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Abstra
t

Let G be a 
omplex semi-simple Lie group and form its maximal


ag manifold F = G=P = U=T where P is a minimal paraboli
 sub-

group, U a 
ompa
t real form and T = U \ P a maximal torus of

U . We study U -invariant almost Hermitian stru
tures on F. The

(1; 2) -symple
ti
 (or quasi-K�ahler) stru
tures are naturally related to

the aÆne Weyl groups. A spe
ial form for them, involving abelian

ideals of a Borel subalgebra, is derived. From the (1; 2)-symple
ti


stru
tures a 
lassi�
ation of the whole set of invariant stru
tures is

provided, showing, in parti
ular, that near K�ahler invariant stru
tures

are K�ahler, ex
ept in the A

2


ase.
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1 Introdu
tion

Let g be a 
omplex semi-simple Lie algebra and 
onsider its maximal 
ag

manifold F = G=P where G is a 
omplex Lie group with Lie algebra g and

P a Borel (minimal paraboli
) subgroup of G. For any maximal 
ompa
t

subgroup U of G we 
an write F = U=T where T � U is a maximal torus.

In this paper we study U -invariant almost Hermitian stru
tures on F. Su
h

a stru
ture is 
omposed of a pair (J;�) with J an invariant almost 
omplex

stru
ture and � an invariant Riemannian metri
.

It will be
ome 
lear at the end of the paper that the 
entral point is

a 
omplete understanding of the 
lass of (1; 2)-symple
ti
, or quasi-K�ahler

almost Hermitian stru
tures. Thus we spend most of the time dis
ussing

these invariant stru
tures.

We use the abbreviation ia
s for invariant almost 
omplex stru
ture. An

ia
s J is said to be (1; 2) -admissible if there exists a metri
 � su
h that

the pair (J;�) is (1; 2)-symple
ti
. In this paper we give di�erent 
hara
-

terizations of the (1; 2)-admissible ia
s. The spe
ial 
ase of the A

l

series,

when g = sl (n; C ), and F is the manifold of 
omplete 
ags of subspa
es of

C

n

, where 
onsidered by Cohen and the authors in [3℄ (see also [4℄), using

a method devised by Burstall and Salamon [2℄. This method takes advan-

tage of a natural bije
tion between invariant almost 
omplex stru
tures and

tournaments. The 
ombinatori
s of tournament theory were used in [3℄ to

derive a spe
ial form for (1; 2)-admissible ia
s. With the aid of this form, the


one of the 
orresponding (1; 2)-symple
ti
 metri
s were determined. Tour-

nament theory was also exploited in Mo and Negreiros [15℄, Negreiros [16℄

and Paredes [17℄.

In this paper we generalize the above mentioned results to arbitrary 
om-

plex semi-simple Lie algebras. Our methods here are 
ompletely di�erent.

Instead of tournament theory, we use dire
tly the geometri
al 
ombinatori
s

of root systems and their Weyl groups, obtaining independent proofs, when

spe
ializing to the A

l

series.

In order to give an a

ount of our results let h � g be a Cartan subalgebra

and denote by � the set of roots of the pair (g; h). An invariant almost


omplex stru
ture on F is given by an assignment � 2 � 7! "

�

2 f�1g,

with "

��

= �"

�

. Analogously, an invariant metri
 is given by �

�

> 0 with

�

��

= �

�

, � 2 �. Thus an invariant almost Hermitian stru
ture is pres
ribed

by a pair (f"

�

g; f�

�

g).

An easy 
omputation shows that a pair (f"

�

g; f�

�

g) is almost K�ahler
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(i.e., the fundamental K�ahler 2-form 
 is symple
ti
) if and only if the set

f� : "

�

= +1g 
orresponds to a 
hoi
e of positive roots in � (this implies,

in parti
ular that almost K�ahler stru
tures are K�ahler). By the well known

equivalen
e between the possible 
hoi
es of positive roots and Weyl 
hambers,

we arrive that the set of ia
s admitting an almost K�ahler metri
 is in one-

to-one 
orresponden
e with the set Weyl 
hambers in h, whi
h in turn is in

bije
tion with the Weyl group W.

In the attempt of �nding a similar geometri
 interpretation for the (1; 2)-

admissible ia
s we were lead to 
onsider the 
orresponding aÆne Weyl group,

and the set of al
oves in h. With this in mind we �x a basi
 al
ove A

0

and

asso
iate to an arbitrary al
ove A an invariant almost 
omplex stru
ture

J (A) = f"

�

(A)g. The signs "

�

(A) are obtained by 
ounting mod2 the

number of hyperplanes f� (�) = k 2 Zg separating A and A

0

. We say that

an ia
s is aÆne if it has the type J (A) for some al
ove A.

The map A 7! J (A) turns out to be the desired geometri
 des
ription of

the (1; 2)-admissible ia
s. Indeed in Se
tion 3 we 
onstru
t for any al
ove A

an invariant metri
 �, turning (J (A) ;�) into a (1; 2)-symple
ti
 stru
ture.

Thus the aÆne ia
s are (1; 2)-admissible. On the other hand most of our

e�orts in this paper are dire
ted towards the proof that any (1; 2) -admissible

J is aÆne. To a

omplish this we prove in Se
tion 4 a result whi
h has

independent interest, namely that for any (1; 2)-admissible J there exists

a 
hoi
e of positive roots �

+

su
h that the set f� > 0 : "

�

= �1g is an

abelian ideal of �

+

. This very 
onvenient form generalizes the stair-shaped

in
iden
e matri
es of tournaments appearing in [3℄ in 
onne
tion with ia
s

in the 
ontext of the A

l

series.

In Se
tion 5 we prove that for a given (1; 2) -admissible J there exists

an al
ove A su
h that J = J (A), 
losing the 
onne
tion between (1; 2)-

symple
ti
 stru
tures and the aÆne Weyl group. The te
hnique here joins

together the results by Shi [19℄ { 
hara
terizing the 
oordinates of an al
ove

{ with the abelian ideal form admitted by the (1; 2)-symple
ti
 stru
tures.

The abelian ideal form nearly gives a 
anoni
al form for the (1; 2)-admissi-

ble ia
s, in the sense that every equivalen
e 
lass of ia
s is represented by

some J in this form, although some 
lasses admit more than one J . In Se
tion

6 we develop a formula relating two di�erent abelian ideals representing the

same equivalen
e 
lass of almost Hermitian stru
tures. Up to this se
tion the

aÆne ia
s enters only as an additional des
ription of the (1; 2)-symple
ti


stru
tures. The analysis of the equivalen
e 
lasses is our �rst appli
ation of

the aÆne des
ription.
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Our primarily goal was the study of the (1; 2)-symple
ti
 stru
utures,

seeking appli
ations to harmoni
 maps through a theorem by Gray and in-

dependently by Li
hnerowi
z, whi
h asserts that a holomorphi
 map from a

Riemann surfa
e whose target is a (1; 2)-symple
ti
 almost Hermitian mani-

fold is automati
ally harmoni
 (see Gray [7℄, Li
hnerowi
z[14℄, Salamon [18℄).

However, having studied the (1; 2)-symple
ti
 stru
tures we realized that in

the invariant setting on F the (1; 2)-symple
ti
 is the main one among the

sixteen 
lasses of almost Hermitian manifolds. In fa
t, relying on Gray and

Hervella [8℄ we show in Se
tion 7 that these sixteen 
lasses 
ollapse down to

four 
lasses of invariant almost Hermitian stru
tures with three possibilities

for the ia
s. These are the K�ahler stru
tures, the (1; 2)-symple
ti
, the 
lass

of all invariant stru
tures and a fourth one (named W

1

�W

3

) whi
h in
ludes

every ia
s but only some spe
i�
 metri
s, among them the Cartan-Killing

ones. Most of the proofs in this se
tion are dire
t 
onsequen
es of the de�ning


onditions for the 
lasses. The only 
ase whi
h is more involved, requiring

the results about the (1; 2) -symple
ti
 stru
tures, is the proof that invariant

near K�ahler stru
utures are K�ahler if the Lie algebra is not A

2

.

In studing (1; 2)-symple
ti
 stru
tures for the sl (n; C ) 
ase through tour-

naments it was 
onsidered in [3℄ the 
on
ept of 
one-free tournament. One

of the issues there was the proof that ia
s asso
iated to su
h tournaments

are (1; 2)-admissible. When stated in terms of roots the 
one-free property


an be generalized to a 
ondition on the rank three subsystems of the root

system. In this general 
ontext it is possible to prove that 
one-free ia
s are

aÆne, and thus (1; 2) -admissible. We do not prove this result here, leaving

it to a forth
oming paper.

Now we dis
uss some links and forth
oming perspe
tives to our work.

First, the intervenien
e of the aÆne Weyl group in the des
ription of the

(1; 2)-symple
ti
 stru
utures suggest a relationship between them and the

aÆne Ka
-Moody algebra and hen
e to the loop groups. Indeed it easy to

interpret the (1; 2)-symple
ti
 stru
tures in terms of aÆne Lie algebras and

embeddings of the 
ag manifolds into loop groups. There are also relations

between (1; 2)-symple
ti
 stru
tures and twistors theory (see Eells and Sala-

mon [6℄). We do not enter into these matters here, leaving them to another

opportunity.

The abelian ideals of �

+

(or the 
orresponding ideals of the Borel sub-

algebra) whi
h appear extensively in our results, were studied re
ently by

Kostant [13℄, 
onne
ting them with representation theory of Lie groups and

algebras. One of the results reported in [13℄ says that the set of abelian ideals
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is in bije
tion with a subset of al
oves, suggesting a 
lose relation with the in-

variant almost Hermitian stru
tures, in parti
ular with the (1; 2)-symple
ti


ones.

In studing the 
lasses of invariant almost Hermitian stru
tures we arrived

in
identally at a partial proof of a 
onje
ture by Wolf and Gray [21℄ (see

Conje
ture 9.8), namely that a homogeneous spa
e U=K of a 
ompa
t Lie

group U whi
h is not a Hermitian symmetri
 spa
e, and su
h that K has

maximal rank in U , admits a near K�ahler stru
ture whi
h is not K�ahler if

and only if the isotropy subalgebra is the �xed point set of an automorphism

of order three. Our proof is partial in the sense that we 
onsider only the

maximal 
ag manifolds, that is, the 
ase when the isotropy subgroup is the


entralizer of a maximal torus of U . Further development of our methods to

other 
ag manifolds are in progress, and eventually will lead to a 
omplete

proof of that 
onje
ture.

2 Flag manifolds

Throughout the paper we assume that the Lie algebra g is simple. There

is no loss of generality in this hypothesis, sin
e the full des
ription of our

objet
s in the semi-simple 
ase 
an be easily done by the de
omposition the

Lie algebras into their simple ideals (
f. [20℄, Proposition 4.9). Let G be a


omplex simple Lie group with Lie algebra g. Given a Cartan subalgebra of

g denote by � the set of roots of the pair (g; h), so that

g = h�

X

�2�

g

�

where g

�

= fX 2 g : 8H 2 h; [H;X℄ = � (H)Xg denotes the 
orre-

sponding one-dimensional root spa
e. The Cartan-Killing form hX; Y i =

tr (ad (X) ad (Y )) of g is nondegenerate on h. Given � 2 h

�

we let H

�

be

given by � (�) = hH

�

; �i, and denote by h

R

the subspa
e spanned over R by

H

�

, � 2 �. A

ordingly h

�

R

stands for the real subspa
e of the dual h

�

spaned

by the roots.

We �x on
e and for all a Weyl basis of g whi
h amounts to give X

�

2

g

�

su
h that hX

�

; X

��

i = 1, and [X

�

; X

�

℄ = m

�;�

X

�+�

with m

�;�

2 R,

m

��;��

= �m

�;�

and m

�;�

= 0 if � + � is not a root (see Helgason [9℄,

Chapter IX).
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Let �

+

� � be a 
hoi
e of positive roots, denote by � the 
orresponding

simple system of roots and put p = h �

P

�2�

+

g

�

for the Borel subalgebra

generated by �

+

. We view the maximal 
ag manifold F of g as the set of

subalgebras 
onjugate to p. Thus, F = G=P where P is the normalizer of p

in G. Here G is any 
omplex Lie group with Lie algebra g.

Let u be a 
ompa
t real form of g. We 
an take u to be the subspa
e

spanned by ih

R

and A

�

, iS

�

, � 2 �, where A

�

= X

�

� X

��

and S

�

=

X

�

+X

��

. Denote by U the 
ompa
t real form of G 
orresponding to u. By

the transitive a
tion of U on F we 
an write F = U=T where T = P \ U is a

maximal torus of U . The Lie algebra of T is the real subspa
e t = ih

R

.

Denote by b

0

the origin of F, viewed as a homogenous spa
e either of G

or of U . The tangent spa
e of F at b

0

identi�es naturally with the subspa
e

q = u	 t � u, spanned by A

�

, iS

�

, � 2 �. Analogously, the 
omplex tangent

spa
e of F is identi�ed to q

C

= g	h � g, spanned by the root spa
es. Clearly,

the adjoint a
tion of T on g leaves q invariant.

2.1 Invariant metri
s

A U -invariant Riemannian metri
 ds

2

on F is 
ompletely determined by its

value at the origin, that is, by an inner produ
t (�; �) in q, whi
h is invari-

ant under the adjoint a
tion of T . Any su
h inner produ
t has the form

(X; Y )

�

= �h�X; Y i with � : q ! q positive-de�nite with respe
t to the

Cartan-Killing form. The inner produ
t (�; �)

�

admits a natural extension to

a symmetri
 bilinear form on the 
omplexi�
ation q

C

of q. We do not 
hange

notation for these obje
ts in q and q

C

either for the bilinear form (�; �)

�

or for

the 
orresponding 
omplexi�ed map �. The T -invarian
e of (�; �)

�

is equiva-

lent to the elements of the standard basis A

�

, iS

�

, � 2 �, being eigenve
tors

of �, for the same eigenvalue. Thus, in the 
omplex tangent spa
e we have

� (X

�

) = �

�

X

�

with �

�

> 0 and �

��

= �

�

.

We denote by ds

2

�

the invariant metri
 given by �. In the sequel we abuse

language and say that � itself is an invariant metri
.

A spe
ial 
lass of invariant metri
 is de�ned by 
hoosing H in the positive

Weyl 
hamber 
orresponding to �

+

and putting

�

H

= f�

�

= � (H) : � > 0g:

We say that su
h a metri
 is of Borel type (see Borel [1℄). A Borel type

metri
 has the following intrinsi
 des
ription. Let � : iu 	 h

R

! u 	 ih

R

be
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given by � (X

�

) = �X

�

if � < 0 and � (X

�

) = X

�

if � > 0. Then an easy


omputation shows that

(X; Y )

�

H

= hH; [X; �Y ℄i X; Y 2 q:

(See Duistermmat, Kolk and Varadarajan [5℄.)

2.2 Invariant almost 
omplex stru
tures

A U -invariant almost 
omplex stru
ture J

�

(abbreviated ia
s) on F is 
om-

pletely determined by its value J : q! q in the tangent spa
e at the origin.

The map J satis�es J

2

= �1 and 
ommutes with the adjoint a
tion of T

on q. We denote also by J its 
omplexi�
ation to q

C

. The invarian
e of J

entails that J (g

�

) = g

�

for all � 2 �. The eigenvalues of J are �i and the

eigenve
tors in q

C

are X

�

, � 2 �. Hen
e J (X

�

) = i"

�

X

�

with "

�

= �1

satisfying "

�

= �"

��

. As usual the eigenve
tors asso
iated to +i are said

to be of type (1; 0) while the �i-eigenve
tors are of type (0; 1). Thus the

(1; 0) ve
tors are multiples of X

�

, "

�

= +1, and the (0; 1) multiples of X

�

,

"

�

= �1.

An ia
s on F is 
ompletely pres
ribed by a set of signs f"

�

g

�2�

with

"

��

= �"

��

. In the sequel we abuse language and say that an invariant

almost 
omplex stru
ture on F is J = f"

�

g.

Sin
e F is a homogeneous spa
e of a 
omplex Lie group it has a natural

stru
ture of a 
omplex manifold. The asso
iated integrable almost 
omplex

stru
ture J




is given by "

�

= +1 if � < 0. The 
onjugate stru
ture �J




is

also integrable.

2.3 Equivalent stru
tures

Let W be the Weyl group generated by the re
e
tions with respe
t to the

roots � 2 �. It is well known that its a
tion on h

�

leaves � invariant. Also,

W is isomorphi
 to N

U

(h) =T , where N

U

(h) stands for the normalizer of h

in U . The group N

U

(h) a
ts on q

C

by permuting the root spa
es. Therefore,

if J is an ia
s, wJw

�1

is also an ia
s if w is a representative of w in N

U

(h).

Clearly the two ia
s de�ned by J and wJw

�1

are equivalent in the sense

that one is obtained from the other by a bi-holomorphi
 map. Sin
e wJw

�1

depends only on w and not on the representative we have a well de�ned

a
tion of W on the set of ia
s. We denote this a
tion by w � J . An easy

7




omputation shows that in terms of the signs "

�

, this a
tion is given by

w � J = w � f"

�

g = f"

w

�1

�

g:

Analogously, the Weyl group a
ts on the set of invariant metri
s by w�f�

�

g =

f�

w

�1

�

g. The two a
tions sum up to an a
tion on the set of invariant almost

Hermitian stru
tures, whi
h is denoted by w � (J;�) = (w � J; w � �).

In the sequel we say that w � J and w � � are equivalent to J and �,

respe
tively. Of 
ourse, equivalent ia
s as well equivalent invariant metri
s

share the same property. For instan
e if the pair (J;�) is (1; 2)-symple
ti
,

the same holds to w � (J;�). Also, the ia
s having the form w � J




, w 2 W,

are provenient of 
omplex stru
tures. We 
all these the standard ia
s.

2.4 K�ahler form

It is easy to see that any invariant metri
 ds

2

�

is almost Hermitian with

respe
t to J , that is, ds

2

�

(JX; JY ) = ds

2

�

(X; Y ) (
f. [21℄, Se
tion 8, and

[15℄). Let 
 = 


J;�

stand for the 
orresponding K�ahler form


 (X; Y ) = ds

2

�

(X; JY ) = �h�X; JY i:

This form extends naturally to a U -invariant 2-form the 
omplexi
ation q

C

of q, whi
h we also denote by 
. Its value on the basi
 ve
tors are:


 (X

�

; X

�

) = �i�

�

"

�

hX

�

; X

�

i:

Sin
e hX

�

; X

�

i = 0 unless � = ��, 
 is not zero only on the pairs (X

�

; X

��

),

and 
 (X

�

; X

��

) = i�

�

"

�

. Relying on the invarian
e of 
 its exterior dif-

ferential is easily 
omputed from a standard formula: If X; Y; Z 2 q are

regarded as ve
tor �elds in F then d
 at the origin is given by

�

1

3

d
 (X; Y; Z) = �
 ([X; Y ℄; Z) + 
 ([X;Z℄; Y )� 
 ([Y; Z℄; X) (1)

(see Kobayashi-Nomizu [12℄).

Proposition 2.1 d
 (X

�

; X

�

; X




) is zero unless �+�+ 
 = 0. In this 
ase

d
 (X

�

; X

�

; X




) = �i3m

�;�

("

�

�

�

+ "

�

�

�

+ "




�




) : (2)
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Proof: By the expression for the exterior derivative �

1

3

d
 (X

�

; X

�

; X




) is

�
 ([X

�

; X

�

℄; X




) + 
 ([X

�

; X




℄; X

�

)� 
 ([X

�

; X




℄; X

�

) :

Using that [X

Æ

; X

�

℄ = m

Æ;�

X

Æ+�

and the de�nition of 
 this expression be-


omes

�m

�;�

"




h�

�+�

X

�+�

; X




i+m

�;


"

�

h�

�+


X

�+


; X

�

i �m

�;


"

�

h�

�+


X

�+


; X

�

i:

Now, hX

Æ

; X

�

i 6= 0 if and only if Æ + � = 0. Hen
e this sum is not zero only

when � + � + 
 = 0. In this 
ase the it redu
es to

�m

�;�

"




�

�


+m

�;


"

�

�

��

�m

�;


"

�

�

��

be
ause hX

Æ

; X

�Æ

i = 1. But �+ � + 
 = 0 implies that

m

�;�

= m

�;


= m


;�

(see [9℄, Lemma III, 5.1). Sin
e m

�;


= �m


;�

, we get (2).

Remark: The above proposition provides an alternative of the 
omputation

of d
, di�erent from the proof of [15℄, whi
h uses the moving frame method

of Cartan.

Taking into a

ount the expression for d
 we make the following distin
-

tion between the triples of roots.

De�nition 2.2 Let J = f"

�

g be an ia
s. A triple of roots �; �; 
 with � +

� + 
 = 0 is said to be

1. a f0; 3g-triple if "

�

= "

�

= "




, and

2. a f1; 2g-triple otherwise.

Re
all that an almost Hermitian manifold is said to be (1; 2) -symple
ti


(or quasi-K�ahler) if

d
 (X; Y; Z) = 0

when one of the ve
tors X; Y; Z is of type (1; 0) and the other two are of

type (0; 1).The stru
ture is (2; 1)-symple
ti
 if the roles of (1; 0) and (0; 1)

are inter
hanged. In our invariant 
ase, these two types of almost Hermitian

manifolds are equal. In fa
t, we have the following 
riteria for an invariant

pair (J;�) to be (1; 2)-symple
ti
, whi
h follows immediately from formula

(2), and the fa
t that X

�

is of type (1; 0) if "

�

= +1 and (0; 1) if "

�

= �1

(
f. [21℄, Theorem 9.15).
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Proposition 2.3 The invariant pair (J = f"

�

g;� = f�

�

g) is (1; 2)-symple
-

ti
 if and only if

"

�

�

�

+ "

�

�

�

+ "




�




= 0

for every f1; 2g-triple f�; �; 
g.

In the sequel we say that � is (1; 2)-symple
ti
 with respe
t to J if the in-

variant pair (J;�) is (1; 2)-symple
ti
. Also, J is said to be (1; 2) -invariantly

admissible or simply (1; 2)-admissible if there exists � su
h that the invariant

pair (J;�) is (1; 2)-symple
ti
.

Now, re
all that an almost Hermitian manifold is said to be almost K�ahler

if 
 is symple
ti
, that is d
 = 0. Also, the manifold is K�ahler, if furthermore

J is integrable. By formula (2) there are no f0; 3g-triples for J if the invariant

pair (J;�) is almost K�ahler. In fa
t, d
 = 0 implies that "

�

�

�

+"

�

�

�

+"




�




=

0 when �+ � + 
 = 0. Hen
e a f0; 3g-triple would lead to �

�

+ �

�

+ �




= 0,

whi
h is impossible sin
e �

�

> 0. From this remark we 
an �nd the ia
s

taking part of an almost K�ahler stru
ture.

Proposition 2.4 Suppose that the pair (J;�) is almost K�ahler. Then the

set P = f� : "

�

= +1g is a 
hoi
e of positive roots with respe
t to some

lexi
ographi
 order in h

�

R

.

Proof: Sin
e there are no f0; 3g-triples, the set P is 
losed, that is, �+� 2 P

if �; � 2 P and � + � is a root. Also, � = P [ (�P ). Now, it is well known

that these two properties imply that P is a 
hoi
e of positive roots.

Therefore, the ia
s of an invariant almost K�ahler stru
ture are equivalent

to the standard ones, whi
h 
ome from 
omplex stru
tures on F. Note that

the set of these ia
s is in bije
tion with the Weyl group or the set of Weyl


hambers in h

R

.

Corollary 2.5 An invariant almost Hermitian stru
ture on F is almost

K�ahler if and only if it is K�ahler.

3 AÆne ia
s

We have seen above that the almost K�ahler (and K�ahler) stru
tures are in

bije
tion with the set of Weyl 
hamber in h

R

. With the aim of des
ribing

10



the bigger 
lass of (1; 2)-symple
ti
 stru
tures we 
onsider in this se
tion the

set of al
oves, or equivalently, the aÆne Weyl group asso
iated with the root

system �.

We refer to Humphreys [10℄ as a basi
 sour
e for the aÆne Weyl group.

Consider the subspa
e h

R

. To 
onform with the usual notation we often

identify h

R

with its dual h

�

R

and write hx; �i instead of � (x), x 2 h

R

, � 2 h

�

R

.

Given � 2 � and k 2 Z de�ne the aÆne hyperplane

H (�; k) = fx 2 h

R

: hx; �i = kg:

The aÆne Weyl group W

a

is the group of aÆne motions of h

R

generated by

the orthogonal re
e
tions with respe
t to the hyperplanes H (�; k), � 2 �,

k 2 Z. It is well known that W

a

is the semi-dire
t produ
t of W by the

group of translations by elements of the latti
e L = Z � �

_

spanned over Z

by the 
o-roots

�

_

== f�

_

=

2�

h�; �i

: � 2 �g:

(See [10℄, Proposition 4.2.) Another relevant group of aÆne motions is




W

a

,

whi
h is the semi-dire
t produ
t of W by the group of translations by the

latti
e

b

L = fx 2 h

R

: 8� 2 �; h�; xi 2 Zg:

The 
omplement A of the set of of hyperplanes H (�; k), � 2 �, k 2 Z,

is the union its 
onne
ted 
omponents, ea
h one of them is an open simplex


alled al
ove. The aÆne group W

a

leaves invariant the union of the hyper-

planes H (�; k), � 2 �, k 2 Z, hen
e W

a

permutes the al
oves. The a
tion

of W

a

on the set of al
oves is free and transitive so that W

a

is in bije
tion

with A. The group




W

a

also a
ts transitively on the set of al
oves, but in

general not freely.

Given an al
ove A and a root �, there exists an integer k

�

= k

�

(A) su
h

that

k

�

< hx; �i < k

�

+ 1:

Of 
ourse, k

�

= [� (x)℄ for any x 2 A where [a℄ denotes the integer part of

the real number a, that is, [a℄ is the the largest integer su
h that a� [a℄ > 0.

A

ording to Shi [19℄, the integers k

�

(A) are 
alled the 
oordinates of the

al
ove A. An al
ove is 
ompletely determined by its 
oordinates. However, it

is not true that an arbitrary set of integers k

�

, � 2 �, form the 
oordinates

of some al
ove. Ne
essary and suÆ
ient 
onditions for k

�

, � 2 �, to be

11



the 
oordinates of an al
ove where determined in [19℄. We return to these


onditions in Se
tion 5 (see Proposition 5.2). For the moment we 
ontent

ourselves with the following ne
essary 
onditions, whi
h are easily obtained

from the de�nition:

1. k

��

= �k

�

� 1 and

2. either k




= k

�

+ k

�

or k




= k

�

+ k

�

+ 1 if 
 = � + �.

Now, with the aid of the 
oordinates of the al
oves we introdu
e the

following 
lass of ia
s.

De�nition 3.1 Given an al
ove A with 
oordinates k

�

, the ia
s J (A) =

f"

�

(A)g is de�ned by "

�

(A) = (�1)

k

�

. We say that J is an aÆne ia
s if it

has the form J = J (A) for some al
ove A.

Note that J (A) is indeed an ia
s, sin
e k

��

= �k

�

�1, so that "

��

(A) =

�"

�

(A).

The de�nition of aÆne ia
s has the following useful geometri
 interpre-

tation: Giving a 
hoi
e of positive roots �

+

� �, one has the basi
 al
ove

A

0

= fx 2 h

R

: 8� > 0; 0 < hx; �i < 1g;

having 
oordinates k

�

= 0, � > 0. If A is another al
ove, and � 2 �

+

,

denote by q

�

(A) the number of hyperplanes of the form H (�; k) separating

A of A

0

. Sin
e � > 0, q

�

(A) = jk

�

(A)j. Therefore, (�1)

k

�

(A)

= (�1)

q

�

(A)

,

so that the number of separating hyperplanes determines J (A).

Before pro
eding we 
he
k that the map A 7! J (A) whi
h de�nes the

aÆne ia
s is well behaved under the Weyl group a
tion.

Lemma 3.2 The map A 7! J (A) is equivariant with respe
t to the a
tion

of Weyl group W, that is J (wA) = w � J (A), w 2 W. Here wA is the

restri
tion to W of the a
tion of W

a

and w � f"

�

g = f"

w

�1

�

g is the W-a
tion

on the ia
s de�ned before.

Proof: Is immediate from the formula k

�

(wA) = k

w

�1

�

(A) whose proof is

straighforward.

The aÆne ia
s are intimately related to the (1; 2) -admissible ones. A
tu-

ally, one of the main purposes of this paper is to prove that these two 
lasses

12



of ia
s 
oin
ide. We show next that aÆne ia
s are (1; 2)-admissible. This is

the easy part of the proof that these properties are equivalent. The 
onverse

will be seen in later se
tions and requires several steps.

Theorem 3.3 Let J = J (A) be an aÆne invariant 
omplex stru
ture. Then

J is (1; 2)-invariantly admissible.

Proof: Let k

�

= k

�

(A) be the 
oordinates of A. Take x 2 A and de�ne the

invariant metri
 � = f�

�

g by

�

�

= "

�

(� (x)� k

�

) +

1� "

�

2

=

�

� (x)� k

�

if "

�

= +1

1� � (x) + k

�

if "

�

= �1:

Sin
e k

�

= [� (x)℄, it follows that �

�

> 0 for all �. Moreover, �

��

= �

�

is

a 
onsequen
e of "

��

= �"

�

and k

��

= �k

�

� 1. Hen
e � is a well de�ned

invariant metri
. We 
laim that � is (1; 2) -symple
ti
 with respe
t to J . To

prove this take roots �, � and 
 su
h that � + � + 
 = 0. A straighforward


omputation shows that

"

�

�

�

+ "

�

�

�

+ "




�




=

"

�

+ "

�

+ "




� 3

2

� (k

�

+ k

�

+ k




) : (3)

By one of the ne
essary 
onditions satis�ed by the 
oordinates stated above,

k

�


= k

�

+ k

�

or k

�

+ k

�

+1. Hen
e k




= � (k

�

+ k

�

)� 1 or � (k

�

+ k

�

)� 2,

so that k




is determined by k

�

, k

�

and the mod2 
osets of k

�

, k

�

and k




.

On the other hand, sin
e J is aÆne, "

Æ

= (�1)

k

Æ

for any root Æ. Therefore

k

�

+ k

�

+ k




is either �1 or �2 and we 
an de
ide by one of these values

as soon as we have ("

�

; "

�

; "




). With these remarks in mind we 
he
k that

"

�

�

�

+"

�

�

�

+"




�




= 0 for the possible ("

�

; "

�

; "




) yielding f1; 2g-triples. We

list below the out
omes:

1. ("

�

; "

�

; "




) = (+1;+1;�1).

"

�

+"

�

+"




�3

2

= �1; k

�

+ k

�

+ k




= �1.

2. ("

�

; "

�

; "




) = (+1;�1;+1).

"

�

+"

�

+"




�3

2

= �1; k

�

+ k

�

+ k




= �1.

3. ("

�

; "

�

; "




) = (+1;�1;�1).

"

�

+"

�

+"




�3

2

� 2; k

�

+ k

�

+ k




= �2.

4. ("

�

; "

�

; "




) = (�1;�1;+1).

"

�

+"

�

+"




�3

2

= �2; k

�

+ k

�

+ k




= �2.
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This 
on
ludes the proof that (J;�) is (1; 2)-symple
ti
.

We �nish this se
tion by proving a homomorphi
 property of the aÆne

ia
s whi
h might be useful in their future study.

Re
all that the group




W

a

a
ts transitively on the set of al
oves and is the

semi-dire
t produ
t of W by the group of translations de�ned by the latti
e

b

L. Therefore, for every al
ove A there exists � 2

b

L and w 2 W su
h that

A = t

�

wA

0

. Applying w

�1

to this equality, we get

w

�1

A =

�

w

�1

t

�

w

�

A

0

:

Now, w

�1

t

�

w = t

w

�1

�

, meaning that

b

L is stabilized byW. Hen
e every al
ove

is in the W -orbit of some al
ove obtained by translating the basi
 al
ove A

0

by an element of

b

L. Sin
e the map A 7! J (A) is equivariant, it follows that

every aÆne ia
s is equivalent to one of the form J (t

�

A

0

), � 2

b

L.

Lemma 3.4 Let � 2

b

L. Then, the 
oordinates of t

�

A

0

are k

�

= h�; �i if

� > 0. A

ordingly, k

�

= h�; �i � 1 if � < 0.

Proof: Take x 2 A

0

. Then ht

�

x; �i = h�; �i + hx; �i, so that h�; �i <

ht

�

x; �i < h�; �i+ 1 if � > 0.

This lemma implies that k

�+�

= k

�

+ k

�

if �, � and � + � are positive

roots. Hen
e, J (t

�

A) be
omes a homomorphism when restri
ted to n

+

, that

is, "

�+�

(t

�

A

0

) = "

�

(t

�

A

0

) "

�

(t

�

A

0

) if �; �; � + � 2 �

+

. Therefore, any

aÆne ia
s is equivalent to one satisfying this multipli
ative property on the

positive roots. We show next that this is also a suÆ
ient 
ondition for an

ia
s to be aÆne.

Proposition 3.5 An ia
s J = f"

�

g is aÆne if and only if there exists a


hoi
e of positive roots �

+

su
h that "

�+�

= "

�

"

�

when �; �; �+ � 2 �

+

. In

other words, the restri
tion of J to n

+

is a homomorphism.

Proof: It remains only to show that the multipli
ative property on the

positive roots imply that J is aÆne. For this we �nd � 2

b

L su
h that

"

�

= (�1)

h�;�i

if � > 0. Sin
e "

�+�

= "

�

"

�

for positive roots, it is enough

to have "

�

i

= (�1)

h�;�

i

i

where � = f�

1

; : : : ; �

l

g is the 
orresponding set of

simple roots. Therefore the required � is given by � = a

1

!

1

+ � � � + a

l

!

l

,

where h�

i

; �

j

i = Æ

ij

and a

i

= 0 if "

i

= +1 and a

i

= 1 otherwise.
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4 Abelian ideals

In this se
tion we �nd a 
onvenient representation for the (1; 2)-admissible

ia
s, whi
h generalizes the stair-shaped form of the in
iden
e matri
es of

tournaments appearing in the 
ontext of [3℄. We take a (1; 2)-admissible ia
s

J = f"

�

g and let � = f�

�

g be a 
orresponding invariant (1; 2)-symple
ti


metri
.

De�nition 4.1 A root � is said to be J-de
omposable (or simply de
ompos-

able) if there are roots �; 
 su
h that � = � + 
 with "

�

= "

�

= "




. The sum

� + 
 is a J-de
omposition of �. A root is J -inde
omposable otherwise.

Sin
e �� = (��) + (�
) and "

��

= �"

�

, it is 
lear that �� are simul-

taneously de
omposable or inde
omposable. We denote by I (J) or simply

by I the set of J -inde
omposable roots. In general, J-inde
omposable roots

may not exist. However, the presen
e of the (1; 2)-symple
ti
 metri
 � al-

lows a treatment of I analogous to the usual 
onstru
tion of a simple system

of roots. We start by noting that I 6= ;. In fa
t, let � = � + 
 be a J-

de
omposition with "

�

= "

�

= "




. Then f��; �; 
g is a f1; 2g-triple. Sin
e

(J;�) is (1; 2)-symple
ti
 we have �

�

= �

�

+ �




, so that �

�

> �

�

; �




. There-

fore, the roots Æ 2 � su
h that

�

Æ

= minf�




: 
 2 �g

are J-inde
omposable. We have further that I spans h

�

.

Lemma 4.2 Every root � 
an be written (possibly in a not unique way) as

� = �

1

+ � � �+ �

s

with �

i

2 I, and su
h that "

�

= "

�

i

, i = 1; : : : ; s.

Proof: Supose that � is J-de
omposable. Then � = � + 
. If � and 
 are

inde
omposable the result follows. Otherwise, de
ompose � and 
 and so on.

At ea
h step �

�

= �

�

+ �




. Hen
e the values of � are stri
tly de
reasing, so

that the su

essive de
ompositions �nally ends. Also, at ea
h de
omposition

� = � + 
 we have "

�

= "

�

= "




, implying the last statement.

Now, put

I

+

= f� 2 I : "

�

= +1g:
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Of 
ourse, I = I

+

[ I

�

if I

�

= �I

+

= f� 2 I : "

�

= �1g. Sin
e I spans

h

�

, it follows that I

+

also spans h

�

. A
tually, the above lemma ensures that

for an arbitrary root �, we have

� = "

�

(�

1

+ � � �+ �

s

) : (4)

with �

i

2 I

+

.

Soon it will be
ome 
lear that in general I

+

is not a basis of h

�

. However,

when this happens, that is, when jI

+

j = dimh, the above lemma implies that

I

+

is a simple system of roots and J is equivalent to the standard ia
s J




so

that (J;�) is K�ahler. In any 
ase I

+

shares with the simple systems of roots

the following useful property.

Lemma 4.3 Let �; � 2 I

+

. Then ��� is not a root. Therefore, h�; �i � 0

if �; � 2 I

+

, � 6= �.

Proof: Suppose that � � � = 
 2 �. If "




= +1 , we have the J-

de
omposition � = � + 
. On the other hand there is the de
omposition

� = � + (�
) if "




= �1, leading to a 
ontradi
tion. The last statement is

a 
onsequen
e of the Killing formula for the strings of roots.

In order to understand the set I

+

we make the following 
onstru
tion.

Write

I

+

= f�

1

; : : : ; �

m

g

where m = jI

+

j and let V be an m-dimensional ve
tor spa
e with basis

B = fv

1

; : : : ; v

m

g. The bije
tion v

i

2 B $ �

i

2 I

+

, indu
es an onto linear

map P : V ! h

�

. De�ne the symmetri
 bilinear form (x; y) = hPx; Pyi,

x; y 2 V . Sin
e the Cartan-Killing form is positive de�nite on h

�

, we have

kerP = fx 2 V : 8y 2 V; (x; y) = 0g:

Also, (x; x) = hPx; Pxi � 0 so that (�; �) is positive semi-de�nite, and satis�es

(u; u) > 0 for u 2 B.

Now, let W

V

be the group generated by the re
e
tions

s

i

(x) = x�

2 (x; v

i

)

(v

i

; v

i

)

v

i

x 2 V;
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with respe
t to the basi
 elements v

i

2 B. A

ording to [10℄, Se
tions 5.3

and 5.4, W

V

is the geometri
 representation of the Coxeter group de�ned by

the Killing-Cartan integers

2 (v

i

; v

j

)

(v

i

; v

i

)

=

2h�

i

; �

j

i

h�

i

; �

i

i

:

Note that by Lemma 4.3 above these integers form a generalized Cartan

matrix, so that they indeed de�ne a Coxeter group. Sin
e the form (�; �) is

positive semi-de�nite, W

V

is a Coxeter group of aÆne type. Re
all that the

root system of W

V

is de�ned to be the set

b

� = fbw (u) : u 2 B; bw 2 W

V

g:

The proje
tion P (

b

�) is the root system in h

�

generated by I

+

. We denote

it by � (I

+

).

Lemma 4.4 � (I

+

) � �.

Proof: De�ne the re
e
tions r

i

(�) = �� (2h�; �

i

i=h�

i

; �

i

i)�

i

with respe
t

to the roots in I

+

. A simple 
omputation shows that P Æ s

i

= r

i

ÆP , so that

for every bw 2 W

V

there exists w 2 W su
h that P Æ bw = w Æ P . Hen
e, for

any u 2

b

�, Pu has the form w�, for some w 2 W and � 2 I

+

, showing that

Pu 2 �.

Our next obje
tive is to prove the reverse in
lusion, ensuring that � =

� (I

+

). For this we 
onsider the 
ase of G

2

separetely with the aim of

simplifying some of the arguments envolving multiple-la
ed diagrams.

Regarding G

2

, its proper subsystems are 1) the set of short roots, 2) the

set of long roots, both isomorphi
 to A

2

, and 3) the redu
ible ones, 
omposed

of two orthogonal roots. None of these subsystems 
an be � (I

+

). In fa
t,

the long roots do not span G

2

over Z, as is the 
ase with � (I

+

), whi
h spans

�. On the other hand, the set of short roots does not admit a generating

set satisfying Lemma 4.3, sin
e it violates the property that the di�eren
e of

two roots is not a root. Furthermore, a pair of orthogonal roots do not span

G

2

over Z, as 
an be easily veri�ed. Hen
e, we have � (I

+

) = � in the G

2

root system.

For the general 
ase we 
onsider roots �; � 2 � (I

+

) and 
ompare the

strings of roots

� � p

I

�; : : : ; � + q

I

� 2 �

�

I

+

�

� � p�; : : : ; � + q� 2 �
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they form in ea
h system � (I

+

) and �. The strings are given by the well

known Killing formula

p� q =

2h�; �i

h�; �i

:

Of 
ourse the right hand side of this formula is independent of the root

system. However, the p's and q's 
an be di�erent in the two root systems.

Dis
arding G

2

, there are the following possibilities:

1. h�; �i 6= 0 and the roots have the same length. In this 
ase the Killing

numbers are 2h�; �i=h�; �i = 2h�; �i=h�; �i = �1, and the subspa
e

spanned by � and � meets � (I

+

) and � in an A

2

-subsystem, Both

strings depend only of the subsystem, so that they are the same, re-

gardless the root system.

2. h�; �i 6= 0, and the roots � and � have di�erent length (h�; �i=h�; �i =

2 or 1=2). Again the strings are the same, sin
e the subspa
e spanned

by � and � meets both � (I

+

) and � in the same B

2

-subsystem.

3. h�; �i = 0, the subspa
e spanned by � and � meets the bigger root

system � in a B

2

-subsystem, and � and � are short roots. In this 
ase

�� � 2 � but, in prin
iple, it may happen that �� � are not � (I

+

).

This is the only possibility for the strings to be di�erent.

With this preparation we 
an prove that

Lemma 4.5 � (I

+

) = �.

Proof: It remains to 
he
k that � � � (I

+

). This in
lusion is proved by

indu
tion as follows. Write the set f� 2 � : "

�

= +1g as f�

1

; : : : ; �

N

g,

ordered in su
h a way that

�

�

1

� � � � � �

�

N

:

Then we show that �

i

2 � (I

+

) by indu
tion on i. First, �

1

is J-inde
om-

posable, sin
e �

�

1

= minf�




: 
 2 �g. Hen
e, �

1

2 � (I

+

). Next, given

i = 1; : : : ; N suppose by indu
tion that �

j

2 � (I

+

) for all j < i. We 
an

assume that �

i

is J -de
omposable, otherwise �

i

is already in � (I

+

). Then

�

i

= �+
 with "

�

= "




= +1. There are indi
es j and k su
h that � = �

j

and


 = �

k

. Now, �

�

i

= �

�

+ �




, hen
e j; k < i, so by the indu
tive hypothesis
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both �; 
 2 � (I

+

). To prove that �

i

2 � (I

+

) we verify that the strings

of roots determined by � and 
 in � and � (I

+

) are the same. A

ording

to the dis
ussion above the only 
ase to take 
are is when � � 
 2 � and

h�; 
i = 0, that is, � and 
 are short roots in the B

2

-subsystem given by

the interse
tion of � with the subspa
e spanned by � and 
. There are the

possibilities:

1. "

��


= +1. Then � = (� � 
) + 
 is a J-de
omposition, so that

�

�

= �

��


+ �




. Hen
e �

��


< �

�

< �

�

i

, and the indu
tive hypothesis

implies that � � 
 2 � (I

+

). Now, � � 
 and 
 have di�erent length.

Hen
e the Killing formula implies that �

i

= � + 
 is also a root of

� (I

+

).

2. "

��


= �1, that is, "


��

= +1. Inter
hanging the roles of � and 
 we

also 
on
lude that �

i

2 � (I

+

).

Sin
e the strings are equal, it follows that �

i

2 � (I

+

), showing the in-

du
tive step, and hen
e that � (I

+

) = �.

We show next that the Coxeter graph of W

V

is 
onne
ted.

Lemma 4.6 Suppose that B = B

1

[ B

2

with B

1

\ B

2

= ; and (u; v) = 0 for

all u 2 B

1

and v 2 B

2

. Then either B

1

or B

2

is empty.

Proof: Let V

i

be the linear span of B

i

, i = 1; 2. We have V = V

1

� V

2

and

these subspa
es are mutually orthogonal with respe
t to (�; �). Sin
e W

V

is

generated by the re
e
tions with respe
t to the elements of B, it follows that

b

� =

�

V

1

\

b

�

�

[

�

V

2

\

b

�

�

:

On the other hand, I

+

= pB

1

[ pB

2

is a disjoint union of subsets orthogonal

with respe
t to the Cartan-Killing form in h

�

. Also, h

�

= PV

1

+PV

2

and PB

i

spans PV

i

, i = 1; 2. Hen
e, PV

1

is orthogonal to PV

2

, so that h

�

= PV

1

�PV

2

.

Now, using the fa
t that � (I

+

) = �, we 
on
lude that

� = (PV

1

\ �) [ (PV

2

\ �) :

However, we are assuming that g is simple, i.e., � is irredu
ible. Therefore,

either PV

1

or PV

2

= 0, implying that one of the subsets B

1

or B

2

is empty.

19



The 
lassi�
ation of the irredu
ible aÆne Coxeter groups is well known

(see [10℄, [11℄). In any one of them the radi
al of the 
orresponding quadrati


form (�; �) has dimension at most one:

dimfx 2 V : 8y 2 V; (x; y) = 0g � 1:

Hen
e kerP � 1, so that dimV = dimh or dimh+ 1, proving that

Proposition 4.7 Either jI

+

j = dim h or jI

+

j = dim h+ 1.

As mentioned above, I

+

is a simple system of roots in 
ase jI

+

j = dim h,

for
ing J to be equivalent to the standard ia
s. On the other hand if jI

+

j =

dimh + 1, W

V

is a truly aÆne Coxeter group. The following des
ription of

an aÆne group from a �nite Weyl group is well known (see [10℄, [11℄):

Proposition 4.8 In the spa
e V of the geometri
 realization of the aÆne

root system there are

1. a 
odimension 1 subspa
e U � V (U � h

�

),

2. a �nite root system on U , denoted by � (V ),

3. a simple system of roots � (V ) � � (V ), and

4. a generator Æ of kerP (1-dimensional subspa
e 
omplementing U)

su
h that the basis B = fv

1

; : : : ; v

m

g is given by

B = � (V ) [ fÆ � �g

where � is the highest root with respe
t to � (V ).

We are now in postion to pie
e together all the previous dis
ussion and

arrive at the following 
hara
terization of the set of J-inde
omposable roots.

Theorem 4.9 As before let I

+

be the set of J-inde
omposable roots � su
h

that "

�

= +1. Then there exists a simple system of roots � � � su
h that

either I

+

= � or

I

+

= � [ f��g

where � is the highest root with respe
t to �.
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Proof: I

+

= PB. Hen
e the theorem follows by the des
ription of B in the

above proposition.

Remark: In the light of Lemma 4.3 the statement of the above theorem is

equivalent to the existen
e of a simple system of roots 
ontained in I

+

. In

fa
t, the only root 
 whi
h satis�es h
; �i � 0 for all simple roots � is ��.

We were not able to prove dire
tly { without the intervenien
e of the aÆne

Weyl groups { that I

+


ontains a simple system of roots. Nevertheless, we

note that the 
ondition of Lemma 4.3 alone is not enough to ensure that a

set 
ontains a simple system os roots, even if the set spans h

�

. For instan
e,

in a B

l

root system, the set L given by the union of the set of long simple

roots with the lowest root spans h

�

and satis�es h�; �i � 0 for all �; � 2 L.

But there are no simple system of roots of B

l


ontained in L sin
e the roots

in L are long.

De�nition 4.10 Keep �xed a simple system of roots � with �

+

the 
orre-

sponding set of positive roots. A subset M � �

+

is said to be an abelian ideal

provided

1. M is abelian, that is, � + � is not a root if �; � 2M .

2. One of the following equivalent 
onditions is satis�ed.

(a) � + 
 2M if � 2M and 
 2 � are su
h that � + 
 is a root.

(b) � + 
 2M if � 2M and 
 2 �

+

are su
h that � + 
 is a root.

(
) Suppose that there are simple roots �

1

; : : : ; �

s

and � 2 M su
h

that �

k

= � + �

1

+ � � � + �

k

is a root for all k = 1; : : : ; s. Then

�

k

2M .

(d) Denote by � the highest positive root and suppose that there are

simple roots �

1

; : : : ; �

s

su
h that � = �� �

1

� � � � � �

s

2M , and

�

k

= ���

1

�� � ���

k

is a root for all k = 1; : : : ; s. Then �

k

2M .

The equivalen
e of the 
onditions follow easily from the

Lemma 4.11 Let �; � be positive roots su
h that �+� is a root. Then there

are simple roots �

1

; : : : ; �

s

su
h that � = �

1

+ � � �+ �

s

and all intermediate

sums � + �

1

+ � � �+ �

k

, k = 1; : : : ; s, are roots.
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Proof: Follows by indu
tion on the height of �, the well known fa
t that

� is a 
onse
utive sum of simple roots, and the following remark: If � =

�

1

+ �

2

then either � + �

1

or � + �

2

is a root. In turn, this remark is a


onsequen
e of the Ja
obi identity. In fa
t,

0 6= [g

�

; g

�

℄ = [g

�

; [g

�

1

; g

�

2

℄℄ = [g

�

; g

�

1

℄; g

�

2

℄ + [g

�

1

; [g

�

; g

�

2

℄℄;

so that one of the terms on the right hand side must be 6= 0, implying that

either � + �

1

or � + �

2

is a root.

Now we are ready state the main result of this se
tion establishing a

spe
ial form for (1; 2)-symple
ti
 invariant almost Hermitian stru
tures.

Theorem 4.12 Take a (1; 2)-symple
ti
 invariant pair (J;�), J = f"

�

g,

� = (�

a

). Let � be a simple system of J -inde
omposable roots 
ontained in

I

+

, as ensured by Theorem 4.5. Denote by �

+

the set of positive roots and

by � the highest root. Put

M (J;�) = f� 2 �

+

: "

�

= �1g:

Then,

1. M (J;�) is an abelian ideal.

2. M (J;�) \ � = ;.

3. For � 2M (J;�) suppose that � = �� �

1

� � � � � �

s

with �

k

2 � and

�� �

1

� � � � � �

k

roots for all k = 1; : : : ; s. Then

�

�

= �

�

+ �

�

1

+ � � �+ �

�

s

:

4. Let � 2 �

+

nM (J;�) be su
h that � = �

1

+ � � �+�

s

with �

1

+ � � �+�

k

roots for k = 1; : : : ; s. Then

�

�

= �

�

1

+ � � �+ �

�

s

:

5. Take � 2 M (J;�) and let � 2 �

+

be su
h that � + � is a root. Then

�

�+�

= �

�

+ �

�

.
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Proof: Let � 2 M (J;�) and � 2 � be su
h that � + � is a root. If

"

�+�

= +1 then � = (� + �)+(��) is a J -de
omposition of � 
ontradi
ting

the fa
t that � is inde
omposable. Hen
e � + � 2 M (J;�) and the �rst of

the equivalent 
onditions of De�nition 4.10 is satis�ed. The expressions for

�

�

follow easily from this 
ondition and by su

essively adding a simple root,

where at ea
h step a f1; 2g-triple is involved. Similarly, the last statement

follows from se
ond 
ondition in De�nition 4.10.

To see the abelian property, take �; � 2 M (J;�) and suppose, by 
on-

tradi
tion that 
 = �+ � is a root. Then 
 2M (J;�) so that f�
; �; �g is

f1; 2g-triple, implying that �




= �

�

+ �

�

. Hen
e �




> �

�

; �

�


ontradi
ting

the expression in the last statement, whi
h was already proved. Finally, by


onstru
tion M (J;�) does not meet �.

De�nition 4.13 We say that an ia
s J satis�es the abelian ideal property

with repe
t to � if M (J;�) is an abelian ideal su
h that M (J;�) \ � = ;.

In this 
ase J has the abelian ideal form or pattern with respe
t to �.

Remark: Noti
e that the 
one of the invariant metri
s � su
h that (J;�) is

(1; 2)-symple
ti
 is (l + 1)-dimensional (l = dimh), unless in the K�ahler 
ase

where J is the standard almost 
ompex stru
ture. In this the 
ase metri
s are

those of Borel type. Also, it is not hard to see that if M (J;�) is an abelian

ideal withM (J;�)\� = ; , then the expressions given in above theorem for

�, indeed de�ne a (1; 2)-symple
ti
 metri
 with respe
t to J , showing that

J is (1; 2)-admissible. In the next se
tion this fa
t will be proved in another

way, by showing that J is aÆne if M (J;�) is an abelian ideal.

At this moment it is natural to ask whether the abelian ideal forms of

Theorem 4.12 determine the equivalen
e 
lasses of the (1; 2)-symple
ti
 stru
-

tures under theW-a
tion. Of 
ourse, equivalent stru
tures 
an be put in the

same abelian ideal form. However, it is not true that two J

1

6= J

2

satisfying

the abelian ideal property with respe
t to the same � are not equivalent.

Hen
e, the abelian ideal form is not a truly 
anoni
al form, in the sense that

equivalen
e 
lasses are not determined by them. We dis
uss these fa
ts in

Se
tion 6, after we have established the 
orresponden
e between the (1; 2)-

admissible ia
s with the aÆne ones.

For later referen
e we expli
itate the following fa
t.
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Proposition 4.14 Suppose that J satis�es the abelian ideal property with

respe
t to �. Then I (J) = � if M (J;�) = ; and I (J) = � [ f��g

otherwise.

Proof: Let � 2 �

+

nM (J;�). If � =2 � then � = �+
 with �; 
 > 0. Sin
e

M (J;�) is an ideal, the sum � = � + 
 is a J-de
omposition, so that � is

de
omposable. On the other hand, let � 2M (J;�) n f�g. Then � = �� �,

with � 2 �

+

nM (J;�), be
ause M (J;�) is abelian. Hen
e, � = � + (��)

is a J-de
omposition, 
on
luding the proof.

5 (1; 2)-Symple
ti
 are aÆne

It was indi
ated before how to asso
iate with an al
ove A an aÆne ia
s

J (A). Also, in Theorem 3.3 we exhibited an invariant metri
 whi
h is (1; 2)-

symple
ti
 with respe
t to J (A). The purpose of this se
tion is to prove

that this 
onstru
tion exhausts the totality of (1; 2)-invariantly admissible

ia
s. Starting with a(1; 2)-admissible ia
s J we �nd an al
ove A su
h that

J = J (A). In �nding A the metri
 does not show up, but only the fa
t that

J 
an be put in the abelian ideal form des
ribed in Theorem 4.12. Thus our

obje
tive is to prove the following statement.

Theorem 5.1 Let J = f"

�

g be an invariant almost 
omplex stru
ture. Keep

�xed a simple system of roots � and assume that

M (J;�) = f� > 0 : "

�

= �1g

is an abelian ideal. Then there exists an al
ove A su
h that J = J (A).

Remark: In Theorem 4.12 we obtained that M (J;�) does not meet �.

However, the proof that J is aÆne if it has the abelian ideal form does not

require that M (J;�) \ � = ;.

The proof of the above theorem is based on the results of Shi [19℄ about

the 
oordinates of an al
ove. These results were stated with a spe
i�
 nor-

malization of our root system �, whi
h is viewed as the set of 
o-roots of

another root system.

Thus we start with a root system

e

� normalized in su
h a way that h�; �i =

1 for all � 2

e

� if it is simply-la
ed and h�; �i = 1 for the short roots
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otherwise. Given � 2

e

�, let �

_

= 2�=h�; �i be the 
orresponding 
o-root.

It is well known that the set

e

�

_

of 
o-roots of

e

� is also a root system, and

vi
e-versa, any root system is the set of 
o-roots of another system. We view

our orginal root system � as a set of 
o-roots:

� =

e

�

_

= f�

_

=

2�

h�; �i

: � 2

e

�g

(e.g., if � = B

l

then

e

� = C

l

and vi
e-versa). If

e

� is simply-la
ed then

� = 2

e

� and both systems are isomorphi
. However, if the Dynkin diagram

of

e

� has multiple edges then the long roots of � are the 
o-roots �

_

with �

running through the short roots of

e

� and re
ipro
ally.

Now, 
onsider the aÆne system asso
iated to �. The aÆne hyperplanes

are de�ned by

H (�

_

; k) = fx : h�

_

; xi = kg � 2

e

�; �

_

2 �; k 2 Z:

Given an al
ove A and a root � 2

e

� there are integers k

�

= k

�

(A) su
h

that k

�

< h�

_

; xi < k

�

+ 1. These integers de�ne the al
ove A, but there

are redundan
ies in the inequalities, so that not every set of integers k

�

is

asso
iated to an al
ove. In fa
t, we have the following 
onditions.

Proposition 5.2 A set of integers k

�

, � 2

e

�

+

, form the 
oordinates of an

al
ove if and only if for every pair of roots �; � 2

e

� su
h that �+� 2

e

�, the

following inequilities hold:

j�j

2

k

�

+ j�j

2

k

�

+ 1 � j� + �j

2

(k

�+�

+ 1)

� j�j

2

k

�

+ j�j

2

k

�

+ j�j

2

+ j�j

2

+ j� + �j

2

� 1:

(5)

Proof: See [19℄, Lemma 1.2 and Proposition 5.1.

Now, re
all the 
onstru
tion of the aÆne ia
s J (A) = f" (A)g asso
iated

with the al
ove A. We have "

�

= (�1)

k

�

(A)

, hen
e in order to prove Theorem

5.1 it is enough to �nd, for the given ia
s J = f"

�

g, a set of integers k

�

satifying the inequalities (5) and su
h that "

�

= (�1)

k

�

. Therefore, we get

Theorem 5.1 as a 
onsequen
e of the following 
onstru
tion.
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Proposition 5.3 Let J = f"

�

g be under the 
onditions of Theorem 5.1,

and, for � > 0, put

k

�

=

�

0; � =2M (J;�) ; "

�

= +1

1; � 2M (J;�) ; "

�

= �1:

(6)

Then the inequalities (5) are satis�ed by the integers k

�

. Here we are using

the 
onvention k

�

_

= k

�

, � 2

e

�.

We shall prove this proposition in several steps. Consider �rst the 
ase

where the diagram of

e

� is simply-la
ed, so that � = 2

e

� and both root

systems are equivalent. This implies that for �; � 2

e

�, �+� 2

e

� if and only

if �

_

+ �

_

2 �. Furthermore, for any su
h triple the inequalities (5) redu
e

to

k

�

+ k

�

+ 1 � k

�+�

+ 1 � k

�

+ k

�

+ 2

Now, we 
onsider the possibilities for k

�

, � > 0, whi
h are de�ned in (6) by

means of the signs "

�

. We write ("

�

; "

�

; "

�+�

) = (���):

1. (+ + +): Then, k

�

= k

�

= k

�+�

= 0, so that the inequalities are

1 � 1 � 2.

2. (+ +�). Then k

�

= k

�

= 0 and k

�+�

= 1, giving 1 � 2 � 2.

3. (+��). Then k

�

= 0, and k

�

= k

�+�

= 1, and we have 2 � 2 � 3.

The signs (+� +) are not 
onsidered sin
e by assumption M (J;�) is an

ideal. Analogously, (���) and (�� +) do not show up by the abelian

property of M (J;�). This 
on
ludes the proof of Proposition 5.3 in the

simply-la
ed 
ase.

For the other diagrams we postpone the analysis of G

2

in order to simplify

some of the arguments. Hen
e, in the dis
ussion to follow we assume that

j�j

2

= 1 or 2 if � 2

e

�. We emphasize that the inequalities (5) are written

in terms of triples of roots in

e

�. However, the de�nition of k

�

is based on

the ideal M (J;�) � �. Thus the �rst step 
onsists in writing down the

inequalities in terms of roots in �.

Ea
h pair of inequalities is given by a triple (�; �; �+ �) of roots in

e

�.

Writing l for long root and s for short root, there are the possibilities: (s; s; s),

(l; l; l), (s; l; s) and (s; s; l). The 
ase (l; l; s) never o

urs. In fa
t, in a root
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system the sum of two long roots is never a short root (just look at B

2

or G

2

).

Appart from G

2

the only possibility for mixing l and s is in a B

2

-subsystem.

Now, we translate these possibilities into triples in �, by taking 
o-roots.

We arrive at the 
ases (l; l; l), (s; s; s), (l; s; l) and (l; l; s). In the �rst two 
ases

�

_

+ �

_

= (� + �)

_

. Hen
e they 
orrespond to triple of roots (u; v; u+ v) in

�. The other two 
ases do not 
orrespond to su
h triples in �, but to triples

as follows: Given a triple (�; �; �+ �) in

e

� of the type (s; l; s), we have

�

_

+2�

_

= (� + �)

_

and re
ipro
ally, a triple (u; v; w) of the type (l; s; l) in

� 
omes from (s; l; s) in

e

� if u + 2v = w. Analogously, (s; s; l) triples in

e

�


orrespond to (l; l; s) triples (u; v; w) in � satisfying w = (u+ v) =2.

Having established these 
orresponden
es we write down the possible in-

equalities using triples in �.

Proposition 5.4 Let � be a double-la
ed root system. A set of integers k

�

,

� 2 �

+

, form the 
oordinates of an al
ove if the following inequalities are

satis�ed for the 
orresponding triples of roots in �

+

:

1. (�; �; �+ �) = (l; l; l): k

�

+ k

�

+ 1 � k

�+�

+ 1 � k

�

+ k

�

+ 2

2. (�; �; �+ �) = (s; s; s): 2k

�

+ 2k

�

+ 1 � 2k

�+�

+ 2 � 2k

�

+ 2k

�

+ 5

3. (�; �; �+ 2�) = (l; s; l): k

�

+ 2k

�

+ 1 � k

�+2�

+ 1 � k

�

+ 2k

�

+ 3

4. (�; �; (� + �) =2) = (l; l; s): k

�

+ k

�

+ 1 � 2k

(�+�)=2

+ 2 � k

�

+ k

�

+ 3

Now, the values of k

�

, de�ned in Proposition 5.3 must be pluged into these

inequalities. Sin
e k

�

is given by "

�

, we write the possibilities in terms of the

signs. In the �rst two 
ases only the signs (+ + +), (+ +�) and (�+�)

appear, be
ause M (J;�) is an abelian ideal. The out
oming inequalities are

depi
ted in the following table.

+ + + ++� � +�

lll 1 � 1 � 2 1 � 2 � 2 2 � 2 � 3

sss 1 � 2 � 5 1 � 4 � 5 3 � 4 � 7

The other 
ases are des
ribed below.

� The 
ase (�; �; �+ 2�) = (l; s; l). Take �; � 2 �

+

su
h that � + 2� 2

�

+

. Then "

�

= +1. In fa
t, "

�

= �1 entails � + � 2 M (J;�), but

then � + (� + �) is a sum of two roots in M (J;�), 
ontradi
ting the
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assumption on this set. Analogously, the 
ase "

�

= �1, "

�

= +1 and

"

�+2�

= +1 does not o

ur. It remains only the following three 
ases,

with the 
orreponding inequalities:

1. (+ + +); 1 � 1 � 3.

2. (+ +�); 1 � 2 � 3.

3. (� +�); 2 � 2 � 4.

� The 
ase (�; �; (� + �) =2) = (l; l; s). Take � and � positive roots su
h

that (� + �) =2 2 �

+

is a positive root. We 
an identify the interse
tion

of � with the subspa
e spanned by � and � with the root system B

2

,

whose positive roots are

f�

1

; �

2

; �

1

+ �

2

; �

1

+ 2�

2

g:

The identi�
ation is in su
h a way that � = �

1

and � = �

1

+ 2�

2

.

Hen
e (�+ �) =2 be
omes �

1

+ �

2

. Through this identi�
ation it is

easy to see that � = �+ (� + �) =2. This implies that "

(�+�)=2

= +1 if

"

�

= +1.

On the other hand, "

(�+�)=2

= �1 if "

�

= "

�

= �1. In fa
t, using the

identi�
ation with B

2

we see that (� + �) =2 = �+�

2

and (�+ �) =2 =

���

2

. Hen
e (� + �) =2 is bigger than � or � depending if �

2

is positive

or negative in �. In both 
ases "

(�+�)=2

= +1 would 
ontradi
t the fa
t

that M (J;�) is an ideal.

Therefore it remains only the following three 
ases, with the 
orrepond-

ing inequalities:

1. (+ + +): 1 � 2 � 3.

2. (� +�): 2 � 4 � 4.

3. (���): 3 � 4 � 5.

This 
on
ludes the proof of Proposition 5.3 (and hen
e of Theorem 5.1)

for the double-la
ed diagrams.

Now we 
onsider G

2

. Write its positive roots as

�

1

�

2

�

1

+ �

2

�

1

+ 2�

2

�

1

+ 3�

2

2�

1

+ 3�

2

:
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Then the possible J su
h that M (J;�) is an abelian ideal are

+

+

+ + + +,

+

+

+ + +�,

+

+

+ +�� and

+

+

+���. It is easily 
he
ked that these ia
s


orrespond to al
oves, either by using inequalities (5) or by drawing the set

of al
oves.

6 Equivalent (1; 2)-symple
ti
 ia
s

In this se
tion we look at the equivalen
e 
lasses of (1; 2) -symple
ti
 invariant

stru
tures under the a
tion of the Weyl group. Sin
e any stru
ture 
an be

put in abelian ideal form, it remains to determine when two invariant pairs

(J

1

;�

1

) and (J

2

;�

2

) satisfying the abelian ideal property with respe
t to the

same � are equivalent. Thus we �x � and 
he
k if there exists w 2 W

su
h that J

2

= w � J

1

. Having this in mind we develop here a formula for

M (w � J;�) when both J and w � J satisfy the abelian ideal property with

respe
t to �.

Re
all that w � J = f"

w

�1

�

g if J = f"

�

g. From this de�ning expres-

sion it follows immediately that a root � is J-de
omposable if and only if

w

�1

� is (w � J)-de
omposable. Hen
e, I (w � J) = w

�1

I (J). The following

proposition 
hara
terizes those w 2 W that do not destroy the abelian ideal

property.

Proposition 6.1 Fix a simple system of roots � and put

e

� = � [ f��g.

Two invariant pairs (J

1

;�

1

) and (J

2

;�

2

), having the abelian ideal form with

respe
t to � are equivalent if and only (J

2

;�

2

) = (w � J

1

; w � �

1

) with w 2 W

satisfying w

e

� =

e

�.

Proof: By Proposition 4.14

I (J

1

) = I (J

2

) = (��) [ f��g:

Moreover, I (J

2

) = w

�1

I (J

1

). Hen
e, w and w

�1

map the subset (��) [

f��g onto itself. We 
laim that I

+

(J

1

) = I

+

(J

2

) = � [ f��g is also

invariant under w

�1

. In fa
t, put J

1

= f"

�

g and J

2

= fÆ

�

g. Sin
e the

stru
tures are in abelian ideal form, "

�

= Æ

�

= +1 if � is simple. But

Æ

�

= "

w

�1

�

and "

�

= Æ

w�

, so that w� � � [ f��g and w

�1

� � � [ f��g.

Now, if w

�1

� � �, w = 1 and the 
laim follows. On the other hand, there

exists � 2 � su
h that w

�1

� = ��, that is, w (��) = �, whi
h means that

� [ f��g is invariant under w, and hen
e under w

�1

.
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Conversely, suppose � [ f��g is invariant under w

�1

2 W. Then �

1

=

w

�1

� is another 
hoi
e of a simple system of roots within �[ f��g. Hen
e,

by Theorem 4.12, J and w � J are in abelian ideal form with respe
t to both

� and �

1

.

We denote by W

e

�

the subgroup of W leaving invariant

e

�. Due to the

bije
tion of W with the set of simple systems of roots, it is 
lear that W

e

�

is in bije
tion with the set of simple systems of roots 
ontained in

e

�. These

systems are easily determined with the aid of the Coxeter graphs of the aÆne

Weyl groups (extended Dynkin diagrams). In fa
t, we have the following


hara
terization of the simple systems of roots 
ontained in

e

�.

Lemma 6.2 A subset �

1

�

e

� is a simple system of roots if and only if �

1

is a subgraph of the extended diagram equal to the Dynkin diagram of �.

Proof: Clearly, the 
ondition is ne
essary, sin
e

e

� is the extended diagram.

To prove suÆ
ien
y we must keep an eye at the extended Dynkin diagrams.

Sin
e they are easily a

essible from textbooks (see [9℄, page 503 or [10℄, page

96), we do not reprodu
e them here. The subgraphs �

1

whi
h are isomorphi


to � are obtained by deleting from

e

� either �� or a simple root in a subset

� � �. Che
king the 
oeÆ
ients of � with respe
t to � (see [9℄, Table I,

page 477 or [10℄, page 98), one sees that the 
oeÆ
ient of ea
h � 2 � is 1.

Take a positive root � =

P


2�

n





, n




� 0. If � 2 �, n

�

= 0 or 1

be
ause n

�

is smaller than the 
oeÆ
ient of � with respe
t to �. Now, it is

easy to see that � is a linear 
ombination of (� n f�g) [ f��g with integer


oeÆ
ients m

i

, whi
h are all � 0 if n

�

= 0 and � 0 if n

�

= 1. This implies

that (� n f�g) [ f��g, � 2 �, is a simple system of roots.

By inspe
ting the table of the extended diagrams we �nd the following

quantities of simple systems �

1

�

e

�:

e

�

e

A

l

e

B

l

e

C

l

e

D

l

e

E

6

e

E

7

e

E

8

e

G

2

e

F

4

�

�

W

e

�

�

�

l + 1 2 2 4 3 2 1 1 1

The numbers in this table are pre
isely the indi
es of 
onne
tivity of the

aÆne groups W

a

. This index is either the order of




W

a

=W

a

or the order of

the subgroup of




W

a

leaving invariant the basi
 al
ove A

0

(see [10℄, page 98).
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This suggests a relation between the latter subgroup and W

e

�

. In fa
t, we

have the following 
onstru
tion: Let P be the open parallelepiped

P = fx 2 h

R

: 8� 2 �; 0 < h�; xi < 1g:

Given w 2 W there exists exa
tly one �

w

2

b

L su
h that t

�

w

w (A

0

) � P (see

[10℄, page 99), where t

�

is the aÆne translation by �.

Put � = f�

1

: : : ; �

l

g and let f!

1

; : : : ; !

l

g be de�ned by h!

i

; �

j

i = Æ

ij

.

A

ording to [10℄ (see page 99), �

w

=

P

a

i

!

i

with a

i

= 0 if w

�1

�

i

> 0 and

a

i

= 1 if w

�1

�

i

< 0. Given w 2 W

e

�

, there is just one simple root, say �

w

,

su
h that w

�1

�

w

= ��. For the other roots � 2 �, w

�1

� 2 �, so that

w

�1

� > 0. Hen
e, �

w

= !

i

if �

w

= �

i

.

Lemma 6.3 Take w 2 W

e

�

and � > 0. Then w

�1

� > 0 if and only if

h�

w

; �i = 0, and w

�1

� < 0 if and only if h�

w

; �i = 1.

Proof: The 
oeÆ
ient b

�

w

of �

w

in � =

P

�2�

b

�

� is h�

w

; �i. As remarked

above, w 2 W

e

�

implies that the 
oeÆ
ient of the highest root � in the di-

re
tion of �

w

is 1 (see the proof of Lemma 6.2). Hen
e, h�

w

; �i = 0 or 1.

Note that w

�1

� 2 � if � 6= �

w

, � 2 �. Hen
e, if h�

w

; �i = 0 then w

�1

� is

a linear 
ombination with positive integers of w

�1

(� n f�

w

g) � �, so that

w

�1

� > 0. On the other hand, h�

w

; �i = 1, implies that w

�1

� has the form

��+ 
 with 
 a 
ombination of w

�1

(� n f�

w

g), with 
oeÆ
ients ne
essarily

smaller than the 
oeÆ
ients of �. Therefore, at least one of the 
oeÆ
ients

of w

�1

� is < 0, implying that w

�1

� < 0.

The next lemma establishes a relationship betweenW

e

�

and the subgroup

of




W

a

leaving A

0

invariant.

Lemma 6.4 If w 2 W

e

�

then t

�

w

w (A

0

) = A

0

.

Proof: Take x 2 A

0

and a positive root �. Then ht

�

w

wx; �i = h�

w

; �i +

hx; w

�1

�i. Suppose w

�1

� > 0. Then 0 < hx; w

�1

�i < 1, and by the above

lemma, h�

w

; �i = 0. Hen
e, 0 < ht

�

w

wx; �i < 1 , so that t

�

w

wx 2 A

0

. Sim-

ilarly, �1 < hx; w

�1

�i < 0 and h�

w

; �i = 1 if w

�1

� < 0, 
on
luding that

t

�

w

wx 2 A

0

in ea
h 
ase.
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Remark: The above lemma be
omes 
lear if one thinks of A

0

as de�ning a


hamber of the geometri
 realization of the aÆne Weyl group. Sin
e W

e

�

is

the group of automorphisms of

e

� , it leaves invariant the basi
 
hamber.

Returning to the equivalen
e question, let J = J (A) be an aÆne ia
s,

and assume that it satis�es the abelian ideal property of Theorem 4.12, with

M (J;�) the 
orresponding abelian ideal. By Theorem 5.1 (and Proposition

5.3) we 
an assume that the 
oordinates k

�

= k

�

(A), � > 0, of A are k

�

= 0

if � =2M (J;�) and k

�

= 1 if � 2M (J;�).

Fixing these notations we shall use the above lemmas to 
ompute the


oordinates of the al
ove �

w

wA for w 2 W

e

�

. To this aim we note that

the hyperplanes separating A

0

and A are H (�; 1), � 2 M (J;�). Applying

the aÆne map t

�

w

w, we see that the hyperplanes separating t

�

w

wA and

t

�

w

wA

0

= A

0

are

t

�

w

wH (�; 1) = H (w�; 1 + hw�; �

w

i) ; � 2 M (J;�) : (7)

Lemma 6.5 Take w 2 W

e

�

and � > 0 . Then

hw�; �

w

i =

�

0 if w� > 0

�1 if w� < 0:

Proof: Let �

j

2 � be su
h that w�

j

= ��. We have �

j

= w

�1

(��), and

sin
e w

�1

2 W

e

�

we 
on
lude that the 
oeÆ
ient of � in the dire
tion of �

j

is 1. Clearly, w� > 0 if and only if h!

j

; �i = 0, be
ause w�

k

2 � if k 6= j.

Now, w

�1

�

w

= ��, so that no simple root �

k

satis�es w�

k

= �

w

. This

means that the only possibility for w� to have nonzero 
oeÆ
ient in the di-

re
tion of �

w

, that is, to have hw�; �

w

i 6= 0 is when h!

j

; �i 6= 0. Therefore,

hw�; �

w

i = 0 if h!

j

; �i = 0, i.e., if w� > 0. On the other hand, if h!

j

; �i 6= 0,

the only term whi
h 
ollaborates to the 
oeÆ
ient of �

w

is w�

j

= ��. Hen
e,

the 
oeÆ
ient of w� in the dire
tion �

w

is �1, 
on
luding the proof.

By this lemma the hyperplanes given in (7) separating t

�

w

wA and A

0

=

t

�

w

wA

0

are rewritten as

H (w�; 1) if w� > 0

H (w�; 0) if w� < 0

� 2M (J;�) : (8)

This implies the following expressions for the 
oordinates of t

�

w

wA

0

:
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Lemma 6.6 Keep the above notations. For � > 0,

k

�

(t

�

w

wA

0

) =

8

<

:

0 if � =2 �wM (J;�)

1 if � 2 wM (J;�)

�1 if � 2 �wM (J;�)

Proof: The hyperplanes separating t

�

w

wA

0

and A

0

have the form H (w�; k),

� 2 M (J;�), k = 0; 1 . Therefore, if � =2 �wM (J;�) no hyperplane of the

formH (�; k) separates t

�

w

wA

0

and A

0

, implying that k

�

(t

�

w

wA

0

) = 0. Now,

by (8), if � = w� > 0, � 2M (J;�), then H (�; 1) is the only separating hy-

perplane orthogonal to �, so that k

�

(t

�

w

wA

0

) = 1. Finally, if � = �w� > 0,

the separating hyperplane is H (�; 0) = H (w�; 0).

Now, we apply the following straighforward formula

k

�

(t

�

A) = k

�

(A) + h�; �i

to get the 
oordinates of the al
ove wA

0

.

Lemma 6.7 Keep the above notations. For � > 0,

k

�

(wA

0

) =

8

>

>

<

>

>

:

0 if � =2 �wM (J;�) and h�; �

w

i = 0

�1 if � =2 �wM (J;�) and h�; �

w

i = 1

1 if � 2 wM (J;�)

�2 if � 2 �wM (J;�)

Proof: The �rst two lines follow immediately from the previous lemma and

the above formula. The other two 
ases are 
onsequen
es of Lemma 6.5.

Finally we des
ribe the abelian ideal 
orresponding to w � J if w 2 W

e

�

and J has the abelian ideal form with respe
t to �.

Proposition 6.8 Let J = J (A) be an aÆne ia
s, satisfying the abelian ideal

property with respe
t to �, with M (J;�) the 
orresponding abelian ideal.

Take w 2 W

e

�

. Then w � J has the abelian ideal property with respe
t to �,

and M (w � J;�) is

�

wM (J;�) \ �

+

�

[ f� 2 �

+

: w

�1

� =2 �M (J;�) and h�; �

w

i = 1g:
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Proof: By the above lemma this is the set whi
h 
orresponds to odd k

�

.

>From this expression for M (w � J;�) one is able to look at the abelian

ideals whi
h represent the same equivalen
e 
lass, and eventually �nd 
on-

venient 
anoni
al forms for the (1; 2) -symple
ti
 invariant almost Hermitian

stru
tures. We refrain ourselves to make here su
h a detailed analysis, but

look at the 
ase of the standard ia
s J




= f"

�

g, "

�

= +1 if � > 0, when

M (J;�) = ;. By Proposition 6.8, M (w � J;�) is the set of positive roots

having nonzero 
oeÆ
ient in the dire
tion of �

w

if w 2 W

e

�

. For example, in

the A

l

series with root �

ij

, 1 � i 6= j � n = l + 1, any simple root �

i;i+1

is

�

w

for some w 2 W

e

�

. Also, the set positive roots having 
oeÆ
ient in the

�

w

= �

i;i+1

is the \re
tangle" f�

rs

: r � i; s � i + 1g. Any su
h re
tangle

is a representative of the invariant K�ahler stru
tures. Note that they meet

the set simple roots, so that the standard ia
s 
annot be put in the abelian

ideal form of Theorem 4.12.

7 Classes of almost Hermitian stru
tures

Following Grey and Hervella [8℄ the almost Hermitian stru
tures are 
lassi-

�ed into sixteen 
lasses, ea
h one 
orresponding to an invariant subspa
e of

a representation of U (n), say on a spa
e W . This representation de
omposes

into four irredu
ible 
omponents W = W

1

�W

2

�W

3

�W

4

. The possible


ombinations of these 
omponents (together with f0g) furnishes the di�erent


lasses of almost Hermitian stru
tures. This 
orresponden
e respe
ts in
lu-

sion, sin
e a 
lass asso
iated to an invariant subspa
e V

1

is 
ontained in the


lass asso
iated to V

2

if V

1

� V

2

. We do not explain here the representation

W neither its irredu
ible 
omponents. We just follow the numbering in [8℄

for the 
omponents, and their 
orresponding almost Hermitian 
lasses. For

some of the 
lasses we use their de�ning property. When this happens we

expli
itate them. For instan
e, f0g 
orresponds to K�ahler metri
s, W

1

�W

2

to (1; 2)-symple
ti
, and the 
o-symple
ti
 
lass is given by W

1

�W

2

�W

3

.

As we shall see within the invariant almost Hermitian stru
tures the six-

teen 
lasses 
ollapse down to these three ones, together with another 
lass,

whi
h in
ludes every ia
s but only some spe
i�
 metri
s, among them the

Cartan-Killing ones.

To start with re
all that we proved in Corollary 2.5 that almost K�ahler

stru
tures are K�ahler. In the notation of [8℄ the almost K�ahler stru
ture
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orreponds W

2

, so that W

2

� f0g.

The other 
ases require the Nijenhuis tensor N , whi
h is de�ned by

1

2

N (X; Y ) = [JX; JY ℄� [X; Y ℄� J [X; JY ℄� J [JX; Y ℄: (9)

In the invariant 
ontext with J = f"

�

g, take roots � and �. An easy 
om-

putation yields

�

1

2

N (X

�

; X

�

) = m

�;�

("

�

"

�

+ 1� "

�

"

�+�

� "

�

"

�+�

)X

�+�

: (10)

Lemma 7.1 Given three roots �, � and 
, (N (X

�

; X

�

) ; JX




)

�

= 0 unless

� + � + 
 = 0. In this 
ase,

�

1

2

(N (X

�

; X

�

) ; JX




)

�

= i�




m

�;�

("

�

"

�

"




+ "

�

+ "

�

+ "




) :

Proof: By (10), � (1=2) (N (X

�

; X

�

) ; JX




)

�

is

i�

�+�

m

�;�

("

�

"

�

+ 1� "

�

"

�+�

� "

�

"

�+�

) "




hX

�+�

; X




i

whi
h is zero unless 
 = � (� + �). Now, the formula in the lemma follows

be
ause hX

�

; X

��

i = 1 and "




= �"

�+�

.

With this lemma the Hermitian 
ase, that is, when J is integrable, whi
h

means N = 0 is easily des
ribed. This 
ase 
orresponds to W

3

�W

4

.

Proposition 7.2 Let J be an ia
s su
h with N = 0. Then the set P = f� :

"

�

= +1g is a 
hoi
e of positive roots with respe
t to some lexi
ographi
 order

in h

�

R

. Hen
e, if J is integrable, the pair (J;�) is K�ahler.

Proof: Take �; � 2 P su
h that 
 = � (� + �) is a root. By the above

lemma we have "

�

"

�

"




+ "

�

+ "

�

+ "




= 0. This implies that "




= �1 if

"

�

= "

�

= +1, so that "

�+�

= +1. Therefore, P is 
losed under addition,

and sin
e � = P [ �P , it follows that P is a 
hoi
e of positive roots.

It follows by the in
lusion among the 
lasses, that those 
orresponding to

W

3

and W

4

are also K�ahler.

Next, we go dire
tly to the 
o-symple
ti
 stru
tures W

1

�W

2

�W

3

, whi
h

will help to solve many other 
ases.
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Proposition 7.3 Every invariant pair (J;�) is 
o-symple
ti
.

Proof: By [8℄, Se
tion 8, an almost Hermitian stru
ture is 
o-symple
ti
 if

and only if the form

� (X) =

1

2n� 1

X

i

d
 (X;X

i

; Y

i

) (11)

anihilates. Here fX

i

g is a basis of the tangent spa
e and fY

i

g is the dual basis

with respe
t to the nondegenerate form 
. In our 
ase we take the basis to be

fA

�

; iS

�

: � 2 �

+

g. Its dual is a multiple of fiS

�

; A

�

: � 2 �

+

g. Plugging

these bases into (11), a straighforward 
omputation shows that � (X) = 0 is

equivalent to

X

�>0

d
 (X;X

�

; X

��

) = 0

for all X. But this is true be
ause d
 (X

�

; X




; X

Æ

) = 0 unless � + 
+ Æ = 0,

so that for every root 
, d
 (X




; X

�

; X

��

) = 0.

Proposition 7.4 In a 
o-symple
ti
 almost Hermitian manifold there are

the following equivalen
es: 1) W

1

�W

3

� W

1

�W

3

�W

4

; 2) W

1

�W

4

� W

1

;

3)W

1

�W

2

� W

1

�W

2

�W

4

; 4)W

2

�W

3

� W

2

�W

3

�W

4

; 5) W

3

�W

4

� W

3

;

6) W

2

�W

4

� W

2

.

Proof: Is a dire
t 
onsequen
e of Table I in [8℄. When Æ
 = 0 the 
orre-

sponding de�ning 
onditions are the same. Note that in [8℄ the K�ahler form

is denoted by F and the Nijenhuis tensor by S.

Therefore, in our invariant setting the 
lasses W

3

�W

4

and W

2

�W

4

are

K�ahler. Also,W

1

�W

2

�W

4

is the same as (1; 2)-symple
ti
 (W

1

�W

2

). Next

we show that any invariant stru
ture fall in the 
lassW

2

�W

3

� W

2

�W

3

�W

4

.

Consider the tensor T (X; Y; Z) = (N (X; Y ) ; JZ)

�

. The 
lass 
orresponding

to the subspa
e W

2

�W

3

�W

4

is formed by the almost Hermitian stru
tures

for whi
h the symmetrizer ST of T is zero.

Proposition 7.5 Every invariant stru
ture is in W

2

�W

3

�W

4

.
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Proof: We must show that ST = 0 for any invariant pair (J;�). By Lemma

7.1 it is enough to show that ST (X

�

; X

�

; X




) = 0 when � + � + 
 = 0,

sin
e these are the only triples of roots satisfying T (X

�

; X

�

; X




) 6= 0. In

view of the formula in Lemma 7.1 we must symmetrize only the 
omponent

�




m

�;�

, sin
e "

�

"

�

"




+ "

�

+ "

�

+ "




is already symmetri
. Summing over the

permutations we have

�




m

�;�

+ �




m

�;�

+ �

�

m

�;


+ �

�

m

�;


+ �

�

m


;�

+ �

�

m


;�

= 0

be
ause m

�;�

= �m

�;�

.

Now, the de�ning 
ondition for the 
lass W

1

�W

3

� W

1

�W

3

�W

4

is

the anihilation of the tensor (N (X; Y ) ; X)

�

. We 
ompute it by looking at

the root ve
tors. Analogous to Lemma 7.1 we have (N (X

�

; X

�

) ; X




)

�

= 0

unless � + � + 
 = 0, and in this 
ase

�

1

2

(N (X

�

; X

�

) ; X




)

�

= �




m

�;�

("

�

"

�

+ "

�

"




+ "

�

"




+ 1) :

In parti
ular, (N (X

�

; X

�

) ; X

�

)

�

= 0 for every root �. Hen
e, for X =

P

�

a

�

X

�

we get

(N (X;X

�

) ; X)

�

=

X

�6=


�

(N (X

�

; X

�

) ; X




)

�

+ (N (X




; X

�

) ; X

�

)

�

�

: (12)

Now, �

1

2

�

(N (X

�

; X

�

) ; X




)

�

+ (N (X




; X

�

) ; X

�

)

�

�

is

m

�;�

((�

�

� �

�

) ("

�

"

�

+ "

�

"




+ "

�

"




+ 1))

sin
e m

�;�

= m

�;


= m


;�

if �+ � + 
 = 0.

Lemma 7.6 A ne
essary and suÆ
ient 
ondition for the invariant pair (J;�)

to be in the 
lass W

1

�W

3

� W

1

�W

3

�W

4

is: �

�

= �

�

= �




if f�; �; 
g is

a f0; 3g -triple.

Proof: For roots �, � and 
 with �+�+
 = 0, the sum "

�

"

�

+"

�

"




+"

�

"




+1

is not zero if and only if f�; �; 
g is a f0; 3g-triple. Then the suÆ
ien
y of

the 
ondition is immediate from the identity (12). On the other hand, it is

easy to see that the 
ondition is ne
essary by 
omputing (N (X; Y ) ; X) with

X having the form X = X

�

+X

�

, �; � 2 �.

The 
ondition of this lemma implies the following existen
e of metri
s.
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Proposition 7.7 Let J = f"

�

g be an ia
s and denote by C (J) the subset

of roots � su
h that there exists a f0; 3g -triple f�; �; 
g 
ontaining �. Let

� = f�

�

g be an invariant metri
 su
h that �

�

is 
onstant on C (J). Then

the pair (J;�) is in the 
lass W

1

�W

3

� W

1

�W

3

�W

4

.

Proof: Follows immediately from the ne
essary and suÆ
ient 
ondition of

the above lemma.

Noti
e that the Cartan-Killing metri
 is a parti
ular 
ase of � in this

proposition.

To 
omplete our analysis of the invariant almost Hermitian stru
tures

it remains only to look at the near K�ahler 
ase W

1

(whi
h is equivalent to

W

1

� W

4

). The 
lass of near K�ahler stru
tures ( W

1

) is the interse
tion

of W

1

�W

2

((1; 2) -symple
ti
) with W

1

�W

3

, whi
h we have seen above.

Hen
e, the 
ondition of Lemma 7.6 is ne
essary for a pair (J;�) to be near

K�ahler. We use this 
ondition together with the abelian ideal form for the

(1; 2)-symple
ti
 strutures to show that any near K�ahler is a
tually K�ahler

in most of the maximal 
ag manifolds. First we note that the 
ondition of

Lemma 7.6 
an be restated by saying that if � and � are roots su
h that

� + � is a root, and "

�

= "

�

= +1, "

�+�

= �1, then �

�

= �

�

= �

�+�

. (
f.

[21℄, Theorem 9.17).

Let (J;�) be near K�ahler. Then it is (1; 2)-symple
ti
, so there are � and

�

+

a simple system of roots and positive roots where has the abelian ideal

property with M (J;�) = f� > 0 : "

�

= �1g.

Lemma 7.8 Suppose that there are �; � 2 �

+

nM (J;�) su
h that �+ � 2

M (J;�) and � = �

1

+ �

2

with �

i

, i = 1; 2, positive roots. Then (J;�) is not

near K�ahler.

Proof: Suppose to the 
ontrary that (J;�) is near K�ahler. Then �

�

= �

�

,

by Lemma 7.6. On the other hand, either �+ �

1

or �+ �

2

is a root (see the

proof of Lemma 4.11). Suppose, for instan
e, that �+ �

1

is a root. We have

� + � = (�+ �

1

) + �

2

2 M (J;�). Also, neither �

1

nor �

2

are in M (J;�),

be
ause this set is an ideal and � =2M (J;�). Hen
e, f�

1

; �

2

;��g is a f1; 2g-

triple, so that �

�

> �

�

1

; �

�

2

. Also, another apli
ation of Lemma 7.6 implies

that �

�+�

1

= �

�

2

. Now, ea
h possibility for "

�+�

1

lead to a 
ontradi
tion. In

fa
t, if "

�+�

1

= +1 then f�; �

1

;� (� + �

1

)g is a f1; 2g-triple so that

�

�

< �

�+�

1

= �

�

2

< �

�

:
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Otherwise, if "

�+�

1

= �1, Lemma 7.6 applied to � and �

1

implies that

�

�

= �

�

1

< �

�

. Both 
ases 
ontradi
t the fa
t that �

�

= �

�

.

Corollary 7.9 Put

M (J;�)

min

= f
 2M (J;�) : 9� 2 �; 
 � � 2 �

+

nM (J;�)g:

Then (J;�) is not near K�ahler if there exists 
 2 M (J;�)

min

having height

h (
) > 2.

Proof: Take 
 2 M (J;�)

min

with h (
) > 2 and let � 2 � be su
h that

� = 
 � � 2 �

+

nM (J;�). Then h (�) � 2 so that � = �

1

+ �

2

for some

pair of positive roots. Therefore � and � are in the 
onditions of the lemma,

showing that (J;�) 
annot be near K�ahler.

Corollary 7.10 If (J;�) is near K�ahler and M (J;�) 6= ; then M (J;�)


ontains every root � with h (�) = 2, so that M (J;�) = f� > 0 : h (�) � 2g.

The 
ondition of this 
orollary is not satis�ed in most of the root systems:

Lemma 7.11 The set I

2

= f� > 0 : h (�) � 2g is an abelian ideal only in

the root systems A

l

, l � 3, and B

2

.

Proof: Appart from A

l

, l � 3, and B

2

, every Dynkin diagram 
ontains one

of the root systems A

4

, B

3

, C

3

, D

4

or G

2

as a subdiagram. It is easy to

�nd in these low rank systems pairs of roots in I

2

whose sum is still a root.

Hen
e, in these root systems I

2

is not abelian. Clearly, if a root system �


ontains a subsystem su
h that the 
orreponding I

2

is not abelian, then the

same holds to �. Finally, it is straighforward to 
he
k that I

2

is an abelian

ideal in A

l

, l � 3, and B

2

, provig the lemma.

Now we are able to prove that for most of the root systems every invariant

near K�ahler stru
ture is K�ahler.

Theorem 7.12 Any invariant near K�ahler stru
ture is K�ahler if g is not

A

2

. In A

2

there exists one equivalen
e 
lass of ia
s admitting a 1-parameter

family of near K�ahler metri
s.
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Proof: Take a near K�ahler pair (J;�). Then it is (1; 2)-symple
ti
, so that

it 
an be put in 
anoni
al form. Clearly, (J;�) is K�ahler if and only if

M (J;�) = ;. Hen
e, by Corollary 7.10 and the previous lemma it is enough

to look at A

l

, l � 3, and B

2

. In the trivial 
ase A

1

, there are only K�ahler

stru
tures. As to A

3

, its positive roots are �

1

, �

2

, �

3

, �

1

+ �

2

, �

2

+ �

3

and

�

1

+�

2

+�

3

. By Corollary 7.10, "

�

= +1 if and only if � is a simple root. Now,

by Lemma 7.6, the near K�ahler 
ondition implies that �

�

1

= �

�

2

= �

�

1

+�

2

and �

�

2

= �

�

3

= �

�

2

+�

3

. However, by the (1; 2)-symple
ti
 property we must

have �

�

1

+�

2

= �

�

3

+ �

�

1

+�

2

+�

3

, leading to �

�

1

+�

2

+�

3

= 0, a 
ontradi
tion.

Hen
e, there are no near K�ahler stru
tures on A

3

besides the K�ahler one.

Similarly, one 
he
ks in B

2

that for the highest root �

1

+ 2�

2

, �

�

1

+2�

2

= 0 if

M (J;�) 6= ;.

Finally, in A

2

we have J = f"

�

g with "

�

1

= "

�

2

= +1 and "

�

1

+�

2

= �1,

where �

1

and �

2

are the simple roots. This J together the one parameter

family of metri
s �

�

1

= �

�

2

= �

�

1

+�

2

, give rise to near K�ahler stru
tures

whi
h are not K�ahler.

Remark: The above determination of the near K�ahler stru
tures on F gives

a partial proof of the following 
onje
ture stated Wolf and Gray in [21℄ : Let

U=K be a homogeneous spa
e of a 
ompa
t Lie group U whi
h is not Hermi-

tian symmetri
 and su
h that the isotropy K has maximal rank. Then there

are invariant almost Hermitian stru
tures on U=K whi
h are near K�ahler but

not K�ahler if and only if the isotropy subalgebra is the �xed point set of an

automorphism of order three. In fa
t, the unique 
ag manifold whi
h is Her-

mitian symmetri
 is A

1

, while A

1

and A

2

are the only 
ag manifolds having

isotropy subalgebra as the �xed point set of an order three automorphism.

In summary we have the following 
lasses of invariant almost Hermitian

stru
tures on F:

1. K�ahler: W

1

(near K�ahler); W

2

(almost K�ahler); W

3

; W

4

; W

3

� W

4

(integrable); W

2

�W

4

and W

1

�W

4

.

2. (1; 2)-symple
ti
 (quasi-K�ahler): W

1

�W

2

, W

1

�W

2

�W

4

.

3. Invariant: W

1

�W

2

�W

3

(
o-symple
ti
); W

2

�W

3

; W

2

�W

3

�W

4

;

W

1

�W

3

; W

1

�W

3

�W

4

. (The last two for spe
i�
 metri
s and every

ia
s.)
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