re-

gardless the root system.

2. h�; �i 6= 0, and the roots � and � have di�erent length (h�; �i=h�; �i =

2 or 1=2). Again the strings are the same, sine the subspae spanned

by � and � meets both � (I

+

) and � in the same B

2

-subsystem.

3. h�; �i = 0, the subspae spanned by � and � meets the bigger root

system � in a B

2

-subsystem, and � and � are short roots. In this ase

�� � 2 � but, in priniple, it may happen that �� � are not � (I

+

).

This is the only possibility for the strings to be di�erent.

With this preparation we an prove that

Lemma 4.5 � (I

+

) = �.

Proof: It remains to hek that � � � (I

+

). This inlusion is proved by

indution as follows. Write the set f� 2 � : "

�

= +1g as f�

1

; : : : ; �

N

g,

ordered in suh a way that

�

�

1

� � � � � �

�

N

:

Then we show that �

i

2 � (I

+

) by indution on i. First, �

1

is J-indeom-

posable, sine �

�

1

= minf�



:  2 �g. Hene, �

1

2 � (I

+

). Next, given

i = 1; : : : ; N suppose by indution that �

j

2 � (I

+

) for all j < i. We an

assume that �

i

is J -deomposable, otherwise �

i

is already in � (I

+

). Then

�

i

= �+ with "

�

= "



= +1. There are indies j and k suh that � = �

j

and

 = �

k

. Now, �

�

i

= �

�

+ �



, hene j; k < i, so by the indutive hypothesis
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both �;  2 � (I

+

). To prove that �

i

2 � (I

+

) we verify that the strings

of roots determined by � and  in � and � (I

+

) are the same. Aording

to the disussion above the only ase to take are is when � �  2 � and

h�; i = 0, that is, � and  are short roots in the B

2

-subsystem given by

the intersetion of � with the subspae spanned by � and . There are the

possibilities:

1. "

��

= +1. Then � = (� � ) +  is a J-deomposition, so that

�

�

= �

��

+ �



. Hene �

��

< �

�

< �

�

i

, and the indutive hypothesis

implies that � �  2 � (I

+

). Now, � �  and  have di�erent length.

Hene the Killing formula implies that �

i

= � +  is also a root of

� (I

+

).

2. "

��

= �1, that is, "

��

= +1. Interhanging the roles of � and  we

also onlude that �

i

2 � (I

+

).

Sine the strings are equal, it follows that �

i

2 � (I

+

), showing the in-

dutive step, and hene that � (I

+

) = �.

We show next that the Coxeter graph of W

V

is onneted.

Lemma 4.6 Suppose that B = B

1

[ B

2

with B

1

\ B

2

= ; and (u; v) = 0 for

all u 2 B

1

and v 2 B

2

. Then either B

1

or B

2

is empty.

Proof: Let V

i

be the linear span of B

i

, i = 1; 2. We have V = V

1

� V

2

and

these subspaes are mutually orthogonal with respet to (�; �). Sine W

V

is

generated by the reetions with respet to the elements of B, it follows that

b

� =

�

V

1

\

b

�

�

[

�

V

2

\

b

�

�

:

On the other hand, I

+

= pB

1

[ pB

2

is a disjoint union of subsets orthogonal

with respet to the Cartan-Killing form in h

�

. Also, h

�

= PV

1

+PV

2

and PB

i

spans PV

i

, i = 1; 2. Hene, PV

1

is orthogonal to PV

2

, so that h

�

= PV

1

�PV

2

.

Now, using the fat that � (I

+

) = �, we onlude that

� = (PV

1

\ �) [ (PV

2

\ �) :

However, we are assuming that g is simple, i.e., � is irreduible. Therefore,

either PV

1

or PV

2

= 0, implying that one of the subsets B

1

or B

2

is empty.
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The lassi�ation of the irreduible aÆne Coxeter groups is well known

(see [10℄, [11℄). In any one of them the radial of the orresponding quadrati

form (�; �) has dimension at most one:

dimfx 2 V : 8y 2 V; (x; y) = 0g � 1:

Hene kerP � 1, so that dimV = dimh or dimh+ 1, proving that

Proposition 4.7 Either jI

+

j = dim h or jI

+

j = dim h+ 1.

As mentioned above, I

+

is a simple system of roots in ase jI

+

j = dim h,

foring J to be equivalent to the standard ias. On the other hand if jI

+

j =

dimh + 1, W

V

is a truly aÆne Coxeter group. The following desription of

an aÆne group from a �nite Weyl group is well known (see [10℄, [11℄):

Proposition 4.8 In the spae V of the geometri realization of the aÆne

root system there are

1. a odimension 1 subspae U � V (U � h

�

),

2. a �nite root system on U , denoted by � (V ),

3. a simple system of roots � (V ) � � (V ), and

4. a generator Æ of kerP (1-dimensional subspae omplementing U)

suh that the basis B = fv

1

; : : : ; v

m

g is given by

B = � (V ) [ fÆ � �g

where � is the highest root with respet to � (V ).

We are now in postion to piee together all the previous disussion and

arrive at the following haraterization of the set of J-indeomposable roots.

Theorem 4.9 As before let I

+

be the set of J-indeomposable roots � suh

that "

�

= +1. Then there exists a simple system of roots � � � suh that

either I

+

= � or

I

+

= � [ f��g

where � is the highest root with respet to �.
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Proof: I

+

= PB. Hene the theorem follows by the desription of B in the

above proposition.

Remark: In the light of Lemma 4.3 the statement of the above theorem is

equivalent to the existene of a simple system of roots ontained in I

+

. In

fat, the only root  whih satis�es h; �i � 0 for all simple roots � is ��.

We were not able to prove diretly { without the interveniene of the aÆne

Weyl groups { that I

+

ontains a simple system of roots. Nevertheless, we

note that the ondition of Lemma 4.3 alone is not enough to ensure that a

set ontains a simple system os roots, even if the set spans h

�

. For instane,

in a B

l

root system, the set L given by the union of the set of long simple

roots with the lowest root spans h

�

and satis�es h�; �i � 0 for all �; � 2 L.

But there are no simple system of roots of B

l

ontained in L sine the roots

in L are long.

De�nition 4.10 Keep �xed a simple system of roots � with �

+

the orre-

sponding set of positive roots. A subset M � �

+

is said to be an abelian ideal

provided

1. M is abelian, that is, � + � is not a root if �; � 2M .

2. One of the following equivalent onditions is satis�ed.

(a) � +  2M if � 2M and  2 � are suh that � +  is a root.

(b) � +  2M if � 2M and  2 �

+

are suh that � +  is a root.

() Suppose that there are simple roots �

1

; : : : ; �

s

and � 2 M suh

that �

k

= � + �

1

+ � � � + �

k

is a root for all k = 1; : : : ; s. Then

�

k

2M .

(d) Denote by � the highest positive root and suppose that there are

simple roots �

1

; : : : ; �

s

suh that � = �� �

1

� � � � � �

s

2M , and

�

k

= ���

1

�� � ���

k

is a root for all k = 1; : : : ; s. Then �

k

2M .

The equivalene of the onditions follow easily from the

Lemma 4.11 Let �; � be positive roots suh that �+� is a root. Then there

are simple roots �

1

; : : : ; �

s

suh that � = �

1

+ � � �+ �

s

and all intermediate

sums � + �

1

+ � � �+ �

k

, k = 1; : : : ; s, are roots.
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Proof: Follows by indution on the height of �, the well known fat that

� is a onseutive sum of simple roots, and the following remark: If � =

�

1

+ �

2

then either � + �

1

or � + �

2

is a root. In turn, this remark is a

onsequene of the Jaobi identity. In fat,

0 6= [g

�

; g

�

℄ = [g

�

; [g

�

1

; g

�

2

℄℄ = [g

�

; g

�

1

℄; g

�

2

℄ + [g

�

1

; [g

�

; g

�

2

℄℄;

so that one of the terms on the right hand side must be 6= 0, implying that

either � + �

1

or � + �

2

is a root.

Now we are ready state the main result of this setion establishing a

speial form for (1; 2)-sympleti invariant almost Hermitian strutures.

Theorem 4.12 Take a (1; 2)-sympleti invariant pair (J;�), J = f"

�

g,

� = (�

a

). Let � be a simple system of J -indeomposable roots ontained in

I

+

, as ensured by Theorem 4.5. Denote by �

+

the set of positive roots and

by � the highest root. Put

M (J;�) = f� 2 �

+

: "

�

= �1g:

Then,

1. M (J;�) is an abelian ideal.

2. M (J;�) \ � = ;.

3. For � 2M (J;�) suppose that � = �� �

1

� � � � � �

s

with �

k

2 � and

�� �

1

� � � � � �

k

roots for all k = 1; : : : ; s. Then

�

�

= �

�

+ �

�

1

+ � � �+ �

�

s

:

4. Let � 2 �

+

nM (J;�) be suh that � = �

1

+ � � �+�

s

with �

1

+ � � �+�

k

roots for k = 1; : : : ; s. Then

�

�

= �

�

1

+ � � �+ �

�

s

:

5. Take � 2 M (J;�) and let � 2 �

+

be suh that � + � is a root. Then

�

�+�

= �

�

+ �

�

.
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Proof: Let � 2 M (J;�) and � 2 � be suh that � + � is a root. If

"

�+�

= +1 then � = (� + �)+(��) is a J -deomposition of � ontraditing

the fat that � is indeomposable. Hene � + � 2 M (J;�) and the �rst of

the equivalent onditions of De�nition 4.10 is satis�ed. The expressions for

�

�

follow easily from this ondition and by suessively adding a simple root,

where at eah step a f1; 2g-triple is involved. Similarly, the last statement

follows from seond ondition in De�nition 4.10.

To see the abelian property, take �; � 2 M (J;�) and suppose, by on-

tradition that  = �+ � is a root. Then  2M (J;�) so that f�; �; �g is

f1; 2g-triple, implying that �



= �

�

+ �

�

. Hene �



> �

�

; �

�

ontraditing

the expression in the last statement, whih was already proved. Finally, by

onstrution M (J;�) does not meet �.

De�nition 4.13 We say that an ias J satis�es the abelian ideal property

with repet to � if M (J;�) is an abelian ideal suh that M (J;�) \ � = ;.

In this ase J has the abelian ideal form or pattern with respet to �.

Remark: Notie that the one of the invariant metris � suh that (J;�) is

(1; 2)-sympleti is (l + 1)-dimensional (l = dimh), unless in the K�ahler ase

where J is the standard almost ompex struture. In this the ase metris are

those of Borel type. Also, it is not hard to see that if M (J;�) is an abelian

ideal withM (J;�)\� = ; , then the expressions given in above theorem for

�, indeed de�ne a (1; 2)-sympleti metri with respet to J , showing that

J is (1; 2)-admissible. In the next setion this fat will be proved in another

way, by showing that J is aÆne if M (J;�) is an abelian ideal.

At this moment it is natural to ask whether the abelian ideal forms of

Theorem 4.12 determine the equivalene lasses of the (1; 2)-sympleti stru-

tures under theW-ation. Of ourse, equivalent strutures an be put in the

same abelian ideal form. However, it is not true that two J

1

6= J

2

satisfying

the abelian ideal property with respet to the same � are not equivalent.

Hene, the abelian ideal form is not a truly anonial form, in the sense that

equivalene lasses are not determined by them. We disuss these fats in

Setion 6, after we have established the orrespondene between the (1; 2)-

admissible ias with the aÆne ones.

For later referene we expliitate the following fat.
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Proposition 4.14 Suppose that J satis�es the abelian ideal property with

respet to �. Then I (J) = � if M (J;�) = ; and I (J) = � [ f��g

otherwise.

Proof: Let � 2 �

+

nM (J;�). If � =2 � then � = �+ with �;  > 0. Sine

M (J;�) is an ideal, the sum � = � +  is a J-deomposition, so that � is

deomposable. On the other hand, let � 2M (J;�) n f�g. Then � = �� �,

with � 2 �

+

nM (J;�), beause M (J;�) is abelian. Hene, � = � + (��)

is a J-deomposition, onluding the proof.

5 (1; 2)-Sympleti are aÆne

It was indiated before how to assoiate with an alove A an aÆne ias

J (A). Also, in Theorem 3.3 we exhibited an invariant metri whih is (1; 2)-

sympleti with respet to J (A). The purpose of this setion is to prove

that this onstrution exhausts the totality of (1; 2)-invariantly admissible

ias. Starting with a(1; 2)-admissible ias J we �nd an alove A suh that

J = J (A). In �nding A the metri does not show up, but only the fat that

J an be put in the abelian ideal form desribed in Theorem 4.12. Thus our

objetive is to prove the following statement.

Theorem 5.1 Let J = f"

�

g be an invariant almost omplex struture. Keep

�xed a simple system of roots � and assume that

M (J;�) = f� > 0 : "

�

= �1g

is an abelian ideal. Then there exists an alove A suh that J = J (A).

Remark: In Theorem 4.12 we obtained that M (J;�) does not meet �.

However, the proof that J is aÆne if it has the abelian ideal form does not

require that M (J;�) \ � = ;.

The proof of the above theorem is based on the results of Shi [19℄ about

the oordinates of an alove. These results were stated with a spei� nor-

malization of our root system �, whih is viewed as the set of o-roots of

another root system.

Thus we start with a root system

e

� normalized in suh a way that h�; �i =

1 for all � 2

e

� if it is simply-laed and h�; �i = 1 for the short roots
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otherwise. Given � 2

e

�, let �

_

= 2�=h�; �i be the orresponding o-root.

It is well known that the set

e

�

_

of o-roots of

e

� is also a root system, and

vie-versa, any root system is the set of o-roots of another system. We view

our orginal root system � as a set of o-roots:

� =

e

�

_

= f�

_

=

2�

h�; �i

: � 2

e

�g

(e.g., if � = B

l

then

e

� = C

l

and vie-versa). If

e

� is simply-laed then

� = 2

e

� and both systems are isomorphi. However, if the Dynkin diagram

of

e

� has multiple edges then the long roots of � are the o-roots �

_

with �

running through the short roots of

e

� and reiproally.

Now, onsider the aÆne system assoiated to �. The aÆne hyperplanes

are de�ned by

H (�

_

; k) = fx : h�

_

; xi = kg � 2

e

�; �

_

2 �; k 2 Z:

Given an alove A and a root � 2

e

� there are integers k

�

= k

�

(A) suh

that k

�

< h�

_

; xi < k

�

+ 1. These integers de�ne the alove A, but there

are redundanies in the inequalities, so that not every set of integers k

�

is

assoiated to an alove. In fat, we have the following onditions.

Proposition 5.2 A set of integers k

�

, � 2

e

�

+

, form the oordinates of an

alove if and only if for every pair of roots �; � 2

e

� suh that �+� 2

e

�, the

following inequilities hold:

j�j

2

k

�

+ j�j

2

k

�

+ 1 � j� + �j

2

(k

�+�

+ 1)

� j�j

2

k

�

+ j�j

2

k

�

+ j�j

2

+ j�j

2

+ j� + �j

2

� 1:

(5)

Proof: See [19℄, Lemma 1.2 and Proposition 5.1.

Now, reall the onstrution of the aÆne ias J (A) = f" (A)g assoiated

with the alove A. We have "

�

= (�1)

k

�

(A)

, hene in order to prove Theorem

5.1 it is enough to �nd, for the given ias J = f"

�

g, a set of integers k

�

satifying the inequalities (5) and suh that "

�

= (�1)

k

�

. Therefore, we get

Theorem 5.1 as a onsequene of the following onstrution.
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Proposition 5.3 Let J = f"

�

g be under the onditions of Theorem 5.1,

and, for � > 0, put

k

�

=

�

0; � =2M (J;�) ; "

�

= +1

1; � 2M (J;�) ; "

�

= �1:

(6)

Then the inequalities (5) are satis�ed by the integers k

�

. Here we are using

the onvention k

�

_

= k

�

, � 2

e

�.

We shall prove this proposition in several steps. Consider �rst the ase

where the diagram of

e

� is simply-laed, so that � = 2

e

� and both root

systems are equivalent. This implies that for �; � 2

e

�, �+� 2

e

� if and only

if �

_

+ �

_

2 �. Furthermore, for any suh triple the inequalities (5) redue

to

k

�

+ k

�

+ 1 � k

�+�

+ 1 � k

�

+ k

�

+ 2

Now, we onsider the possibilities for k

�

, � > 0, whih are de�ned in (6) by

means of the signs "

�

. We write ("

�

; "

�

; "

�+�

) = (���):

1. (+ + +): Then, k

�

= k

�

= k

�+�

= 0, so that the inequalities are

1 � 1 � 2.

2. (+ +�). Then k

�

= k

�

= 0 and k

�+�

= 1, giving 1 � 2 � 2.

3. (+��). Then k

�

= 0, and k

�

= k

�+�

= 1, and we have 2 � 2 � 3.

The signs (+� +) are not onsidered sine by assumption M (J;�) is an

ideal. Analogously, (���) and (�� +) do not show up by the abelian

property of M (J;�). This onludes the proof of Proposition 5.3 in the

simply-laed ase.

For the other diagrams we postpone the analysis of G

2

in order to simplify

some of the arguments. Hene, in the disussion to follow we assume that

j�j

2

= 1 or 2 if � 2

e

�. We emphasize that the inequalities (5) are written

in terms of triples of roots in

e

�. However, the de�nition of k

�

is based on

the ideal M (J;�) � �. Thus the �rst step onsists in writing down the

inequalities in terms of roots in �.

Eah pair of inequalities is given by a triple (�; �; �+ �) of roots in

e

�.

Writing l for long root and s for short root, there are the possibilities: (s; s; s),

(l; l; l), (s; l; s) and (s; s; l). The ase (l; l; s) never ours. In fat, in a root

26



system the sum of two long roots is never a short root (just look at B

2

or G

2

).

Appart from G

2

the only possibility for mixing l and s is in a B

2

-subsystem.

Now, we translate these possibilities into triples in �, by taking o-roots.

We arrive at the ases (l; l; l), (s; s; s), (l; s; l) and (l; l; s). In the �rst two ases

�

_

+ �

_

= (� + �)

_

. Hene they orrespond to triple of roots (u; v; u+ v) in

�. The other two ases do not orrespond to suh triples in �, but to triples

as follows: Given a triple (�; �; �+ �) in

e

� of the type (s; l; s), we have

�

_

+2�

_

= (� + �)

_

and reiproally, a triple (u; v; w) of the type (l; s; l) in

� omes from (s; l; s) in

e

� if u + 2v = w. Analogously, (s; s; l) triples in

e

�

orrespond to (l; l; s) triples (u; v; w) in � satisfying w = (u+ v) =2.

Having established these orrespondenes we write down the possible in-

equalities using triples in �.

Proposition 5.4 Let � be a double-laed root system. A set of integers k

�

,

� 2 �

+

, form the oordinates of an alove if the following inequalities are

satis�ed for the orresponding triples of roots in �

+

:

1. (�; �; �+ �) = (l; l; l): k

�

+ k

�

+ 1 � k

�+�

+ 1 � k

�

+ k

�

+ 2

2. (�; �; �+ �) = (s; s; s): 2k

�

+ 2k

�

+ 1 � 2k

�+�

+ 2 � 2k

�

+ 2k

�

+ 5

3. (�; �; �+ 2�) = (l; s; l): k

�

+ 2k

�

+ 1 � k

�+2�

+ 1 � k

�

+ 2k

�

+ 3

4. (�; �; (� + �) =2) = (l; l; s): k

�

+ k

�

+ 1 � 2k

(�+�)=2

+ 2 � k

�

+ k

�

+ 3

Now, the values of k

�

, de�ned in Proposition 5.3 must be pluged into these

inequalities. Sine k

�

is given by "

�

, we write the possibilities in terms of the

signs. In the �rst two ases only the signs (+ + +), (+ +�) and (�+�)

appear, beause M (J;�) is an abelian ideal. The outoming inequalities are

depited in the following table.

+ + + ++� � +�

lll 1 � 1 � 2 1 � 2 � 2 2 � 2 � 3

sss 1 � 2 � 5 1 � 4 � 5 3 � 4 � 7

The other ases are desribed below.

� The ase (�; �; �+ 2�) = (l; s; l). Take �; � 2 �

+

suh that � + 2� 2

�

+

. Then "

�

= +1. In fat, "

�

= �1 entails � + � 2 M (J;�), but

then � + (� + �) is a sum of two roots in M (J;�), ontraditing the
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assumption on this set. Analogously, the ase "

�

= �1, "

�

= +1 and

"

�+2�

= +1 does not our. It remains only the following three ases,

with the orreponding inequalities:

1. (+ + +); 1 � 1 � 3.

2. (+ +�); 1 � 2 � 3.

3. (� +�); 2 � 2 � 4.

� The ase (�; �; (� + �) =2) = (l; l; s). Take � and � positive roots suh

that (� + �) =2 2 �

+

is a positive root. We an identify the intersetion

of � with the subspae spanned by � and � with the root system B

2

,

whose positive roots are

f�

1

; �

2

; �

1

+ �

2

; �

1

+ 2�

2

g:

The identi�ation is in suh a way that � = �

1

and � = �

1

+ 2�

2

.

Hene (�+ �) =2 beomes �

1

+ �

2

. Through this identi�ation it is

easy to see that � = �+ (� + �) =2. This implies that "

(�+�)=2

= +1 if

"

�

= +1.

On the other hand, "

(�+�)=2

= �1 if "

�

= "

�

= �1. In fat, using the

identi�ation with B

2

we see that (� + �) =2 = �+�

2

and (�+ �) =2 =

���

2

. Hene (� + �) =2 is bigger than � or � depending if �

2

is positive

or negative in �. In both ases "

(�+�)=2

= +1 would ontradit the fat

that M (J;�) is an ideal.

Therefore it remains only the following three ases, with the orrepond-

ing inequalities:

1. (+ + +): 1 � 2 � 3.

2. (� +�): 2 � 4 � 4.

3. (���): 3 � 4 � 5.

This onludes the proof of Proposition 5.3 (and hene of Theorem 5.1)

for the double-laed diagrams.

Now we onsider G

2

. Write its positive roots as

�

1

�

2

�

1

+ �

2

�

1

+ 2�

2

�

1

+ 3�

2

2�

1

+ 3�

2

:
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Then the possible J suh that M (J;�) is an abelian ideal are

+

+

+ + + +,

+

+

+ + +�,

+

+

+ +�� and

+

+

+���. It is easily heked that these ias

orrespond to aloves, either by using inequalities (5) or by drawing the set

of aloves.

6 Equivalent (1; 2)-sympleti ias

In this setion we look at the equivalene lasses of (1; 2) -sympleti invariant

strutures under the ation of the Weyl group. Sine any struture an be

put in abelian ideal form, it remains to determine when two invariant pairs

(J

1

;�

1

) and (J

2

;�

2

) satisfying the abelian ideal property with respet to the

same � are equivalent. Thus we �x � and hek if there exists w 2 W

suh that J

2

= w � J

1

. Having this in mind we develop here a formula for

M (w � J;�) when both J and w � J satisfy the abelian ideal property with

respet to �.

Reall that w � J = f"

w

�1

�

g if J = f"

�

g. From this de�ning expres-

sion it follows immediately that a root � is J-deomposable if and only if

w

�1

� is (w � J)-deomposable. Hene, I (w � J) = w

�1

I (J). The following

proposition haraterizes those w 2 W that do not destroy the abelian ideal

property.

Proposition 6.1 Fix a simple system of roots � and put

e

� = � [ f��g.

Two invariant pairs (J

1

;�

1

) and (J

2

;�

2

), having the abelian ideal form with

respet to � are equivalent if and only (J

2

;�

2

) = (w � J

1

; w � �

1

) with w 2 W

satisfying w

e

� =

e

�.

Proof: By Proposition 4.14

I (J

1

) = I (J

2

) = (��) [ f��g:

Moreover, I (J

2

) = w

�1

I (J

1

). Hene, w and w

�1

map the subset (��) [

f��g onto itself. We laim that I

+

(J

1

) = I

+

(J

2

) = � [ f��g is also

invariant under w

�1

. In fat, put J

1

= f"

�

g and J

2

= fÆ

�

g. Sine the

strutures are in abelian ideal form, "

�

= Æ

�

= +1 if � is simple. But

Æ

�

= "

w

�1

�

and "

�

= Æ

w�

, so that w� � � [ f��g and w

�1

� � � [ f��g.

Now, if w

�1

� � �, w = 1 and the laim follows. On the other hand, there

exists � 2 � suh that w

�1

� = ��, that is, w (��) = �, whih means that

� [ f��g is invariant under w, and hene under w

�1

.
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Conversely, suppose � [ f��g is invariant under w

�1

2 W. Then �

1

=

w

�1

� is another hoie of a simple system of roots within �[ f��g. Hene,

by Theorem 4.12, J and w � J are in abelian ideal form with respet to both

� and �

1

.

We denote by W

e

�

the subgroup of W leaving invariant

e

�. Due to the

bijetion of W with the set of simple systems of roots, it is lear that W

e

�

is in bijetion with the set of simple systems of roots ontained in

e

�. These

systems are easily determined with the aid of the Coxeter graphs of the aÆne

Weyl groups (extended Dynkin diagrams). In fat, we have the following

haraterization of the simple systems of roots ontained in

e

�.

Lemma 6.2 A subset �

1

�

e

� is a simple system of roots if and only if �

1

is a subgraph of the extended diagram equal to the Dynkin diagram of �.

Proof: Clearly, the ondition is neessary, sine

e

� is the extended diagram.

To prove suÆieny we must keep an eye at the extended Dynkin diagrams.

Sine they are easily aessible from textbooks (see [9℄, page 503 or [10℄, page

96), we do not reprodue them here. The subgraphs �

1

whih are isomorphi

to � are obtained by deleting from

e

� either �� or a simple root in a subset

� � �. Cheking the oeÆients of � with respet to � (see [9℄, Table I,

page 477 or [10℄, page 98), one sees that the oeÆient of eah � 2 � is 1.

Take a positive root � =

P

2�

n



, n



� 0. If � 2 �, n

�

= 0 or 1

beause n

�

is smaller than the oeÆient of � with respet to �. Now, it is

easy to see that � is a linear ombination of (� n f�g) [ f��g with integer

oeÆients m

i

, whih are all � 0 if n

�

= 0 and � 0 if n

�

= 1. This implies

that (� n f�g) [ f��g, � 2 �, is a simple system of roots.

By inspeting the table of the extended diagrams we �nd the following

quantities of simple systems �

1

�

e

�:

e

�

e

A

l

e

B

l

e

C

l

e

D

l

e

E

6

e

E

7

e

E

8

e

G

2

e

F

4

�

�

W

e

�

�

�

l + 1 2 2 4 3 2 1 1 1

The numbers in this table are preisely the indies of onnetivity of the

aÆne groups W

a

. This index is either the order of



W

a

=W

a

or the order of

the subgroup of



W

a

leaving invariant the basi alove A

0

(see [10℄, page 98).
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This suggests a relation between the latter subgroup and W

e

�

. In fat, we

have the following onstrution: Let P be the open parallelepiped

P = fx 2 h

R

: 8� 2 �; 0 < h�; xi < 1g:

Given w 2 W there exists exatly one �

w

2

b

L suh that t

�

w

w (A

0

) � P (see

[10℄, page 99), where t

�

is the aÆne translation by �.

Put � = f�

1

: : : ; �

l

g and let f!

1

; : : : ; !

l

g be de�ned by h!

i

; �

j

i = Æ

ij

.

Aording to [10℄ (see page 99), �

w

=

P

a

i

!

i

with a

i

= 0 if w

�1

�

i

> 0 and

a

i

= 1 if w

�1

�

i

< 0. Given w 2 W

e

�

, there is just one simple root, say �

w

,

suh that w

�1

�

w

= ��. For the other roots � 2 �, w

�1

� 2 �, so that

w

�1

� > 0. Hene, �

w

= !

i

if �

w

= �

i

.

Lemma 6.3 Take w 2 W

e

�

and � > 0. Then w

�1

� > 0 if and only if

h�

w

; �i = 0, and w

�1

� < 0 if and only if h�

w

; �i = 1.

Proof: The oeÆient b

�

w

of �

w

in � =

P

�2�

b

�

� is h�

w

; �i. As remarked

above, w 2 W

e

�

implies that the oeÆient of the highest root � in the di-

retion of �

w

is 1 (see the proof of Lemma 6.2). Hene, h�

w

; �i = 0 or 1.

Note that w

�1

� 2 � if � 6= �

w

, � 2 �. Hene, if h�

w

; �i = 0 then w

�1

� is

a linear ombination with positive integers of w

�1

(� n f�

w

g) � �, so that

w

�1

� > 0. On the other hand, h�

w

; �i = 1, implies that w

�1

� has the form

��+  with  a ombination of w

�1

(� n f�

w

g), with oeÆients neessarily

smaller than the oeÆients of �. Therefore, at least one of the oeÆients

of w

�1

� is < 0, implying that w

�1

� < 0.

The next lemma establishes a relationship betweenW

e

�

and the subgroup

of



W

a

leaving A

0

invariant.

Lemma 6.4 If w 2 W

e

�

then t

�

w

w (A

0

) = A

0

.

Proof: Take x 2 A

0

and a positive root �. Then ht

�

w

wx; �i = h�

w

; �i +

hx; w

�1

�i. Suppose w

�1

� > 0. Then 0 < hx; w

�1

�i < 1, and by the above

lemma, h�

w

; �i = 0. Hene, 0 < ht

�

w

wx; �i < 1 , so that t

�

w

wx 2 A

0

. Sim-

ilarly, �1 < hx; w

�1

�i < 0 and h�

w

; �i = 1 if w

�1

� < 0, onluding that

t

�

w

wx 2 A

0

in eah ase.

31



Remark: The above lemma beomes lear if one thinks of A

0

as de�ning a

hamber of the geometri realization of the aÆne Weyl group. Sine W

e

�

is

the group of automorphisms of

e

� , it leaves invariant the basi hamber.

Returning to the equivalene question, let J = J (A) be an aÆne ias,

and assume that it satis�es the abelian ideal property of Theorem 4.12, with

M (J;�) the orresponding abelian ideal. By Theorem 5.1 (and Proposition

5.3) we an assume that the oordinates k

�

= k

�

(A), � > 0, of A are k

�

= 0

if � =2M (J;�) and k

�

= 1 if � 2M (J;�).

Fixing these notations we shall use the above lemmas to ompute the

oordinates of the alove �

w

wA for w 2 W

e

�

. To this aim we note that

the hyperplanes separating A

0

and A are H (�; 1), � 2 M (J;�). Applying

the aÆne map t

�

w

w, we see that the hyperplanes separating t

�

w

wA and

t

�

w

wA

0

= A

0

are

t

�

w

wH (�; 1) = H (w�; 1 + hw�; �

w

i) ; � 2 M (J;�) : (7)

Lemma 6.5 Take w 2 W

e

�

and � > 0 . Then

hw�; �

w

i =

�

0 if w� > 0

�1 if w� < 0:

Proof: Let �

j

2 � be suh that w�

j

= ��. We have �

j

= w

�1

(��), and

sine w

�1

2 W

e

�

we onlude that the oeÆient of � in the diretion of �

j

is 1. Clearly, w� > 0 if and only if h!

j

; �i = 0, beause w�

k

2 � if k 6= j.

Now, w

�1

�

w

= ��, so that no simple root �

k

satis�es w�

k

= �

w

. This

means that the only possibility for w� to have nonzero oeÆient in the di-

retion of �

w

, that is, to have hw�; �

w

i 6= 0 is when h!

j

; �i 6= 0. Therefore,

hw�; �

w

i = 0 if h!

j

; �i = 0, i.e., if w� > 0. On the other hand, if h!

j

; �i 6= 0,

the only term whih ollaborates to the oeÆient of �

w

is w�

j

= ��. Hene,

the oeÆient of w� in the diretion �

w

is �1, onluding the proof.

By this lemma the hyperplanes given in (7) separating t

�

w

wA and A

0

=

t

�

w

wA

0

are rewritten as

H (w�; 1) if w� > 0

H (w�; 0) if w� < 0

� 2M (J;�) : (8)

This implies the following expressions for the oordinates of t

�

w

wA

0

:
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Lemma 6.6 Keep the above notations. For � > 0,

k

�

(t

�

w

wA

0

) =

8

<

:

0 if � =2 �wM (J;�)

1 if � 2 wM (J;�)

�1 if � 2 �wM (J;�)

Proof: The hyperplanes separating t

�

w

wA

0

and A

0

have the form H (w�; k),

� 2 M (J;�), k = 0; 1 . Therefore, if � =2 �wM (J;�) no hyperplane of the

formH (�; k) separates t

�

w

wA

0

and A

0

, implying that k

�

(t

�

w

wA

0

) = 0. Now,

by (8), if � = w� > 0, � 2M (J;�), then H (�; 1) is the only separating hy-

perplane orthogonal to �, so that k

�

(t

�

w

wA

0

) = 1. Finally, if � = �w� > 0,

the separating hyperplane is H (�; 0) = H (w�; 0).

Now, we apply the following straighforward formula

k

�

(t

�

A) = k

�

(A) + h�; �i

to get the oordinates of the alove wA

0

.

Lemma 6.7 Keep the above notations. For � > 0,

k

�

(wA

0

) =

8

>

>

<

>

>

:

0 if � =2 �wM (J;�) and h�; �

w

i = 0

�1 if � =2 �wM (J;�) and h�; �

w

i = 1

1 if � 2 wM (J;�)

�2 if � 2 �wM (J;�)

Proof: The �rst two lines follow immediately from the previous lemma and

the above formula. The other two ases are onsequenes of Lemma 6.5.

Finally we desribe the abelian ideal orresponding to w � J if w 2 W

e

�

and J has the abelian ideal form with respet to �.

Proposition 6.8 Let J = J (A) be an aÆne ias, satisfying the abelian ideal

property with respet to �, with M (J;�) the orresponding abelian ideal.

Take w 2 W

e

�

. Then w � J has the abelian ideal property with respet to �,

and M (w � J;�) is

�

wM (J;�) \ �

+

�

[ f� 2 �

+

: w

�1

� =2 �M (J;�) and h�; �

w

i = 1g:
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Proof: By the above lemma this is the set whih orresponds to odd k

�

.

>From this expression for M (w � J;�) one is able to look at the abelian

ideals whih represent the same equivalene lass, and eventually �nd on-

venient anonial forms for the (1; 2) -sympleti invariant almost Hermitian

strutures. We refrain ourselves to make here suh a detailed analysis, but

look at the ase of the standard ias J



= f"

�

g, "

�

= +1 if � > 0, when

M (J;�) = ;. By Proposition 6.8, M (w � J;�) is the set of positive roots

having nonzero oeÆient in the diretion of �

w

if w 2 W

e

�

. For example, in

the A

l

series with root �

ij

, 1 � i 6= j � n = l + 1, any simple root �

i;i+1

is

�

w

for some w 2 W

e

�

. Also, the set positive roots having oeÆient in the

�

w

= �

i;i+1

is the \retangle" f�

rs

: r � i; s � i + 1g. Any suh retangle

is a representative of the invariant K�ahler strutures. Note that they meet

the set simple roots, so that the standard ias annot be put in the abelian

ideal form of Theorem 4.12.

7 Classes of almost Hermitian strutures

Following Grey and Hervella [8℄ the almost Hermitian strutures are lassi-

�ed into sixteen lasses, eah one orresponding to an invariant subspae of

a representation of U (n), say on a spae W . This representation deomposes

into four irreduible omponents W = W

1

�W

2

�W

3

�W

4

. The possible

ombinations of these omponents (together with f0g) furnishes the di�erent

lasses of almost Hermitian strutures. This orrespondene respets inlu-

sion, sine a lass assoiated to an invariant subspae V

1

is ontained in the

lass assoiated to V

2

if V

1

� V

2

. We do not explain here the representation

W neither its irreduible omponents. We just follow the numbering in [8℄

for the omponents, and their orresponding almost Hermitian lasses. For

some of the lasses we use their de�ning property. When this happens we

expliitate them. For instane, f0g orresponds to K�ahler metris, W

1

�W

2

to (1; 2)-sympleti, and the o-sympleti lass is given by W

1

�W

2

�W

3

.

As we shall see within the invariant almost Hermitian strutures the six-

teen lasses ollapse down to these three ones, together with another lass,

whih inludes every ias but only some spei� metris, among them the

Cartan-Killing ones.

To start with reall that we proved in Corollary 2.5 that almost K�ahler

strutures are K�ahler. In the notation of [8℄ the almost K�ahler struture
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orreponds W

2

, so that W

2

� f0g.

The other ases require the Nijenhuis tensor N , whih is de�ned by

1

2

N (X; Y ) = [JX; JY ℄� [X; Y ℄� J [X; JY ℄� J [JX; Y ℄: (9)

In the invariant ontext with J = f"

�

g, take roots � and �. An easy om-

putation yields

�

1

2

N (X

�

; X

�

) = m

�;�

("

�

"

�

+ 1� "

�

"

�+�

� "

�

"

�+�

)X

�+�

: (10)

Lemma 7.1 Given three roots �, � and , (N (X

�

; X

�

) ; JX



)

�

= 0 unless

� + � +  = 0. In this ase,

�

1

2

(N (X

�

; X

�

) ; JX



)

�

= i�



m

�;�

("

�

"

�

"



+ "

�

+ "

�

+ "



) :

Proof: By (10), � (1=2) (N (X

�

; X

�

) ; JX



)

�

is

i�

�+�

m

�;�

("

�

"

�

+ 1� "

�

"

�+�

� "

�

"

�+�

) "



hX

�+�

; X



i

whih is zero unless  = � (� + �). Now, the formula in the lemma follows

beause hX

�

; X

��

i = 1 and "



= �"

�+�

.

With this lemma the Hermitian ase, that is, when J is integrable, whih

means N = 0 is easily desribed. This ase orresponds to W

3

�W

4

.

Proposition 7.2 Let J be an ias suh with N = 0. Then the set P = f� :

"

�

= +1g is a hoie of positive roots with respet to some lexiographi order

in h

�

R

. Hene, if J is integrable, the pair (J;�) is K�ahler.

Proof: Take �; � 2 P suh that  = � (� + �) is a root. By the above

lemma we have "

�

"

�

"



+ "

�

+ "

�

+ "



= 0. This implies that "



= �1 if

"

�

= "

�

= +1, so that "

�+�

= +1. Therefore, P is losed under addition,

and sine � = P [ �P , it follows that P is a hoie of positive roots.

It follows by the inlusion among the lasses, that those orresponding to

W

3

and W

4

are also K�ahler.

Next, we go diretly to the o-sympleti strutures W

1

�W

2

�W

3

, whih

will help to solve many other ases.
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Proposition 7.3 Every invariant pair (J;�) is o-sympleti.

Proof: By [8℄, Setion 8, an almost Hermitian struture is o-sympleti if

and only if the form

� (X) =

1

2n� 1

X

i

d
 (X;X

i

; Y

i

) (11)

anihilates. Here fX

i

g is a basis of the tangent spae and fY

i

g is the dual basis

with respet to the nondegenerate form 
. In our ase we take the basis to be

fA

�

; iS

�

: � 2 �

+

g. Its dual is a multiple of fiS

�

; A

�

: � 2 �

+

g. Plugging

these bases into (11), a straighforward omputation shows that � (X) = 0 is

equivalent to

X

�>0

d
 (X;X

�

; X

��

) = 0

for all X. But this is true beause d
 (X

�

; X



; X

Æ

) = 0 unless � + + Æ = 0,

so that for every root , d
 (X



; X

�

; X

��

) = 0.

Proposition 7.4 In a o-sympleti almost Hermitian manifold there are

the following equivalenes: 1) W

1

�W

3

� W

1

�W

3

�W

4

; 2) W

1

�W

4

� W

1

;

3)W

1

�W

2

� W

1

�W

2

�W

4

; 4)W

2

�W

3

� W

2

�W

3

�W

4

; 5) W

3

�W

4

� W

3

;

6) W

2

�W

4

� W

2

.

Proof: Is a diret onsequene of Table I in [8℄. When Æ
 = 0 the orre-

sponding de�ning onditions are the same. Note that in [8℄ the K�ahler form

is denoted by F and the Nijenhuis tensor by S.

Therefore, in our invariant setting the lasses W

3

�W

4

and W

2

�W

4

are

K�ahler. Also,W

1

�W

2

�W

4

is the same as (1; 2)-sympleti (W

1

�W

2

). Next

we show that any invariant struture fall in the lassW

2

�W

3

� W

2

�W

3

�W

4

.

Consider the tensor T (X; Y; Z) = (N (X; Y ) ; JZ)

�

. The lass orresponding

to the subspae W

2

�W

3

�W

4

is formed by the almost Hermitian strutures

for whih the symmetrizer ST of T is zero.

Proposition 7.5 Every invariant struture is in W

2

�W

3

�W

4

.
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Proof: We must show that ST = 0 for any invariant pair (J;�). By Lemma

7.1 it is enough to show that ST (X

�

; X

�

; X



) = 0 when � + � +  = 0,

sine these are the only triples of roots satisfying T (X

�

; X

�

; X



) 6= 0. In

view of the formula in Lemma 7.1 we must symmetrize only the omponent

�



m

�;�

, sine "

�

"

�

"



+ "

�

+ "

�

+ "



is already symmetri. Summing over the

permutations we have

�



m

�;�

+ �



m

�;�

+ �

�

m

�;

+ �

�

m

�;

+ �

�

m

;�

+ �

�

m

;�

= 0

beause m

�;�

= �m

�;�

.

Now, the de�ning ondition for the lass W

1

�W

3

� W

1

�W

3

�W

4

is

the anihilation of the tensor (N (X; Y ) ; X)

�

. We ompute it by looking at

the root vetors. Analogous to Lemma 7.1 we have (N (X

�

; X

�

) ; X



)

�

= 0

unless � + � +  = 0, and in this ase

�

1

2

(N (X

�

; X

�

) ; X



)

�

= �



m

�;�

("

�

"

�

+ "

�

"



+ "

�

"



+ 1) :

In partiular, (N (X

�

; X

�

) ; X

�

)

�

= 0 for every root �. Hene, for X =

P

�

a

�

X

�

we get

(N (X;X

�

) ; X)

�

=

X

�6=

�

(N (X

�

; X

�

) ; X



)

�

+ (N (X



; X

�

) ; X

�

)

�

�

: (12)

Now, �

1

2

�

(N (X

�

; X

�

) ; X



)

�

+ (N (X



; X

�

) ; X

�

)

�

�

is

m

�;�

((�

�

� �

�

) ("

�

"

�

+ "

�

"



+ "

�

"



+ 1))

sine m

�;�

= m

�;

= m

;�

if �+ � +  = 0.

Lemma 7.6 A neessary and suÆient ondition for the invariant pair (J;�)

to be in the lass W

1

�W

3

� W

1

�W

3

�W

4

is: �

�

= �

�

= �



if f�; �; g is

a f0; 3g -triple.

Proof: For roots �, � and  with �+�+ = 0, the sum "

�

"

�

+"

�

"



+"

�

"



+1

is not zero if and only if f�; �; g is a f0; 3g-triple. Then the suÆieny of

the ondition is immediate from the identity (12). On the other hand, it is

easy to see that the ondition is neessary by omputing (N (X; Y ) ; X) with

X having the form X = X

�

+X

�

, �; � 2 �.

The ondition of this lemma implies the following existene of metris.
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Proposition 7.7 Let J = f"

�

g be an ias and denote by C (J) the subset

of roots � suh that there exists a f0; 3g -triple f�; �; g ontaining �. Let

� = f�

�

g be an invariant metri suh that �

�

is onstant on C (J). Then

the pair (J;�) is in the lass W

1

�W

3

� W

1

�W

3

�W

4

.

Proof: Follows immediately from the neessary and suÆient ondition of

the above lemma.

Notie that the Cartan-Killing metri is a partiular ase of � in this

proposition.

To omplete our analysis of the invariant almost Hermitian strutures

it remains only to look at the near K�ahler ase W

1

(whih is equivalent to

W

1

� W

4

). The lass of near K�ahler strutures ( W

1

) is the intersetion

of W

1

�W

2

((1; 2) -sympleti) with W

1

�W

3

, whih we have seen above.

Hene, the ondition of Lemma 7.6 is neessary for a pair (J;�) to be near

K�ahler. We use this ondition together with the abelian ideal form for the

(1; 2)-sympleti strutures to show that any near K�ahler is atually K�ahler

in most of the maximal ag manifolds. First we note that the ondition of

Lemma 7.6 an be restated by saying that if � and � are roots suh that

� + � is a root, and "

�

= "

�

= +1, "

�+�

= �1, then �

�

= �

�

= �

�+�

. (f.

[21℄, Theorem 9.17).

Let (J;�) be near K�ahler. Then it is (1; 2)-sympleti, so there are � and

�

+

a simple system of roots and positive roots where has the abelian ideal

property with M (J;�) = f� > 0 : "

�

= �1g.

Lemma 7.8 Suppose that there are �; � 2 �

+

nM (J;�) suh that �+ � 2

M (J;�) and � = �

1

+ �

2

with �

i

, i = 1; 2, positive roots. Then (J;�) is not

near K�ahler.

Proof: Suppose to the ontrary that (J;�) is near K�ahler. Then �

�

= �

�

,

by Lemma 7.6. On the other hand, either �+ �

1

or �+ �

2

is a root (see the

proof of Lemma 4.11). Suppose, for instane, that �+ �

1

is a root. We have

� + � = (�+ �

1

) + �

2

2 M (J;�). Also, neither �

1

nor �

2

are in M (J;�),

beause this set is an ideal and � =2M (J;�). Hene, f�

1

; �

2

;��g is a f1; 2g-

triple, so that �

�

> �

�

1

; �

�

2

. Also, another apliation of Lemma 7.6 implies

that �

�+�

1

= �

�

2

. Now, eah possibility for "

�+�

1

lead to a ontradition. In

fat, if "

�+�

1

= +1 then f�; �

1

;� (� + �

1

)g is a f1; 2g-triple so that

�

�

< �

�+�

1

= �

�

2

< �

�

:
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Otherwise, if "

�+�

1

= �1, Lemma 7.6 applied to � and �

1

implies that

�

�

= �

�

1

< �

�

. Both ases ontradit the fat that �

�

= �

�

.

Corollary 7.9 Put

M (J;�)

min

= f 2M (J;�) : 9� 2 �;  � � 2 �

+

nM (J;�)g:

Then (J;�) is not near K�ahler if there exists  2 M (J;�)

min

having height

h () > 2.

Proof: Take  2 M (J;�)

min

with h () > 2 and let � 2 � be suh that

� =  � � 2 �

+

nM (J;�). Then h (�) � 2 so that � = �

1

+ �

2

for some

pair of positive roots. Therefore � and � are in the onditions of the lemma,

showing that (J;�) annot be near K�ahler.

Corollary 7.10 If (J;�) is near K�ahler and M (J;�) 6= ; then M (J;�)

ontains every root � with h (�) = 2, so that M (J;�) = f� > 0 : h (�) � 2g.

The ondition of this orollary is not satis�ed in most of the root systems:

Lemma 7.11 The set I

2

= f� > 0 : h (�) � 2g is an abelian ideal only in

the root systems A

l

, l � 3, and B

2

.

Proof: Appart from A

l

, l � 3, and B

2

, every Dynkin diagram ontains one

of the root systems A

4

, B

3

, C

3

, D

4

or G

2

as a subdiagram. It is easy to

�nd in these low rank systems pairs of roots in I

2

whose sum is still a root.

Hene, in these root systems I

2

is not abelian. Clearly, if a root system �

ontains a subsystem suh that the orreponding I

2

is not abelian, then the

same holds to �. Finally, it is straighforward to hek that I

2

is an abelian

ideal in A

l

, l � 3, and B

2

, provig the lemma.

Now we are able to prove that for most of the root systems every invariant

near K�ahler struture is K�ahler.

Theorem 7.12 Any invariant near K�ahler struture is K�ahler if g is not

A

2

. In A

2

there exists one equivalene lass of ias admitting a 1-parameter

family of near K�ahler metris.
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Proof: Take a near K�ahler pair (J;�). Then it is (1; 2)-sympleti, so that

it an be put in anonial form. Clearly, (J;�) is K�ahler if and only if

M (J;�) = ;. Hene, by Corollary 7.10 and the previous lemma it is enough

to look at A

l

, l � 3, and B

2

. In the trivial ase A

1

, there are only K�ahler

strutures. As to A

3

, its positive roots are �

1

, �

2

, �

3

, �

1

+ �

2

, �

2

+ �

3

and

�

1

+�

2

+�

3

. By Corollary 7.10, "

�

= +1 if and only if � is a simple root. Now,

by Lemma 7.6, the near K�ahler ondition implies that �

�

1

= �

�

2

= �

�

1

+�

2

and �

�

2

= �

�

3

= �

�

2

+�

3

. However, by the (1; 2)-sympleti property we must

have �

�

1

+�

2

= �

�

3

+ �

�

1

+�

2

+�

3

, leading to �

�

1

+�

2

+�

3

= 0, a ontradition.

Hene, there are no near K�ahler strutures on A

3

besides the K�ahler one.

Similarly, one heks in B

2

that for the highest root �

1

+ 2�

2

, �

�

1

+2�

2

= 0 if

M (J;�) 6= ;.

Finally, in A

2

we have J = f"

�

g with "

�

1

= "

�

2

= +1 and "

�

1

+�

2

= �1,

where �

1

and �

2

are the simple roots. This J together the one parameter

family of metris �

�

1

= �

�

2

= �

�

1

+�

2

, give rise to near K�ahler strutures

whih are not K�ahler.

Remark: The above determination of the near K�ahler strutures on F gives

a partial proof of the following onjeture stated Wolf and Gray in [21℄ : Let

U=K be a homogeneous spae of a ompat Lie group U whih is not Hermi-

tian symmetri and suh that the isotropy K has maximal rank. Then there

are invariant almost Hermitian strutures on U=K whih are near K�ahler but

not K�ahler if and only if the isotropy subalgebra is the �xed point set of an

automorphism of order three. In fat, the unique ag manifold whih is Her-

mitian symmetri is A

1

, while A

1

and A

2

are the only ag manifolds having

isotropy subalgebra as the �xed point set of an order three automorphism.

In summary we have the following lasses of invariant almost Hermitian

strutures on F:

1. K�ahler: W

1

(near K�ahler); W

2

(almost K�ahler); W

3

; W

4

; W

3

� W

4

(integrable); W

2

�W

4

and W

1

�W

4

.

2. (1; 2)-sympleti (quasi-K�ahler): W

1

�W

2

, W

1

�W

2

�W

4

.

3. Invariant: W

1

�W

2

�W

3

(o-sympleti); W

2

�W

3

; W

2

�W

3

�W

4

;

W

1

�W

3

; W

1

�W

3

�W

4

. (The last two for spei� metris and every

ias.)
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